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Abstract
Interest has been growing in powering datacenters (at least
partially) with renewable or “green” sources of energy, such
as solar or wind. However, it is challenging to use these
sources because, unlike the “brown” (carbon-intensive) en-
ergy drawn from the electrical grid, they are not always
available. This means that energy demand and supply must
be matched, if we are to take full advantage of the green en-
ergy to minimize brown energy consumption. In this paper,
we investigate how to manage a datacenter’s computational
workload to match the green energy supply. In particular, we
consider data-processing frameworks, in which many back-
ground computations can be delayed by a bounded amount
of time. We propose GreenHadoop, a MapReduce frame-
work for a datacenter powered by a photovoltaic solar array
and the electrical grid (as a backup). GreenHadoop predicts
the amount of solar energy that will be available in the near
future, and schedules the MapReduce jobs to maximize the
green energy consumption within the jobs’ time bounds. If
brown energy must be used to avoid time bound violations,
GreenHadoop selects times when brown energy is cheap,
while also managing the cost of peak brown power con-
sumption. Our experimental results demonstrate that Green-
Hadoop can significantly increase green energy consump-
tion and decrease electricity cost, compared to Hadoop.
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1. Introduction
It is well-known that datacenters consume an enormous
amount of power [31], representing a financial burden for
their operating organizations, an infrastructure burden on
power utilities, and an environmental burden on society.
Large Internet companies (e.g., Google and Microsoft) have
significantly improved the energy efficiency of their multi-
megawatt datacenters. However, the majority of the energy
consumed by datacenters is actually due to countless small
and medium-sized ones [31], which are much less efficient.
These facilities range from a few dozen servers housed in
a machine room to several hundreds of servers housed in a
larger enterprise installation.

These cost, infrastructure, and environmental concerns
have prompted some datacenter operators to either generate
their own solar/wind energy or draw power directly from a
nearby solar/wind farm. Many small and medium datacen-
ters (partially or completely) powered by solar and/or wind
energy are being built all over the world (see http://www.eco-
businesslinks.com/green web hosting.htm for a partial list).
This trend will likely continue, as these technologies’ capi-
tal costs continue to decrease (e.g., the cost of solar energy
has decreased by 7-fold in the last two decades [29]) and
governments continue to provide incentives for green power
generation and use (e.g., federal and state incentives in New
Jersey can reduce capital costs by 60% [7]).

For the scenarios in which green datacenters are appropri-
ate, we argue that they should connect to both the solar/wind
energy source and the electrical grid, which acts as a backup
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when green energy is unavailable. The major challenge with
solar or wind energy is that, unlike brown energy drawn from
the grid, it is not always available. For example, photovoltaic
(PV) solar energy is only available during the day and the
amount produced depends on the weather and the season.

To mitigate this variability, datacenters could “bank”
green energy in batteries or on the grid itself (called net
metering). However, these approaches have many problems:
(1) batteries incur energy losses due to internal resistance
and self-discharge; (2) battery-related costs can dominate
in solar-powered systems [11]; (3) batteries use chemicals
that are harmful to the environment; (4) net metering incurs
losses due to the voltage transformation involved in feeding
the green energy into the grid; (5) net metering is unavail-
able in many parts of the world; and (6) where net metering
is available, the power company may pay less than the retail
electricity price for the green energy. Given these problems,
the best way to take full advantage of the available green
energy is to match the energy demand to the energy supply.

Thus, in this paper, we investigate how to manage the
computational workload to match the green energy supply in
small/medium datacenters running data-processing frame-
works. In particular, we consider the MapReduce framework
[6] and its Hadoop implementation [4]. Data-processing
frameworks are an interesting target for our research, as they
are popular and often run many low-priority batch process-
ing jobs, such as background log analysis, that do not have
strict completion time requirements; they can be delayed by
a bounded amount of time. However, scheduling the energy
consumption of MapReduce jobs is challenging, because
they do not specify the number of servers to use, their run
times, or their energy needs. Moreover, power-managing
servers in these frameworks requires guaranteeing that the
data to be accessed by the jobs remains available.

With these observations in mind, we propose Green-
Hadoop, a MapReduce framework for datacenters powered
by PV solar arrays and the electrical grid (as a backup).
GreenHadoop seeks to maximize the green energy consump-
tion of the MapReduce workload, or equivalently to mini-
mize its brown energy consumption. GreenHadoop predicts
the amount of solar energy that will likely be available in the
future, using historical data and weather forecasts. It also
estimates the approximate energy needs of jobs using histor-
ical data. Using these predictions, GreenHadoop may then
decide to delay some (low-priority) jobs to wait for available
green energy, but always within their time bounds. If brown
energy must be used to avoid bound violations, it sched-
ules the jobs at times when brown energy is cheap, while
also managing the cost of peak brown power consumption.
GreenHadoop controls energy usage by using its predic-
tions and knowledge of the data required by the scheduled
jobs. With this information, it defines how many and which
servers to use; it transitions other servers to low-power states
to the extent possible.

We evaluate GreenHadoop using two realistic workloads
running on a 16-server cluster. We model the datacenter’s
solar array as a scaled-down version of an existing Rut-
gers solar farm. The brown energy prices and peak brown
power charges are from a power company in New Jersey.
We compare GreenHadoop’s green energy consumption and
brown electricity cost to those of standard Hadoop and of an
energy-aware version of Hadoop that we developed. Our re-
sults demonstrate that GreenHadoop can increase green en-
ergy consumption by up to 31% and decrease brown elec-
tricity cost by up to 39%, compared to Hadoop. In addition,
our results show that GreenHadoop is robust to workload
variability and effective for a range of time bounds.

GreenHadoop is most closely related to our own Green-
Slot [9], a green energy-aware scheduler for scientific com-
puting jobs. However, GreenSlot relies on extensive user-
provided information about job behavior, assumes that per-
sistent data is always available to jobs regardless of the
servers’ power states, and does not manage the cost of peak
brown power consumption. In contrast, GreenHadoop re-
quires no job behavior information, and explicitly manages
data availability and peak brown power costs.

We conclude that green datacenters and software that is
aware of the characteristics of both green and brown elec-
tricities can have a key role in building a more sustainable
and cost-effective Information Technology (IT) ecosystem.

In summary, we make the following contributions:

• We introduce GreenHadoop, a MapReduce framework
for datacenters partly powered by solar energy;

• We introduce MapReduce job scheduling and data man-
agement techniques that are aware of green energy,
brown energy prices, and peak brown power charges;

• We demonstrate that it is possible to manage green en-
ergy use and brown electricity cost when the jobs’ run
times and energy demands are not specified; and

• We present extensive results isolating the impact of dif-
ferent aspects of the implementation.

2. Background
Use of solar energy in datacenters. Solar and wind are two
of the most promising green energy technologies, as they do
not cause the environmental disruption of hydroelectric en-
ergy and do not have the waste storage problem of nuclear
energy. Solar/wind equipment produces Direct Current (DC)
electricity, which is typically converted to Alternating Cur-
rent (AC) by DC/AC inverters.

In this paper, we assume that the datacenter generates its
own PV solar energy. (Except for our solar energy predic-
tions, our work is directly applicable to wind energy as well.)
Self-generation is attractive for multiple reasons, including
(1) the fact that energy losses with power transformation and
transmission can exceed 40%; (2) the ability to survive grid
outages, which are common in some developing countries;
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Figure 1. Components of a (partially) solar-powered computer
system. Dashed boxes represent optional components.

(3) the fact that PV power scales poorly, as the cost/W does
not decrease beyond 800KW (the maximum inverter size to-
day [28]); and (4) the ability to eventually lower costs. In
fact, based on the results from Section 5 and the govern-
mental incentives in New Jersey, the current capital cost of
installing solar panels for the datacenter we model can be
amortized by savings in brown energy cost in 10.6 years of
operation. This amortization period is substantially shorter
than the typical 20-30 years lifetime of the panels. The pe-
riod will be even shorter in the future, as solar costs continue
to decrease at a rapid pace [29]. The increasing popularity
of distributed generation and microgrids suggests that many
people find self-generation attractive.

There are multiple ways to connect solar panels to a data-
center. Figure 1 shows a general setup. The solar panels can
be connected to batteries for storing excess energy during
periods of sunlight and discharging it during other periods.
The datacenter must also be connected to the electrical grid
via a grid-tie device if it must be operational even when so-
lar energy is not available. Where net metering is available,
it is possible to feed excess solar energy into the grid for a
reduction in brown energy costs.

The design we study does not include batteries or net me-
tering for the reasons mentioned in the Introduction. Thus,
any green energy not immediately used is wasted. Fortu-
nately, GreenHadoop is very successful at limiting waste.

Brown energy prices and peak brown power charges.
Datacenters often contract with their power companies
to pay variable brown energy prices, i.e. different dollar
amounts per kWh of consumed brown energy. The most
common arrangement is for the datacenter to pay less for
brown energy consumed during an off-peak period (e.g., at
night) than during an on-peak period (e.g., daytime). Thus,
it would be profitable for the datacenter to schedule part of
its workload during the off-peak periods if possible.

However, high brown energy costs are not the only con-
cern. Often, datacenters also have to pay for their peak brown
power consumption, i.e. a dollar amount per kW of brown
power at the highest period of brown power usage. Even
though these charges have almost always been overlooked
in the literature, the peak brown power charge can be signifi-
cant, especially during the summer. Govindan et al. estimate
that this component can represent up to 40% of the overall
electricity cost of a datacenter [10].

To compute the peak charges, utilities typically monitor
the average brown power consumption within 15-minute
windows during each month. They define the maximum of
these averages as the peak brown power for the month.

MapReduce and Hadoop. MapReduce is a framework
for processing large data sets on server clusters [6]. Each
MapReduce program defines two functions: map and re-
duce. The framework divides the input data into a set of
blocks, and runs a map task for each block that invokes
the map function on each key/value pair in the block. The
framework groups together all intermediate values produced
by the map tasks with the same intermediate key. It then runs
the reduce tasks, each of which invokes the reduce function
on each intermediate key and its associated values from a
distinct subset of generated intermediate keys. The reduce
tasks generate the final result.

Hadoop is the best-known, publicly available implemen-
tation of MapReduce [4]. Hadoop comprises two main parts:
the Hadoop Distributed File System (HDFS) and the Hadoop
MapReduce framework. Data to be processed by a MapRe-
duce program is stored in HDFS. HDFS splits files across
the servers’ local disks. A cluster-wide NameNode process
maintains information about where to find each data block.

Users submit jobs to the framework using a client inter-
face. This interface uses each job’s configuration parame-
ters to split the input data and set the number of tasks. Jobs
must identify all input data at submission time. The interface
submits each job to the JobTracker, a cluster-wide process
that manages job execution. Each server runs a configurable
number of map and reduce tasks concurrently in compute
“slots”. The JobTracker communicates with the NameNode
to determine the location of each job’s data. It then selects
servers to execute the jobs, preferably ones that store the
needed data if they have slots available. Hadoop’s default
scheduling policy is FIFO.

3. MapReduce in Green Datacenters
We propose GreenHadoop, a data-processing framework for
datacenters powered by PV solar panels and the electricity
grid. GreenHadoop relies on predictions of the availability
of solar energy, and a scheduling and data availability algo-
rithm that is aware of green energy, brown energy prices, and
peak brown power charges. We refer to the overall brown en-
ergy and power costs as the brown electricity cost.

To achieve its goals of maximizing green energy usage
and minimizing brown electricity cost, GreenHadoop may
delay the execution of some jobs. To avoid excessive de-
lays, GreenHadoop attempts to complete all jobs within a
bounded amount of time from their submissions. Green-
Hadoop is beneficial because datacenters are often under-
utilized and many jobs have loose performance requirements
(e.g., data and log analysis, long simulations, jobs submitted
on Friday whose output is not needed until Monday).

Figure 2 illustrates the behavior of GreenHadoop (bot-
tom), in comparison to conventional Hadoop (top) and an
energy-aware version of Hadoop (middle) for three MapRe-
duce jobs. Hadoop executes the jobs immediately when they
arrive, using all servers to complete the jobs as quickly as
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Figure 2. Scheduling 3 MapReduce jobs (J1-J3) with Hadoop
(top), energy-aware Hadoop (middle), and GreenHadoop (bottom).

possible. Hadoop keeps all servers active even if they are
idle. As a result, Hadoop wastes substantial green and brown
energy, and incurs unnecessary energy costs. In contrast, the
energy-aware Hadoop that we implemented reduces waste
by transitioning idle servers to a low-power state.

GreenHadoop behaves differently. It uses as many servers
as green energy can sustain when it is available, fewer
servers (if possible) when brown energy is cheap, and even
fewer (if at all necessary) when brown energy is expensive.
Figure 2(bottom) shows that GreenHadoop delayed jobs J1
and J2 to maximize the green energy consumption. More
interestingly, GreenHadoop executed part of J3 with green
energy, and delayed the other part until the brown energy
became cheaper. Moreover, GreenHadoop did not use all
servers to run J3 with brown energy to limit the peak brown
power costs. When certain servers need not be fully active,
GreenHadoop transitions them to lower power states.

Essentially, GreenHadoop determines how many and
which servers to use at each point in time, and schedules
the jobs on those servers. The other servers can be deacti-
vated to conserve energy.

We designed GreenHadoop as a wrapper around a modi-
fied version of Hadoop. The wrapper implements the schedul-
ing, data management, and prediction of solar energy avail-
ability described in the remainder of the section. We also
briefly discuss our modest changes to Hadoop.

3.1 Scheduling and Data Availability
3.1.1 Overview
At submission time, users can specify the priority for their
jobs. Like standard Hadoop, GreenHadoop has five priority
classes: very high, high, normal, low, and very low. Green-
Hadoop executes very high and high priority jobs as soon as
possible, giving them all the servers they can use. In contrast,

GreenHadoop may delay some of the normal, low, and very
low priority jobs by a bounded amount of time (by default,
at most one day in our experiments). These behaviors reflect
our performance goals: high-priority jobs should complete
as quickly as in standard Hadoop, whereas low-priority ones
must complete within their time bounds.

GreenHadoop divides time into fixed-size “epochs” (four
minutes in our experiments). At the beginning of each epoch,
GreenHadoop determines whether the number of active
servers should be changed and whether all the data needed
by the scheduled jobs is available. Specifically, servers can
be in one of three states in GreenHadoop: Active, Decom-
missioned, or Down (ACPI’s S3 state). In the Decommis-
sioned state, no new tasks are started on the server, but pre-
viously running tasks run to completion. Moreover, no new
blocks are stored at a decommissioned server, but it still
serves accesses to the blocks it currently stores. Whenever
servers are not needed for computation, GreenHadoop first
transitions them to the Decommissioned state, and then later
sends them to the Down state. To prevent data unavailabil-
ity, it replicates any data needed by scheduled jobs from the
decommissioned servers before sending them down. Every
so often, GreenHadoop reduces the amount of replication.

Estimating the jobs’ energy and time requirements is
challenging. Unlike traditional batch job schedulers, e.g.
[8, 32], GreenHadoop does not have information about the
jobs’ desired number of servers or expected running times,
from which we could estimate their energy needs. Instead,
GreenHadoop computes average running times and energy
consumptions based on prior history, relying on aggregate
statistics of the datacenter’s workload, rather than informa-
tion about specific jobs or applications. These averages are
then used to estimate the resource requirements of groups of
jobs, not each individual job, during the “scheduling hori-
zon” (one day ahead in our experiments).

GreenHadoop is electricity-cost-aware in that it favors
scheduling jobs in epochs when energy is cheap. To prior-
itize green energy, it is assumed to have zero cost. When the
price of brown energy is not fixed and brown energy must be
used, GreenHadoop favors the cheaper epochs. In addition,
GreenHadoop manages the peak brown power usage by lim-
iting the number of active servers, if that can be done without
violating any time bounds.

3.1.2 Algorithm Details
Figure 3 shows the pseudo-code of the GreenHadoop algo-
rithm. As line 1 suggests, GreenHadoop maintains two job
queues: Run and Wait. The Run queue is implemented by
Hadoop, whereas we implement the Wait queue entirely in
the wrapper. Jobs submitted with very high or high priority
are sent straight to the Hadoop queue in FIFO order, whereas
others initially go to the Wait queue also in FIFO order.

Assigning deadlines. Lines 2-26 describe the system’s be-
havior at the beginning of each epoch. First (line 3), it as-
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0. At job submission time:
1. Very high and high priority jobs go straight to the Run queue; other jobs go to the Wait queue

2. At the beginning of each epoch:
3. Assign internal latest-start deadlines to all waiting jobs that arrived in the previous epoch
4. Calculate the number of active servers to use during the scheduling horizon (defined in lines 11-18)
5. Select waiting jobs to move to the Run queue (in line 10):
6. If a job is about to violate its latest-start deadline, select the job
7. If a job has all the data it needs available, select the job
8. If the active servers are not fully utilized, select the jobs that require data access to the fewest servers
9. Manage the servers’ states and data availability (defined in lines 19-26)
10. When the data required by the selected jobs is available, move them to the Run queue

11. Calculate the number of active servers to use:
12. Calculate the dynamic energy required by all running and waiting jobs
13. Compute/predict the energy available for each type of energy during the scheduling horizon
14. Subtract the static energy of the entire system from the energy available
15. Subtract the dynamic energy required by any very high or high priority jobs from the energy available
16. Assign the remaining green energy to waiting jobs
17. Assign the remaining brown energy and power to waiting jobs, considering brown energy prices and peak brown power charges
18. If some waiting jobs have not been assigned energy, reject new jobs that arrive in the next epoch

19. Manage the servers’ states and data availability:
20. Ensure that all the data required by the selected jobs is available in active or decommissioned servers
21. If some data is not available, turn into Decommissioned state the min set of down servers containing the data
22. If current number of active servers is smaller than desired number, transition servers from Decommissioned to Active state
23. If we still need more active servers, transition them from Down state to Active state
24. If current number of active servers is larger than desired number, transition active servers to Decommissioned state
25. Replicate the data from servers in Decommissioned state, if necessary
26. Check if servers that are in Decommissioned state can be sent to Down state

Figure 3. GreenHadoop algorithm for scheduling and data availability.

signs internal “latest-start deadlines” to any waiting jobs that
were queued in the previous epoch. The latest-start deadline
specifies the latest epoch in which the job needs to start, so
that it is expected to complete within the system’s desired
completion time bound. GreenHadoop computes the latest-
start deadline for each job based on its arrival epoch, the
expected duration of the group of jobs after (and including)
it in the Wait queue, and the completion time bound.

Calculating the number of active servers. Second (lines
4, 11-18), GreenHadoop calculates the number of active
servers to use in each epoch during the scheduling horizon.
This calculation involves computing the dynamic energy re-
quired by the jobs currently in the system. GreenHadoop
computes this energy by multiplying the average dynamic
energy per job by the number of waiting jobs and adding
the leftover dynamic energy required by the running jobs.
GreenHadoop estimates the average dynamic energy per job
using an exponentially weighted moving average of the dy-
namic energy consumed during the last ten epochs divided
by the number of jobs executed in this period.

After computing the dynamic energy required by the jobs,
GreenHadoop assigns the available green, cheap brown, and
expensive brown energies to them (lines 13-17). Green-
Hadoop predicts the green energy that will be available (see
Section 3.2). It computes the brown energy available assum-
ing that all servers could be active during the (pre-defined)
periods of cheap and expensive brown energy. From these
three types of energy, GreenHadoop subtracts the static en-
ergy (corresponding to the energy consumed by all servers in
Down state, the switch, and an always-on server) to be con-
sumed. In addition, it subtracts the dynamic energy needed
by any very high or high priority jobs in the Run queue.

In assigning the remaining energy to jobs, GreenHadoop
first assigns the green energy, then the cheap brown energy,
and finally the expensive brown energy. In the absence of
peak brown power charges, it uses all the servers to con-
sume the brown energies. Otherwise, it records the peak
brown power that has been reached so far this month. We
refer to this quantity as “past-peak-brown-power”. It then
finds the best brown power at which to limit consumption
between past-peak-brown-power and the maximum achiev-
able power (i.e., all machines activated). Increasing the peak
brown power increases peak charges, but those charges may
be offset by reduced runtime in periods of expensive brown
energy. The best peak brown power is the one that provides
enough energy to complete the schedule and leads to the
minimum electricity cost.

The number of active servers during each epoch within
the horizon derives from the amount of dynamic energy as-
signed to the epoch. Since we know the length of the epoch,
the dynamic energy can be transformed into an average dy-
namic power, which in turn can be transformed into a num-
ber of active servers. For example, suppose that the aver-
age available dynamic power in an epoch is 1000W. Sup-
pose also that we currently have 3 active servers running jobs
and serving data, and 3 decommissioned servers just serving
data; the other servers are down and, thus, consume no dy-
namic power. In our experiments, active servers and decom-
missioned servers consume at most roughly 136W and 66W
of dynamic power, respectively. Thus, the current total dy-
namic power consumption is 606W = 3×136W+3×66W ,
leaving 394W available. In response, GreenHadoop would
activate the 3 decommissioned servers and 1 down server for
a total of 952W = 606W + 3× (136W − 66W ) + 136W ;
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Figure 4. Server power state and data management sequence. 1)
Initial configuration; 2) GreenHadoop does not need one of the ac-
tive servers and sends the active server with the fewest data blocks
required by the jobs in the Run queue to the Decommissioned state;
3) GreenHadoop replicates the required block from the decommis-
sioned server to an active server, and then transitions the decom-
missioned server to the Down state; 4) A new job is moved to
the Run queue, requiring data stored only on a down server; 5)
GreenHadoop transitions the down server to Decommissioned to
provide the needed data; 6) GreenHadoop needs one more active
server, transitioning the decommissioned server to the Active state;
7) GreenHadoop still needs another server, and so it activates the
down server with the most data.

the remaining 48W would not be usable. If some waiting
jobs cannot be assigned energy within the scheduling hori-
zon (line 18), the system is overcommitted, so GreenHadoop
rejects the jobs arriving in the next epoch.

Selecting waiting jobs to move to the Run queue. Third
(lines 5-8), GreenHadoop selects some waiting jobs that will
soon be moved to the Run queue. GreenHadoop considers
each waiting job in order and selects the job if (1) it is about
to violate its latest-start deadline, (2) all the data it needs is
on active or decommissioned servers, or (3) an active server
is under-utilized (i.e., not all of its compute slots are being
used) and the job requires the fewest down servers to be
brought up for its data. GreenHadoop moves the selected
jobs to the Run queue when the data they require becomes
available (line 10). Jobs selected due to their latest-start
deadlines are sent to the Run queue with very high priority.

Managing server power states and data availability. Fi-
nally, GreenHadoop manages the servers’ states and the data
availability (lines 9, 19-26). If not all data required by the
selected jobs is currently available in active or decommis-
sioned servers, GreenHadoop transitions the needed servers
from the Down state to the Decommissioned state (lines 20
and 21). It then adjusts the number of active servers based
on the target number computed earlier (lines 22-26).

Figure 4 illustrates an example of GreenHadoop manag-
ing its servers’ power states and data availability. When it
reduces the number of active servers (step 2), GreenHadoop
splits them into two groups: (a) those that have executed
tasks of still-running jobs, and (b) those that have not. Then,
it sorts each group in ascending order of the amount of data
stored at the server that is required by jobs in the Run queue.
Finally, it starts sending servers in group (b) to the Decom-
missioned state, and then moves to group (a), stopping when
the target reduction has been reached.

After adjusting the number of active servers, Green-
Hadoop considers sending decommissioned servers to the
Down state (step 3). A decommissioned server cannot go
down if it has executed a task of still-running jobs. More-
over, before the server can go down, GreenHadoop must
copy (replicate) any data that is required by a job in the Run
queue but that is not currently available on the active servers.

In the opposite direction, when servers need to be tran-
sitioned from Decommissioned to Active (step 6), Green-
Hadoop divides the decommissioned servers into the same
two groups as above. Then, it sorts each group in decreas-
ing order of the amount of data stored at the server that is
required by the jobs in the Run queue. It starts activating
the decommissioned servers in group (a) and then moves to
group (b), stopping if the target number is reached. If more
active servers are needed (i.e., the decommissioned servers
are not enough to reach the target), GreenHadoop activates
the servers in Down state that store the most data required
by jobs in the run queue (step 7).

3.1.3 Power State and Data Management Rationale
GreenHadoop relies on dynamic replication of data blocks
to guarantee data availability when servers are turned off.
However, it is possible to manage power states and data
availability without dynamic replication, as in the covering
subset approach [20]. This approach ensures that at least one
copy of every data block stored in a Hadoop cluster is kept on
a designated subset of servers (the covering subset); keeping
these servers in either the Active or Decommissioned state
would statically guarantee the availability of all data.

Unfortunately, using the covering subset approach would
limit GreenHadoop’s ability to send servers to the Down
state. For example, if each data block is replicated 3 times—
a typical replication level—then to keep storage balanced
across the cluster, roughly 1/3 of the servers would have to
be in the covering subset. The servers in the covering subset
cannot be sent to the Down state, even if they are not needed
for running computations.

In contrast, GreenHadoop guarantees availability only for
data required by jobs in the Run queue. When the load is low,
e.g. only one job is running, the required data is typically
a small subset of all data stored in the cluster, enabling
GreenHadoop to send all but one server to the Down state.
Thus, our approach trades off the energy required to replicate
(and later dereplicate) data against the energy savings from
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transitioning servers to the Down state when they are not
needed for computation. This tradeoff is advantageous since
(1) current servers are not power-proportional, so a server
that is mostly idle only servicing data requests requires a
large fraction of its peak power; (2) transitions to and from
the S3 state take on the order of only several seconds; (3)
GreenHadoop transitions servers to S3 in an order that tries
to maximize energy savings; (4) replicating a data block is
typically a cheap operation compared to the duration and
power consumption of the compute task that operates on
it; and (5) dereplication is nearly free of cost. We evaluate
GreenHadoop’s data management approach in Section 5.

3.2 Predicting the Availability of Solar Energy
GreenHadoop can easily use any model that predicts the
availability of green energy. In fact, it would even adapt
to wind energy predictions without modification. Our cur-
rent implementation uses the model introduced by Sharma
et al. [26] to predict solar energy. This model is based on
the simple premise that energy generation is inversely re-
lated to the amount of cloud coverage, and is expressed as:
Ep(t) = B(t)(1−CloudCover), where Ep(t) is the amount
of solar energy predicted for time t, B(t) is the amount
of solar energy expected under ideal sunny conditions, and
CloudCover is the forecasted percentage cloud cover (given
as a fraction between 0 and 1).1

We implement solar energy prediction using the above
model at the granularity of an hour. We use weather forecasts
from Intellicast.com, which provides hourly predictions that
include cloud coverage for up to 48 hours into the future. We
use historical data to instantiate B(t). We compute a distinct
B(t) for each month of the year to account for seasonal ef-
fects. For each month, we set B(t) to the actual energy gen-
erated by the day with the highest energy generation from
the same month of the previous year. (For new installations,
it is also possible to use data from the previous month.)

Unfortunately, weather forecasts can be wrong. For ex-
ample, we have observed that predictions of thunderstorms
are frequently inaccurate and can remain inaccurate through-
out a day. Furthermore, weather is not the only factor that
affects energy generation. For example, after a snow storm,
little energy will be generated while the solar panels remain
covered by snow even if the weather is sunny.

To increase accuracy in these hard-to-predict scenarios,
we use an alternate method of instantiating CloudCover pro-
posed by Goiri et al. [9]. Specifically, we assume that the
recent past can predict the near future [26], and compute
CloudCover using the observed energy generated in the pre-
vious hour. When invoked, our prediction module compares
the accuracy of the two prediction methods for the last hour
and chooses the more accurate method to instantiate Cloud-

1 Factors other than cloud cover, such as temperature, can affect the amount
of solar energy produced. However, Section 5 shows that ignoring these
factors still leads to sufficient accuracy for our purposes.

Cover for the remainder of the current day. Beyond the cur-
rent day, we instantiate CloudCover using weather forecasts.

3.3 Modified Hadoop
As already mentioned, most of GreenHadoop is imple-
mented in a wrapper external to Hadoop. However, we also
extended Hadoop itself with power management functional-
ity. Our main changes include (1) the introduction of the De-
commissioned and Down states for servers, which involved
changes to the JobTracker and NameNode processes; (2) en-
abling the NameNode process to know what data is present
in down servers, so that they can be activated when their
data is not replicated elsewhere; and (3) improvements to
the block replication and replica removal functionality al-
ready present in Hadoop.

4. Evaluation Methodology
Hardware and software. We evaluate GreenHadoop using
a 16-server cluster, where each server is a 4-core Xeon
machine with 8GB RAM and a 7200-rpm SATA disk with
64GB of free space for data. The servers are inter-connected
by a Gigabit Ethernet switch.

GreenHadoop extends Hadoop version 0.21 for Linux
with roughly 5000 uncommented lines of Python wrapper
code, and adds around 100 lines to Hadoop itself. We study
3 versions of GreenHadoop: “GreenOnly”, which makes de-
cisions based on knowledge about green energy availability;
“GreenVarPrices”, which considers both green energy and
variable brown energy prices, and “GreenVarPricesPeak”
which considers green energy, variable brown energy prices,
and peak brown power charges. The GreenVarPricesPeak
version is the full-blown GreenHadoop.

For comparison, we also study “Hadoop”, the regu-
lar Hadoop FIFO scheduler; and “Energy-Aware Hadoop”
(“EAHadoop”), our own extension of Hadoop that manages
data availability and transitions servers to lower power states
when they are not required. EAHadoop is simply a version
of GreenHadoop that disregards green energy, brown energy
prices, and peak brown power charges. In fact, EAHadoop’s
pseudo-code is that in Figure 3 minus lines 13, and 15-17.

Workloads. We study two widely differing workloads: (1)
a synthetic workload, called “Facebook-Derived” or sim-
ply “FaceD”, that models Facebook’s multi-user production
workload [33]; and (2) the Web indexing part of the Nutch
Web-search system [5], called “Nutch Indexing” or simply
“NutchI”. FaceD contains jobs with widely varying execu-
tion time and data set sizes, representing a scenario where
the cluster is used to run many different types of applica-
tions. NutchI jobs are relatively homogeneous, representing
a scenario where the cluster is used to run a continuous pro-
duction batch workload. By default, we submit all jobs of
these workloads with normal priority to provide the max-
imum flexibility to GreenHadoop. We study the impact of
different mixes of priorities in Section 5.
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Cat. % Jobs # Maps # Reds In (GB) Out (GB)
0 59.0% 4 1 0.25 0.01
1 9.8% 10 1-2 0.63 0.03
2 8.7% 20 1-5 1.25 0.06
3 8.5% 40 2-10 2.50 0.13
4 5.7% 80 4-20 5.00 0.25
5 4.4% 150 8-38 9.38 0.48
6 2.5% 300 15-75 18.75 0.95
7 1.3% 600 30-150 37.50 1.90

Table 1. FaceD workload characteristics.

FaceD is a scaled-down version of the workload studied
in [33] because our cluster is significantly smaller. As in
that paper, we do not run the Facebook code itself; rather,
we mimic the characteristics of its jobs using “loadgen.”
Loadgen is a configurable MapReduce job from the Gridmix
benchmark included in the Hadoop distribution. We scale the
workload down in two ways: we reduce the number of maps
by a factor of 4, and eliminate the largest 1.7% of jobs.

Table 1 summarizes FaceD, which comprises 8 categories
of jobs (leftmost column). The 2nd column lists the fraction
of the jobs that corresponds to each category. The 3rd and
4th columns list the number of maps and reduces in each
job. The length of each map task is uniformly distributed be-
tween 9s and 60s. Each reduce task takes between 2s and 12s
per map in the job. The 5th and 6th columns list the amount
of input and output data that each job handles. Each map
task operates on a data block of 64MB (the default Hadoop
block size), and each reduce task outputs roughly 13MB. On
average, each job touches 2.5GB of data with a minimum of
250MB and a maximum of 37.5GB. Jobs arrive at the cluster
continuously according to a Poisson distribution with mean
inter-arrival time of 30s. These parameters lead to a cluster
utilization of 56% in Hadoop, which is substantially higher
than those typically seen in the small and medium-sized dat-
acenters that we target [25]. We investigate the impact of
utilization in Section 5.

NutchI consists of jobs that index groups of pages previ-
ously fetched from our Web domain. Each job runs 42 map
tasks and 1 reduce task. Each map task takes either 4s or
12s, whereas the reduce tasks take 50s. On average, each job
touches 85MB of data. Jobs arrive according to a Poisson
distribution with mean inter-arrival time of 20s. These char-
acteristics lead to a cluster utilization of 35%.

Power consumption and solar panel array. We measured
the power consumption of a server running Hadoop jobs us-
ing a Yokogawa multimeter. A Down server consumes 9W
of static power, whereas a Decommissioned server consumes
75W (9W static + 66W dynamic). A server executing 1 to
4 tasks consumes 100W, 115W, 130W, and 145W, respec-
tively. Together with the 55W consumed by the switch, the
common-case peak power consumption of our system for
our workloads is 2375W = 16 × 145W + 55W . Transi-
tioning into and out of Down state takes 9 seconds.

We model the solar panel array as a scaled-down ver-
sion of the Rutgers solar farm, which can produce 1.4MW
of power. Specifically, we estimate the production of the
smaller installation by scaling the farm’s actual energy pro-
duction over time compared its maximum capacity. We scale
the farm’s production down to 14 solar panels capable of
producing 3220W. We select this scaled size because, after
derating, it produces roughly the common-case peak power
consumption of our system.

We considered more than one year worth of solar energy
production by the farm starting on March 8, 2010. From this
set, we picked 5 pairs of consecutive days to study in de-
tail. Each pair represents a different pattern of solar energy
production for the 1st and 2nd days, and was chosen ran-
domly from the set of consecutive days with similar pat-
terns. For example, days 05/09/11 and 05/10/11 represent
two consecutive days with high solar energy production. We
refer to this pair as “High-High” and use it as our default.
For the “High-Low”, “Low-High”, “Low-Low”, and “Very
Low-Very Low” scenarios, we use the pairs of days starting
on 05/12, 06/14, 06/16, and 05/15 in 2011, with 43.2, 29.8,
32.4, 25.9, and 8.4 kWh of generated solar energy, respec-
tively. We study these pairs of days because they correspond
to different weather patterns that affect both the amount of
energy produced and the accuracy of our energy production
predictor. In particular, predictions are typically very accu-
rate for sunny days with “High” energy production, some-
what less accurate for cloudy days with “Very Low” energy
production, and possibly much less accurate for partially
cloudy days with “Low” energy production (see Section 5).

Brown electricity pricing. We assume on-peak/off-peak
pricing, the most common type of variable brown energy
pricing. In this scheme, energy costs less during off-peak
times (11pm to 9am) and more during on-peak times (9am
to 11pm). The difference in prices is largest in the summer
(June-September). We assume the energy prices charged by
PSEG in New Jersey: $0.13/kWh and $0.08/kWh (summer)
and $0.12/kWh and $0.08/kWh (rest of year). We also as-
sume the peak brown power charges from PSEG: $13.61/kW
(summer) and $5.59/kW (rest of year). Winter pricing ap-
plies to the High-High and High-Low days.

Accelerating the experiments. To fully observe the behav-
ior of GreenHadoop and its versions in real time, we would
have to execute each of our experiments for at least one en-
tire day. This would allow us to exactly reproduce the pe-
riods of solar energy production (∼10 hours), on-peak/off-
peak energy prices (14 and 10 hours, respectively), and peak
power accounting (15 minutes). However, it would also en-
tail 62 days of non-stop experiments, which would be in-
feasible. Thus, to speed up our study while demonstrat-
ing GreenHadoop’s full functionality, we run the unchanged
FaceD and NutchI workloads, while shortening the above
three periods, GreenHadoop’s epoch, and GreenHadoop’s
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Prediction Error (%)
1 3 6 12 24 48

Average 12.6 17.6 21.6 21.4 21.2 20.6
Median 11.0 16.4 20.4 20.4 20.3 17.5

90th percentile 22.2 28.9 34.0 37.4 37.9 37.8

Table 2. Error when predicting 1, 3, 6, 12, 24, and 48 hours ahead.

horizon by a factor of 24. This shortening factor means that
each of our 2-day experiments executes in just 2 hours.

GreenHadoop’s scheduling and data availability algo-
rithm itself cannot be accelerated. For FaceD, it takes a
maximum of 0.4 seconds (without any optimizations) to
prepare a schedule on one of our servers. This maximum
occurs when the largest number of jobs (40) is in the Wait
queue. Data replication and de-replication also cannot be ac-
celerated. This presents the worse-case scenario for Green-
Hadoop because the energy consumption of these activities
are amortized across a much shorter period.

5. Evaluation Results
This section presents our experimental results. First, we
evaluate the accuracy of our solar energy predictions. Sec-
ond, we compare GreenOnly, GreenVarPrices, and Green-
VarPricesPeak in turn with Hadoop and EAHadoop to iso-
late the benefits of being aware of green energy, being aware
of brown energy prices, and being aware of peak brown
power charges. Third, we consider the impact of various
parameters, including the amount of green energy avail-
able, datacenter utilization, fraction of high priority jobs,
and shorter time bounds. Fourth, we study the accuracy of
GreenVarPricesPeak’s energy estimates. Finally, we com-
pare the GreenVarPricesPeak results for FaceD and NutchI.

Throughout these experiments, none of the systems we
study violates any job time bounds except when we explore
time bounds of 12 hours or less.

Predicting solar energy. Table 2 shows the percentage pre-
diction error for daily energy production when predicting 1
to 48 hours ahead for the two months that include the 10
days used in our evaluation. We compute this error as the
sum of the absolute difference between the predicted value
and actual energy production for each hour in a day, divided
by the ideal daily production (i.e.,

∑23
t=0 B(t)).

These results show that the predictions are reasonably ac-
curate, achieving median and 90th percentile errors of 11.0%
and 22.2%, respectively, when predicting energy production
for the next hour. The predictions tend to be less accurate for
Low energy days because predicted cloud cover levels are
more inaccurate when the weather is partly cloudy. The pre-
dictions become more accurate when the weather is mostly
cloudy, as in the Very Low-Very Low days. Interestingly,
while prediction accuracy drops as the prediction horizon
stretches from 1 to 6 hours, beyond 6 hours accuracy some-
times improves. The reason is that the accuracy of the cloud

cover information tends to vary widely with time. Of the 5
pairs of days we consider, predictions are most accurate for
the High-High pair, with an average 1-hour ahead prediction
error of 6.1%, and worst for the Low-Low pair, with an av-
erage 1-hour ahead prediction error of 23.8%.

To understand the impact of these mispredictions, we
compare GreenVarPricesPeak when using our prediction
vs. when using (idealized) perfect future knowledge of en-
ergy production. This comparison shows that the difference
in green energy consumption, and total brown electricity
cost per job between the two versions is always under 16.4%.
The maximum difference occurs on the “Low-Low” days.
This suggests that GreenHadoop could benefit somewhat
from greater green energy prediction accuracy.

Scheduling for solar energy. Figures 5 and 6 show the
behavior of Hadoop and EAHadoop, respectively, for the
FaceD workload and the High-High days. The X-axis repre-
sents time, whereas the Y-axis represents cluster-wide power
consumption (left) and brown energy prices (right). The fig-
ures depict the green and brown energy consumptions us-
ing areas colored light gray and dark gray, respectively. The
two line curves represent the green energy available (labeled
“Green actual”) and the brown energy price (“Brown price”).

These figures show that EAHadoop successfully reduces
the overall energy consumption of the workload. This effect
is most obvious around noon on Tuesday. However, both
Hadoop versions waste a large amount of green energy (31%
for both), which could be used instead of brown energy.

In contrast, Figure 7 depicts the behavior of GreenOnly
under the same conditions. In this figure, we plot the amount
of green energy that GreenHadoop predicted to be available
an hour earlier (labeled “Green predicted”). The green pre-
diction line does not exactly demarcate the light gray area,
because our predictions are sometimes inaccurate.

A comparison between the three figures clearly illustrates
how GreenOnly is capable of using substantially more green
energy and less brown energy than Hadoop and EAHadoop,
while meeting all job time bounds. GreenOnly spreads out
job execution, always seeking to reduce the consumption of
brown energy within resource and time constraints. Overall,
GreenOnly consumes 30% more green energy than Hadoop
and EAHadoop, respectively, in this experiment. Although
GreenOnly does not consider brown energy prices, its brown
electricity cost savings reach 30% and 29% compared to
Hadoop and EAHadoop, respectively. (Note that these cost
calculations do not consider peak brown power charges.)

Compared to Hadoop, the above gains come from: (1)
batching of delayed jobs, which increases server energy ef-
ficiency and reduces overall energy consumption; (2) reduc-
ing idle energy by transitioning servers to low-power states;
and (3) replacing some of the remaining brown energy with
green energy. Compared to EAHadoop, the gains come from
sources (1) and (3), as well as the fact that batching reduces
the number of state transitions incurred by servers.
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Figure 5. Hadoop for FaceD workload and High-High days.
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Figure 6. EAHadoop for FaceD workload and High-High days.
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Figure 7. GreenOnly for FaceD workload and High-High days.
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Figure 8. GreenVarPrices for FaceD and High-High days.

Scheduling for variable brown energy prices. Green-
Hadoop can reduce costs further when brown energy prices
vary and brown energy must be used to avoid time bound vi-
olations. To quantify these additional savings, we now study
GreenVarPrices in the absence of peak brown power charges.

Figure 8 shows the behavior of GreenVarPrices for FaceD
and the High-High days. Comparing this figure against Fig-
ure 7, one can see that GreenVarPrices moves many jobs that
must consume brown energy to periods with cheap brown
energy. For example, GreenOnly runs many jobs on Tuesday
night that consume expensive brown energy. Those jobs get
scheduled during periods of cheap energy (starting at 11pm
on Tuesday and lasting beyond the 2-day window depicted
in the figure) under GreenVarPrices. As a result, GreenVar-
Prices exhibits higher brown electricity cost savings of 41%
compared to Hadoop for the same days.

Scheduling for peak brown power charges. So far, we con-
sidered scenarios in which there are no peak brown power
charges. However, datacenters are often subject to them [10].
Thus, we next study GreenVarPricesPeak and compare it to
the other versions of GreenHadoop, Hadoop, and EAHadoop
in the presence of those charges.

Figure 9 shows the behavior of GreenVarPricesPeak for
FaceD and the High-High pair of days. Comparing this fig-
ure against Figure 8, one can see that GreenVarPricesPeak
limits the peak brown power consumption as much as pos-
sible, while avoiding time bound violations. In this experi-
ment, GreenVarPricesPeak reaches 1.47kW of peak brown
power, whereas GreenVarPrices reaches 2.38kW. This lower
peak translates into brown electricity cost savings of 39%

and 37% compared to Hadoop and EAHadoop, both of
which also reach 2.38kW.

To illustrate these behaviors further, Figure 10 shows the
servers’ states over time under GreenVarPricesPeak. The fig-
ure shows the number of servers that are in Decommissioned
and Active states, as well as those active servers that are
actually running jobs. The remaining servers are in Down
state. The figure shows that GreenVarPricesPeak keeps the
vast majority of the servers in Decommissioned or Down
state, whenever green energy is unavailable. When it is avail-
able, GreenVarPricesPeak matches its availability by activat-
ing many servers to execute the load.

Figures 11 and 12 summarize our metrics of interest (with
respect to the Hadoop results) in the absence and presence of
peak brown power charges, respectively. Note that the cost
savings bars represent the percent decrease in electricity cost
per job executed. Considering the EAHadoop results, these
figures demonstrate that it is not enough to consume less en-
ergy than Hadoop to increase the green energy consumption.
To do so, it is also necessary to move the load around as in
GreenHadoop. Considering GreenHadoop, Figure 11 clearly
shows that its benefits are significant in terms of both green
energy and brown electricity costs in the absence of peak
brown power charges. When these charges are in effect (Fig-
ure 12), GreenOnly and GreenVarPrices achieve lower (but
still important) savings in brown electricity costs, as they do
not consider the charges in their scheduling. Both Green-
Only and GreenVarPrices reach the maximum peak brown
power, so they incur the same peak brown power costs of
Hadoop and EAHadoop. Overall, GreenVarPricesPeak is the
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Figure 9. GreenVarPricesPeak for FaceD and High-High days.
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Figure 10. Server states under GreenVarPricesPeak. “Run
servers” are active and running jobs. Down servers are not shown.
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Figure 11. Summary in the absence of peak brown power charges.
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Figure 12. Summary with peak brown power charges.
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Figure 13. Impact of green energy availability on GreenVar-
PricesPeak. Results are normalized to EAHadoop.
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Figure 14. Impact of mean job inter-arrival time on GreenVar-
PricesPeak. Results are normalized to EAHadoop.

best version, as it explicitly and effectively manages the high
costs of peak brown power consumption when those charges
are in effect. When they are not, GreenVarPricesPeak reverts
to GreenVarPrices.

Impact of the amount of green energy. Here we evaluate
the behavior of GreenVarPricesPeak across the pairs of days
we consider. Figure 13 summarizes the results with each bar
in a group representing one pair of days. Since EAHadoop
achieves roughly the same results as Hadoop but with a
lower energy usage, we normalize against EAHadoop.

As one would expect, the figure shows that GreenHadoop
increases green energy consumption by a smaller percentage
when there is less green energy. However, its brown electric-
ity cost savings remain high (> 13%), except when there is
almost no green energy and the prediction is inaccurate.

Impact of datacenter utilization. Another important factor
that affects GreenHadoop is datacenter utilization. Under
very high utilization, GreenHadoop may be unable to avoid
using expensive brown electricity, may be forced to violate
time bounds, and/or even reject newly submitted jobs.

To investigate these effects, we perform experiments with
EAHadoop and GreenVarPricesPeak for three additional
datacenter utilizations. Specifically, we vary the mean inter-
arrival time from 15s (giving 92% utilization in EAHadoop)
up to 90s (13% utilization). Recall that our default results
assume a 30s mean inter-arrival time (49% utilization in
EAHadoop). Figure 14 illustrates these results.

The figure shows that the environmental benefits of
GreenHadoop tend to increase as utilization decreases. At
13% utilization, a common utilization in existing datacen-
ters [25], GreenVarPricesPeak increases green energy use
by 79%, and reduces brown electricity cost by 22%. At the
uncommonly high utilization of 92%, there is little or no op-
portunity for GreenVarPricesPeak to increase green energy
use. Utilization is so high that there is no need to move load
around. However, GreenVarPricesPeak is still able to de-
crease brown electricity cost by 5% (by lowering the brown
energy cost), while not violating any time bounds.

Impact of fraction of high-priority jobs. So far, we have
assumed that all jobs in the workload are submitted with nor-
mal priority. Here, we investigate the impact of having dif-
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Figure 15. Impact of fraction of high-priority jobs on green en-
ergy and brown electricity cost. Normalized to EAHadoop.

ferent percentages of high-priority jobs. We selected jobs to
be assigned high priority randomly, according to the desired
percentage. Recall that GreenHadoop does not delay high-
or very-high priority jobs.

Figure 15 shows the results for three percentages of high-
priority jobs: 0% (our default), 33%, and 66%. As one would
expect, larger fractions of high-priority jobs make it harder
for GreenHadoop to increase green energy consumption
and reduce brown electricity cost. Nevertheless, its benefits
are still significant even at 66% high-priority jobs. Further,
GreenHadoop achieves these benefits without degrading the
performance of high-priority jobs noticeably.

Impact of shorter time bounds. The experiments so far use
time bounds of one day. In those experiments, GreenHadoop
never causes a time bound violation, nor does it need to
take any action to prevent a time bound violation. We now
explore GreenHadoop’s ability to meet tighter time bounds
of 6 and 12 hours. Our results show that GreenHadoop
delays 19% of the jobs past their 6 hour time bounds (only
3% of the jobs are delayed by more than 20%), and 3% past
their 12-hour time bounds. Note that some of the jobs in the
FaceD workload take longer than 5 hours, making the 6-hour
time bound tight. Further, most of the violations occur on
the second day, after GreenHadoop has delayed many jobs
to use green energy. At that point, an additional heavy load
arrives, including two very large jobs, which prevents the
system from meeting all bounds.

Impact of data availability approach. We compare Green-
Hadoop’s data management against the covering subset ap-
proach [20]. Specifically, we run FaceD at different datacen-
ter utilizations (from 13% to 92%) for the High-High days.
The results show that, for low utilizations, GreenHadoop re-
duces brown electricity cost by more than 23% compared
to the covering subset approach. GreenHadoop achieves this
reduction by deactivating all but one server (when possible),
whereas the covering subset approach requires at least four
servers to be active at all times (see Section 3.1.2). Under
high utilizations, the two approaches perform similarly be-
cause there are fewer opportunities to deactivate servers.

One potential drawback of our data management ap-
proach is that data may not be immediately available for
arriving high-priority jobs. We run FaceD with 66% of high-
priority jobs to assess this delay. The results show that all

jobs start less than 6 seconds after submission; this delay
can include the time to wake up to 15 servers.

Impact of workload (NutchI). Thus far, we have focused
exclusively on FaceD. We have also studied NutchI to inves-
tigate whether GreenHadoop’s benefits extrapolate to a sub-
stantially different workload. The results from these experi-
ments support our most important observations with FaceD:
(1) EAHadoop provides little benefit on its own; (2) Green-
VarPricesPeak is able to conserve a significant amount of
brown energy by batching load, transitioning servers to low-
power states, and leveraging green energy; and (3) it in-
creases the green energy consumption and reduces brown
electricity cost significantly. For example, GreenHadoop in-
creases green energy use by 23% and reduces brown elec-
tricity cost by 64% compared to Hadoop for the High-High
days. These results show that GreenHadoop is robust to dif-
ferent workload characteristics.

Impact of energy estimation. Finally, an important compo-
nent of GreenHadoop is its estimate of the average energy
required per job in a batch of jobs. To study the accuracy of
this estimation, we collected the estimates and actual aver-
ages over time for the experiment with GreenVarPricesPeak,
FaceD, and High-High days. Note that jobs in FaceD are
highly heterogeneous and so present a challenging scenario
for our prediction. Approximately 75% of the predictions are
within 20% of the observed average energy consumption.
This shows that the estimate is reasonably accurate in most
cases, but it can also be substantially inaccurate.

Our results above already provide strong evidence that
GreenHadoop is robust to prediction inaccuracies. To further
confirm this robustness, we evaluate how GreenHadoop re-
acts to a large, sudden change in the workload. Specifically,
using the High-High days, we run FaceD during the first day
and then abruptly switch to running NutchI on the second
day. Right after this switch, GreenHadoop’s energy usage
prediction per job becomes off by approximately 50%. How-
ever, GreenHadoop is able to adjust its energy estimation to
less than 15% error within two hours, and, at the end of the
two days, uses 21% more green energy than EAHadoop, re-
ducing the cost of brown energy by 57%.

GreenHadoop is robust to inaccurate energy usage pre-
dictions because of two reasons. First, the effect of inaccu-
rate predictions is partly compensated by the much more nu-
merous accurate ones. Second and most important, Green-
Hadoop re-evaluates and reacts to the system state every
epoch. If it is over-estimating the average energy usage, it
may be forced to use (more expensive) brown energy when
not necessary. However, scheduled jobs will finish faster
than expected, causing GreenHadoop to adjust by schedul-
ing more jobs from the Wait queue. If it is under-estimating,
in the worst case, it may end up causing jobs to miss their
time bounds. However, pressure on the Wait queue will force
GreenHadoop to schedule jobs faster, even if it has to start
using (more expensive) brown energy.
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Summary. The results above demonstrate that GreenHadoop
provides consistent increases in green energy consumption
(i.e., decreases in brown energy consumption) and reduc-
tions in brown electricity cost, compared to Hadoop and
EAHadoop. The benefits are highest when most jobs are
given low priority, green energy is abundant, and datacenter
utilizations are low or moderate.

GreenHadoop may violate the time bound in some sce-
narios, including (1) the submission of very large jobs that
are poorly described by the measured average energy used
per job, (2) the arrival of a large burst of jobs after many
previous jobs have been delayed to better use green energy,
and/or (3) a very high datacenter utilization. However, our
results show that GreenHadoop does not violate the time
bound or does so only rarely with reasonable slack and dat-
acenter utilization. For example, FaceD contains jobs that
are up to 150 times longer than the common-case job. Yet,
GreenHadoop never violates a 24-hour time bound and only
rarely misses a 12-hour bound (3%).

6. Related Work
Exploiting green energy in datacenters. GreenHadoop
lowers brown energy/power consumption, monetary costs,
and environmental impact. Previous works have addressed
some of these issues [17, 19, 22, 30]. Stewart and Shen dis-
cuss how to maximize green energy use in datacenters [30].
However, their main focus was on request distribution in
multi-datacenter interactive services. Similarly, [17, 19, 22]
focused on these services. Akoush et al. [1] considered
workload distribution in virtualized systems. Our work dif-
fers in many ways. Specifically, only [22] considered green
energy predictions, and only [17, 19, 22] considered vari-
able brown electricity prices. None of these papers consid-
ered peak power or MapReduce job scheduling. MapReduce
jobs typically run longer than interactive service requests
and often have loose completion time requirements, thereby
increasing the opportunity to exploit green energy.

Goiri et al. [9] and Krioukov et al. [14, 15] have pro-
posed green energy-aware batch job schedulers for a single
datacenter. Unlike GreenHadoop, however, these works re-
quire extensive user-provided information (numbers of re-
quired servers, run times, and completion time deadlines)
for each job. Moreover, these schedulers do not manage data
availability, assuming that the entire dataset of all jobs is ei-
ther network-attached or replicated at every server. Green-
Hadoop is substantially more challenging, since it does not
leverage any user-provided information about job behavior,
and explicitly manages data availability.

Aksanli et al. [2] used green energy to process Hadoop
jobs that share the same datacenter with an interactive ser-
vice. However, they did not consider high-priority jobs, data
management, brown energy prices, or peak power charges.

Willow [12] assumes that decreases in green energy sup-
ply affect the servers differently, and migrates load away

from energy deficient servers within a datacenter. In con-
trast, Blink [27] considered managing server power states
when the amount of green energy varies but the datacenter
is not connected to the electrical grid. We argue that it is not
realistic for datacenters to depend completely on green en-
ergy, since this may cause unbounded performance degrada-
tion. Our approach for managing green energy consumption
is through scheduling, rather than load migration or server
power state management.

At a much lower level, SolarCore [21] is a multi-core
power management scheme designed to exploit PV solar
energy. SolarCore focuses on a single server, so it is closer to
the works that leverage green energy in embedded systems.

Managing brown energy prices and peak brown power
charges. Most works that have considered variable energy
prices have targeted request distribution across multiple dat-
acenters in interactive Internet services [17, 19, 22, 24]. The
exception is [18], which considers variable energy prices and
peak power charges in multi-datacenter high-performance
computing clouds. Our work differs in that it seeks to maxi-
mize green energy use, predict green energy availability, and
schedule MapReduce jobs within a single datacenter.

Also within a single datacenter, Goiri et al. [9] sched-
uled scientific batch jobs taking into account brown energy
prices, but not peak brown power charges. Govindan et al.
[10] studied how energy stored in the UPS batteries of con-
ventional datacenters can be used to manage peak power and
its costs. GreenHadoop targets a different type of clustered
system and relies solely on software to manage peak costs.

Traditional job schedulers. Traditional batch job sched-
ulers for clusters, e.g. [8, 32], seek to minimize waiting
times, makespan, and/or bounded slowdown; unlike Green-
Hadoop, they never consider green energy, brown energy
prices, or peak brown power charges. In addition, similarly
to real-time scheduling [23], GreenHadoop recognizes that
many jobs have loose performance requirements (i.e., can be
delayed within a bound) and exploits this in favor of higher
green energy consumption and lower brown electricity cost.

MapReduce and Hadoop. Several efforts have sought to
reduce the energy consumption of Hadoop clusters, e.g. [13,
20]. The main issue that these efforts address is how to place
data replicas in HDFS, so that servers can be turned off
without affecting data availability. Amur et al. addresses a
similar issue in a power-proportional distributed file system,
called Rabbit [3], based on HDFS. These data placement
efforts could be combined with GreenHadoop to reduce the
need for it to replicate data to turn servers off.

In contrast, Lang and Patel propose an approach called
the All-In Strategy (AIS) [16]. Instead of turning some
servers off when utilization is low, AIS either turns the en-
tire cluster on or off. In essence, AIS attempts to concen-
trate load, possibly by delaying job execution, to have high
utilization during on periods and zero energy consumption
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during off periods. AIS’s delay of load to increase efficiency
is similar to our approach. However, AIS neither considers
green energy availability nor brown energy and power costs.

7. Conclusions
In this paper, we proposed GreenHadoop, a MapReduce
framework for a datacenter powered by solar energy and
the electrical grid. GreenHadoop seeks to maximize the
green energy consumption within the jobs’ time bounds.
If brown energy must be used, GreenHadoop selects times
when brown energy is cheap, while also managing the cost
of peak brown power consumption. Our results demonstrate
that GreenHadoop can increase green energy consumption
by up to 31% and decrease electricity cost by up to 39%,
compared to Hadoop. Based on these positive results, we
conclude that green datacenters and software that is aware
of the key characteristics of both green and brown electrici-
ties can have an important role in building a more sustainable
and cost-effective IT ecosystem.

To demonstrate this in practice, we are building a pro-
totype micro-datacenter powered by a solar array and the
electrical grid (http://parasol.cs.rutgers.edu). The
micro-datacenter will use free cooling almost year-round
and will be placed on the roof of our building.
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