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ABSTRACT

This paper develops a navigation service, called GreenGPS ,
that uses participatory sensing data to map fuel consump-
tion on city streets, allowing drivers to find the most fuel-
efficient routes for their vehicles between arbitrary end-points.
The service exploits measurements of vehicular fuel con-
sumption sensors, available via the OBD-II interface stan-
dardized in all vehicles sold in the US since 1996. The in-
terface gives access to most gauges and engine instrumenta-
tion. The most fuel-efficient route does not always coincide
with the shortest or fastest routes, and may be a function
of vehicle type. Our experimental study shows that a par-
ticipatory sensing system can influence routing decisions of
individual users and also answers two questions related to
the viability of the new service. First, can it survive condi-
tions of sparse deployment? Second, how much fuel can it
save? A challenge in participatory sensing is to generalize
from sparse sampling of high-dimensional spaces to produce
compact descriptions of complex phenomena. We illustrate
this by developing models that can predict fuel consumption
of a set of sixteen different cars on the streets of the city of
Urbana-Champaign. We provide experimental results from
data collection suggesting that a 1% average prediction error
is attainable and that an average 10% savings in fuel can be
achieved by choosing the right route.
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1. INTRODUCTION
In this paper, we develop a novel GPS-based navigation

service, called GreenGPS, that gives drivers the most fuel-
efficient route for their vehicle as opposed to the shortest
or fastest route. GreenGPS relies on data collected by indi-
viduals from their vehicles and a generalization framework
that predicts the fuel consumption of an arbitrary car on an
arbitrary street. The service is an example of an emerging
category of sensing applications, called participatory sens-
ing [2, 9, 12, 23, 24], that rely on voluntary data collection
and sharing within a community for common purposes such
as mapping of physical phenomena or computing community
statistics of interest.

GreenGPS is possible thanks to the On-Board Diagnostic
(OBD-II) interface, standardized in all vehicles that have
been sold in the United States after 1996. The OBD-II is a
diagnostic system that monitors the health of the automobile
using sensors that measure approximately 100 different en-
gine parameters. Examples of monitored measurements in-
clude fuel consumption, engine RPM, coolant temperature,
vehicle speed, and engine idle time. A comprehensive list of
measured parameters can be obtained from standard spec-
ifications as well as manufacturers of OBD-II scanners [4].
Several commercial OBD-II scanner tools are available [3, 4,
5, 6], that can read and record these sensor values. Apart
from such scanners, remote diagnostic systems such as GM’s
OnStar, BMW’s ConnectedDrive, and Lexus Link are capa-
ble of monitoring the car’s engine parameters from a remote
location (e.g. home of driver of the car).

GreenGPS utilizes a vehicle’s OBD-II system and a typical
scanner tool in conjunction with a participatory data collec-
tion framework to enable collection and upload of fuel con-
sumption data. In contrast to traditional mapping and nav-
igation tools, such as Google maps [19] and MapQuest [26],
which provide either the fastest or the shortest route be-
tween two points, GreenGPS collects the necessary informa-
tion to compute and answer queries on the most fuel-efficient
route. The most fuel-efficient route between two points may
be different from the shortest and fastest routes. For exam-
ple, a fastest route that uses a freeway may consume more
fuel than the most fuel-efficient route because fuel consump-
tion increases non-linearly with speed or because it is longer.
Similarly, the shortest route that traverses busy city streets
may be suboptimal because of downtown traffic.

The motivation for GreenGPS does not need elaboration.
GreenGPS users might be driven by benefits such as savings
on fuel or reducing CO2 emissions and the carbon footprint.
With the increase in the use of Bluetooth devices (e.g., cell-
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phones) and in-vehicle Wi-Fi, GreenGPS can be easily sup-
ported by inexpensive OBD-II-to-Bluetooth or OBD-II-to-
WiFi adaptors that can upload OBD-II measurements op-
portunistically, for example, to applications running on the
driver’s cell phone [30]. It can also be supported by scanning
tools that read and store OBD-II measurements on storage
media such as SD cards. At the time of writing, OBD-II
Bluetooth adaptors, such as the ELM327 Bluetooth OBD-II
Wireless Transceiver Dongle, are available for approximately
$50, together with software that interfaces them to phones
and handhelds.

GreenGPS supports two types of users; members and non-
members. Members are those who own OBD-II adaptors or
scanning tools and contribute their data to the GreenGPS
repository from the OBD-II sensors described above. They
have GreenGPS accounts and benefit from more accurate
estimates of route fuel-efficiency, customized to the perfor-
mance of their individual vehicles.

Non-members can use GreenGPS to query for fuel-efficient
routes as well. Since GreenGPS does not have measure-
ments from their specific vehicles, it answers queries based
on the average estimated performance for their vehicle’s
make, model, and year (or some subset thereof, as avail-
able).

The paper makes two general contributions. First, we
demonstrate how to use participatory sensing to develop a
fuel-saving navigation service that relies on voluntary data
collection by individuals to influence their routing decisions.
Second, we provide a brief experimental evaluation of the
system, where users are shown to save 6% on average over
the shortest route and 13% over the fastest.

A related contribution is to demonstrate how sparse sam-
ples of high-dimensional spaces can be generalized to de-
velop models of complex nonlinear phenomena, where one
size (i.e., model) does not fit all. We develop prediction mod-
els that enable us to extrapolate from fuel-efficiency data of
some vehicles on some streets to the fuel consumption of
arbitrary vehicles on arbitrary streets. While, in this case,
the utility of such extrapolation may be short-term (soon
all cars will be able to measure their own fuel-efficiency),
the basic mechanisms and principles behind it can be used
for a variety of other participatory sensing applications that
share the need for generalizing from sparse data.

GreenGPS utilizes prediction models, developed in this
paper, to abstract vehicles and routes by a set of param-
eters such that fuel efficiency can be computed simply by
plugging in the parameters of the right car and route. Us-
ing Dijkstra’s algorithm, the minimum-fuel route can then
be computed. An experimental study is performed over the
course of three months using sixteen different cars with dif-
ferent drivers (and a total of over 1000 miles driven) to de-
termine the accuracy of prediction models. It is shown that
a prediction accuracy of 1% is attainable.

The rest of this paper is divided into nine sections. Sec-
tion 2 presents a feasibility study that investigates the amount
of fuel savings that can be achieved by using GreenGPS and
by following fuel-efficient routes. The details of GreenGPS
system are described in Section 3. Models for estimating
fuel consumption are presented in Section 4. Implementa-
tion details and evaluation results are presented in Section 5
and Section 6, respectively. Section 7 discusses the results
and lessons learned. Section 8 reviews related work. Finally,
we conclude with directions for future work in Section 9.

2. A FEASIBILITY STUDY
In this Section, we present a feasibility study that provides

the reader with a proof of concept estimate of fuel savings
that can be achieved by driving on the most fuel efficient
routes.

We compute fuel consumption between landmarks in Urbana-
Champaign for three different cars (and drivers) and com-
pare these values across multiple routes between the same
pairs of landmarks. The landmarks chosen were frequently
visited destinations such as the work place of the authors, a
major shopping center, and a football stadium. Three land-
marks were initially chosen. The shortest and fastest routes
were obtained using MapQuest [26] 1. In Figure 1, we plot
the fuel consumption for the shortest route, the fastest route,
and the route that consumes the least fuel (as computed
from our models) for the aforementioned landmarks.

We observe, from Figure 1, that in the first experiment,
the fastest route is also the most fuel-efficient route. In the
second experiment, the shortest route consumes the least
amount of fuel. In the third experiment, the most fuel-
efficient route is different from both the shortest and the
fastest routes. We conclude from the above observations
that simply choosing the shortest or the fastest route will
not always be fuel-optimal.

For example, if the user always chooses the fastest route,
their extra fuel consumption compared to taking the optimal
route is 0%, 24%, and 10% for the three landmarks, respec-
tively (an average of about 11% overhead). Similarly, if the
user always chooses the shortest route, their average extra
fuel consumption is about 11.5%. Hence, following the fuel-
optimal route can translate (at the current national average
gas price, which at the time of writing this paper was USD
2.86 [1]) into savings of at least 30 cents per gallon, which
is not bad for “cash back”.

The above results are only a proof of concept. They sim-
ply show that there may exist situations where using a fuel-
optimal route can save money. A more extensive study of
route models and savings is presented in the evaluation sec-
tion.

To estimate the amount of savings that can be achieved
on a global scale, we provide back of the envelope calcu-
lations based on data from the Environmental Protection
Agency (EPA) [13]. An estimated 200 million light vehi-
cles (passenger cars and light trucks) are on the road in the
US. Each of them is driven, on an average, 12000 miles in
a year. The average mile-per-gallon (mpg) rating for light
vehicles is 20.3 mpg. Even if 5% of these vehicles adopted
GreenGPS and 10% fuel savings were achieved on only a
quarter of the routes traveled by each of these vehicles, the
amount of overall fuel savings is nearly 177 million gallons
of fuel ((12000/20.3) ∗ 0.3 ∗ (0.05 ∗ 200M) ∗ 0.1). This trans-
lates into nearly half a billion dollars in savings at the pump
(based on the current national average pump prices for a gal-
lon of gasoline). The authors consider the above prospective
savings acceptable. The rest of the paper presents details of
the GreenGPS service and a more extensive evaluation.

1Google maps provides only the shortest route. MapQuest
provides both fastest and shortest routes. Hence, we use
MapQuest to get route information.
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3. THE GREENGPS SYSTEM
The service provided by GreenGPS is similar to a regu-

lar map application, such as Google maps [19] or MapQuest
[26]. Google maps and MapQuest provide the shortest or
fastest routes between two points, whereas GreenGPS com-
putes the most fuel-efficient route. A snapshot of the Web-
based GreenGPS’s user interface is shown in Figure 2 along
with the most fuel efficient route between two points for a
user with a Toyota Celica, 2001. In the following subsec-
tions, we will discuss the GreenGPS concept, then present
the participatory sensing framework that we utilize for data
collection and data sharing and the specifics of the hardware
used for the purpose of data collection.

3.1 The GreenGPS Concept
Individuals who want to compute the most fuel-efficient

route between two points enter the source and destination
address via the interface provided by GreenGPS. Members
of GreenGPS (i.e., those individuals who contributed partic-
ipatory data) can register their vehicles that were used for
data collection. Hence, GreenGPS can compute the route
specifically for the registered vehicle. Other users may en-
ter their vehicle’s make, model, and year of manufacture.
Since different vehicles have different fuel consumption char-
acteristics, these car details are used to compute the most
fuel-efficient route for the given vehicle brand. The advan-
tage for the users who contribute data is that the system
provides better estimates of the most fuel-efficient routes to
these individuals, thus allowing them to have higher savings.

Currently, it is impractical to assume that GreenGPS mem-
bers will measure all city streets and cover all vehicle types.
Instead, measurements of GreenGPS members are used to
calibrate generalized fuel-efficiency prediction models. These
models, discussed in Section 4, show that the fuel consump-
tion on an arbitrary street can be predicted accurately from
set of static street parameters (e.g., the number of traffic
lights and the number of stop signs) and a set of dynamic
street parameters (such as the average speed on the street
or the average congestion level), plus of course the vehicle
parameters (e.g., weight and frontal area). It is the mathe-
matical model describing the relation between these general
parameters and fuel-efficiency that gets estimated from par-
ticipant data. Hence, the larger and more diverse is the set
of participants, the better the generalized model.
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Figure 1: Figure showing fuel consumption for mul-
tiple routes between multiple selected landmarks for
different cars and drivers

Figure 2: Figure showing the user interface of
GreenGPS with the most fuel efficient route be-
tween two points on the map for a Toyota Celica,
2001.

For most streets, static street parameters can be readily
obtained from traffic databases. For example, the number
of traffic lights and the number of stop signs on streets can
be obtained from the red light database [20]. Dynamically
changing parameters such as the congestion levels or average
speed are more tricky to obtain. In larger cities, real-time
traffic monitoring services can supply these parameters [35].
Many GPS device vendors, such as TomTom, also collect
and provide congestion information. Finally, participatory
sensing applications, such as Traffic Analyzer [17] and Car-
Tel [24], have been described in prior literature that have
the potential to provide congestion and speed data.

In this paper, speed information is obtained from the col-
lected data using the hardware described in the next sec-
tion. The speed data is aggregated for different city blocks,
based on the GPS data. Thus, given a street name (or the
latitude/longitude of a location), GreenGPS provides the
average speed information for the corresponding block.

3.2 A Participatory Sensing Framework
We utilize a participatory sensing framework developed in

our prior work, called PoolView [17], to implement GreenGPS.
PoolView facilitates developing data collection applications.
It provides a client-side interface for data upload and deliv-
ers all data to a central server called the aggregation server ,
that is application-specific. We implemented GreenGPS by
writing our aggregation server for PoolView. An individ-
ual who wants to share their OBD-II sensor data can thus
download the client side software of PoolView, and use it to
upload their data to the GreenGPS aggregation server. The
aggregation server uses these data to calibrate models that
relate street and vehicle parameters to fuel-efficiency and
offers the GreenGPS query interface for fuel-efficient routes.

Individuals who wish to contribute OBD-II data to GreenGPS
install, in their vehicle, a commercial OBD-II scanner along
with a GPS unit. In our deployment, we use one such off-
the-shelf device for data collection purposes, called Dash-
Dyno [4], shown in Figure 3. The DashDyno’s OBD-II scan-
ner is interfaced to a Garmin eTrex Legend GPS [18] to get
location data. The DashDyno records trip data (including
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Garmin’s GPS location) on an SD card that the user later
uploads it to the GreenGPS server.

Figure 3: Hardware used for data collection

A total of 16 parameters are obtained from the car and the
GPS, the most important of them being instantaneous vehi-
cle speed, total fuel consumption, rate of fuel consumption,
latitude, longitude, and time.

4. GENERALIZING FROM SPARSE DATA
In this section, we demonstrate the foundations of one

of the key mechanisms in participatory sensing applications
that are tolerant to conditions of sparse deployment; namely,
the generalization from sparse multidimensional data. Such
generalization is complicated by the fact that, in high-dimensional
data sets, one size does not fit all. Hence, for example, devel-
oping a single regression model to represent all data is highly
suboptimal. In the case of GreenGPS, the lack of widespread
availability of OBD-II scanner tools suggests that the data
contributed by users of our participatory sensing application
will be a sparse sampling of routes and cars. Hence, we aim
to use data collected by a smaller population to build models
capable of predicting the fuel consumption characteristics of
a larger population. Admittedly, the conditions of sparse
deployment are typically temporary, making the above con-
tribution short-lived in nature. Nevertheless, it solves a key
problem at a critical phase of most newly deployed systems,
which makes it important. Before we explain the details
of the generalization mechanism, we will provide a brief de-
scription of our data collection for the purpose of developing
models.

4.1 Data Collection
The vision for GreenGPS, when fully deployed, is to col-

lect data from everyday users, which can be employed to
update and refine predictions of fuel consumption when such
users (or others with similar vehicles) embark on new itineraries.
Having said so, for the purposes of this paper, we con-
ducted a limited proof-of-concept study involving sixteen
users (with different cars) over the course of three months.
A total of over 1000 miles were driven by our users to con-
struct the initial models. Figure 4 shows a partial map of
the paths on which data were collected. The details of the
car make, model, year, and the number of miles of data
collected for each car are summarized in Table 1.

In the aforementioned experiments, each user was asked to
drive among a specific set of landmarks in the city. We split

Figure 4: Coverage map for the paths on which data
were collected

Car make Car model Car year Miles driven
Ford Taurus 2001 135

Toyota Solara 2001 45
BMW 325i 2006 70
Toyota Prius 2004 140
Ford Taurus 2001 136
Ford Focus 2009 95

Toyota Corolla 2009 45
Honda Accord 2003 102
Ford Contour 1999 22

Honda Accord 2001 18
Pontiac Grand Prix 1997 25
Honda Civic 2002 11

Chevrolet Prizm 1998 16
Ford Taurus 2001 10

Mazda 626 2001 9
Toyota Celica 2001 120

Hyundai Santa Fe 2008 22

Table 1: Table summarizing the cars used and the
amount of data collected

each drive into smaller segments to capture the variation in
the fuel consumption on individual streets. These segments
were the “samples” used to capture the variables affecting
fuel consumption and develop initial prediction models.

4.2 Derivation of Model Structure
The first part of data generalization is to derive a model

structure. The structure describes how various parameters
are related, but does not evaluate the various constants and
proportionality coefficients. In this case, we derive the struc-
ture of fuel prediction models from physical analysis. The
analysis is straightforward but is included for completeness.

To motivate the need for modeling, we plot the distribu-
tion of miles per gallon (mpg) for all the data collected in
Figure 5. We observe from this figure that the distribution is
nearly uniform with the mpg values varying between 5 and
50. The standard deviation of the mpg distribution is 9.12
mpg, which is pretty high. Hence, an appropriate model
is needed to estimate the fuel consumption on various seg-
ments.
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Figure 5: Figure showing the real mpg distribution
for all the sixteen users

The inputs to our prediction model include segment pa-
rameters and car parameters. We do not consider driver
factors in the model because the sample size of drivers was
small in our dataset. We will explore the effect of driver
factors on fuel consumption in our future work. Note that,
we are interested in predicting long-term fuel consumption
only. While actual savings of a user on individual commutes
to work may vary, the user might be more concerned with
their net long-term savings. Hence, it is important to cap-
ture only the statistical averages of fuel consumption. As
long as the errors have near zero mean, the savings are ac-
curate in the long term. As a given user drives more seg-
ments, a value of interest is the total end-to-end prediction
error that results (which improves over time as the individ-
ual positive and negative segment errors cancel out). We
call that end-to-end error the cumulative error . It is useful
to normalize that error to the total distance driven. We call
the result cumulative percentage error . It represents how far
we are off in our estimate of total fuel consumption.

We derive the model structure for fuel consumption from
the basic principles of physics. Many such models exist in
prior literature [7, 15, 36], which simplifies the task. We
divide the parameters that affect fuel consumption into (i)
static segment parameters, namely, numbers of stop signs
(ST ), numbers of traffic lights (TL), distance traveled (∆d)
and slope (θ), (ii) dynamic segment parameters, namely, av-
erage speed (v̄), and car specific parameters, namely, weight
of the car (m) and car frontal area (A).

The approximated fuel consumption model as a function
of the above parameters was derived and can be found in the
Appendix. It is given as follows (where gpm is the inverse
of mpg and the unit of measure is gallons per mile):

gpm = k1mv̄2 (ST + νTL)

∆d
+ k2m

v̄2

∆d

+ k3mcos(θ) + k4Av̄2 + k5msin(θ) (1)

We plot the distributions for various parameters (for indi-
vidual segments) in Equation 1 for the data that we collected
in Figure 6. In the next section, we show that the coefficients
of our model, k1, k2, k3, k4 and k5 differ among different ve-
hicles making it harder to generalize from vehicles we have
data for to those we do not.

4.3 Model Evaluation: One Size Fits All?
Regression analysis is a standard technique for estimating

coefficients of models with known structure. In this section,

we demonstrate that a single regression model is a bad fit
for our data. Said differently, while a regression model that
accurately predicts fuel consumption can be found for each
car from data of that one car, the model found from the
collective data pool of all cars is not a good predictor for
any single vehicle. Hence, in a sparse data set (where data
is not available for all cars); it is not trivial to generalize. We
illustrate that challenge by first evaluating the performance
of car models obtained from their own data (which is good),
then comparing it to the trivial generalization approach: one
that finds a single model based on all car data then uses it
to predict fuel consumption of other cars. A solution to the
challenge is presented in the next section.

One should add that while the generalization challenge
is common to many participatory sensing applications, our
evaluation is not intended to be a definitive study on vehic-
ular fuel consumption. For example, we evaluate fuel con-
sumption in Urbana-Champaign only, which is quite flat.
Hence, θ = 0 is a good approximation. (We therefore set
the last term, k5msin(θ), of our physical model to zero, so
k5 is no longer needed.) Furthermore, the city is rarely con-
gested. Moreover, the range of cars used in the study is
rather skewed towards sedans, and hence not representative
of the diversity of cars on the streets. Fortunately, even
this rather homogeneous data set is sufficient to show that
generalization is hard.

First, we determine the length of the segment empirically.
We vary the segment length from 0.5 miles to 2 miles in in-
crements of 0.5 miles and evaluate the accuracy of our model
in each of these cases. We observed that the accuracy of the
model is best when the segment length is 1 mile. Hence, we
fix the segment length to be 1 mile in the rest of our exper-
iments. We evaluate the accuracy of models derived from
vehicle data using a cross validation approach. We choose a
random data point (i.e., a given segment of a street driven
by some car) to predict fuel consumption for. We then use
other points to train a model. We distinguish models based
on other segments of the same car from models based on
data from other cars in predicting the fuel consumption of
the one segment. The 4th and 5th columns of Table 2 sum-
marize the resulting errors, respectively, for a fraction of the
used cars.

Car Car Car Individual General
make model year cumulative cumulative

error % error %
(magnitude) (magnitude)

Hyundai Santa Fe 2008 2.89 23.63
Honda Accord 2003 0.89 15.3
Ford Contour 1999 0.83 91.4
Ford Focus 2009 0.12 27.35
Ford Taurus 2001 0.75 24.85

Toyota Corolla 2009 0.61 89.97
Ford Taurus 2001 0.56 6.9

Table 2: Table summarizing the cumulative percent-
age errors for the individual car models and the gen-
eralized case when all the data (except one car) is
used to obtain the model

We also plot the error distribution for individual segments
(for one car) in Figure 7. We observe that this distribution is
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(a) Traffic light distribution
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(b) Stop sign distribution
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(c) Average speed distribution

Figure 6: Figures showing the distributions of number of traffic lights, stop signs, and average speed

near normal and the mean is near zero (0.26%). We observe
a similar distribution for other cars too.
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Figure 7: Figure showing the segment error distri-
bution for one car

We also observe from the Table 2 that the cumulative per-
centage error for individual car models are quite good. Most
of them are below 2%. On the other hand, when we predict
one car’s consumption using data from other cars, the errors
are quite high. This suggests the existence of non-trivial bias
in error that does not cancel out by aggregation. In the next
section, we propose a way to mitigate this problem based on
grouping cars into clusters, such that prediction can be done
based on other similar cars by some metric of similarity.

4.4 Model Clustering
The above suggests a need for better generalization over

vehicle data. Different car types behave differently. Even
though the model is parameterized by factors such as car
weight and frontal area, they are not enough to account for
differences among cars. This is a common problem in high-
dimensional data sets collected in participatory sensing ap-
plications. The question becomes, if we cannot generalize
over the whole set, can we generalize over a subset of di-
mensions?

A solution is borrowed from the general literature on data
cubes [21]. Data cubes are structures for Online Analyt-
ical Processing (OLAP) that are widely used for multidi-
mensional data analysis. They group data using multiple
attributes and extract similarities within each group. For
example, previous work showed how to efficiently construct

regression models for various subsets of data [10]. The data
cube framework can thus help compute the optimal gener-
alization hierarchy in that it can help generalize data based
on those dimensions that results in the minimum modeling
error.

We consider three major attributes (data dimensions) of
a given car: make, year, and class. Based on these three
attributes, data can be grouped in eight ways. At one ex-
treme, all cars may be grouped together, thus producing a
single regression model (which we have shown is not accept-
able). At the other extreme, cars can be partitioned into
clusters based on their (make, year, class) tuple. A separate
model is derived for each cluster. Therefore, a 2001 com-
pact Ford is modeled differently from a 2001 mid-size Ford,
a 2002 compact Ford or a 2001 compact Toyota.
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Figure 8: Cumulative error percentage of the models
obtained from various clustering approaches

Between these two extremes, to find out which clustering
scheme gives the best accuracy, we obtain the cumulative
percentage error for each scheme. The results, summarized
in Figure 8, show that different generalizations have differ-
ent quality. These generalizations are somewhat better than
using all car data lumped together. While our data set is
too small to make general conclusions (from only 16 cars),
as more data are collected in a deployed participatory sens-
ing application (e.g., say deployment reaches 100s of cars),
progressively better generalizations can be attained.

To use results of Figure 8, one would build models for each
pair of make and year (the lowest error clustering scheme).
If a car is encountered for which we do not have data on
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its (make, year) cluster, we go one level up and use (make)
clusters or (year) clusters as generalizations for the (make,
year) cluster. If there are no models corresponding to either
make or year of a given car, we have no recourse but to
go one level up and use the model computed from all data.
Figure 9 depicts the generalization process among various
model clusters.

Make Year

All

Make, Year

Figure 9: Model generalization from fine grained
clusters

Car Car Car Cumulative
make model year error %

Hyundai Santa Fe 2008 0.73
Honda Accord 2003 1.01
Ford Contour 1999 1.42
Ford Focus 2009 2.7
Ford Taurus 2001 3.38

Toyota Corolla 2009 1.28

Table 3: Table showing the cumulative error per-
centage for each individual car when model cluster-
ing is used

We evaluate the performance of our model clustering tech-
nique by measuring how accurately an individual car can be
modeled using the data from cars with similar make or year.
Specifically, we construct the model cluster while removing
data of a certain car type. We use the model cluster to es-
timate the fuel consumption for a given car. The resulting
cumulative error percentage is presented in Table 3.

To put the above results in perspective, the reader is re-
minded that the nature of the landscape in Urbana-Champaign
limits our study in that we do not have data on hilly terrain.
The study would have been more interesting if conducted on
uneven grounds, where changes in incline modulate fuel con-
sumption. We expect that future data collected will be used
to evolve our current model by considering the terrain (θ in
Equation 1) parameter. Further, new data collected will be
used to update the model. Another limitation of our model-
ing approach arises from the class of cars for which data has
been collected. We observe from Table 1 that the majority
of the cars are sedans (with the exception of one SUV). We
observe that the generalization tree (Figure 9) does not use
the class of the car. This generalization tree is specific to

the dataset collected. The point of this section is to illus-
trate an approach to improve prediction in the temporary
but important conditions of sparse deployment. Ultimately,
when all cars have their own OBD-II readers supplying data
to drivers’ cell-phones, we shall not need the generalization
scheme described above.

5. IMPLEMENTING GREENGPS
The GreenGPS server combines several open source soft-

ware services to provide the fuel-efficient route computation
service. The various modules that are part of the GreenGPS
implementation are depicted in Figure 10. GreenGPS main-
tains the map of a given area as an OpenStreetMap (OSM) [29].
OSM is the equivalent of Wikipedia for maps, where data are
collected from various free sources (such as the US TIGER
database [37], Landsat 7 [27], and user contributed GPS
data) and an editable street map of the given area is created
in an XML format. The OSM map is essentially a directed
graph, which is composed of three basic object types, nodes,
ways, and relations. A node has fixed coordinates and ex-
presses points of interest (e.g. junction of roads, Marriott
hotel). A way is an ordered list of nodes with tags to spec-
ify the meaning of the way, e.g. a road, a river, a park.
A relation models the relationship between objects, where
each member of the relation has a specific role. Relations
are used in specifying routes (e.g. bus routes, cycle routes),
enforcing traffic (e.g. one way routes).

GreenGPS maintains the street variables affecting fuel
consumption as additional parameters in the OSM map.
This information is stored as a tag/value pair in the way
object, where tag is a street parameter and value is the corre-
sponding value of the parameter. We are currently working
on populating the street variables into the OSM database
for Urbana-Champaign in an automated manner. Further,
the car and driver specific parameters are maintained in a
separate database. The model to compute fuel consumption
on a given way (for a given car and driver) queries these
databases and computes the fuel consumption on the way.

The OBD-II data shared by individuals is used to com-
pute regression models that predict the fuel consumption
on specific streets given the car details (e.g. make, model,
age) and driver behavior. The regression variables which are
street specific are stored in the OSM map database, whereas
the car and driver specific variables are stored in a similar
database.

5.1 Model Clustering Implementation
GreenGPS implements the model clustering technique de-

scribed in Section 4.4 using Data Cubes [21].
We implement a 3-dimensional (make, class, year) regres-

sion cube [10] in C++. Each one mile segment is organized
as a row in a database where five of its attributes are the
values of physical model parameters (see Section 4.2) and
are used for regression. Three other attributes (make, class,
year) are used for grouping. After computing the regres-
sion models for all clusters (i.e. materializing the cube),
search for a specific triple of (make, class, year) is done con-
secutively within the (make, year) cluster, the (make) clus-
ter, and the (year) cluster. The first regression model that
matches the query is used for prediction.

5.2 Routing in GreenGPS
Routing is achieved in GreenGPS by customizing the open

source routing software, Gosmore [28]. Gosmore is a C++
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Figure 10: Figure depicting the various modules of GreenGPS

based implementation of a generic routing algorithm that
provides shortest and fastest routes between two arbitrary
end-points. Gosmore uses OSM XML map data for doing
routing. Gosmore’s routing algorithm is a heuristic that by
default computes the shortest route. This routing algorithm
can be thought of as a weighted Dijkstra’s algorithm on the
OSM map, where the nodes of the graph are OSM nodes and
the edges of the graph are OSM ways and the weights of the
edges are the lengths (distance) of the ways. The fastest
route is computed by multiplying the distance by an inverse
speed factor (thus giving lower weights to faster ways). Our
fuel-optimal routing algorithm multiplies the distance by an
inverse mpg (miles per gallon) metric that results in lower
weights for fuel-optimal ways.

5.3 Other Implementation Issues
Street address inputs provided by the user are translated

into latitude/longitude pairs using the open source geocod-
ing perl module, Geo::Coder::US. This module is used for
geocoding US addresses only. Geocoding is the process of
finding corresponding latitude/longitude data given a street
address, intersection, or zipcode.

The GUI frontend to display the fuel-optimal route (shown
in Figure 2) utilizes Microsoft Bing maps. Routes are color
coded and rendered as polylines on Bing maps. For example,
the fuel-optimal route is a “green” color polyline.

When a query is posed to GreenGPS for the fuel-optimal
route between the start address and destination address, the
addresses are first geocoded into their corresponding latitude
and longitude pairs using the geocoder module. The latitude
and longitude pairs of the start and destination addresses
are then fed to the routing module which computes the fuel-
optimal route (along with the shortest and fastest routes)
using the OSM XML database and the prediction models
of fuel consumption on streets (computed from the OBD-II
sensor data contributed by users). The computed routes are
then displayed on the Bing maps based GUI frontend.

6. EVALUATION
We evaluate the performance of GreenGPS in two stages.

First, we evaluate the performance of our model by using it
to predict the end-to-end fuel consumption for long routes.
Second, we evaluate the potential fuel savings of an individ-
ual using GreenGPS.

6.1 Model Accuracy
We first evaluate the accuracy of our prediction model in

estimating fuel consumption on long routes. These routes
are continuous sequences of segments that individuals drove.
Only six cars are used in this experiment2 because the data

2Ford Focus, 2009; Ford Taurus 2001; Toyota Corolla, 2009;
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from the rest of the cars did not include multiple paths (and
hence we would not be able to do path-based cross valida-
tion, where data collected on one path is used to predict
fuel consumption on another). We consider the path error
as the end-to-end prediction error for the given path (which
is the metric used for evaluation in Section 4). For cross val-
idation, we remove the data points associated with a given
path and obtain a model for the car, then obtain the error
in predicting fuel consumption for this path based on the
computed model. We repeat the above for all the paths.

The entire path error distribution corresponding to the
above experiment when prediction for each car is used based
on data of the same car (on other paths) is shown in Fig-
ure 11. We observe that the path error distribution is nearly
normal and that the mean of this distribution is near zero
(<1%). We conduct a similar experiment to derive the path
error distribution that is achieved by employing clustering
such that fuel consumption of cars is predicted from that of
other cars in the nearest cluster. To experiment with predic-
tion accuracy of clusters, we remove the data points for each
car (as if that car was not known to the system) and cluster
the rest of data points, as described in Section 4.4, based on
make, year, and both. Fuel consumption of the removed car
is then predicted using the nearest cluster. Namely, we first
check if a cluster exists with the same car make and year.
If no such cluster exists, we check for a cluster of the same
make or the same year, respectively. Finally, a model based
on all car data is used if all the previous steps fail. The
prediction error for each path is computed as before and the
distribution is presented in Figure 12. Again, a normal dis-
tribution of the path errors is observed with near zero mean
(<4%).
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Figure 11: Distribution of path error percentages
when training is done using individual cars

In order to understand how path errors vary with path
lengths, we bin the paths based on their length and compute
the average of the absolute path errors as a function of path
length. We repeat this experiment for the case where models
are derived for each car individually and the case where mod-
els are derived for clusters and the nearest cluster is used.
We plot the mean of the absolute path errors for varying
path lengths in Figure 13. We observe from Figure 13 that
the error decreases with increasing path length for both the
individual and cluster based models. As expected, models

Ford Taurus, 2001, Honda Accord, 2001; and Ford Taurus,
2001.
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Figure 12: Distribution of path error percentages
for the clustering approach
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Figure 13: Mean path error when path length is
varied for individual car models and cluster based
models

based on the owner’s car do better than models based on
the nearest cluster, but the cumulative error continues to
decrease with distance driven, which is what we want. We
have not explored if this holds true when the commutes have
large dynamics in speeds, such as in larger cities. The cur-
rent data set is limited in that it was collected in a fairly
quiet town.

From the perspective of building participatory sensing
applications, the above suggests the importance of finding
models that do not have biased error . Since the models of-
ten try to predict aggregate or long-term behavior (such as
long term exposure to pollutants, annual cost of energy con-
sumption, eventual weight-loss on a given diet, etc), if the
error in day-by-day predictions is normally distributed with
zero mean, the long-term estimates will remain accurate.
Hence, rather than worrying about exact models, GreenGPS
attempts to find unbiased models, which is easier.

159



6.2 Fuel Savings
In this section, we evaluate the fuel savings achieved when

using the GreenGPS system. As we outlined in the imple-
mentation section, we are integrating the street parameters
such as the stop signs, traffic lights, and average speed infor-
mation into the OSM database. To evaluate fuel savings, we
chose landmarks in the city of Urbana-Champaign that the
authors visit in their daily commutes, such as work, gym,
frequently visited restaurants, and shopping complexes. To
eliminate subjective choice of routes between the selected
landmarks, each of the authors selected a pair of landmarks
then looked up both the shortest route and fastest route
between these landmarks on MapQuest. The person then
drove eight round trips (of approximately 20-40 minutes
each) between their selected pair of landmarks; four on the
shortest route and four on the fastest route, recording ac-
tual fuel consumption for each round trip. The landmarks
together with the shortest and fastest routes are shown in
Figure 14. We then used the GreenGPS system to predict
which of the two compared routes for each pair of landmarks
is the better route, which it did correctly in every case.

The fuel consumption data for each roundtrip on the short-
est and fastest routes for all the cars in this experiment are
shown in Table 4.

We observe from Table 4 that the fuel-optimal route for
destinations of the Honda Accord and Ford Taurus was the
shortest route, whereas, for the other three destinations it
was the fastest route. Hence, picking the shortest or fastest
routes consistently is not optimal. To confirm that the dif-
ferences in fuel consumption between the compared routes
are not due to measurement noise, we tested the statistical
significance of the difference in means using the two paired
t-test. The test yielded that the differences are statistically
significant with a confidence level of at least 90%. The av-
erage savings (by choosing the correct route over the alter-
native) for each pair of landmarks and car are summarized
in Table 4.

Comparing the total fuel consumed on the optimal route
to the average of that consumed on the shortest route and
fastest route (assuming the driver guesses at random in the
absence of GreenGPS), the savings achieved are roughly 6%
over the shortest path and 13% over the fastest, which is
consistent with data we reported earlier in the feasibility
study.3. This is by no means statistically significant, since
only a handful of routes were used in the experiments above,
but it nevertheless shows promise as a proof of concept.

7. LESSONS LEARNED
This section presents, in its two respective subsections,

a brief discussion of our experiences with the GreenGPS
service and the limitations of the current study.

7.1 Experiences with GreenGPS
Several lessons were learned from GreenGPS, as an exam-

ple of participatory sensing applications. First, we observed
that data cleaning is an important problem and it is appli-
cation dependent. We had several occasions when several
fields were missing from the data. For example, the GPS
sometimes failed to communicate with the DashDyno and
the location fields were then empty. A simple scheme was

3The feasibility study used different routes from those re-
ported above

used to filter complete datasets from those that were missing
values. Another data-related issue was the presence of noise
in the data. For example, in our setup, we observed that (in
some car models) whenever the GPS communicated with
the DashDyno, the fuel rate measurement had a large spike.
This was likely due to improper use of sensor IDs, which led
to data overwriting. Solutions have to be developed that
filter the noise at the source. For example, we developed a
simple filter (as a plugin to PoolView) that removes outliers
from the data before storing it. An application-specific chal-
lenge was observed due to the slight variations in the OBD-II
standards among different cars. For example, we observed
that the Toyota Prius (by default) outputs the speed and fuel
measurements in the metric system, rather than the Imperial
system (which happens to be the default for the remaining
cars in our dataset). It is harder to propose generic solu-
tions to such problems. They suggest, however, that unlike
small embedded systems, participatory sensing applications
involve a much larger number of heterogeneous components
(e.g., different car types in GreenGPS). As such components
interact with each other or with aggregation services, subtle
compatibility problems will play an increasing role. Trou-
bleshooting techniques are needed that are good at identify-
ing problems resulting from unexpected or bad interactions
among different individually well-behaved components. This
is to be contrasted, for example, with debugging tools that
attempt to find bugs in individual components.

Next, privacy challenges come to the forefront in par-
ticipatory sensing systems. A large class of participatory
sensing systems monitor location information continuously,
which poses significant privacy issues. Simple anonymiza-
tion of data will not work in such situations, as the GPS
traces can lead to privacy breaches (e.g., reveal the home
location of the user and thus uncover their identity). Tech-
niques such as the ones proposed in [17] and [31], which rely
on data perturbation can be used to preserve privacy, while
still allowing accurate modeling. In our current study, indi-
vidual users simply switch off data collection devices when
they feel the need for privacy.

Finally, another lesson learned relates to the initial ex-
perimental deployment of participatory sensing systems. A
major hurdle in getting participatory sensing systems off the
ground is to provide the right incentives to the individuals
(who are part of the system) [32]. We believe that the initial
deployment, which tends to be sparse, should be carefully
designed in order to provide incentives for larger adoption.
It should therefore be useful from the very early stages.

7.2 Limitations of Current Study
Apart from the limitations arising from the small size of

the data set, discussed earlier, we also make the follow-
ing observations. As expected, the main factors affecting
fuel consumption of a vehicle on a path are the average
speed, the speed variability (estimated by averaging the
speed squared), and the engine idle time (estimated from
the number of stop signs and stop lights on the path). A
limitation of the study is that we did not explore the use of
real-time traffic conditions for purposes of fuel estimation.
Rather, we opted to use statistical averages of speed, speed
variability and idle time. It is easy to see how such sta-
tistical averages can be computed for different hours of the
day and different days of the week given a sufficient amount
of historical data, yielding expected fuel consumption (in
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A    Home 1
B    Mall
C    Gym/Stadium

D   Home 2
E   Restaurant 
F   Work

G   Home 3

I     Grad Housing
H   CUPHD

Fastest route
Shortest route

Figure 14: Figure showing the landmarks and corresponding shortest and fastest routes

the statistical sense of expectation). The outcome is that
individual trips may differ significantly from the statistical
expectation. However, by consistently following routes that
have a lower expected fuel consumption, savings will accu-
mulate in the long term. Drivers may think of GreenGPS as

a long-term investment. Short-term results may vary, but
long-term expectations should tend to come true.

A limitation of the study, as discussed in Section 4, is
that the selection of cars used in our current study (mostly
compact and mid-sized sedans) result in a generalization hi-
erarchy that ignores the car class (currently incorporates
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Car Landmarks Route Fuel consumption GreenGPS Savings %
type type (gallons) prediction

Honda Accord 2001
Home 1 to Mall

Shortest 0.19 0.16 0.19 0.16
Shortest 31.4

Fastest 0.22 0.23 0.25 0.22

Home 1 to Gym
Shortest 0.19 0.20 0.19 0.18

Shortest 19.7
Fastest 0.21 0.23 0.22 0.25

Ford Taurus 2001 Home 2 to Restaurant
Shortest 0.24 0.23 0.23 0.22

Shortest 26
Fastest 0.3 0.28 0.29 0.29

Toyota Celica 2001 Home 2 to Work
Shortest 0.18 0.16 0.18 0.17

Fastest 10.1
Fastest 0.17 0.14 0.16 0.15

Nissan Sentra 2009 Home 3 to CUPHD
Shortest 0.14 0.15 0.15 0.15

Fastest 8.4
Fastest 0.13 0.13 0.14 0.14

Honda Civic 2002 Grad housing to Work
Shortest 0.33 0.32 0.33 0.3

Fastest 18.7
Fastest 0.25 0.28 0.27 0.24

Table 4: Table showing fuel consumptions for the various roundtrips between different landmarks

only car make and year). Future deployments will consider
a broader range of vehicles, such as SUVs, minivans, and
light trucks. The data from these deployments will be used
to recompute a better generalization hierarchy.

In order to achieve the next level of optimization, a next
generation of GreenGPS can take into account the real-time
situation. Our experience reveals, not surprisingly, that the
degree of congestion plays the largest role in accounting for
fuel consumption variations among individual trips of the
same vehicle. On lightly-utilized streets, another main fac-
tor is the degree to which traffic lights are synchronized.
Lack of synchronization accounted for up to a 50% increase
in fuel consumption in our measurements.

Another limitation of the current service is that it does
not properly account for turns. Turns on the path add fuel
consumption, often because delays in the turn lane differ
from those in the through lane. In particular, our measure-
ments show that left turns may add a considerable amount
of delay to a path. Hence, routing should account for the
type of turn as well.

Finally, we expect that fuel savings in larger cities will be
higher than those reported in this paper, both due to the
larger variability in traffic conditions that could be taken
advantage of, and because of the larger connectivity which
offers more alternatives in the choice of route. With the
above caveats, we believe that the study remains of interest
in that it explores problems typical to many participatory
sensing applications, such as overcoming conditions of sparse
deployment, adjusting to heterogeneity, and living with large
day-to-day errors towards estimating cumulative properties.
The GreenGPS study could therefore serve as an example
what to expect in building similar services, as well as a recipe
for some of the solutions.

8. RELATED WORK
We divide this section into two parts, the first part presents

related work in participatory sensing and the second exam-
ines fuel efficiency related literature.

8.1 Participatory Sensing
Our navigation service is an example of participatory sens-

ing services, that have recently become popular in networked
sensing. The concept of participatory sensing was intro-
duced in [9]. In participatory sensing, individuals are tasked
with data collection which is then shared for a common pur-

pose. A broad overview of such applications is provided
in [2]. Several early applications have been published. Ex-
amples include CenWits [23], a participatory sensing net-
work to search and rescue hikers, CarTel [24], a vehicular
sensor network for traffic monitoring, BikeNet [12], a bikers
sensor network for monitoring popular cyclist routes, and
ImageScape [33], cellphone camera networks for sharing diet
related images. Our application, GreenGPS, introduces a
novel example of this genre that enables individuals to com-
pute fuel efficient routes within a city.

8.2 Fuel Efficiency
A comprehensive study that provides optimal route choices

for lowest fuel consumption is presented in [14]. In the pa-
per, fuel consumption measurements are made through the
extensive deployment of sensing devices (different from the
OBD-II) in experimental cars. These fuel consumption mea-
surements are then used to compute the lowest fuel con-
sumption route. In contrast to the work in [14], our paper
uses a sparse deployment to build mathematical models for
predicting fuel consumption for other streets and cars. In
[8], the influence of driving patterns of a community on the
exhaust emissions and fuel consumption were studied. Feed-
back was provided to the community regarding the driving
patterns to cut back on the fuel consumption and exhaust. A
driver support tool, FEST, was developed in [11]. FEST uses
sensors installed in the car along with a software to deter-
mine the driving behavior of the driver and provide real-time
feedback to the individual for the purpose of reduction in fuel
consumption. An extension to FEST that includes more ex-
periments and further evaluation can be found in [38]. A
feedback control algorithm was developed in [34] that deter-
mines speed of automobiles on highways with varying terrain
to achieve minimal fuel consumption. An extension to the
work in [34] was developed in [22]. In [22], suggestions of
driving style to minimize fuel consumption were made for
varying road and trip types (e.g. constant grade road, hilly
road). The problem was formulated using a control theoretic
approach.

UbiGreen [16] is a mobile tool that tracks an individ-
ual’s personal transportation and provides feedback regard-
ing their CO2 emissions.

In a separate study [25], it was shown that rising obesity
has a significant impact on the total fuel consumption in the
US. Models were developed that studied the impact of obe-
sity on the amount of fuel consumed in passenger vehicles.
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Our work represents the first participatory sensing service
that aims at improving fuel consumption. Using data col-
lected from volunteer participants, models are built and con-
tinuously updated that enable navigation on the minimum-
fuel route.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we developed a navigation service, called

GreenGPS, that computes fuel efficient routes. This service
relies on OBD-II data collected and shared by a set of users
via a participatory sensing framework, called PoolView. Lessons
were described that extrapolate from experiences with this
service to broad issues with participatory sensing service de-
sign in general. This paper shows that significant fuel sav-
ings can be achieved by using GreenGPS, which not only
reduces the cost of fuel, but also has a positive impact on
the environment by reducing CO2 emissions. An important
issue addressed was surviving conditions of sparse deploy-
ment. GreenGPS achieves this by using a hierarchy of mod-
els developed in this paper to estimate the fuel consumption,
and shooting for models that are unbiased, if not accurate.
Our future work will address the challenges associated with
real-time prediction, as well as experiences from a longer-
term deployment. We will also explore the use of data cubes
in the context of building generalized hierarchical models.

10. ACKNOWLEDGEMENTS
The authors thank the shepherds, Dr. Maria Ebling and

Prof. Brian Noble, and the anonymous reviewers for provid-
ing valuable feedback that significantly improved the paper.
We would also like to thank all the drivers who volunteered
to collect data, without whom this paper would have not
been possible. The work described in this paper was funded
in part by NSF grant CNS 05-54759, Microsoft Research,
and the Siebel Foundation.

11. REFERENCES

[1] AAA. National average gas prices.
http://www.fuelgaugereport.com/, April 2010.

[2] T. Abdelzaher et al. Mobiscopes for human spaces.
IEEE Pervasive Computing, 6(2):20–29, 2007.

[3] Actron. Elite autoscanner.
http://www.actron.com/product category.php?id=249.

[4] Auterra. Dashdyno.
http://www.auterraweb.com/dashdynoseries.html.

[5] AutoTap. Autotap reader.
http://www.autotap.com/products.asp.

[6] AutoXRay. Ez-scan.
http://www.autoxray.com/product category.php?id=338.

[7] D. M. Bevly, R. Sheridan, and J. C. Gerdes.
Integrating ins sensors with gps velocity measurements
for continuous estimation of vehicle sideslip and tire
cornering stiffness. In Proc. of American Control
Conference, pages 25–30, 2001.

[8] K. Brundell-Freij and E. Ericsson. Influence of street
characteristics, driver category and car performance
on urban driving patterns. Transportation Research,
Part D, 10(3):213–229, 2005.

[9] J. Burke et al. Participatory sensing. Workshop on
World-Sensor-Web, co-located with ACM SenSys,
2006.

[10] Y. Chen et al. Regression cubes with lossless
compression and aggregation. IEEE Transactions on
Knowledge and Data Engineering, 18(12):1585–1599,
2006.

[11] V. der Voort. Fest - a new driver support tool that
reduces fuel consumption and emissions. IEE
Conference Publication, 483:90–93, 2001.

[12] S. B. Eisenman et al. The bikenet mobile sensing
system for cyclist experience mapping. In Proc. of
SenSys, November 2007.

[13] EPA. Emission facts: Greenhouse gas emissions from a
typical passenger vehicle.
http://www.epa.gov/OMS/climate/420f05004.htm.

[14] E. Ericsson, H. Larsson, and K. Brundell-Freij.
Optimizing route choice for lowest fuel consumption -
potential effects of a new driver support tool.
Transportation Research, Part C, 14(6):369–383, 2006.

[15] J. Farrelly and P. Wellstead. Estimation of vehicle
lateral velocity. In Proc. of IEEE Conference on
Control Applications, pages 552–557, 1996.

[16] J. E. Froehlich et al. Ubigreen: Investigating a mobile
tool for tracking and supporting green transportation
habits. In In Proc. of Conference on Human Factors
in Computing, pages 1043–1052, 2009.

[17] R. K. Ganti, N. Pham, Y.-E. Tsai, and T. F.
Abdelzaher. Poolview: Stream privacy for grassroots
participatory sensing. In Proc. of SenSys ’08, pages
281–294, 2008.

[18] Garmin eTrex Legend.
www8.garmin.com/products/etrexlegend.

[19] Google. Google maps. http://maps.google.com.

[20] GPS POI. Red light database.
http://www.gps-poi-us.com/.

[21] J. Gray et al. Data cube: A relational aggregation
operator generalizing group-by, cross-tab and
sub-totals. Data Mining and Knowledge Discovery,
1(1):29–54, 1997.

[22] J. N. Hooker. Optimal driving for single-vehicle fuel
economy. Transportation Research, Part A,
22A(3):183–201, 1988.

[23] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: a
sensor-based loosely coupled search and rescue system
using witnesses. In Proc. of SenSys, pages 180–191,
2005.

[24] B. Hull et al. Cartel: a distributed mobile sensor
computing system. In Proc. of SenSys, pages 125–138,
2006.

[25] S. H. Jacobson and L. A. McLay. The economic
impact of obesity on automobile fuel consumption.
Engineering Economist, 51(4):307–323, 2006.

[26] MapQuest. http://www.mapquest.com.

[27] National Aeronautics and Space Administration
(NASA). Landsat data.
http://landsat.gsfc.nasa.gov/data/.

[28] Nic Roets. Gosmore.
http://wiki.openstreetmap.org/wiki/Gosmore.

[29] OpenStreetMap. Openstreet map.
http://wiki.openstreetmap.org/.

[30] Owen Brotherwood. Symbtelm.
http://sourceforge.net/apps/trac/symbtelm/.

[31] N. Pham, R. Ganti, Y. Sarwar, S. Nath, and

163



T. Abdelzaher. Privacy-preserving reconstruction of
multidimensional data maps in vehicular participatory
sensing. In LNCS Proc. of EWSN, pages 114–130,
2010.

[32] S. Reddy, D. Estrin, and M. Srivastava. Recruitment
framework for participatory sensing data collections.
In To Appear in Proc. of Intnl. Conference on
Pervasive Computing, 2010.

[33] S. Reddy et al. Image browsing, processing, and
clustering for participatory sensing: Lessons from a
dietsense prototype. In Proc of EmNets, pages 13–17,
2007.

[34] A. B. Schwarzkopf and R. B. Leipnik. Control of
highway vehicles for minimum fuel consumption over
varying terrain. Transportation Research,
11(4):279–286, 1977.

[35] Traffic. Real-time traffic conditions.
http://www.traffic.com/.

[36] H. E. Tseng. Dynamic estimation of road bank angle.
Vehicle System Dynamics, 36(4-5):307–328, 2001.

[37] US Census Bureau. Tiger database.
http://www.census.gov/geo/www/tiger/.

[38] M. van der Voort, M. S. Dougherty, and M. van
Maarseveen. A prototype fuel-efficiency support tool.
Transportation Research, Part C, 9(4):279–296, 2001.

Appendix: Deriving the physical model for fuel

consumption

Assuming that the engine RPM is ωs−1, the torque gener-
ated by the engine is Γ(ω), the final drive ratio is G, the k−th
gear ratio is gk, and the radius of the tire is r, then Fengine

is given by the following equation: Fengine = Γ(ω)Ggk

r
.

The frictional force Ffriction is characterized by the grav-
itational force acting on the car, given by mgcos(θ), where
m is the mass of the vehicle and g is the gravitational accel-
eration and the coefficient of friction, crr. The equation for
frictional force is: Ffriction = crrmgcos(θ).

The gravitational force, Fg, due to the slope is given by
the following equation: Fg = mgsin(θ).

Finally, the force due to air resistance, Fair, is given by
the following equation: Fair = 1

2
cdAρv2.

In the above equation, cd is the coefficient of air resistance,
A is the frontal area of the car, ρ is the air density, and v is
the current speed of the car.

Assuming that the car is on an upslope, the final force
acting on the car is given by the following equation: Fcar =
Fengine − Ffriction − Fair − Fg .

In order to obtain a relation between the fuel consumed
and the above forces, we note that the fuel consumed is
related to the power generated by the engine at any instance
of time t. If fr is the fuel rate (fuel consumption at a given
time instance) and P is the instantaneous power, then fr ∝

P . Power is related to the torque function, Γ(ω), and engine
RPM, ω as follows: P = 2πΓ(ω)ω. Hence, we obtain fr =
βΓ(ω)ω.

In the above equation, β is a constant. Further, we also
have the relationship v = rω from rotational dynamics.
From the above equations, we obtain the fuel consumption
rate as a function of the forces acting on the car shown be-

low:

Fcar = ma

=
frGgk

rωβ
− crrmgcos(θ) −

1

2
cdAρv2

−mgsin(θ)

mav = β′fr − crrmgcos(θ)v

−

1

2
cdAρv3

− mgvsin(θ)

fr = k1mav + k2mvcos(θ)

+k3Av3 + k4mvsin(θ)

Finally, we can obtain the equation for the fuel consumed,
fc by integrating the rate of fuel consumption with respect
to time. We obtain the following equation:

fc =

Z t2

t1

fr(t) dt

=

Z t2

t1

(k1mav + k2mvcos(θ) + k3Av3

+ k4mvsin(θ)) dt

In order to further derive a model that can be used for
regression analysis, we will detail the various components
that are part of the fuel consumption of a car. As shown
in the above equation, a moving car at a constant speed on
a straight road which does not encounter any stop lights or
traffic will only need to overcome the frictional forces caused
by the road, the air, and gravity. These are represented by
R t2

t1
k2mvcos(θ),

R t2
t1

k3Av3, and
R t2

t1
k4mvsin(θ), respectively.

On the other hand, the first component
R t2

t1
k1mav can be

broken down further into two components, one is the ex-
tra fuel consumed due to encountering stop signs (ST) and
traffic lights (TL) and the second one is the extra fuel con-
sumed due to congestion. Hence, the previous equation now
becomes the following:

fc =

Z t2

t1

(k11mav(ST + νTL)

+ k12mav) + k2mvcos(θ)

+ k3Av3 + k4mvsin(θ)) dt

If we replace v with v̄, the average speed, assume that θ
remains constant, and we know a = dv/dt, we can further
simplify the above integral to the following:

fc = k11mv̄2(ST + νTL) +
k12mv̄2

2

+ k2m∆dcos(θ) + k3Av̄3∆t

+ k4m∆dsin(θ)

In the above equation, ∆d is the distance traveled and
∆t is the time traveled. Dividing the above equation by
∆d gives us the metric fuel consumed per mile (gpm), which
is appropriate for our analysis purposes. Hence, our final
model will now be:

gpm = k11mv̄2 (ST + νTL)

∆d
+ k12m

v̄2

2∆d

+ k2mcos(θ) + k3Av̄2 + k4msin(θ)
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