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Abstract: Antibiotic-resistant microorganisms are a rising
issue when it comes to human health. Microbial patho-
gens that cause harmful infections are quickly becoming
resistant to the antimicrobial action of traditional antibio-
tics. Nanotechnology, an innovative sector being an indis-
pensable part of healthcare and research, has in-depth
and extensive applications. Nano-compounds have been
promising antimicrobial agents, anti-cancerous mediators,
vehicles for drug delivery, formulations for functional
foods, identification of pathogens, food and drug packa-
ging industry, and many more. However, the chemical
synthesis of nanoparticles (NPs) has certain drawbacks
such as causing toxicity and other adverse effects. For
more than a decade, the use of NPs that are conjugated
or green-synthesized has gained popularity due to the two-
fold action of metallic NPs mixed with biological sources.
In contrast, NPs synthesized using plant or microbial
extracts, conjugated with biologically active components,

appear to be a safe alternative approach as they are envir-
onmentally friendly and cost-effective. Such environmentally
safe techniques are referred to as “green nanotechnology” or
“clean technology” and are feasible alternatives to chemical
methods. Furthermore, NPs conjugated with natural biomo-
lecules have improved bioavailability and have minimal side
effects, as they are smaller in size and have higher perme-
ability in addition to being reducing and stabilizing agents
possessing excellent antioxidant activity. NPs serve as poten-
tial antimicrobial agents due to their affinity towards sul-
phur-rich amino acids, adhere to microbial cell walls by
means of electrostatic attraction, and disrupt the cytoplasmic
membrane along with the nucleic acid of microbes. They
possess anticancer activity owing to oxidative stress, damage
to cellular DNA, and lipid peroxidation. The green-synthe-
sized NPs are thus a promising and safe alternative for
healthcare therapeutic applications.

Keywords: alternative approach, anticancer, antioxidant,
drug delivery, eco-friendly

1 Introduction

Currently, the most widely used technology for transla-
tional research has been nanotechnology. This branch
has gained immense popularity with the development
of metallic nanoparticles (NPs) that employ eco-friendly
biological constituents. Green-synthesized NPs have been for-
mulated with nanostructure sizes ranging from 1 to 100nm,
which were synthesized using biological approaches along
with techniques involving chemistry, physics, engineering,
and computational sciences [1,2]. With wide applications,
these biological NPs are considered one of themost promising
arenas with varied applications, such as in catalysis, biome-
dical, environmental, cosmetics, drug delivery, food, health
care, optics, and space industries [3,4]. Generally, two stra-
tegies are applied to synthesize NPs: the top-down method
breaks down larger structures into smaller particles by
applying physical, chemical, and biological approaches,
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while the bottom-up method uses atomic levels for NP
synthesis by involving various chemical, physical, and bio-
logical reactions to form larger nanostructures (Table 1) [5].

The NP synthesis involving physical and chemical
strategies widely uses chemicals with potential hazards,
such as the prominently used reducing agents, stabilizers,
and solvents that help to prevent colloidal agglomeration.
Hence, these chemically synthesized NPs limit their use in
biomedicine and other clinical uses due to their carcino-
genic and toxic effects on cells [6]. This led researchers to
the expansion of an eco-friendly, biologically active, reli-
able, and clean technique to synthesize NPs [7,8].

Green NPs that implement unicellular and multicel-
lular biological cells such as bacteria, actinomycetes,
fungi, plants, viruses, and yeasts have gained attention
[9–13]. Green NPs with varied shapes, sizes, and physio-
chemical properties have been excellent biological sys-
tems for NP usage. The most important microbial NP
synthesis is to successfully use their potential metabo-
lites such as enzymes, polysaccharides, vitamins, and
biopolymers to be used in various applications. These
microbes are considered to be one of the best potential
biofactory resources for synthesizing various NPs such as
gold, platinum, copper, silver, palladium, cadmium, and
magnetite. NPs with unique biological, physical, and
chemical characteristics have gained immense interest
in innumerable applications ranging from biosensors, anti-
microbials, optical devices, memory schemes, medical ima-
ging, drug delivery, and hyperthermia of tumours [14].

1.1 Green-synthesized NPs using biological
components

NPs synthesized chemically and physically using top-up
and bottom-up methods require greater energy and manu-
facturing processes and involve bulk substrates. Further,
characterization, low yields, and processes using solvents
and chemicals require operative parameters generating
greenhouse gases that have toxic effects on both atmo-
sphere and human health [23] (Figure 1). Green-synthe-
sized NPs are eco-friendly and can be prepared by a
single-step reduction method that utilizes relatively low
energy for their reactions to occur and is found to be highly
efficient [24,25]. The activities of the metal oxides were
increasedwhen theywere synthesized using plants, because
biomolecules from diverse sources of plants have strong
strengthening reducers and function as stabilizers when
combined with numerous kinds of proteins, tannins, phe-
nolic compounds, terpenoids, flavonoids, etc. These sourcesTa
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help to release metal ions that enter the cells and interrupt
the metabolic processes. NPs conjugated with natural bio-
molecules are easily absorbed in human cells with fewer
adverse effects and have been shown to be more effective.
Simultaneously, they function as reducing and stabilizing
agents, with reduced size and more penetrating capability,

demonstrating good therapeutic action. Green-synthesized
NPs are a superior choice in terms of therapies because
of their unique properties that include the larger surface
area, strong mechanical abilities, nanosize, high porosity,
dispersibility, hydrophobicity, and hydrophilicity. Various
NPs have been successful in inhibiting the growth of var-
ious microorganisms, both pathogenic and non-patho-
genic, and act as a potential anti-microbial agent and an
antioxidant as observed by various studies. Hence, the
current review is focused on the gaps where green NPs
have shown significant results in research and application
in various fields of medicine. Some of the topics covered in
this review include various applications of green nano-
technology in treating cancers, target drug delivery, bio-
sensors, gene therapy, magnetic resonance imaging, and
antimicrobial agents [26] (Figure 2).

1.2 Green synthesis and mechanism of NPs
using microorganisms

The best choice for NP synthesis is basically the solvent
system such as water or the natural extract from the com-
ponent itself. Ionic liquids are the best choice as they are
made up of ions with less than 100°C melting point, and
are also referred to as “room temperature ionic liquids.”
These ionic liquids are either hydrophobic or hydrophilic

Figure 1: Advantages of green-synthesized NPs over conventional
physical and chemical methods.

Figure 2: Various applications of nanotechnology in different fields of nanomedicine.
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based on the presence of anions or cations. Further, they
serve as reductants and protective agents for the synthesis of
various NPs such as Ag, Au, Al, and Pt [27]. The NP synthesis
inmicrobes involves both intracellular and extracellular pro-
cesses and uses various metals and metal oxides [28]. The
microbial NP synthesis is also mediated by a biochemical
mechanism during cellular detoxification by altering the
enzymatic catalysed reduction or precipitation reactions
with soluble inorganic or toxic ions. Microbial cells bind to
the target toxicmetal ions from the environment and convert
them into an elemental metal through enzymes. In the extra-
cellular process, the microbes trap these ions onto the cell
surface, reducing them by enzyme-catalysed reactions.
During the NP synthesis, the metal ions are reduced in
the extracellular process by their enzymes, proteins, com-
ponents of the cell walls, or the organic components used
in the culture media. However, the ions are transported
from the surrounding intracellular enzymes of the microbes
and transformed into NPs by their microbial enzymes. The
process involves the electrostatic attraction between the
carboxyl groups present in the microbial cells and the metal
ions and, further, gets reduced by the intracellular enzymes
and cofactors. The enzymes involved in both mechanisms
include the oxidoreductases, such as cysteine desulfhy-
drase, NADH-dependent nitrate reductase, NADPH-depen-
dent sulphite reductase, flavoprotein subunit α along with
the cell transporters [29].

1.3 Microorganisms-derived NPs

1.3.1 Bacterial-derived NPs

Bacterial species have been extensively used in various
applications that include bioremediation, genetic engi-
neering, and other fields [13]. Bacterial species have
been found to be utilized for the preparation of various
NPs due to their characteristic properties that reduce
metal ions; they are significant NP producers and rela-
tively the process is alleviated by microbial manipula-
tion. Several parameters such as the process involving
the production of NPs, pH, temperature, particle size,
time, and porosity greatly influence the potentiality of
the synthesized NPs [3].

Bacterial species are extensively used for NP synth-
esis such as bioreduced silver nanoparticles (AgNPs) and
employed for their distinctive morphologies of size and
shape. Examples of such bacteria are Bacillus amyloliquefa-
ciens, Escherichia coli, Aeromonas spp. SH10, Phaeocystis
antarctica,Bacillus cereus,Bacillus indica,Bacillus cecembensis,

Shewanella oneidensis, Pseudomonas proteolytica, Geobacter
spp.,Arthrobacter gangotriensis, Corynebacterium sps SH09,
Lactobacillus casei, and Enterobacter cloacae. Gold nano-
particles (AuNPs) have been synthesized using Shewanella
oneidensis, Arthrobacter gangotriensis, Desulfovibrio desul-
furicans, Bacillus megaterium D01, and Corynebacterium sp.
SH09 [30,31].

1.3.2 Fungal-derived NPs

NPs consisting of metal/metal oxide biosynthesis have
been effective in generating monodispersed NPs with defi-
nitive morphologies due to different intracellular enzymes
[32]. Fungal NPs can be synthesized in larger amounts
compared to bacteria with additional enzymes and pro-
teins along with reducing compounds that are present in
the microbial cell walls [33,34]. A total of 1,500 eukaryotic
species of single-celled yeast have been studied and iden-
tified. Fungi are used to synthesize metal or metal oxide
NPs such as silver, gold, etc. The synthesis of NPs uses
the enzyme reductase present in the cell walls or inside
the cells [32]. Yeasts have been used for the synthesis of
nanomaterials and NPs by various researchers, of which
AgNPs/AuNPs and Saccharomyces cerevisiae have the poten-
tial to be employed in innumerable applications [34].

1.3.3 Algae-derived NPs

Algae have the capability to accumulate heavy metals
and are used for the synthesis of biogenic metallic NPs.
The dried extracts of unicellular Chlorella vulgaris are
used to synthesize NPs of various shapes with promising
antibacterial activity towards pathogens like Staphylococcus
aureus that are multidrug-resistant and are alarmingly
increasing in nature [35]. The proteins of these algal
extracts function as stabilizing agents, reducing agents,
and modifiers for shape-controlling mechanisms [36]. A
marine algal, Sargassum wightii, is also used to synthesize
extracellular bimetallic NPs involving Ag, Au, and Ag/Au
[37]. Other algal species used for the NP synthesis include
Fucus vesiculosus [38], Kappaphycus alvarezii, and Spiro-
gyra insignis [39].

1.3.4 Virus-derived NPs

The virus has been used to synthesize the quantum dots
for NP synthesis; the viral capsid has a striking function
due to its protein content that helps in the effective

4  Shilpa Borehalli Mayegowda et al.



synthesis of NPs providing a highly reactive surface to
interact with metal ions [40–43]. The tobacco mosaic
virus (TMV) is used to synthesize the three-dimensional
vessels that help in various pharmaceutical applications.
With the prior addition of a low concentration of TMV to
Au or Ag salts to the plant extracts such as Nicotiana
benthamiana (Tobacco round leaves) or Hordeum vulgare
(Barley), a decreased NP synthesis was seen [44]. Rela-
tively, the TMV serves as a biotemplate to make the nano-
wires through metallization. However, there has been an
unexplored virus potential that needs to be researched
for NP biosynthesis and its applications.

1.3.5 Plant-derived NPs

The potentiality to accumulate heavy metals in diverse
parts of plants and their extracts has been employed for
the biosynthesis of NPs as it favours simplicity, efficiency,
and cost-effectiveness as compared to conventionalmethods.
To reduce and stabilize these metallic NPs, the “one pot”
method has been employed using different plant extracts.
For the green-synthesized NPs, these plants provide biomo-
lecules like carbohydrates, proteins, and coenzymes with
efficacy to reduce the metal salts like Au, Ag, ZnO, Ni, Co,
and Cu for the biosynthesis of NPs. Various plant extracts

used are alfa alfa (Medicago sativa), tulsi (Ocimum sanctum),
lemon (Citrus limon), aloe vera (Aloe barbadensis Miller),
coriander (Coriandrum sativum), mustard (Brassica juncea),
lemon grass (Cymbopogon flexuosus), sunflower (Helianthus
annuus), crown flower (Calotropis gigantea), and green tea
(Camellia sinensis) [45–49].

2 Applications of NPs

Chemically synthesized NPs hold tremendous promise
due to their ease of synthesis andwide range of applications;
however, it also results in toxic side effects. Green synthesis
is a promising and alternative, safe process. Biological NPs
are excellent tools that have been implemented in various
fields for the detection of pathogens/toxins, diagnosis,
wound healing, tumour therapy, etc. (Figure 3). NPs are
used to target cancers by drug delivery owing to their small
size and they also mitigate the adverse effects caused due
to photodynamic cancer therapy. A dye used in photody-
namic therapy migrates to the skin and eyes leading to
sensitivity that can be prevented by partial encapsulation
of the dye in NPs [50]. Furthermore, AuNPs have been
pragmatically useful in immunohistochemistry and the
identification of protein–protein interactions as observed

Figure 3: Applications of green-synthesized NPs derived from plants and microbes with varied biomedical applications and therapies.
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in the synthesized AuNP-probe with catalytic activity for
protein identification [51]. Extensive medical use of chemi-
cally made NPs has shown adverse effects that have now
been shifted to safer green synthetic bio-NPs. The fol-
lowing section highlights the commercial, medicinal,
and other significant applications of green synthetic
NPs [49–53].

2.1 Nanodrug delivery systems

2.1.1 Bacteria

With the current lifestyle, there has been increase in mul-
tidrug resistant (MDR) pathogens. The use of gadgets
such as mobile phones has been an indispensable part
of our lives for education, communication, and entertain-
ment with an increased rate of MDR bacteria [54]. The
treatment options for these MDR strains are very limited,
as seen along with the use of β-lactam drugs in the treat-
ment [55]. Silver (Ag) NPs exhibit antibacterial properties
that continuously release Ag2+ ions which adhere to bacterial
cellmembranes and cell walls with cell disruption [53–56]. On
entering the cells, Ag2+ ions deactivate respiratory enzymes
due to the production of reactive oxygen species (ROS) [57].
Accumulation of ROS damages RNA, DNA, and proteins,
while Ag++ released from NPs binds to the sulphur and phos-
phorus of DNA molecules and blocks further replication and
cell division, eventually leading to cell death. Ag2+ ions also

denature ribosomes in the cytoplasm further inhibiting pro-
tein synthesis [58–60] (Figure 4).

AgNPs accumulate in the cells and alter the mem-
brane structure, resulting in cell lysis [61]. The charges
present on the surface of the NP have a substantial role in
determining its interactionwith the cell membrane. Cationic
NPs infiltrate the cell and inflict extensive damage, while
anionic NPs do not penetrate the plasma membrane but
destabilize it at specific concentrations. The property of
charged NPs suggests potential damage to cells as it acts
as vehicles for drug delivery to cancerous cells. The
denatured cytoplasmic membrane often leads to orga-
nelle rupture, eventually resulting in cell lysis. Bacterial
signal transduction involves phosphorylation events,
which enable them to sense, adapt, and respond to envir-
onmental changes. NPs cause dephosphorylation and the
disruption of signal transduction leading to apoptosis. Ag
NPs are spherical or quasi-spherical and can easily release
Ag2+ ions due to their larger surface area [62].

In order to avoid agglomeration, capping agents are
used to coat the NPs, which modifies their surface and
affects their dissolution. The presence of inorganic and
organic substrates in the medium also affects the NP dis-
solution by aggregating with them. It has been very well
noted that Ag NPs release Ag2+ ions effectively and faster
in an acidic solution as compared to neutral solutions
[63]. A different mode of action by NPs has been observed
in both Gram-negative and Gram-positive bacteria owing
to the presence of peptidoglycan in Gram-positive bac-
teria, which hinders efficient penetration [6]. NPs with

Figure 4: Mechanism of bacterial destruction by the green-synthesized NPs. (1) Metal NPs attack the bacterial cell wall and cell membrane.
(2) Generates ions from the metal NPs that bind ribosomes and denatures them. (3) ROS starts to accumulate. (4) ROS with NPs ruptures the
cell membrane. (5) Protein structure gets altered and damaged. (6) DNA denaturation occurs. (7) Inhibits electron transport chain.
(8) Receptor sites are bounded by metal NPs causing conformational changes, which eventually, lead to cell death.
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10 nm or less in size have direct cell wall permeability
that enables them to enter into bacteria and cause cel-
lular impairment, which suggests a direct correlation
between the NP uptake and its antibacterial property
[63–65]. Hence, Ag NPs have a greater potential as anti-
bacterial agents, while the application of AgNPs as a bio-
film inhibitor needs further investigation [66]. NPs of
magnesium oxide are reported to possess anti-biofilm
and anti-adhesion properties, thereby making them effi-
cient against drug-resistant bacteria [67]. Cerium oxide
(CeO2) NPs have been noted to have potential applica-
tions. The green-synthesized NPs of CeO2 are well known
for their antibacterial and antifungal activities against
various pathogens [68].

2.1.2 Fungi

Studies on antifungal activity are limited, as it has been
observed that the concentration-dependent inhibitory
activity is probably low due to the saturation of fungal
hyphae with higher-density NPs, leading to pathogenic
fungal inactivation [69]. While the studies on the effect
of Ag ions on fungi are limited, reports suggest their inhi-
bitory effect on the replication of DNA and inactivate ribo-
somes, enzymes, and proteins involved in ATP production
[70,71]. Ag NPs synthesized with ribose sugar that acts as a
reducing agent and sodium dodecyl sulphate as a capping
agent showed antifungal properties against highly resis-
tant fungi Candida albicans and Candida tropicalis [72].
Similar results against fungal infections were obtained
by other researchers too [73]. Fungal cells sustained with
an ion gradient, trehalose, and glucose protects the biolo-
gical viability of cells from protein denaturation caused by

environmental stresses such as heat, cold, high pH, dehy-
dration, oxidative stress, and toxins [74]. NPs disrupt the
membrane structure and subsequently the permeability,
causing leakage of cell contents intracellularly along with
damage to the membrane potential. Observations under a
TEM depict the formation of pits in the fungal membrane
when treated with Ag2+ ions leading to cell cycle arrest and
death in Candida albicans with additional destruction of
membrane and inhibition of budding [73]. Palladium NPs
demonstrated effective antifungal activity against Colletotri-
chum gloeosporioides and F. oxysporum, although in a size-
dependentmanner, by disrupting cellular integrity, generating
reactive species, and creating an osmotic imbalance in patho-
gens [75,76].

2.1.3 Viruses

While several viral diseases have been eradicated, emer-
ging threats from novel viruses cannot be ignored due to
their adaptability and mutagenic ability [77]. Hence, such
viruses pose a continuous challenge to the scientific com-
munity. Enfuvirtide is one such synthetic peptide drug,
permitted by US Food and Drug Administration (FDA),
which targets the HIV gp41 envelope protein and pre-
vents its fusion [78]. Under such challenging circum-
stances, NPs emerge as promising antiviral mediators
for their exceptional physiochemical features and high
surface area [79]. NPs block the attachment and entry
of infectious viral particles by obstructing the multivalent
interactions between viral cell surface mechanisms and
host receptors on cell membranes (Figure 5) [80]. Pre-
vious studies have demonstrated the efficacy of NPs
against HIV-1 [79,80], hepatitis B virus, Herpes simplex

Figure 5: Metallic NPs attach to the cell surface proteins and viral genomes further stopping the replication process.
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virus type 1, monkeypox virus, and influenza [81–84].
Although the interaction and efficacy of NPs against
viruses were largely dependent on the size of NPs, they
also interacted at specific sites. NPs also bound strongly
to sulphur-containing residues of GP120 [82]. Both Ag
and gold NPs have promising antiviral properties, parti-
cularly against enveloped DNA/RNA viruses.

2.1.4 Parasitic infections

NPs have been recently used alone and/or with a combi-
nation of the recommended drug in the antimalarial
treatment that has helped to represent an innovative
therapy [85]. AgNPs synthesized with leaf extracts of Ani-
someles indica and Carissa spinarumwere effective against
the mosquito species such as Anopheles subpictus, Culex
tritaeniorhynchus, and Anopheles albopictus with toxicity
[86–90]. AgNPs synthesized using Bacillus safensis have
potential activity against Anopheles gambiae larvae and
showed 100% mortality with LC50 of 42.19 μg·mL−1 [91].
The Hyptis suaveolens and Leucas aspera leaf extracts
were used to synthesize AgNPs that displayed larvicidal
commotion against Aedes aegypti, Anopheles spp., and
Culex quinquefasciatus [92]. A seaweed Ulva lactuca
extract of AgNPs displayed a potential activity against
A. stephensi with inhibitory activity against Plasmodium
falciparum [90,93]. Leaf extracts of Cinnamomum zeyla-
nicum used with the AgNP synthesis exhibited mosqui-
tocidal activity and the NPs had greater efficacy towards
larvicidal activity, as also observed with the flower
extracts of Couroupita guianensis [91].

Trypanosomiasis, occurring in two major forms, has
accounted as a severe disease in humans and includes
American and African types. Sleeping sickness or African
trypanosomiasis is transmitted by the vector tsetse fly,
caused by haemoflagellate parasite Trypanosoma brucei,
and affects millions of people leading to death if not
treated; however, the American type is called “Chagas
disease,” and is caused by Trypanosoma cruzi [92]. The
use of NPs for the treatment of trypanosomiasis has not
been much researched yet; however, there are few reports
of spherical AgNPs (4–9 nm) and AuNPs (7–22 nm) that
had potential activity against it [93]. The crude extract of
Callistemon citrinus when used in the AgNP biosynthesis
has antitrypanosomal activity. It has been noted that the
bioactive agents derived from Serratia marcescens and
Chromobacterium violaceum when used in AgNP and
AuNP syntheses inhibited the growth of Trypanosoma
brucei gambiense, however, at a lower rate [94,95].

3 Anti-inflammatory agents

Detecting NPs is difficult due to their little or no detection
signals; however, it is notable that NPs are useful in deli-
vering drugs that reduce inflammation. In certain autoim-
mune diseases, such as rheumatoid arthritis (RA), which is
a chronic syndrome characterized by rapid progression,
swelling, inflammation, and eventually, destructs joints.
The available medications for the treatment, although initi-
ally beneficial, cause adverse side effects during long-term
use (Table 2). An improved method of administration of the
drugs would be to administer them directly at the site of
inflammation. This would be an arduous and expensive
task. This can be done using NPs as vectors that target
and administer the anti-inflammatory drugs straight onto
the inflammation sites [110]. This can be observed in several
studies where NPs as encapsulated drugs containing lipo-
somes are used to deliver drugs, such as glucocorticoids
and clodronate, targeting arthritis in animal models [111].
An additional study on an RA model observed that clodro-
nate liposomes when administered through the IV route
could potentially suppress the onset of the disorder by spe-
cifically targeting the macrophages [112]. In a study done
on adjuvant-induced rats, it was observed that when glu-
cocorticoid prednisolone was encapsulated in polyethylene
glycol (PEG)-coated liposomes and when these NPs were
directed to rats, it was evidenced to be effective tenfold
more compared to the usual approach. Symptoms were
seen to have disappeared within 2 days and the rats were
in complete remission after 6 days [113]. These observations
show that NPs can be considered potential candidates for
anti-inflammatory actions in disorders, especially auto-
immune disorders.

4 Anticoagulants

The current procedures for the control and prevention of
blood clots during surgical procedures, bloodlines, and
treatment of thromboembolic events are majorly depen-
dent on heparin-based anticoagulant drugs. Although
effective, these anticoagulants require constant moni-
toring and need neutralization using antidotes [114] due
to the bleeding risks associated with their administration,
which is more prevalent among patients with a high
bleeding risk [115]. NPs aim to overcome these associated
risks by being used as anticoagulating agents. Magnetic
NPs are a potential candidate in the areas of magnetic
resonance imaging, drug delivery, gene transfer, and
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magnetic drug targeting [116]. In a study done in 2018,
the heparin-stabilized ferrimagnetic iron oxide nanopar-
ticles (Hep-SPIONs) were used for haemodialysis and
classified as an active nano-anticoagulant. Compared to
the commercial heparin widely used for medical proce-
dures, these Hep-SPIONs showed similar anticoagulant
activity and have the promising magnetic ability. This is
further supported by the fact that Hep-SPIONs also exhibit
significant blood compatibility without severe toxicity in
an animal haemodialysis model. Since Hep-SPIONs show
these considerable properties, they can be potentially used
as an effective and safe treatment for a number of puri-
fying blood procedures in the future [117].

5 Thrombolytic activity

Cardiovascular disorders, such as myocardial infarctions,
venous thromboembolisms, and ischemic strokes, are a
group of potentially fatal disorders with high morbidity
and high mortality that are primarily caused by throm-
botic occlusions of blood vessels [118,119]. Currently,
these can be treated by thrombolytic drugs/therapy by
the use of injections containing plasminogen activators
(PAs). The use of PAs has major limitations and can
have side effects such as rapid drug elimination from
the body, narrow therapeutic window, and haemorrhagic
risks. Nanomedicine, which is an amalgamation of med-
ical applications and nanotechnology, can reduce the
potential fatal side effects of the present thrombolytic
drugs [120].

6 Anticancer therapeutics

NPs have long been studied for potential anticancer prop-
erties and, in certain studies, specific NPs have been seen
to exhibit anticancer properties. In a study published in
2019, it was observed that titanium oxide nanotubes were
coated with selenium NPs; the latter were seen to prevent
the growth of MG-63 cancer cells. The TiO2 tubes coated
with these Se-NPs were capable of exhibiting anticancer
properties along with other beneficial properties such as
antibacterial properties [121]. The existing therapeutic
strategies meant to tackle cancer in the form of cancer
chemotherapy and cancer biology are far from being used
at their optimal levels, as expected [122]. The usage of
mesoporous silica NPs has been used effectively as a
drug delivery vector due to their faster dissolution rate

of the drugs being dissipated. This is further supported by
better availability and stability within in vivo environ-
ments (Table 2) [123]. While graphite g-C3H4 has been
used for various activities like remediation, energy pro-
duction, microbial disinfection, and drug delivery, espe-
cially in cancer therapy has been a potential resource due
to its effectiveness, surface activity, stability, and bio-
compatibility [124]. Green-synthesized CeO2 NPs have
also shown promising and potential activity against can-
cers and also for diabetes due to their stability [125].

7 Nanobiosensors

Certain organic compounds have been used as antimicro-
bial packaging materials such as essential oils, organic
acids, and bacteriocins [126]. Nanobiosensors are used in
the food industry for pathogen detection during proces-
sing [127]. Many NPs like Ag, chitosan, copper, and metal
oxide NPs like zinc oxide (ZnO) or titanium oxide (TiO2)
have antimicrobial properties [128]. Conventional methods
for infectious disease diagnosis are slowwith low efficiency,
time-consuming, and complicated processes, especially
during emergencies. Microbial biosensors have made a
benchmark by providing a rapid, inexpensive, and accurate
for diagnosing infectious agents, hormonal imbalances, and
DNA. Epinephrine was determined by immobilizing Phaner-
ochaete chrysosporium ME446, a white rot fungus, using
glutaraldehyde crosslinked with gelatin on a Pt electrode
for NPs ranging from 5 to 100 μm in size with 1.04 μM detec-
tion limits. Epinephrine was converted into epinephrine
quinone by redox reactions in fungal cells, which are cata-
lysed by lactase enzyme, thus increasing the current flow
[129]. For viral infections, as observed in rat basophilic leu-
kaemia, mast cells form an exocytotic response within min-
utes of the addition of antigens that have been used to
construct biosensors for pathogen detection [130]. E. coli
SOS-EGFP was analysed to study the SOS response trig-
gered following harmful chemicals in DNA, which was
noted in DNA damage detected by the fluorescent protein
controlled by a recA gene promoter [131]. Lab-on-a-chip,
which works on the electrochemical system by integrating
microbes onto a microfluid chip, has been fabricated as a
microfluid device that enables the detection of the analyte
even at very low concentrations by energetically transfer-
ring the targeted analyte to the surface of the microbial
biosensors [132]. Forensic identification for recognition of
body fluidic traces containing DNA andmiRNA as evidential
proof has been analysed using microbial biosensors [133].
These portable biosensors might be a promising array
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system that can help to minimize cost and increase the
speed with efficiency.

8 Nanoimaging

Currently, NPs have been used as a potential tool for diag-
nosis purposes. The role of NPs asmultimodal andmultifunc-
tional imaging at a molecular level has been an additional
advantage. Further, their nanoscale size, loading capacity,
and controlled release patterns with tailored surfaces have
enhanced their potentiality and hence gained immense popu-
larity and strategy for cancer diagnosis. Magnetic NPs using
iron oxide have been used in magnetic resonance imaging
(NMR), as drug delivery systems, cancer treatment, and
therapy with magnetic fluid hyperthermia [134]. The most
minute details of the critical growth of the lethal cancerous
cells can be checked by imaging the sentinel lymph nodes
(SLNs). Food-grade honey can be used for the synthesis
of carbon NPs in SLN imaging, for its strong optical
absorption in the near-infrared regions, smaller size,
and rapid lymphatic transport for greater resection of the
SLN and reduces the complications in axillary investiga-
tions using low-resolution imaging process [135]. Grape
juice synthesized for fluorescent carbon NPs is simple,
chemically free for hydrothermal treatment with less toxi-
city, and excellent stability has been employed as probes
for cellular imaging, which might be an alternative to the
traditional quantum dots [136]. These imaging probes of
fluorescent NPs are the current labelling technique that
can be expected in near future as new medical diagnostic
tools owing to their photostable properties and bright-
ness [137].

9 Future perspectives

Nanotechnology has been growing rapidly with an exten-
sive range of applications in various arenas. NPs affect
humans and animals and cause numerous health disor-
ders of the lungs, kidneys, etc. However, there is still a
lack of information on the risks associated with pro-
longed use that needs to be worked on. Green synthesis
offers a safe mechanism to produce non-toxic NPs with
additional beneficial effects. Green synthesis has already
been applied in several fields owing to the use of natural
alternatives. Nanomedicine is presently one of the most
striking research areas that span the diagnosis and ther-
apeutics options including cancer, drug delivery, etc.

There is a need to generate NPs of uniform sizes, consis-
tency in properties, biocompatible with drug loading, and
release only to the target cells. Though NPs are known to
have a significant advance in the field of diagnosis and
therapy, their anticipation needs to be extended in other
areas like treatment for parasitic infections and response
in cancer therapy, which has been neglected and remains
limited. Themain fundamental research needs to be on the
fundamental markers of NPs to allow the specific target
sites of diseased tissues without altering the normal cel-
lular functioning; emphasizing the molecular genetics of
diseases will help further to signify the advanced nanome-
dicine, modelling cell interactions with drugs, and animal
model studies. The toxicity and efficacy of these NPs need
further research. An interesting upcoming area is the
development of personalized healthcare that needs to be
built on the concepts and mechanism by including nano-
devices and nanorobots for successfully handling the near
future with care; these green-synthesized NPs are poten-
tially viable and can be a safe biomaterial.

10 Summary and conclusion

Recent years have seen a lot of increasing demand for
environmentally friendly based green technology using
plants and microbes. With the increasing demand for NPs
synthesized from biological sources, the research has
paved way for their varied applications. NPs are generally
utilized for their antimicrobial properties resulting from
their metal components to act against bacteria, fungi, and
certain viruses. However, green-synthesized NPs being
eco-friendly and low cost have different biomolecules as
vital components that have gained immense popularity.
The antimicrobial properties of green-synthesized NPs are
employed in various industries such as in food packaging,
active agents in skin care products, treatment for diseases,
and drug delivery. The role of this novel nanomedical dis-
cipline has been well reported with its antimicrobial, anti-
cancer, antioxidant, anticoagulant, antiparasitic, diagnosis,
and nanoimaging properties. Although it is to be noted
that overuse and extensive deployment of NPs might
lead to toxicity due to the accumulation of metals and
ions that are released leading to lethal effects on humans,
currently, concentration usage has not been signified yet. In
conclusion, green synthesis is a largely positive and quite
significant venture in all fields of science where the use of
biological and biodegradable resources used in the synth-
esis of NPs will undoubtedly lead to an eco-friendly era.
However, some shortcoming challenges need to be studied,
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such as the extraction process, non-uniform particle sizes,
environmental parameters, biological resources used, and
most important application without toxicity. Improvising
green-synthesized NP particles with reference to the above
challenges will undeniably be a great choice in a simple,
low-cost, energy saving, and substantial process. It will
further help to investigate the future challenges and issues
in understanding their translation to clinical trials and offer
in the future development of improvised health care, espe-
cially in personalized medicines.
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