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When arranged in a periodic geometry, arrays of metallic nanostructures are capable of supporting
collective modes known as lattice resonances. These modes, which originate from the coherent
multiple scattering between the elements of the array, give rise to very strong and spectrally narrow
optical responses. Here, we show that, thanks to their collective nature, the lattice resonances
of a periodic array of metallic nanoparticles can mediate an efficient long-range coupling between
dipole emitters placed near the array. Specifically, using a coupled dipole approach, we calculate the
Green tensor of the array connecting two points and analyze its spectral and spatial characteristics.
This quantity represents the electromagnetic field produced by the array at a given position when
excited by a unit dipole emitter located at another one. We find that, when a lattice resonance is
excited, the Green tensor is significantly larger and decays more slowly with distance than the Green
tensor of vacuum. Therefore, in addition to advancing the fundamental understanding of lattice
resonances, our results show that periodic arrays of nanostructures are capable of enhancing the
long-range coupling between collections of dipole emitters, which makes them a promising platform
for applications such as nanoscale energy transfer and quantum information processing.

Lattice resonances are collective modes supported by
periodic arrays of nanostructures that originate from the
coherent multiple scattering between the individual ar-
ray constituents [1–15]. These resonances appear in the
spectrum at wavelengths commensurate with the peri-
odicity of the array and, due to their collective nature,
produce optical responses that are simultaneously very
strong and spectrally narrow, thus leading to record qual-
ity factors for metallic systems [16–25]. Thanks to these
exceptional properties, periodic arrays of metallic nanos-
tructures are being used in a broad range of applications.
These include the implementation of ultrasensitive sen-
sors [26–29], the development of platforms for exploring
new physical phenomena [30–34], as well as the design of
different optical elements, such as light-emitting devices
[35–46], lenses [47], color filters [48–50], and nonlinear
devices [51–54].

Interestingly, in the majority of these applications, the
lattice resonances are excited from the far-field using a
propagating electromagnetic wave, such as a collimated
laser. As a consequence, most of the theoretical charac-
terization of the optical properties of periodic arrays of
metallic nanostructures has been focused on describing
their far-field response through the analysis of quantities
such as the reflectance, transmittance, and absorbance
[11, 12]. However, lattice resonances also produce very
large electromagnetic fields around the array [55–58],
which, as we have recently shown, are ultimately lim-
ited by the number of elements of the array that interact
coherently [59]. The strong near-fields provided by lat-
tice resonances play a crucial role for applications, such
as nanolasing, in which the arrays interact with quantum
emitters placed in their vicinity [37, 60, 61]. Specifically,

in these systems, the lattice resonances couple with the
emitters (usually quantum dots or dye molecules) that
constitute the gain medium and provide the necessary
feedback to achieve lasing [44, 45, 62–68]. These modes
can also strongly influence the emission patterns of the
emitters [69, 70]. Furthermore, the collective character
of lattice resonances and their extended nature makes
them ideal candidates to provide an efficient long-range
interaction between emitters placed near the array. This
possibility has started to be explored to achieve collective
emission [71, 72], as well as long-range energy propaga-
tion [73].

In this article, motivated by the recent experimental
advances, we provide a detailed theoretical investigation
of the coupling between dipole emitters mediated by the
lattice resonances supported by periodic arrays of metal-
lic nanoparticles. To that end, we implement a theoret-
ical approach based on the coupled dipole model that
allows us to compute the Green tensor of the array con-
necting two points rµ and r. This quantity, which rep-
resents the electromagnetic field produced by the array
at r when excited by a unit dipole located at rµ, com-
pletely describes the optical response of the array. Us-
ing this approach, we analyze the spectral and spatial
characteristics of the Green tensor of the array and show
that, when a lattice resonance is excited, this quantity
is largely enhanced with respect to the Green tensor of
vacuum and decays with |r − rµ| at a much slower rate.
Our results contribute to the fundamental knowledge of
lattice resonances by providing a full characterization of
their interaction with dipole emitters, thus facilitating
their use for the enhancement of the long-range coupling
between dipole emitters.
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FIG. 1. (a) Schematics of the system under study, consisting of a square array of period a made of identical silver nanospheres
with radius R. The array is located in the xy-plane and is surrounded by vacuum. We are interested in the analysis of the
Green tensor of the array connecting two points rµ and r, which represents the field produced by the array at r = (x, y, z) when
excited by a unit dipole located at rµ = (xµ, yµ, zµ). (b,c) Dispersion diagrams showing the extinction efficiency of an array
with a = 800 nm and R = 100 nm for y (b) and z (c) polarization (see Eq. 2), calculated along the path in the first Brillouin
zone depicted in (d). The red dashed curves in panels (b) and (c) indicate the position of the Rayleigh anomalies, while the
insets show zooms of relevant regions of the dispersion relations, with the yellow dashed lines marking the onset and cutoff of
the lowest-order lattice resonance at the Γ and M points, respectively.

RESULTS AND DISCUSSION

The system under study, which is depicted in Fig-
ure 1(a), consists of a square array with period a made
of identical silver nanospheres of radius R. The array
is located in the xy-plane and surrounded by vacuum.
We assume that R is significantly smaller than both a
and the wavelength of light λ, which allows us to char-
acterize the response of the array using a coupled dipole
model [1, 3, 19, 74–76]. Within this approximation, we
model each of the nanoparticles of the array as a point
dipole with both electric p and magnetic m components,
whose responses are characterized by an electric αE and
a magnetic αM polarizability, respectively. As shown ex-
plicitly in the Appendix, the coupled dipole model al-
lows us to derive the following closed expression for the
electric and magnetic field produced by the array at a
point r = (x, y, z), when excited by a unit dipole with
electric µ̂E and magnetic µ̂M components, located at
rµ = (xµ, yµ, zµ)

[
E(r)
B(r)

]
=

a2

4π2

∫
1BZ

dk‖G(k‖, r)A(k‖)G(k‖,−rµ)

[
µ̂E

µ̂M

]
.

(1)

Here, 1BZ stands for the first Brillouin zone, G(k‖, r) is
the lattice sum tensor

G(k‖, r) =

[
GEE(k‖, r) GEM(k‖, r)
−GEM(k‖, r) GEE(k‖, r)

]
,

with its electric-electric and electric-magnetic compo-
nents explicitly defined in the Appendix, and A(k‖) =
[α−1 − G(k‖, 0)]−1 is the polarizability of the array (see
Eq. 8). This last quantity encodes the intrinsic response
of the array, which is determined by the interplay be-
tween the response of the nanoparticles, described by the
polarizability tensor α, and the geometry of the lattice,
contained in the lattice sum tensor G(k‖, 0).

The integral over k‖ in Eq. 1 is the result of the lo-
calized character of the dipole source, which breaks the
periodicity of the problem. Importantly, the integrand
displays narrow features, associated with the lattice res-
onances of the array, that make it necessary to use an
adaptive integration algorithm [77] to perform the inte-
gral. Furthermore, the lack of periodicity also means
that a full numerical solution of Maxwell’s equations,
using, for instance, a finite element (FEM) or a finite-
difference time-domain (FDTD) method, requires per-
forming a similar integration, thus making such compu-
tation very challenging.
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We begin our analysis by characterizing the response
of the array through the calculation of its extinction ef-
ficiency, defined as [13, 78]

En̂ =
4πk

a2
Im{n̂AEE(k‖)n̂

†}, (2)

for polarization along n̂. Here, AEE(k‖) is the electric-
electric component of the polarizability of the array,
which is the term that dominates the response of arrays
of metallic nanoparticles, such as those analyzed here.
Figures 1(b) and (c) show, respectively, Eŷ and Eẑ for an
array with a = 800 nm and R = 100 nm, calculated along
the path in the first Brillouin zone depicted in (d). Here
and in the remainder of this work, we compute the elec-
tric and magnetic components of the polarizability of the
nanoparticles from the corresponding dipolar Mie scat-
tering coefficients [79] with a dielectric function described
using a Drude model ε(ω) = ε∞ − ω2

p/(ω
2 + iγω) with

ε∞ = 5, h̄ωp = 8.9 eV, and h̄γ = 37 meV [80]. Examin-
ing the results shown in Figures 1(b) and (c), we observe
that the array supports different lattice resonances char-
acterized by large values of the extinction efficiency. The
lattice resonances appear at slightly larger wavelengths
than the Rayleigh anomalies (indicated by the red dashed
lines), at which the real part of the lattice sums diverge.
In this work, we focus on the lowest-order lattice reso-
nance, which has its onset at the Γ point at a wavelength
slightly larger than the array period. Furthermore, it
displays a cutoff at the M point at a wavelength slightly
larger than

√
2a. These two limits, which are indicated

in the insets of Figures 1(b) and (c) with yellow dashed
lines, play an important role in the behavior of the array
as we discuss later.

Equation 1 defines the Green tensor of the array con-
necting two points rµ and r as

G(r, rµ) =
a2

4π2

∫
1BZ

dk‖G(k‖, r)A(k‖)G(k‖,−rµ). (3)

Due to its dominant role, in this work, we focus our anal-
ysis on the electric-electric component of the Green ten-
sor, which satisfies E(r) = GEE(r, rµ)µ̂E or, in other
words, represents the electric field produced by the ar-
ray at r when excited by a unit electric dipole placed
at rµ. In Figure 2, we plot the spectrum of the yy
(a,b) and zz components (c,d) of GEE(r, rµ). We as-
sume rµ = (0, 0, 2R) and r = (∆x, 0, 2R) with ∆x = 10a
(a,c) and 100a (b,d) and the same values for the period of
the array and the size of the nanoparticles as in Figure 1,
i.e., a = 800 nm and R = 100 nm. We use colored solid
and dashed curves to represent, respectively, the real and
imaginary parts of the Green tensor and a color shaded
area for its envelope. The results are normalized to the
amplitude of the same component of the Green tensor
of vacuum GEE

0 (r− rµ) connecting the same two points,
which is defined in the Appendix. Notice that this quan-
tity represents the electric field produced at r by a unit

FIG. 2. Green tensor of a periodic array with a = 800 nm
and R = 100 nm connecting the points rµ = (0, 0, 2R) and
r = (∆x, 0, 2R). Panels (a) and (b) show the spectrum for
the yy component, while panels (c) and (d) display those for
the zz component. In both cases, we analyze the results
for ∆x = 10a (a,c) and 100a (b,d). The colored solid and
dashed curves represent, respectively, the real and imaginary
parts of the Green tensor, while the shaded areas indicate
its envelope. All of the results are normalized to the ampli-
tude of the same component of the Green tensor of vacuum
GEE

0 (r − rµ), whose real and imaginary parts are displayed
by the black solid curves and whose envelope is signaled by
the black shaded areas. In all of the panels, the yellow dashed
lines mark the onset of the lattice resonance at the Γ point
shown in the insets of Figures 1(b) and (c).

electric dipole placed at rµ in absence of the array. For
this particular configuration, we have GEE

0,yy(r − rµ) =

GEE
0,zz(r− rµ) = exp(ik∆x)[k2(∆x)2 + ik∆x− 1]/(∆x)3,

with k = 2π/λ. We plot the real and imaginary parts of
this quantity using black solid and dashed curves, as well
as its envelope with a black shaded area. Analyzing the
results of Figure 2, we notice that, in all cases, the real
and imaginary parts of the Green tensor of the array dis-
play a fast oscillation similar to that of the Green tensor
of vacuum, which arises from the factor exp(ik∆x), and
therefore is a clear signature of their far-field character.
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Expectedly, this oscillation is not present in the envelope
of the Green tensors. However, the Green tensor of the
array stills displays a second, slower, oscillation whose
origin is more complex, as we explain later.

Another important characteristic of the results shown
in Figure 2 is the significant change of the Green ten-
sor of the array after the onset of the lattice resonance
at the Γ point, which is indicated by the yellow dashed
lines and coincides with those displayed in the insets of
Figures 1(b) and (c). Clearly, the contribution of the lat-
tice resonance produces a very large enhancement of the
amplitude of GEE

zz (r, rµ), which grows as ∆x increases.
This enhancement is not as pronounced in the case of
the yy component; indeed, for ∆x = 10a, the Green ten-
sor of the array is smaller than that of vacuum. The
large difference between the yy and zz components is a
direct consequence of the nature of the lattice resonances
excited in each of these cases. For the yy component, the
corresponding lattice resonance has an in-plane character
in which the dipoles induced in the nanoparticles oscillate
parallel to the array plane and therefore radiate very ef-
ficiently in the perpendicular direction. On the contrary,
the lattice resonance corresponding to the zz component
is an out-of-plane mode in which the dipoles oscillate
perpendicular to the plane of the array. Consequently,
they only radiate efficiently along the plane of the array,
thus minimizing the radiative losses and producing the
much larger values of the Green tensor shown in Figure 2.
Indeed, out-of-plane lattice resonances have been inves-
tigated in the past for their large quality factors arising
from the reduced radiative losses [81–83].

In all of the calculations shown in Figure 2, rµ and r are
separated along the x-axis. However, in Figure S1 of the
Appendix, we analyze the amplitude of the Green tensor
of the array for a similar displacement between rµ and r,
but, in this case, along the y-axis. As expected from the
symmetry of the problem, GEE

zz (r, rµ) remains completely
unchanged. However, the value for GEE

yy (r, rµ) becomes
significantly smaller. The reason is that, in such a case,
there is no lattice resonance involved, since they originate
from the far-field coupling between the elements of the
array, which vanishes along the direction parallel to the
dipole moment induced in the nanoparticles.

The results displayed in Figure 2 demonstrate that
GEE
zz (r, rµ) is the dominant component of the Green

tensor for the arrays under consideration. Therefore,
in the following, we focus our analysis on this com-
ponent. In Figure 3(a), we plot the spectrum of
|GEE

zz (r, rµ)|/|GEE
0,zz(r − rµ)| for rµ = (0, 0, 2R) and r =

(∆x, 0, 2R) with ∆x = 100a (red curve), 300a (black
curve), and 600a (gray curve). As expected from the
analysis above, once the lattice resonance begins to con-
tribute (i.e., for λ > 832 nm), it produces a very large
enhancement of the amplitude of the Green tensor of the
array. The enhancement increases with ∆x, reaching a
peak of ∼ 90 times the value of the Green tensor of vac-

uum for ∆x = 600a. In Figure 3(a), as in the rest of
the figures of this article, we assume a = 800 nm and
R = 100 nm. However, in Figure S2 of the Appendix we
analyze similar results for arrays with other values of a
and R. In all of the cases, for a given a, the spectral
position of the maximum value of the amplitude of the
Green tensor shifts to larger wavelengths as R increases.
This behavior is consistent with the redshift of the lattice
resonance onset for increasing R/a described in previous
works [23, 59]. Furthermore, for each value of a, there
is an optimum value of R that produces the largest en-
hancement of the Green tensor amplitude.

Another important aspect to analyze is the depen-
dence of the Green tensor of the array on the position
of rµ and r within their respective unit cells. Figure 3(b)
shows the spectrum of |GEE

zz (r, rµ)|/|GEE
0,zz(r − rµ)| for

rµ = (x, y, 2R) and r = (x + 100a, y, 2R) with the four
different combinations of x and y depicted in the up-
per inset. The configuration in which both rµ and r are
located above a nanoparticle (red curve) results in the
largest values of the Green tensor, followed by the case in
which both points lie at the center of the unit cell (green
curve). The least favorable configurations correspond to
rµ and r located in between two of the nanoparticles, ei-
ther along the x-axis (blue curve) or the y-axis (yellow
curve). These results can be explained as a combination
of two different factors: On one hand, the excitation of
the lattice resonance, as well as the field that it produces,
become stronger as rµ and r get closer to the nanopar-
ticles, thus resulting in a larger value of the Green ten-
sor. On the other hand, configurations in which rµ and
r are located in highly symmetrical points also favor a
larger value of the Green tensor, since they minimize
the cancelations due to phase differences in the excita-
tion of the nanoparticles, as well as in the field that they
produce. This last factor explains why the results for
(x, y) = (0.5a, 0.5a) (green curve) are larger than those
of (x, y) = (0.5a, 0) (blue curve) and (x, y) = (0, 0.5a)
(yellow curve).

The value of the Green tensor also depends on the
component of rµ and r along the direction perpendicular
to the array (i.e., the z-axis). We explore this depen-
dence in Figures 3(c) and (d), where we plot the spec-
trum of |GEE

zz (r, rµ)|/|GEE
0,zz(r−rµ)| for rµ = (x, y, z) and

r = (x + 100a, y, z) with different values of z. Specifi-
cally, panels (c) and (d) show results for (x, y) = (0, 0)
and (x, y) = (0.5a, 0.5a), respectively, with z ranging
from 4R (lighter curves) to 1.5R (darker curves). An-
alyzing these results, we observe that, in both cases,
the amplitude of the Green tensor grows as z decreases.
However, while this growth accelerates for (x, y) = (0, 0)
as rµ and r approach the nanoparticles, it saturates for
(x, y) = (0.5a, 0.5a).

Importantly, we have verified the accuracy of the dipole
model by calculating the local density of states (LDOS)
[84] induced by a single metallic nanosphere, with the
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FIG. 3. Amplitude of the zz component of the Green tensor of a periodic array with a = 800 nm and R = 100 nm connecting
the points rµ and r. Panel (a) shows the spectrum for rµ = (0, 0, 2R) and r = (∆x, 0, 2R) with ∆x = 100a (red curve), 300a
(black curve), and 600a (gray curve). Panel (b) shows the spectrum for rµ = (x, y, 2R) and r = (x + 100a, y, 2R), with the
four different combinations of x and y indicated in the upper schematics. Panels (c) and (d) show, respectively, the spectrum
for the cases with rµ = (0, 0, z), r = (100a, 0, z) and rµ = (0.5a, 0.5a, z), r = (100.5a, 0.5a, z), for three different values of z, as
indicated by the legends. All of the results are normalized to the amplitude of the corresponding Green tensor of vacuum.

same characteristics as those of the arrays under consid-
eration, and benchmarking it against full numerical so-
lutions of Maxwell’s equations. The results of this com-
parison are shown in Figure S3 of the Appendix. As
we discussed above, a fully numerical calculation of the
Green tensor of the array using a FEM or FDTD solver
of Maxwell’s equations is extremely challenging due to
the lack of periodicity of the problem.

The spectra displayed in Figure 3 show that the start
of the contribution of the lattice resonance to the Green
tensor is not influenced by rµ and r. However, the
oscillations of its amplitude are strongly dependent on
∆x, but are not affected by the position of rµ and r
within their corresponding unit cells. In order to gain
more insight into these behaviors, we start by invok-
ing the following property of the lattice sum tensor:
G(k‖,Ri+ρ) = G(k‖,ρ)eik‖·Ri , where Ri is an arbitrary
lattice vector. Using this relationship, we can rewrite
Eq. 3 as

G(r, rµ) =
a2

4π2

∫
1BZ

dk‖e
ik‖·(R−Rµ)

× G(k‖,ρ)A(k‖)G(k‖,−ρµ), (4)

where we have defined ρ = r − R and ρµ = rµ − Rµ,
with R and Rµ being the lattice vectors corresponding

to the unit cells in which rµ and r are located. From
their definition, it is clear that the in-plane components
of ρ and ρµ are located in the same unit cell. There-
fore, Eq. 4 shows that the integral that defines the Green
tensor of the array can be separated into two different
factors: (i) an oscillating exponential that only depends
on the separation between the unit cells in which rµ and
r are located, and (ii) a term containing the response of
the array, which only depends on the position of rµ and
r within the unit cell.

As discussed in Figure 1, the response of the array
is determined by the characteristics of its lattice reso-
nances. Figure 4(a) shows the iso-contours indicating
the position, within the first Brillouin zone, of the lowest-
order lattice resonance of an array with a = 800 nm and
R = 100 nm for the different values of the wavelength in-
dicated by the labels. These iso-contours are obtained by
finding the maximum value of Eẑ (see Eq. 2), and can be
used to obtain an approximate expression for the Green
tensor of the array. In particular, focusing again on the
configuration with rµ = (0, 0, 2R) and r = (∆x, 0, 2R),
and assuming that the response of the array is completely
dominated by the lattice resonance, so that only the iso-
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FIG. 4. Analysis of the spectral characteristics of the Green tensor of a periodic array. (a) Iso-contours showing the position
of the lattice resonance peak within the first Brillouin zone for different wavelengths. The panels on the right display a zoom
of the iso-contours for λ = 880 nm (upper panel) and λ = 980 nm (lower panel). The blue dashed lines indicate kx,2. (b) Value
of kx,1 (blue solid curve) and kx,2 (blue dashed curve) as a function of wavelength. The gray curve represents the value of
2π/a − k. (c,d) Normalized amplitude of the zz component of the Green tensor of the array connecting rµ = (0, 0, 2R) and
r = (100a, 0, 2R) (red curves, left scales) and results of the analytical model of Eq. 5 (green curves, right scales). The yellow
dashed lines in panels (b)-(d) mark the onset of the lattice resonance at the Γ point and its cutoff at the M point, as shown in
the insets of Figure 1(c). In all panels, we assume a = 800 nm and R = 100 nm.

contours contribute to the integral of Eq. 4, we can write

GEE
zz (r, rµ) ∼ eikx,1∆x + eikx,2∆xe−i2φ

= 2ei(kx,1+kx,2)∆x/2e−iφ

× cos[(kx,1 − kx,2)∆x/2 + φ]. (5)

Here, φ is a constant phase, while kx,1 and kx,2 represent,
in the spirit of the stationary phase approximation, the
points of the lattice resonance iso-contours that have a
zero derivative with respect to ky. These are the only
points that contribute to the integral, since the rapid
oscillation of the exponential factor cancels the contri-
bution of the rest of the iso-contour. The first of these
points, k1,x, corresponds to the value of kx at which the
iso-contour intercepts the kx-axis. The other one, kx,2,
as shown by the blue dashed lines in the right panels
of Figure 4(a), is located near the corners of the iso-

contour. Figure 4(b) shows the value of kx,1 and kx,2 as
a function of wavelength. As expected from the shape
of the iso-contours, kx,1 and kx,2 take identical values
for wavelengths near the onset of the lattice resonance
at the Γ point (i.e., λ = 832 nm). However, as λ grows,
their values become increasingly different. Importantly,
the value of k2,x saturates as the wavelength approaches
the cutoff of the lattice resonance at the M point (i.e.,
λ = 1138 nm). These limits at the Γ and M points are
indicated with yellow dashed lines in Figure 4(b), as well
as in the insets of Figure 1(c). It is important to mention
that, in our analysis, we only consider the kx,1 and kx,2
located in the negative part of the kx-axis. The reason
is that the lowest order lattice resonance has a negative
group velocity, as can be seen in Figure 1(c), and there-
fore only the components with negative kx contribute to
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the Green tensor connecting the points rµ = (0, 0, 2R)
and r = (∆x, 0, 2R) for positive values of ∆x. This is
confirmed numerically in Figure S4 of the Appendix.

The analytical approximation given in Eq. 5 predicts
two different oscillatory behaviors. First, the exponen-
tial factor oscillates as the value of (k1,x + k2,x)∆x/2
changes with wavelength. Since, as can be inferred from
Figure 4(b), the value of (k1,x + k2,x)/2 is very similar
to 2π/a−k (solid gray curve), especially for wavelengths
below ∼ 1050 nm, this factor explains the fast oscillation
of the real and imaginary parts of GEE(r, rµ) observed in
Figure 2. Second, the cosine factor produces a slower os-
cillation determined by the change of (k1,x − k2,x)∆x/2
with λ. As we analyze in Figure 4(c), this oscillation
reproduces that of the amplitude of the Green tensor
of the array discussed in Figures 2 and 3. In partic-
ular, the green curve (right scale) displays the value of
|cos[(kx,1−kx,2)∆x/2+φ]|, with kx,1 and kx,2 taken from
panel (b), ∆x = 100a, and φ = 0.8, while the red curve
(left scale) shows |GEE

zz (r, rµ)|/|GEE
0,zz(r − rµ)|. Compar-

ing these two curves, we observe that the cosine factor
of Eq. 5 perfectly matches the oscillations of the ampli-
tude of the Green tensor above the onset of the lattice
resonance (i.e., λ = 832 nm). Furthermore, since k2,x

saturates at λ = 1138 nm, it is expected that these os-
cillations disappear beyond that cutoff. This prediction
is confirmed by the results plotted in Figure 4(d), which
extend those of panel (c) to the wavelength range around
1138 nm. Clearly, the oscillations of the amplitude of the
Green tensor vanish as the wavelength approaches the
cutoff indicated by the yellow dashed line, a behavior
that is perfectly captured by the analytical approxima-
tion.

Then, from the results discussed in Figure 4 and the
analytical approximation of Eq. 5, we conclude that the
contribution of the lowest-order lattice resonance to the
Green tensor of the array occurs through a combination
of parallel wavevectors. One of them is always point-
ing along the direction connecting r with rµ, while the
value of the other varies with the wavelength. When the
wavevectors are equal, as is the case for λ ∼ 880 nm,
the amplitude of the Green tensor reaches its maximum
value. However, as they become different, their contri-
butions interfere, resulting in the oscillation of the am-
plitude of the Green tensor. Although these conclusions
arise from the analysis of a particular set of rµ and r,
they can be readily extended to other configurations us-
ing symmetry arguments.

In order to complete our characterization of the Green
tensor of the array, we analyze, in Figure 5(a), its depen-
dence with the distance between rµ and r. Specifically,
we consider an array with a = 800 nm and R = 100 nm,
and take rµ = (0, 0, 2R) and r = (∆x, 0, 2R). We use
black dots to plot the value of |GEE

zz (r, rµ)| as a function of
∆x. For each value of ∆x, we evaluate |GEE

zz (r, rµ)| at the
wavelength for which it reaches its maximum value. As a

FIG. 5. Analysis of the dependence with |r − rµ| of the
Green tensor of a periodic array with a = 800 nm and R =
100 nm. The black dots in panel (a) show |GEE

zz (r, rµ)|, for
rµ = (0, 0, 2R) and r = (∆x, 0, 2R) as a function of ∆x. For
each ∆x, we calculate |GEE

zz (r, rµ)| at the wavelength that pro-
duces the largest value. For comparison, the gray dots repre-
sent |GEE

0,zz(r−rµ)|, evaluated at the same positions and wave-
lengths. The dashed lines mark different scaling functions
as indicated by the corresponding labels. (b) Spectrum of
|GEE
zz (r, rµ)| for the different values of ∆x shown in the legend.

(c) Normalized energy transfer rate calculated from the data
shown in panel (a) as nETR = |GEE

zz (r, rµ)|2/|GEE
0,zz(r− rµ)|2.

reference, we also plot, using gray dots, the value of the
amplitude of the Green tensor of vacuum |GEE

0,zz(r− rµ)|,
evaluated at the same positions and wavelengths. An-
alyzing these results, we observe that, while the Green
tensor of vacuum always decays as (∆x)−1, as expected
from the far-field character of the distances under consid-
eration, |GEE

zz (r, rµ)| displays two distinct behaviors. For
∆x <∼ 400a, it decays at a much slower rate, following
an approximate dependence of ∼ (∆x)−1/4. However,
for ∆x >∼ 400a, the decay accelerates to ∼ (∆x)−1, sim-
ilar to that of the Green tensor of vacuum. This change
of behavior can be understood by looking at the spec-
tra of |GEE

zz (r, rµ)| plotted in Figure 5(b). There we see
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how, as ∆x increases, the first minimum caused by the
oscillations of the Green tensor shifts towards smaller
wavelengths. For ∆x >∼ 400a, this minimum reaches the
wavelengths at which the amplitude of the Green tensor
achieves its maximum value (λ ∼ 880 nm) and forces it to
decrease, thus producing the faster decay rate observed
in panel (a).

The results shown in panel (a) demonstrate that the
contribution of the lattice resonance produces a large en-
hancement of the Green tensor of the array as compared
with its vacuum counterpart. This enhancement can
mediate the transfer of energy between dipole emitters
placed in the vicinity of the array. In order to quantify
this effect, we plot, in Figure 5(c), the normalized energy
transfer rate, defined as [85, 86]

nETR =
|GEE

zz (r, rµ)|2

|GEE
0,zz(r− rµ)|2

.

This quantity measures the enhancement of the energy
transfer between two electric dipole emitters located at
rµ and r provided by the array. We assume that both
dipoles are oriented along the z-axis since, as discussed
before, that is the optimum configuration to maximize
the contribution of the array. The results shown in Fig-
ure 5(c) clearly demonstrate that, thanks to the contri-
bution of the lattice resonance, the array under investiga-
tion produces a nETR with values in the range of 103 to
104 for distances of hundreds to thousands of periods.
These results confirm that periodic arrays of metallic
nanostructures are capable of enhancing the long-range
coupling between dipole emitters.

CONCLUSIONS

In summary, we have performed a detailed investiga-
tion of the coupling between dipole emitters mediated
by the lattice resonances of a periodic array of metallic
nanoparticles. To do so, we have derived a closed expres-
sion for the Green tensor of the array using a rigorous
coupled dipole model and used it to analyze its spec-
tral and spatial characteristics. We have focused on the
electric-electric term of the Green tensor, which repre-
sents the electric field produced by the array when ex-
cited by a unit electric dipole, and analyzed both its yy

and the zz components. By doing so, we have found that
the latter reaches much larger values due to the contribu-
tion of the out-of-plane lattice resonance, which displays
much lower radiative losses than its in-plane counterpart.
Through the analysis of the spectrum of the Green ten-
sor connecting different pairs of points rµ and r, we have
found that, in addition to a fast oscillation of its real and
imaginary parts arising from its far-field nature, the am-
plitude of the Green tensor displays a slower oscillation.
This oscillation depends on |r− rµ|, but not on the posi-
tion of these points within the unit cells in which they are
located. We have explained this behavior as the result of
an interference process produced by the excitation of a
lattice resonance with different parallel wavevectors. By
comparing the Green tensor of the array with its vacuum
counterpart, we have found that the contribution of the
lattice resonance results in extraordinarily large values
that decay with |r − rµ| at a much slower rate. This
demonstrates that the lattice resonances of periodic ar-
rays of metallic nanoparticles can mediate an efficient
long-range coupling between dipole emitters placed in
their vicinity. Although, in this article, we have focused
on arrays of metallic nanoparticles, our theoretical ap-
proach is also valid for investigating other systems, such
as arrays of dielectric nanostructures [87]. Furthermore,
our analysis can be readily applied to periodic arrays
of atoms by using the appropriate polarizability [88–92].
The results of this article expand the fundamental knowl-
edge of lattice resonances and pave the way for the use of
periodic arrays of metallic nanostructures as platforms to
enhance the long-range coupling between dipole emitters.
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Appendix

Derivation of the Polarizability of the Array

As stated in the main text, we use a coupled dipole model [1, 3, 19, 74, 76] and describe each of the nanoparticles of
the array as a point dipole with both electric p and magnetic m components. The dipole induced in the nanoparticle
of the array located at Ri, when excited by an external electromagnetic field with electric and magnetic amplitudes
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Ei and Bi, respectively, can be written as[
pi
mi

]
=

[
αE 0
0 αM

][Ei
Bi

]
+
∑
j 6=i

[
GEE

0 (Ri −Rj) GEM
0 (Ri −Rj)

GME
0 (Ri −Rj) GMM

0 (Ri −Rj)

] [
pj
mj

] .

Here, αE and αM are the electric and magnetic polarizability tensors of the nanoparticles, while GEE
0 (r) = GMM

0 (r) =
[k2I3×3 +∇∇]eik|r|/|r| and GEM

0 (r) = −GME
0 (r) = ik∇× eik|r|/|r| represent the different components of the Green

tensor of vacuum, with k = 2π/λ being the wavenumber of light (notice that we use Gaussian units). Taking advantage

of the periodicity of the array and using the Fourier transform defined as vi = a2

4π2

∫
1BZ

dk‖v(k‖)e
ik‖·Ri , where a is

the array period and 1BZ stands for the first Brillouin zone, we can write the following self-consistent equation for
the k‖ components of the dipole induced in the nanoparticles[

p(k‖)
m(k‖)

]
=

[
αE 0
0 αM

]([
E(k‖)
B(k‖)

]
+

[
GEE(k‖, 0) GEM(k‖, 0)
−GEM(k‖, 0) GEE(k‖, 0)

] [
p(k‖)
m(k‖)

])
. (6)

In this expression, Gν(k‖, r) =
∑′

i
Gν

0(Ri + r)e−ik‖·Ri with ν = EE,EM and the prime in the summation indicates

that, if a term satisfies Ri + r = 0, it is to be excluded. Equation 6 can be solved as[
p(k‖)
m(k‖)

]
= A(k‖)

[
E(k‖)
B(k‖)

]
, (7)

where

A(k‖) =

([
αE 0
0 αM

]−1

−
[

GEE(k‖, 0) GEM(k‖, 0)
−GEM(k‖, 0) GEE(k‖, 0)

])−1

, (8)

is the polarizability of the array.

Derivation of the k‖ Components of the Electromagnetic Field of a Point Dipole

Given a unit dipole with electric µ̂E and magnetic µ̂M components, oscillating at frequency ω and located at rµ,
we can use the array scanning method [75, 93] to write its associated current as[

jE(r)
jM(r)

]
=

a2

4π2

∫
1BZ

dk‖(−iω)
∑
i

δ(r− rµ + Ri)e
−ik‖·Ri

[
µ̂E

µ̂M

]
. (9)

Then, taking into account that the electromagnetic field produced by the dipole current at the position of one of the
nanoparticles of the array can be written as[

Ei
Bi

]
=

i

ω

∫
dr′
[

GEE
0 (Ri − r′) GEM

0 (Ri − r′)
−GEM

0 (Ri − r′) GEE
0 (Ri − r′)

] [
jE(r′)
jM(r′)

]
,

and using Eq. 9, we obtain [
E(k‖)
B(k‖)

]
=

[
GEE(k‖,−rµ) GEM(k‖,−rµ)
−GEM(k‖,−rµ) GEE(k‖,−rµ)

] [
µ̂E

µ̂M

]
. (10)

Derivation of the Electromagnetic Field Produced by a Periodic Array of Dipoles

We can write the electromagnetic field produced at a point r outside of the array by a periodic array of dipoles as[
E(r)
B(r)

]
=
∑
i

[
GEE

0 (r−Ri) GEM
0 (r−Ri)

−GEM
0 (r−Ri) GEE

0 (r−Ri)

] [
pi
mi

]
.

Then, expressing the dipoles in terms of their k‖ components, we have[
E(r)
B(r)

]
=

a2

4π2

∫
1BZ

dk‖

[
GEE(k‖, r) GEM(k‖, r)
−GEM(k‖, r) GEE(k‖, r)

] [
p(k‖)
m(k‖)

]
.

Finally, substituting Eqs. 7 and 10 into the expression above, we obtain Eq. 1.
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FIG. S1. Amplitude of the Green tensor of a periodic array with a = 800 nm and R = 100 nm connecting rµ = (0, 0, 2R) with
either r1 = (100a, 0, 2R) (red curves) or r2 = (0, 100a, 2R) (blue curves). Panels (a) and (b) show the spectrum for the yy and
zz components of the Green tensor normalized to |GEE

0,yy(r1 − rµ)| and |GEE
0,zz(r1 − rµ)|, respectively.

FIG. S2. Amplitude of the zz component of the Green tensor of a periodic array connecting rµ = (0, 0, 2R) and r = (100a, 0, 2R)
for different values of the array period a and the nanoparticle radius R. Specifically, panels (a) and (b) show the spectrum for
a = 800 nm and a = 700 nm, respectively, with R ranging, in both cases, from 80 to 140 nm. All of the results are normalized
to the amplitude of the corresponding Green tensor of vacuum.

∗ Corresponding author: a.manjavacas@csic.es
[1] L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[2] S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
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[9] A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, ACS Photonics 3, 634 (2016).

[10] A. D. Humphrey and W. L. Barnes, J. Opt. 18, 035005 (2016).
[11] W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. Gómez Rivas, and T. W. Odom, Mater. Today 21, 303 (2018).
[12] V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, Chem. Rev. 118, 5912 (2018).
[13] C. Cherqui, M. R. Bourgeois, D. Wang, and G. C. Schatz, Acc. Chem. Res 52, 2548 (2019).

mailto:a.manjavacas@csic.es


11

FIG. S3. Local density of photonic states (LDOS) induced by a metallic nanosphere of radius R = 100 nm at a point rµ
normalized to the LDOS of vacuum LDOS0 = 4/(3cλ2). Panels (a) and (b) show the LDOS spectrum at rµ = (0, 0, 2R) and
rµ = (0, 0, 1.5R), respectively, with the origin of coordinates being set at the center of the nanoparticle. In both panels, the
green (red) curves correspond to the y component (z component) of the LDOS. Furthermore, dashed curves represent the
results obtained from a full numerical solution of Maxwell’s equations, while solid curves correspond to the results of the dipole
model. Examining these spectra, we observe that the dipole model is in excellent agreement with the full numerical calculations
for wavelengths above >∼ 600 nm. As expected, the agreement deteriorates for smaller wavelengths due to the contribution of
the quadrupole mode of the nanoparticle, which is not captured by the dipole model.

FIG. S4. Amplitude of the zz component of the Green tensor of a periodic array with a = 800 nm and R = 100 nm connecting
rµ = (0, 0, 2R) with either r = (100a, 0, 2R) (a) or r = (−100a, 0, 2R) (b). In both panels, the black curves represent the value
of |GEE

zz (r, rµ)| obtained from performing the integral of Eq. 3 over the entire first Brillouin zone, while the colored curves
represent the results obtained by restricting the integral over kx to either [−π/a, 0] (red curves) or [0, π/a] (blue curves). All
of the results are normalized to the amplitude of the corresponding Green tensor of vacuum.
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14, 1721 (2014).
[31] F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domı́nguez, V. Tasco,

M. Cuscunà, A. Passaseo, et al., ACS Nano 10, 11360 (2016).
[32] S. R. K. Rodriguez, J. Feist, M. A. Verschuuren, F. J. Garcia Vidal, and J. Gómez Rivas, Phys. Rev. Lett. 111, 166802
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1922 (2019).
[51] R. Czaplicki, A. Kiviniemi, J. Laukkanen, J. Lehtolahti, M. Kuittinen, and M. Kauranen, Opt. Lett. 41, 2684 (2016).
[52] L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, Phys. Rev. Lett. 118, 243904 (2017).
[53] M. J. Huttunen, P. Rasekh, R. W. Boyd, and K. Dolgaleva, Phys. Rev. A 97, 053817 (2018).
[54] D. C. Hooper, C. Kuppe, D. Wang, W. Wang, J. Guan, T. W. Odom, and V. K. Valev, Nano Lett. 19, 165 (2019).
[55] S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[56] A. G. Nikitin, A. V. Kabashin, and H. Dallaporta, Opt. Express 20, 27941 (2012).
[57] Y. Huang, L. Ma, M. Hou, and Z. Zhang, Plasmonics 11, 1377 (2016).
[58] K. Guo, M. A. Verschuuren, and A. F. Koenderink, Optica 3, 289 (2016).
[59] A. Manjavacas, L. Zundel, and S. Sanders, ACS Nano 13, 10682 (2019).
[60] S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, Phys. Rev. X 1, 021019 (2011).
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