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ABSTRACT Smart cities appear as the next stage of urbanization aiming to not only exploit physical and

digital infrastructure for urban development but also the intellectual and social capital as its core ingredient

for urbanization. Smart cities harness the power of data from sensors in order to understand and manage city

systems. The most important of these sensing devices are smartphones as they provide the most important

means to connect the smart city systems with its citizens, allowing personalization n and cocreation. The

battery lifetime of smartphones is one of the most important parameters in achieving good user experience

for the device. Therefore, the management and the optimization of handheld device applications in relation to

their power consumption are an important area of research. This paper investigates the relationship between

the energy consumption of a localization application and the strength of the global positioning system (GPS)

signal. This is an important focus, because location-based applications are among the top power-hungry

applications. We conduct experiments on two android location-based applications, one developed by us, and

the other one, off the shelf. We use the results from the measurements of the two applications to derive a

mathematical model that describes the power consumption in smartphones in terms of SNR and the time

to first fix. The results from this study show that higher SNR values of GPS signals do consume less

energy, while low GPS signals causing faster battery drain (38% as compared with 13%). To the best of our

knowledge, this is the first study that provides a quantitative understanding of how the poor strength (SNR)

of satellite signals will cause relatively higher power drain from a smartphone’s battery.

INDEX TERMS Green mobile computing, energy efficiency, smart cities, smart phones, signal strength,

power model.

I. INTRODUCTION

Smart cities appear as the next stage of urbanization,

subsequent to knowledge-based economy, digital economy,

and intelligent economy. Smart cities aim to not only exploit

physical and digital infrastructure for urban development but

also the intellectual and social capital as its core ingredient

for urbanization. A city can be defined as ‘‘smart’’ when

‘‘investments in human and social capital and traditional

(transport) and modern (ICT) communication infrastruc-

ture fuel sustainable economic growth and a high qual-

ity of life, with a wise management of natural resources,

through participatory governance’’ [1]. Smart cities can also

be seen also as ‘‘converged ubiquitous infrastructures’’ and

‘‘complex systems of systems’’.

A number of trends have contributed to the development of

smart cities. These include a pressing need for environmental

sustainability, and peoples’ increasing demands for personal-

ization and mobility. Several ‘smart cities’ around the world

are being built from scratch while many of the modern cities

are gradually moving towards becoming ‘smart’. We are

now used to of Google-Maps, which enables us to navi-

gate to our destination avoiding congested routes based on

real-time traffic data. Mobile applications such as

Citymapper [2] allows us to travel through the city using
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public and other transport modes providing near real-time

information. Many other developments such as Internet of

things (IoT) for smart cities [3], semantic web for smart cities

data [4], smart emergency management systems [5], auto-

nomic transportation systems [6], traffic-aware street lighting

scheme [7], planning and land administration [8], strategies

for smart cities [9], privacy-aware participation [10], crime-

sourcing [11], community resilience [12], smart grid and

metering, and many other proposals [6], [13]–[22] are shap-

ing our move towards the smart cities era.

At the heart of smart cities is the concept of harnessing

the power of data from sensors to understand and manage

city systems. Sensors therefore are playing a critical role

in enabling smart cities technologies and systems. Sensors

provide the pulse of the city helping it to apply some control

measures before a major breakdown happens. The city pulse,

enabled by sensors and streams of information, also facilitates

the citizens with a high quality of life.

Perhaps the most important of these sensing devices are

smartphones (and other personal devices such as tablets).

This is mainly because smartphones provide the most impor-

tant means to connect the smart city systems with its citizens,

allowing personalization and co-creation. Smart phones cur-

rently have 14 or more sensors to monitor the environment

and provide various facilities to the user [23]. These include

the accelerometer, gyroscope, magnetometer, proximity

sensor, light sensor, barometer, thermometer, air humidity

sensor, pedometer, heart rate monitor, fingerprint sensors,

harmful radiation detector, hall sensor, gesture sensor, micro-

phone and the cameras. It is expected that gas sensors

will also be integrated into smartphones enabling indoor air

quality monitoring [24]. Smartphones also provide powerful

computing abilities and are being used in plethora of appli-

cations and use cases, such as smart car parks [25], accelera-

tors for ecommerce, fitness and health [26], [27], connected

cars, participatory smart citizenship, social behavior change

interventions [28], and many of the smart city applications

that we have mentioned above. Moreover, while the UN

statistics about doubling of the global urban population by

2050 is causing nightmares for city managers and politi-

cians, this increasing number, considering the decreasing

smartphone prices, is likely to provide fine grained, dense

information about the city to the public and other stakeholders

(due to the increasing smartphone ownership among urban

populations).

The discussions given above suggest that the popular-

ity and applications of smart mobile devices, and hence

the industry, will continue to grow at extraordinary rates.

Different studies also show that in the near future handheld

devices will be much more marketable for web browsing

and other functionalities compared to the personal computers.

The contemporary smartphones are increasingly considered

as handheld computers rather than as phones. This is in

part due to their powerful on-board computing capability,

large memories and screens, and open operating systems that

support application development [29]. Unfortunately, as a

result, applications that are designed for mobile devices are

getting computationally heavier and their complexity is on the

rise. The common applications that are run on mobile devices

include voice and video based applications (skype, whatsapp,

etc.), video games, navigation applications, internet access

and web browsing applications.

Many applications for mobile devices make use of the

user’s location information to provide various services and

enhance user experience. These applications include, among

others, mapping applications (e.g. Google maps), chatting

applications (e.g. tango, WhatsApp, and Viber), and social

network applications (e.g. Facebook, and twitter). For exam-

ple, travel and navigation related applications make use of

the users’ locations to guide them throughout their journeys;

informing them, based on their preferences, of the best routes

and means to get to their destinations. Similarly, user’s loca-

tion can be used by an application to provide themwith a near-

est point of interest or the physical proximity of their friends.

There are multiples technologies to find user’s location using

smartphones. These include GPS, its variants, and WiFi.

Mobile devices support portability by using rechargeable

batteries. Batteries obviously need to be very small in size to

keep the handheld devices light and small. A Mobile device

consumes energy from its battery as long as the device is

on and running. The energy drawn from a battery depends

on the number of applications and their energy requirements.

Some applications are much heavier than others in terms of

their energy requirements. Applications that require identifi-

cation of user location to provide their services are among

the top power-hungry applications. This is because of the

fact that localization technologies, particularly GPS (Global

Positioning System), have high processing and communi-

cation costs. A continuous use of localization applications

typically leads to energy drain from a battery in few hours.

The battery lifetime for handheld devices is one of the most

important parameters in achieving good user experience for

the device. For these reasons, management and optimiza-

tion of handheld applications in relation to their power con-

sumption is a highly researched topic in mobile handheld

computing.

In this paper, we assert that GPS signal strength not

only affects location sensing performance but also the actual

consumed power from a smartphone battery. Specifically,

we investigate and analyze the quantitative relationship

between the SNR (Signal-to-Noise-Ratio) of the GPS satel-

lite and the amount of power consumption while using a

localization service.

We develop an Android mobile application for the power

consumption related measurements. We use the results from

the measurements of our developed application, as well as

from an off the shelf application, to derive a mathematical

model that describes the power consumption in smartphones

in terms of SNR and the TTFF. The results from the study

show that higher SNR values of GPS signals do consume

less energy while low GPS signals causing faster battery

drains. To the best of our knowledge, this is the first study
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that provides a quantitative understanding of how the poor

strength (SNR) of satellite signals will cause relatively higher

power drain from a smartphone’s battery.

The rest of this paper is organized as follows: section II

presents the motivation behind this research followed by

the literature review in section III. Section IV gives related

background, and section V presents the trace analysis. Our

mathematical model is presented in Section VI. We conclude

this paper in section VII.

II. MOTIVATIONS

Nowadays smartphone users search for power plugs instead

of network connectivity, because of the gap between smart-

phone development and battery enhancement and because

they use their smartphones almost for everything, so battery

is a critical challenge for this technology. Many emerging

applications for different services are implemented for smart-

phones. Several smartphone new applications demand loca-

tion positioning systems to provide location based services.

Many methodologies are used to provide such services but

GPS stays the best among its alternatives even it is the

hungriest for power because of its accuracy.

In our work, we try to highlight the problem of

GPS component high power consumption by concentrating

on GPS satellites signal strength effect on battery energy

drain in order to help in saving energy in the component level

so user’s high expectations can be met. To proof our concept

we used one android location based application of the appli-

cations available on Google play store and we built another

one and named it ‘‘GPS SNR’’. Our application uses GPS

hardware as a location provider that monitors GPS satellites

and requests location coordinates update every 20 seconds.

In this part, we motivate our work by highlighting some

results. Let us meditate our major experiment that is running

one LBA (location based application) on LG Nexus 4 smart-

phone for 1 hour indoor and outdoor. In one hour, running

the LBA we choose from Google play store indoor where

satellites SNR didn’t exceed 25 (which is considered as bad

SNR) consumes 21% of the mobile battery and such high

power consumption can bring down the battery in like 5 hours

for continues GPS sensing. Running the same application

outdoor where satellites SNR gets stronger and reaches 41

(which is considered as good SNR) consumes only 13%of the

mobile battery. From this experiment, we can simply observe

that power consumed under good satellites signal strength can

be reduced to about 38% as compared to power consumed

under bad satellites signal strength.

III. LITERATURE REVIEW

Lately, smartphones spreads widely and rapidly for many

uses, at the same time using periods of smartphones is

decreasing continuously as screens get wider and bigger

and loads get heavier. Many researches showed how energy

consumption in smartphones battery can be much efficient

and surveyed several techniques and solutions to reduce

energy consumed from battery and increase its lifetime

without affecting any functionalities in order to optimize

smartphone’s architecture and software such as what is pro-

posed in [30] that finds out how system’s components waste

power for unnecessary usage.

Different studies have analyzed energy drain from smart-

phone battery and many researches have been made about

what apps and services drain energy from batteries the most

and different works measured weak and strong WiFi and

3G and other wireless interfaces signal strength impact on a

battery power consumption. Researchers in [31] performed a

measurement study for WiFi and 3G signal strength experi-

mented by 3785 users used their smartphone daily for peri-

ods between 1 and 19 months. This research showed that

variations of WiFi and 3G signal strength cause variations of

power consumption rates from smartphone batteries by quan-

tifying and breaking down the impact of poor WiFi and 3G

signal strength on all relevant layers of the network stack.

Authors of [32] established the relationship between power

consumption and signal strength and they showed that energy

cost of communicating is affected by cellular network sig-

nal strength. In other words, poor signal strength raises

the energy cost of communicating and good signal strength

reduces it. On the other side, they developed a track-based

signal strength prediction and energy-aware scheduling algo-

rithms. In [33], the authors analyzed energy consumed for

different workloads in different components of WiFi based

phones and measured the power draw of WiFi-based phones

to increase slightly under poor signal strength, when dynamic

power control is enabled. In [34], an in-depth study of power

dissipation of smartphone components is performed and the

researchers found that GSM dissipates 30% more energy

when transferring at poor signal strength. Choi [31] studied

the waste power from different smartphone components by

setting different usage scenarios and analyzing each compo-

nent behavior. Components such as CPU, LCD, GPS, WiFi,

Bluetooth, etc. . . .

In our research, we focused on another source of power

consuming sources for smartphone battery. We studied GPS

satellites signal strength effect on the smartphone battery. All

smartphones use different locating methods to estimate loca-

tions precisely to provide location based services. However,

it is power hungry; GPS is the preferred positioning system

because it is the most accurate among all the alternatives.

Our work is one of few measurement studies of GPS satel-

lites signal strength effect on battery drain of smartphones but

there are many researches provided location sensing frame-

works that improve energy efficiency of location sensing.

Authors of [35] considered the power starving location sens-

ing process and succeeded to reduce GPS usage for location

determination by up to 98% and to improve battery lifetime

by to 75%. In [36] authors concentrated on the less accuracy

issue of GPS in urban areas so they designed a rate-adaptive

positioning system that uses different techniques to decide

when to turn on GPS and when not and then evaluated their

implemented system for different experiments on modern

smartphone. Their experiments showed that battery lifetime
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is increased by the factor 3.8 comparative to it when GPS is

always on. In research [26], GPS power model was described

for the first time. They studied the effect of many GPS-

related variables on power consumption such as number of

satellites detected, and signal strength of each satellite while

considering the state of GPS (active with many satellites

available, active with few satellites available and sleep). Their

study showed that energy drained for GPS depends strongly

on weather GPS component is active or in sleep mode and

it has little dependency on the number of satellites available

or the signal strength. In our research, we are proving the

opposite of this idea.Wewill show inmeasurements that GPS

signal strength affects power consumption in smartphone

battery.

IV. BACKGROUND

In this section, we review power states that smartphone expe-

riences while sensing for GPS satellites signals to determine

a specific location.

As smartphones commonly use rechargeable batteries for

power supplying and batteries mostly take from one hour

and a half to four hours to be recharged and ready to sup-

ply phones with demanded energy, discharge behavior and

rates must be realized and analyzed in order to understand

how each component consumes power and how it wastes

power [37].

Each device has several power states and in each state

different amounts of power is consumed. The main two states

a smartphone experiences are idle state and productive state.

In the idle state, a specific device requires minimal possible

power. In the productive state many modes a smartphone

experiences according to the workloads the device handles.

Permanently after each workload and before getting back to

the idle state, a device passes through a period during which

it keeps consuming power in high rates [37]–[39].

We measured power states for GPS on LG Nexus 4 smart-

phone depending on the power model presented by Ning

Ding in [40]. Figure 1 shows power states a user equip-

ment (UE) experiences for GPS: (1) Inactive GPS power

state: where GPS antenna is disabled and a device is not

sensing using GPS for a specific location. In this state,

GPS consumes no rower. After pressing the GPS button

once to start sensing and according to our power model, the

device moves to the next state which is (2) Fixing power

state: the state in which GPS is activated and its antenna is

enabled consuming specific amount of energy considering

TTFF–the time required for finding InView satellites and

deciding which are the InUse satellites and then starting to

calculate the location coordinates- according to our Energy-

TTFF relationship that we will describe latter in this paper.

In this state, power consumption increases in a high rate and

it takes like 20 seconds between each TTFF and another.

(3)Working (sensing) power state: this state comes right after

satellites acquisition where power consumption is measured

according to our Energy-SNR relationship that is described

latter.

FIGURE 1. GPS power state machine for LG Nexus phone.

V. TRACE ANALYSIS

In this section, we present our experiments in details. We will

talk about the two kinds of applications we used and the traces

we have done to reach our goals.

A. TRACE COLLECTION/ENERGY IMPACT OF WEAK

AND STRONG GPS SATELLITES SIGNAL STRENGTH

DEPENDING ON BATTERY CHARGE LEVEL

Wedepend here only on battery charge level that we read from

the smartphone in order to realize the changes that occur on

the battery charge level while locating the device using GPS

satellites under weak and good signal strengths.

We used a location based application LBA that is available

on Google play store. This application uses the user current

location to find and track people nearby. We ran this LBA

on fully charged LG Nexus 4 smartphone and observed its

battery for one hour and we recorded the battery every six

minutes. We repeat this experiment inside where GPS satel-

lites signal strength is weaker (less than 25) and outsidewhere

it is stronger (around 42). Figure 2 presents the results of

this experiment. This figure simply shows that when running

the same location based application for one hour inside with

weaker GPS satellites signal strength (less than 25) and out-

side with stronger GPS satellites signal strength (around 42),

battery consumption rates is differing according to the device

location (inside or outside). When running the application

inside, battery level decreases from 100% to 79%, in other

words, battery charge decreases by 21%, and when running

the location based application outside, battery level decreases

from 100% to 87%, in other words, battery charge decreases

by 13%. Consequently, running this LBA under good satellite

SNR reduces power consumed by like 38% compared against

power consumed under bad satellite SNR.

In addition to using Location Based Application from

Google play store, we build our android application and

named it GPS SNR. Our application uses GPS hardware as
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FIGURE 2. Energy impact of weak and strong GPS satellites signal
strength depending on reading battery charge level.

a location provider and it monitors GPS satellites and request

coordinates update every 20 seconds and Figure 3 shows the

interface of GPS SNR.

FIGURE 3. GPS SNR interface.

As shown in Figure 3, our application reports any loca-

tion latitude and longitude every 20 seconds and shows the

number of InView and InUse satellites for a specific point.

InView satellites are all satellites that cover device’s location

and InUse satellites are satellites that are used for location

determination.

We ran GPS SNR for 30 minutes and recorded the decreas-

ing of battery charge every 5 minutes. Just like the previous

experiment, we ran this application indoors and outdoors.

In the next two tables (1 and 2), we present the results.

TABLE 1. GPS SNR results indoors.

From Table 1, we can see that satellite’s SNR mainly was

at the first and second range and rarely reach the third range,

which can be considered as a bad SNR. Under these bad SNR

under these bad SNR and after 30 minutes the consumed

power by this application is 7% of the battery.

From Table 2, we see that satellite’s SNR become stronger

and enters a new range (31-40), which can be considered as

good SNR. The overall battery consumption when running

the application for 30 minutes under these circumstances

was 4%.

B. TRACE COLLECTION/ENERGY IMPACT OF

WEAK AND STRONG GPS SATELLITES

SIGNAL STRENGTH USING MONSOON

The process of finding mobile location coordination – as per

any application request – consists of the following steps:

1- Finding the InView satellites.

2- Determine which of the InView satellites can be used

to find the current location (InUse satellites).

3- Start calculating the location coordination.

These steps take variable time that is called Time To First

Fix TTFF.

As in the previous section, we noticed that there is a

relationship between the amount of the consumed power and
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TABLE 2. GPS SNR results outdoors.

the signal strength of satellite used in location determination.

However, the question is how the SNR affects the process of

location finding and hence the consumed power?

To answer the previous question we have used a power

monitor tool called Monsoon, this tool monitor the power

consumed from the mobile device battery. Therefore, we

connect the monsoon to Samsung S4 mobile and monitor the

power consumption while running our GPS SNR application

indoor and outdoor.

Following are 2 screen shuts that are taken while running

Monsoon to monitor power consumed from battery while

running GPS SNR application.

Indoor (inside 2 floors building with 25 cm thickness

walls): figure 4 shows that there are three fixing periods

that are directly proportional to SNR. In the first fix period,

fixing time (TTFF) was 12619 milliseconds, and there were

3 satellites that have SNR in the range of 21-30 and 3 satellites

that have SNR in the range of 11-20 and both are considered

weak.

In the second fix period, fixing time (TTFF) became longer

(63620 milliseconds) because SNR got weaker as just two

satellites have SNR in the 21-30 range. In the third fix period,

fixing time (TTFF) is the shortest (9605 milliseconds) as

there are 4 satellites of SNR in the range 21-30.

Outdoor: figure 5 shows that there are three fix periods

having almost similar and short fixing times (TTFF) (around

2600 milliseconds) as when using GPS outdoor, satellites

SNR becomes stronger and can reach 40 or more.

From both figures 4 and 5, we can see that during fix-

ing time (TTFF) the device consumes more power, so that,

longer fixing time (TTFF) means more power consumption.

Thus the answer to the question of what is the relation

between satellite SNR, fixing time (TTFF), and the power

consumption is; weaker satellite SNR leads to longer fixing

time (TTFF) and hence more consumed power, and vice

versa.

VI. MATHEMATICAL MODEL

To make our experiment’s findings clearer we represent it

using mathematical equations. This process done in three

phases: A) SNR and TTFF relationship. B) TTFF and

Consumed Energy relationship. Depending on the previous

two phases, we found the third relationship C) TTFF and

Consumed Energy relationship.

A. SNR AND TTFF RELATIONSHIP

We ran GPS SNR application in different places and recorded

satellites SNRs and fix-time needed to find the location.

This time we concentrate on how to describe and formulate

the relationship between the SNR and TTFF. However, we

could formulate the relationship between TTFF and lowest

signal strength among all the InUse satellites signal strengths,

and we could formulate the relationship between TTFF and

highest signal strength among all the InUse satellites signal

strengths.

Following are two figures for the both previously men-

tioned relationships. In figure 6 we formulate the relationship

between TTFF and lowest signal strength among all the InUse

Satellites signal strengths using liner regression modeling,

and we got the following equation:

SNR = −679.8 ∗ TTFF + 21831

Where SNR is minimum GPS satellite signal strength and

TTFF is Time To First Fix. In figure 7 we formulate the rela-

tionship between TTFF and highest signal strength among

all the InUse Satellites signal strengths using liner regression

modeling, and we got the following equation:

SNR = −561.01 ∗ TTFF + 22756

Where SNR is maximum GPS satellite signal strength

and TTFF is Time To First Fix. Both following figures

(figure 6 and figure 7) support our assumption of higher GPS

satellites SNR needs less time and lower GPS satellites SNR

needs more time as actual and linear regression curves in both

figures decreasing. In other words, as sensing for location is

carried out by high signal strength of GPS satellites, TTFF

will be as short as possible and thus power consumption will

be minimized.
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FIGURE 4. Monsoon screen shut of power consumption rates while running GPS SNR application indoor.

FIGURE 5. Monsoon screen shut of power consumption rates while running GPS SNR application outdoor.

B. TTFF AND CONSUMED ENERGY RELATIONSHIP

We also ran GPS SNR application while connecting the

mobile device to the monsoon, but this time we recorded

the value of TTFF and the consumed energy during this

time. Then we formulate the relationship between the both

variables using liner regression modeling, and we got the
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FIGURE 6. Minimum SNR-TTFF relationship.

FIGURE 7. Maximum SNR-TTFF relationship.

following equation:

E = 0.0797 ∗ TTFF

Where E is the consumed energy during TTFF and TTFF

is Time To First Fix. It is clear from Figure 8 that there is

a strong linear relationship between the fixing time - time

needed to find InView satellites and decide which satellites

to use (InUse satellites) and finally calculate the location

coordinates- and energy consumed from battery. Long TTFF

implies weak GPS satellites signal strength and according

to the next figure (figure 8) energy consumptions increases

as TTFF increases which means that energy consump-

tion increases as signal strength gets weaker (long TTFF).

Conversely short TTFF implies strong GPS satellites signal

strength and according to the next figure (figure 8) energy

consumption decreases as TTFF decreases which means that

energy consumption decreases as signal strength gets stronger

(short TTFF).

C. SNR AND CONSUMED ENERGY RELATIONSHIP

In the previous two subsections, we formulate the relation-

ship between maximum and minimum SNR and TTFF and

between TTFF and energy. From these relationships, we can

find the relationship between maximum and/or minimum

SNR and energy.

By using the relationships Energy-Minimum SNR and

Energy-TTFF, we found the following formula:

SNR = −679.8 + 21831

E = 0.0797 ∗ TTFF

E = 0.0797((SNR− 21831)/ − 679.8)

Where E is energy, SNR is minimum GPS satellite signal

strength, and TTFF is Time To First Fix. Figure 9 validates

our assumption of GPS satellites signal strength impact on

energy consumption rates and it is clear that consumed energy

decreases when SNR increases.
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FIGURE 8. Energy-TTFF relationship.

FIGURE 9. Minimum SNR-energy relationship.

VII. CONCLUSION AND FUTURE WORK

Smartphones are increasingly playing an essential role in

our move towards smart cities era. The battery lifetime of

handheld devices is one of the most important parameters

in achieving good user experience for the handheld devices.

Therefore, the management and optimization of handheld

device applications in relation to their power consumption is

an important area of research.

In this paper, motivated by the fact that location-based

applications are among the top power-hungry applications,

we have performed a measurement study of GPS satel-

lites signal strength. Our analysis has shown that users

encounter large variations in the strength of the GPS signal

while using various applications requiring access to their

locations. We also performed experiments to quantify the

energy consumption of locating specific points using GPS

under poor and good signal strengths. Our experiments on

running two LBAs outdoors and indoors and observing

battery consumption rates show that only 13% of the mobile

battery is drained under good signal strength and about 38%

of the mobile battery is drained under weak signal strength.

We designed a new android application, GPS listener that

gives a detailed account of localization processes for specific

locations. Using this application, and the Monsoon appli-

cation, we observed power consumption rates and how it

relates to TTFF lengths under various signal strengths of

InUse satellites. Subsequently, we developed a mathematical

model to investigate the relationship between the energy con-

sumption of a localization application and the strength of the

GPS signal. The results demonstrated that higher SNR values

of GPS signals do consume less energywhile lowGPS signals

causing faster battery drain.

To the best of our knowledge, this is the first study

that provides a quantitative understanding of how the poor

strength (SNR) of satellite signals will cause relatively higher

power drain from a smartphone’s battery. This work is an
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important step towards understanding the power usage of

location based applications. Futureworkwill look into further

evaluation of the proposed model and explore strategies to

reduce power consumption of location based applications.
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