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Abstract: 30 

16S rRNA and shotgun metagenomics studies typically yield different results, traditionally 31 

thought to be due to biases in amplification. We show that differences in reference phylogeny 32 

are more important. By inserting sequences into a whole-genome phylogeny, we show that 16S 33 

rRNA and shotgun metagenomic data generated from the same samples agree in principal 34 

coordinates space, taxonomy, and in phenotype effect size when analyzed with the same tree.  35 

 36 

Body: 37 

Shotgun metagenomics and 16S rRNA gene amplicon (16S) studies are widely used in 38 

microbiome research, but investigators using different methods typically find their results hard to 39 
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reconcile. This lack of standardization across methods limits the utility of the microbiome for 40 

reproducible biomarker discovery. 41 

 42 

A key problem is that whole-genome resources and rRNA resources depend on different 43 

taxonomies and phylogenies. For example, Web of Life (WoL) 1 and the Genome Taxonomy 44 

Database (GTDB) 2 provide whole-genome trees that cover only a small fraction of known 45 

bacteria and archaea, while SILVA 3 and Greengenes 4 are more comprehensive but not fully 46 

linked to genome records. 47 

 48 

We reasoned that an iterative approach could yield a massive reference tree that unifies these 49 

different data layers. We began with a whole-genome catalog of 15,953 bacterial and archeal 50 

genomes evenly sampled from NCBI, and reconstructed an accurate phylogenomic tree by 51 

summarizing evolutionary trajectories of 380 global marker genes using the new workflow 52 

uDance. This work, namely Web of Life version 2 (WoL2), represents a significant upgrade from 53 

the previously released WoL1 (10,575 genomes) 1. Then, we added 18,356 full-length rRNA 54 

amplicons from the Living Tree Project January 2022 release 5 and 1,725,274 near-complete 55 

16S rRNA genes from Karst et al. 6 and the EMP500 7 with uDance v1.1.0, then added all full-56 

length 16S sequences from GTDB r207, and finally inserted 23,113,447 short V4 16S rRNA 57 

Deblur v1.1.0 8 amplicon sequence variants from Qiita (retrieved Dec. 14, 2021) 9 as well as 58 

mitochondria and chloroplast 16S from SILVA v138 using DEPP v0.3 10, including everything 59 

from the Earth Microbiome Project 11 and American Gut Project/Microsetta 12 (Fig. 1A). Our use 60 

of uDance ensured the genome-based relationships are kept fixed and relationships between 61 

full-length 16S sequences are inferred. For short fragments, we kept genome and full length 62 

relationships fixed and inserted fragments independently from each other. Following 63 

deduplication and quality control on fragment placement, this yielded a tree covering 21,074,442 64 

sequences from 31 different Earth Microbiome Project Ontology (EMPO) EMPO_3 65 
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environments, of which 46.5% of species-level leaves were covered by a complete genome. 66 

Taxonomic labels were decorated onto the phylogeny using tax2tree v1.1 4. The input taxonomy 67 

for decoration used GTDB r207, combined with the Living Tree Project January 2022 release. 68 

Taxonomy was harmonized prioritizing GTDB including preserving the polyphyletic labelings of 69 

GTDB (see also Online Methods). Taxonomy will be updated every six months using the latest 70 

versions of GTDB and LTP.  71 

 72 

Our resource is much larger than past resources in its phylogenetic coverage, as compared to 73 

the last release of Greengenes (Fig. 1B), SILVA (Fig. S1A) or GTDB (Fig. S1B). However, 74 

because our amplicon library is linked to environments labeled with Earth Microbiome Project 75 

Ontology (EMPO) categories, we can easily identify the environments that contain samples that 76 

can fill out the tree. Because MAG assembly efforts can only cover abundant taxa, we plotted 77 

for each EMPO category the amount of new branch length added to the tree by taxa whose 78 

minimum abundance is 1% in each sample (Fig. 1C). The results show which environment 79 

types on average will best yield new metagenome assembled genomes (MAGs), and also show 80 

which environments harbor individual samples that will have a large impact when sequenced. 81 

 82 

Past efforts to reconcile 16S and shotgun datasets have led to non-overlapping distributions and 83 

only techniques such as Procrustes analysis can even show relationships between the results 84 

13. On two large human stool cohorts 12,14 where both 16S and shotgun data were generated on 85 

the same samples, we find that Bray-Curtis 15 (non-phylogenetic) ordination fails to reconcile at 86 

the feature level (Fig. 1D) and is poor at the genus level (Fig. 1E, S1C). However, UniFrac 16, a 87 

phylogenetic method, used with our Greengenes2 tree provides far better concordance (Fig. 1F, 88 

S1D). 89 
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 90 

Figure 1. (A) The Greengenes2 phylogeny rendered using Empress 17 with amplicon sequence 91 

variant multifurcations collapsed, tip color indicating representation in the American Gut Project 92 

(AGP), the Earth Microbiome Project (EMP), both or neither, and with the top 20 represented 93 

phyla depicted in the outer bar. (B) The same collapsed phylogeny, colored by the presence or 94 

absence of a best BLAST 18 hit from Greengenes 13_8 99% OTUs. The bar depicts the same 95 

coloring as the tips. (C) Earth Microbiome Project samples and the amount of novel branch 96 

length, normalized by the total backbone branch length, added to the tree through amplicon 97 

sequence variant fragment placement. (D) Bray Curtis applied to paired 16S V4 rRNA amplicon 98 

sequence variants and whole genome shotgun samples from The Healthy Microbiome Diet 99 
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Initiative subset of The Microsetta Initiative. (E) Same data as (D) but computing Bray Curtis on 100 

genus collapsed data. (F) Same data as (D-E) but using weighted UniFrac. 101 

 102 

We also find that the per-sample shotgun and 16S taxonomy concordances are excellent even 103 

to the species level. We first computed taxonomy profiles for shotgun data using the Woltka 104 

pipeline 19. Using a Naive Bayes classifier from q2-feature-classifier v2022.2 20 to compare 105 

GTDB r207 taxonomy results at each level against SILVA v138 (Fig. 2A) or Greengenes v13_8 106 

(Fig. 2B), no species-level reconciliation was possible. In contrast, Greengenes2 provided 107 

excellent concordance at the genus level (Pearson r=0.85) and good concordance at the 108 

species level (Pearson r=0.65) (Fig. 2C). Interestingly, the tree is now sufficiently complete that 109 

exact matching of 16S ASVs followed by reading the taxonomy off the tree performs even better 110 

than the Naive Bayes Classifier (Naive Bayes; Pearson r=0.54 at species, r=0.84 at genus). 111 

 112 

Finally, a critical reason to assign taxonomy is downstream use of biomarkers and indicator 113 

taxa. Microbiome science has been described as having a reproducibility crisis 21, but much of 114 

this problem stems from incompatible methods 22. We initially used the The Human Diet 115 

Microbiome Initiative (THDMI) dataset, which is a multipopulation expansion of The Microsetta 116 

Initiative 12 that contains samples with paired 16S and shotgun preparations, to test whether a 117 

harmonized resource would provide concordant rankings for the variables that affect the human 118 

microbiome similarly. Using Greengenes2, the concordance was good with Bray-Curtis (Fig. 2D; 119 

Pearson r2=0.56), better using UniFrac with different phylogenies (SILVA 138 and 120 

Greengenes2; Fig S1E; Pearson r2=0.77), and excellent with UniFrac on the same phylogeny 121 

(Fig. 2E; Pearson r2=0.87). We confirmed these results with an additional cohort 14 (Fig. S1FG). 122 

Intriguingly, the ranked effect sizes across different cohorts were concordant. 123 

 124 
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 125 

Figure 2. (A-C) Per sample taxonomy comparisons between 16S and whole genome shotgun 126 

profiles from THDMI. The solid bar depicts the 50th percentile, the dashed lines are 25th and 127 

75th percentiles. (A) 16S taxonomy assessed with SILVA 138 using the default q2-feature-128 

classifier Naive Bayes model. (B) 16S taxonomy assessment with Greengenes 13_8 using the 129 

default q2-feature-classifier Naive Bayes model. (C) 16S taxonomy assessment performed by 130 

reading the lineages directly from the phylogeny or through Naive Bayes trained on the V4 131 
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regions of the Greengenes2 backbone. (D-E) Effect size calculations performed with Evident on 132 

paired 16S and whole genome shotgun samples from THDMI. Calculations performed at 133 

maximal resolution, using ASVs for 16S and genome identifiers for shotgun. (D) Bray Curtis 134 

distances. (E) Weighted normalized UniFrac. 135 

 136 

Taken together, these results show that use of a consistent, integrated taxonomic resource 137 

dramatically improves the reproducibility of microbiome studies using different data types, and 138 

allows variables of large versus small effect to be reliably recovered in different populations. 139 

 140 

ONLINE METHODS 141 

 142 

Phylogeny construction 143 

Web of Life version 2 1 (a tree inferred using genome-wide data) was used as the starting 144 

backbone. Full length 16S sequences from the Living Tree Project 5, full length mitochondria 145 

and chloroplast from SILVA 138 3, full length 16S from GTDB r207 2, full length 16S from Karst 146 

et al 6, and full length 16S from the EMP 500 7 (samples selected and sequenced specifically for 147 

Greengenes2) were collected and deduplicated. Sequences were then aligned using UPP 23 148 

and gappy sequences with less than 1000bp were removed. The resulting set of 321,210 149 

unique sequences were used with uDance v1.1.0 to update the Web of Life 2 (WoL2) backbone. 150 

Briefly, uDance updates an existing tree with new sequences and (unlike placement methods) 151 

also infers the relationship of existing sequences. uDance has two modes: one that allows 152 

updates to the backbone and one that keeps the backbone fixed. In our analyses, we kept the 153 

backbone tree (inferred using genomic data) fixed. To extend the genomic tree with 16S data, 154 

we identified 13,249 genomes in the WoL2 backbone tree with at least one 16S copy and used 155 

them to train a DEPP model with the weighted average method detailed below to handle 156 

multiple copies. We then used DEPP to insert all 16S copies of all genomes into the backbone 157 
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and measured the distance between the genome position and the 16S position. We removed 158 

copies that were placed far further than others, as identified using a 2-means approach with 159 

centroids equals to at least 13 branches. We repeated this process a second round. Then, for 160 

every remaining genome, we selected as its representative the copy with the minimum 161 

placement error and computing the consensus when there were ties. At the end, we are left with 162 

12,344 unique 16S sequences across all the WoL2 genomes. For tree inference, uDance used 163 

IQ-TREE2 24  in fast tree search with model GTR+Γ after removing duplicate sequences.  164 

 165 

Next, we collected 16S V4 ASVs from Qiita 9 using redbiom 25 (query performed December 14, 166 

2021) from contexts “Deblur_2021.09-Illumina-16S-V4-90nt-dd6875”, “Deblur_2021.09-Illumina-167 

16S-V4-100nt-50b3a2”, “Deblur_2021.09-Illumina-16S-V4-125nt-92f954”, “Deblur_2021.09-168 

Illumina-16S-V4-150nt-ac8c0b”, “Deblur_2021.09-Illumina-16S-V4-200nt-0b8b48”, 169 

“Deblur_2021.09-Illumina-16S-V4-250nt-8b2bff” and aligned them to the existing 16S alignment 170 

of sequences in WoL2 using UPP, setting the maximum alignment subset size to 200 (to help 171 

with scalability). The collected 16S V4 ASVs are aligned to the V4 region of the existing 172 

"backbone" alignments. A DEPP model was then trained on the full length 16S sequences from 173 

the backbone. DEPP constructs a Neural network model that embeds sequences in high 174 

dimensional spaces such that embedded points resemble the phylogeny in their distances. 175 

Such a model then allows insertion of new sequences into a tree using distance-based 176 

phylogenetic insertion method APPLES-2 26. The ASVs from redbiom were then inserted into 177 

the backbone using the trained DEPP model. To enable analyses of large datasets, we used a 178 

clustering approach with DEPP: we trained an ensemble of DEPP models corresponding to 179 

different parts of the tree and used a classifier to detect the correct subtree. During training, for 180 

species with multiple 16S, all the copies are mapped to the same leaf in the backbone tree. To 181 

train the DEPP models with multiple sequences mapped to a leaf, each site in the sequences is 182 

encoded as a probability vector of four nucleotides across all the copies. 183 
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 184 

Integrating the GTDB and Living Tree Project taxonomies 185 

GTDB and Living Tree Project are not directly compatible due to differences in their curation. As 186 

a result, it is not always possible to map a species from one resource to the other, either 187 

because parts of a species lineage are not present, are described using different names, or 188 

have an ambiguous association due to polyphyletic taxa in GTDB. GTDB is actively curated, 189 

while LTP generally uses the NCBI taxonomy. To account for these differences, we first mapped 190 

any species that had a perfect species name association and revised its ancestral lineage to 191 

match GTDB. Next, we generated lineage rewrite rules using the GTDB record metadata. 192 

Specifically, we limited the metadata to records which are GTDB representatives and NCBI type 193 

material, and then defined a lineage renaming from the recorded NCBI taxonomy to the GTDB 194 

taxonomy. These rewrite rules were applied from most to least specific taxa, and through this 195 

mechanism we could revise much of the higher ranks of LTP. We then identified incertae sedis 196 

records in LTP which we could not map, removed their lineage strings and did not attempt to 197 

provide taxonomy for them, instead opting to rely on downstream taxonomy decoration to 198 

resolve their lineages. Next, any record which was ambiguous to map was split into a secondary 199 

taxonomy for use in backfilling in the downstream taxonomy decoration. Finally, we 200 

instrumented numerous consistency checks in the taxonomy through the process to capture 201 

inconsistent parents in the taxonomy hierarchy, consistent numbers of ranks in a lineage and 202 

ensuring the resulting taxonomy was a strict hierarchy.  203 

 204 

Taxonomy decoration 205 

The original tax2tree algorithm was not well suited for a large volume of species level records in 206 

the backbone, as the algorithm requires an internal node to place a name. If two species are 207 

siblings, the tree would lack a node to contain the species label for both taxa. To account for 208 

this, we updated the algorithm to insert “placeholder” nodes with zero branch length as the 209 
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parents of backbone records, which could accept these species labels. We further updated 210 

tax2tree to operate directly on .jplace data 27, preserving edge numbering of the original edges 211 

prior to adding “placeholder” nodes. To support LTP records which could not be integrated into 212 

GTDB, we instrumented a secondary taxonomy mode for tax2tree. Specifically, following the 213 

standard decoration, backfilling and name promotion procedures, we determine on a per record 214 

basis for the secondary taxonomy what portion of the lineage is missing, and place the missing 215 

labels on the placeholder node. We then issue a second round of name promotion using the 216 

existing tax2tree methods.  217 

 218 

The actual taxonomy decoration occurs on the backbone tree, which contains only full length 219 

16S records, and does not contain the amplicon sequence variants (ASV). This is done as ASV 220 

placements are independent, do not modify the backbone, and would substantially increase the 221 

computational resources required. After the backbone is decorated, fragment placements from 222 

DEPP are resolved using a multifurcation strategy using the balanced-parentheses library 223 

(https://github.com/biocore/improved-octo-waddle/). 224 

 225 

Phylogenetic collapse for visualization 226 

We are unaware of phylogenetic visualization software that can display a tree with over 227 

20,000,000 tips. To produce the visualizations in figure 1, we reduced the dimension of the tree 228 

by collapsing fragment multifurcations to single nodes, dropping the tree to 522,849 tips. 229 

 230 

MAG target environments 231 

A feature table for the 27,015 16S rRNA V4 90nt Earth Microbiome Project samples was 232 

obtained from redbiom. The amplicon sequence variants (ASV) were filtered to the overlap of 233 

ASVs present in Greengenes2. Any feature with < 1% relative abundance within a sample was 234 

removed. The feature table was then rarefied to 1,000 sequences per sample. The amount of 235 
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novel branch length was then computed, per sample, by summing the branch length of each 236 

ASV’s placement edge. The per sample branch length was then normalized by the total tree 237 

branch length (excluding length contributed by ASVs). 238 

 239 

Per sample taxonomy correlations 240 

All comparisons used the THDMI 16S and Woltka processed shotgun data. These data were 241 

accessed from Qiita study 10317, and filtered the set of features which overlap with 242 

Greengenes2 using the QIIME 228 q2-greengenes2 plugin. 16S taxonomy was assessed using 243 

either a traditional Naive Bayes classifier with q2-feature-classifier and default references from 244 

QIIME 2 2022.2, or by reading the lineage directly from the phylogeny. To help improve 245 

correlation between SILVA and Greengenes2, and Greengenes and Greengenes2, we stripped 246 

polyphyletic labelings from those data; we did not strip polyphyletic labels from the phylogenetic 247 

taxonomy comparison or the Greengenes2 16S vs. Greengenes2 WGS Naive Bayes 248 

comparison. Shotgun taxonomy was determined by the specific observed genome records. 249 

Once the 16S taxonomy was assigned, those tables as well as the WGS Woltka WoL version 2 250 

table were collapsed at the species, genus, family, order, and class levels. We then computed a 251 

minimum relative abundance per sample in the THDMI dataset. In each sample, we removed 252 

any feature, either 16S or WGS, below the per sample minimum (i.e., max(min(16S), 253 

min(WGS))), forming a common minimal basis for taxonomy comparison. Following filtering, 254 

Pearson correlation was computed per sample using SciPy 29. These correlations were 255 

aggregated per 16S taxonomy assignment method, and by each taxonomic rank. The 25th, 50th 256 

and 75th percentiles were then plotted with Matplotlib 30. 257 

 258 

Principal coordinates 259 

THDMI Deblur 16S and Woltka processed shotgun sequencing data, against WoL version 2, 260 

were obtained from Qiita study 10317. Both feature tables were filtered against Greengenes2 261 
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2022.10, removing any feature not present in the tree. For the genus collapsed plot (figure 1e), 262 

both the 16S and WGS data features were collapsed using the same taxonomy. For all three 263 

figures, the 16S data were subsampled, with replacement, to 10,000 sequences per sample. 264 

The WGS data were subsampled, with replacement, to 1,000,000 sequences per sample. Bray 265 

Curtis and Weighted UniFrac, and PCoA were computed using q2-diversity 2022.2. The 266 

resulting coordinates were visualized with q2-emperor 31.  267 

 268 

Effect size calculations 269 

Similar to principal coordinates, the THDMI data were rarefied to 9,000 and 2,000,000 270 

sequences per sample for 16S and WGS respectively. Bray Curtis and weighted normalized 271 

UniFrac were computed on both sets of data. The variables for THDMI were subset to those 272 

with at least two category values having more than 50 samples. For UniFrac with SILVA, figure 273 

S1E, we performed fragment insertion using q2-fragment-insertion 32 into the standard QIIME 2 274 

SILVA reference, followed by rarefaction to 9,000 sequences per sample, and then computed 275 

weighted normalized UniFrac. 276 

 277 

For FinRISK, the data were rarefied to 1,000 and 500,000 sequences per sample for 16S and 278 

WGS. A different depth was used to account for the overall lower amount of sequencing data for 279 

FinRISK. As with THDMI, the variables selected were reduced to those with at least two 280 

category values having more than 50 samples.  281 

 282 

Support for computing paired effect sizes is part of the QIIME2 Greengenes2 plugin, q2-283 

greengenes2, which performs effect size calculations using Evident 284 

(https://github.com/biocore/evident/). 285 

 286 

Data access 287 
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The official location of the Greengenes2 releases is http://ftp.microbio.me/greengenes_release/. 288 

The data are released under a BSD-3 clause license. A QIIME 2 plugin is available to facilitate 289 

use with the resource, which can be obtained from https://github.com/biocore/q2-greengenes2/. 290 

Taxonomy construction, decoration, and release processing is part of 291 

https://github.com/biocore/greengenes2. uDance release v1.1.0 is available at GitHub: 292 

https://github.com/balabanmetin/uDance.  Phylogeny insertion using DEPP is available at 293 

https://github.com/yueyujiang/DEPP; the trained model accessioned with Zenodo at 294 

10.5281/zenodo.7416684. The THDMI data are part of Qiita study 10317, and EBI accession 295 

PRJEB11419. The FinRISK data are available under EGAD00001007035. Finally, an interactive 296 

website to explore the Greengenes2 data is available at https://greengenes2.ucsd.edu. 297 

 298 
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 304 

Figure S1. (A) Best BLAST hit for SILVA 138 against Greengenes2. (B) Best BLAST hit for 305 

GTDB r207 SSU sequences against Greengenes2. (C) The FinRISK 16S and WGS data 306 

combined, collapsed to genus, with Bray Curtis computed followed by Principal Coordinates 307 

Analysis, colored by technical preparation. (D) The same data as (C) but using weighted 308 

UniFrac. (E) Effect sizes of the THDMI data using the SILVA 138 phylogeny for 16S data, and 309 

the Greengenes2 phylogeny for WGS data. (F) Effect sizes of the FinRISK data using Bray 310 

Curtis. (G) The same data as (E) but using Weighted UniFrac. 311 
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