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M
eeting the greenhouse gas (GHG) emission reduction tar-
gets that are currently discussed for international climate 
policy will require the energy system to have net zero emis-

sions1,2. Mitigation scenarios, which are used to explore how this can 
be achieved, often show a substantial contribution from bioenergy, 
especially as a fuel in the transport sector or as a feedstock for power 
production (possibly in combination with carbon capture and stor-
age)3–6. Policies to promote the use of biofuels through blending tar-
gets and support schemes for fuels are already in place in Europe 
and the United States, as well as other countries around the world7. 
However, bioenergy production (with the exception of residues) is 
associated with land-use change (LUC), which leads to changes in 
both above- and belowground carbon stocks and consequent emis-
sions8. These have major consequences for the effectiveness of GHG 
emissions reductions, while LUC could also have negative implica-
tions for biodiversity and food production9–12. In addition, there 
are further emissions associated with fertilizer and non-renewable 
energy use in the production of bioenergy13.

The emissions associated with bioenergy production can be 
expressed in terms of the ratio of GHG emissions per unit of bio-
energy produced, called the emission factor (EF). These emission 
factors can be compared with the avoided emissions from using a 
unit of bioenergy in the energy system, providing a useful frame-
work for evaluating bioenergy policies. Studies have looked into 
LUC emissions of bioenergy supply by, for example, investigating 
specific supply chains or using equilibrium models to project mar-
ket-mediated LUC emissions13–17. Yet there is little consensus among 
studies with EFs ranging from negative values to values larger 
than 100 kgCO2e GJBiofuel

−1 (ref. 18). These discrepancies are caused 
by the large uncertainty and variation of key parameters such as 
crop yields, carbon stocks and projected LUC19. A key reason for 
this variation is spatial heterogeneity20–22. As a result, the potential 
supply of advanced biofuels and how this may change for differ-
ent GHG emission constraints, as well as which LUC would provide 

the best possibilities for advanced biofuels as a climate mitigation 
strategy, are still important knowledge gaps. Here, we develop and 
apply a spatially explicit method for determining and presenting 
long-term EFs for biofuels that allows for a better representation of 
the underlying heterogeneity. By explicitly accounting for the spatial 
heterogeneity, our approach can also explain part of the EF range 
reported in the literature. Furthermore, we discuss the effects of dif-
ferent definitions of the break-even point and scenario assumptions 
on calculating the payback period (PBP), defined as the number 
of years before GHG savings from displacing fossil fuels outweigh 
the emissions from biofuel production, in the  Supplementary 
Information16,20,21,23.

Since advanced biofuels often constitute a major component of 
bioenergy use in climate mitigation scenarios, we focus our analysis 
on the production of lignocellulosic methanol from grass or wood 
and sugarcane ethanol. We highlight the potential supply of these 
advanced biofuels at increasing EF levels, hereafter called emission 
curves. These curves show how GHG emissions change when bio-
fuels are increasingly produced on (from a GHG perspective) less 
suitable lands, that is, those with rising EFs. This goes beyond exist-
ing research by providing insight into both the spatial heterogeneity 
of biofuel GHG characteristics and the potential supply of advanced 
biofuels at given emission constraints.

Biofuel crops can be produced either on land that is now in use 
for food or feed crop (thus displacing agricultural production lead-
ing to indirect LUC (ILUC) elsewhere), or on natural or abandoned 
lands. The results presented here apply only to the latter case, focus-
ing only where direct LUC is relevant.

Spatial variation
Maps of the instantaneous and gradual components of the EF for an 
85-yr time horizon (EF85) are shown in Fig. 1. The emissions from 
non-renewable energy use in biomass production and biofuel con-
version (approximately 20 kgCO2 GJBiofuel

−1) are not explicitly shown 

Greenhouse gas emission curves for advanced 
biofuel supply chains

Vassilis Daioglou   1,2*, Jonathan C. Doelman1, Elke Stehfest1, Christoph Müller   3, Birka Wicke2,  

Andre Faaij4 and Detlef P. van Vuuren1,2

Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from 
biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with 
substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of 
spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different 
emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned 
agricultural lands could provide 30 EJBiofuel yr−1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per 
GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr−1 for emission factors less than 60 kgCO2e GJBiofuel

−1. While 
these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assump-
tions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential con-
tribution to climate change mitigation while accounting for spatial heterogeneity.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NAturE CliMAtE ChANGE | VOL 7 | DECEMBER 2017 | 920–924 | www.nature.com/natureclimatechange920

mailto:vassilis.daioglou@pbl.nl
http://orcid.org/0000-0002-6028-352X
http://orcid.org/0000-0002-9491-3550
http://www.nature.com/natureclimatechange


ARTICLESNATURE CLIMATE CHANGE

but are included in the Total (bottom row of Fig. 1). In most cases 
carbon stock changes subsequent to the initial LUC (that is, gradual 
emissions) are a sizeable fraction of the EF85. Gradual emissions are 
most important in boreal forests, grasslands and savannahs where 
they may contribute up to 50% of the final EF85.

The mean EF85 and 10th–90th percentile range are 72(37–127), 
59(37–81) and 58(33–78) kgCO2e GJBiofuel

−1 for grass methanol, 
wood methanol and sugarcane ethanol, respectively. For compari-
son, the EF of gasoline is 87 kgCO2e GJ−1. The large spread in EF85 
is due to spatial variations in the initial and projected carbon stocks 
and differences in crop yields. The lowest mean EF85 is observed on 
grasslands at 45(20–71), 51(18–80) and 36(24–50) kgCO2e GJBiofuel

−1 
for grass methanol, wood methanol and sugarcane ethanol, respec-
tively. Furthermore, due to their high productivity, EFs below 
60 kgCO2e GJBiofuel

−1 can also be achieved on agricultural lands that 
are projected to be abandoned in this land scenario, with grass meth-
anol exhibiting the lowest values at 47(30–65)  kgCO2e GJBiofuel

−1. 
These results assume a single biofuel type being produced globally 
to contrast differences across feedstocks. If the best performing bio-
fuel—from an EF85 perspective—was produced in each grid cell, 
the global mean EF85 would be 45(16–74)  kgCO2e GJBiofuel

−1. The 
extremely large ranges in the 10th–90th percentiles, as well in as 
the absolute value of EF85, indicate that only part of the lands, even 
within specific biomes, can provide biofuels with appreciable cli-
mate mitigation benefits within the twenty-first century.

Biofuel supply and corresponding emissions
The high variability in EF85 indicates that spatial heterogeneity needs 
to be taken into account when assessing the climate effects of bio-
fuel production. While spatial patterns of EFs effectively illustrate 
the high variance of the biofuel EF85, they require further aggrega-
tion to assess biofuel potentials at any given emission rate. Fig.  2 
presents emission curves that show the potential of each biofuel 
with increasing EF85, highlighting the relationship between biofuel  

potential and the corresponding emission rate. The curves have 
been disaggregated across five biomes: savannahs, natural grass-
lands, temperate, tropical and boreal forests. Agricultural lands that 
are projected to be abandoned in the selected land scenario are also 
included.

Globally, there is a very large potential from all feedstocks 
(in excess of 300 EJBiofuel yr−1) for biofuels, with the largest con-
tribution coming from tropical biomes. This large potential can 
only be achieved if biofuel production without any constraints is 
assumed, that is, even in lands with very poor GHG performance. 
Almost 90% of this ultimate potential is only available at an EF85 
above 40 kgCO2e GJBiofuel

−1 and is thus not useable in a meaningful 
way for climate change mitigation within the twenty-first century, 
especially when also considering that rebound effects can further 
reduce mitigation effectiveness (see  Supplementary Information). 
A potential of 22–65 EJBiofuel yr−1 would meet a criterion of being 
below 40 kgCO2e GJBiofuel

−1 (for comparison, a recent study estimated 
that 100 EJPrimary of bioenergy are available with high agreement 
among experts, based on a wider set of sustainability criteria24). 
The emission curves highlight that even though natural grasslands 
have the lowest mean EF85, the potential in these lands is less than 
5 EJBiofuel yr−1 due to the limited area of this biome and the relatively 
low yields. When comparing the three supply chains, it can be seen 
that although sugarcane ethanol has a better EF85 on average, it has a 
lower biofuel production potential at any given emission level than 
grass- and wood-based biofuels. This is because the latter two can 
be grown in more locations than sugarcane (Fig. 1). An overview 
of numerical results is available in the Supplementary Information.

Using a PBPGHG criterion of less than 20 years, as used by policies 
(see further discussion below), and assuming no rebound effect, 
the potentials of grass methanol, wood methanol and sugarcane 
ethanol are 31 EJBiofuel yr−1 12 EJBiofuel yr−1 and 16 EJBiofuel yr−1 respec-
tively. These numbers increase to 264 EJBiofuel yr−1, 131 EJBiofuel yr−1 
and 58 EJBiofuel yr−1 if the PBPGHG is increased to 50 years. Assuming 
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production of the best performing biofuel—from an EF85 perspec-
tive—in each grid-cell, the potentials would be 41  EJBiofuel yr−1 and 
298 EJBiofuel yr−1 for PBPGHG criteria of 20 and 50 years, respectively 
(see the  Supplementary Information for a discussion on different 
PBP accounting methods).

importance and interpretation of uncertainties
Fig. 3 shows the importance of various uncertainties for the emis-
sion curve calculations. The sensitivity of the results to techno-
logical assumptions indicates that improvements in the conversion 
technologies and crop yields are a prerequisite for low-GHG bio-
fuels: no improvements in conversion and crop yields results in 
reduced potentials, especially at a low EF85. In our method, the 
assumed exclusion of agricultural lands relates directly to uncer-
tainties in the future development of agricultural demand. The 
default projection assumes that approximately 300 Mha are aban-
doned by 2100, while a more optimistic land-use projection leads 
to land availability from abandoned agricultural land increasing 
to 1,000 Mha. As abandoned agricultural lands tend to be more 

productive, the biofuel potential at a low EF85 is boosted in this 
case. The use of more agricultural area for bioenergy production 
could also be achieved by increased yields induced by bioenergy 
demand, something which is not specifically investigated here. 
Assumptions about climate projections and the underlying atmo-
spheric CO2 concentration pathways also affect the results due to 
changing productivities of natural and agricultural plants. The 
impact can only partly be studied: similar to most crop models, 
the crop representation in IMAGE-LPJmL does not account for 
extreme weather events, but responds reasonably well to high 
temperature exposure25. Moreover, it should be noted that the 
gains from CO2 fertilization are uncertain, and possibly overes-
timated in current crop models26–28. Thus, we have excluded the 
CO2 fertilization effects in the the sensitivity projection from IPCC 
Representative Concentration Pathyway 6.0 (RCP6.0). The overall 
potential, as well as the volume of biofuels available at an EF85 of 
less than 40 kgCO2e GJBiofuel

−1, for RCP 6.0 shows a slight decrease 
due to yield losses driven by increasing global temperatures and the 
prevalence of droughts29–31. These effects could be partly mitigated 
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Fig. 2 | EF85 emission curves disaggregated for different initial land-cover types. a, Grass methanol. b, Wood methanol. c, Sugarcane ethanol. The last 

column of each panel shows the maximum potential for each biofuel. The curves account for the projected changes in crop yield; these curves cannot be 

summed as the projected land changes are limited to a single biofuel type.
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Numerical results and the underlying assumptions are available in the Supplementary Information.
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by adaptation measures such as improved cultivars and different 
management practices26,32,33.

One explicit assumption of our method is that the carbon con-
tent of the original natural vegetation cleared before biofuel pro-
duction is emitted with no energy production. Determining the 
energy potential of the original natural vegetation is difficult due 
to uncertainties in its quality. However, first-order estimates (see 
the Supplementary Information) lead to decreases in EFs of 10–15%.

Fig.  3 only reflects the parametric uncertainty in a relatively 
small fraction of the parameters in IMAGE-LPJmL. Comparisons 
of Global Gridded Crop Models (GGCMs) have highlighted uncer-
tainties in the representation of carbon and nitrogen cycles, yield 
variability and the effects of climate change. In these comparisons 
LPJmL is consistently well within the ranges presented30,34–36. Still 
other uncertainties involve the impact of climate variability on land 
use that is normally not accounted for in crop models, for instance. 
Parametric, scenario and model uncertainties should be further 
explored to better understand the robustness of our results. In this 
context, the emission curves produced from other GGCMs and 
land-use scenarios would provide great insight.

This study focuses only on biofuels, while other uses of biomass 
for energy purposes (gases, heat and electricity) may lead to very 
different emission curves. While the EFs would be broadly simi-
lar, the PBPGHG for woody and grass-based biomass could be much 
lower if biomass is used to substitute coal in electricity generators. 
Additionally, if biofuel or bioelectricity production is combined 
with carbon capture and storage, further emission reductions could 
be achieved37. In this light, a tax on the carbon content of primary 
energy carriers could ensure the appropriate allocation of biomass 
and avoid leakage of replaced fossil fuels38.

A key uncertainty concerns indirect effects of biofuel production, 
such as the displacement of agricultural land and consequent ILUC 
emissions. Economic models have been used to determine ILUC 
effects, but the results are subject to uncertainties in agricultural 
expansion, price elasticities and projected LUC39,40. Here, land avail-
ability is constrained by projections of future agricultural demand, 
thus the EFs are consistent with future food production, and are 
based on targeting biofuel production on unused lands (something 
that is promoted in current biofuel policies41). This study evaluates 
the suitability of different locations from a biophysical perspective. 
Production on existing agricultural land would displace agriculture 
onto lands for which we have determined EFs. Consequently, our 
results provide an indication for where such expansion should be 
directed to mitigate the effects of ILUC.

time-horizon selection and relevance for biofuel policies
The selection of a time horizon is a key methodological issue for 
assessing the GHG implications of biofuel production. However, 
this choice is inherently arbitrary, with the IPCC and European 
Union using 20 years, and the US Environmental Protection 
Agency using 30 years42–44. These time horizons have been jus-
tified as they reflect the lifespan of typical biofuel production 
facilities and policies, the uncertainty of future biofuel production 
and emissions and the difficulties involved in valuing future emis-
sions. Conversely, given that climate mitigation is a long-term 
goal, it has been argued that a time horizon of up to 100 years 
may be appropriate45,46. The results presented above use an 85 year 
time horizon (results for a 20 year time horizon are presented in 
the  Supplementary Information), which is consistent with the 
projections of IMAGE-LPJmL, as this allows for better account-
ing of the gradual carbon fluxes that form a sizeable portion of 
the final emission factor (20–30% globally, up to 50% for grass-
lands and boreal forests). Our 85 year time-horizon implicitly 
assumes biofuel production and consumption over that period, in 
agreement with climate change mitigation pathways of integrated 
assessment models2,5,6.

Some policies aimed at promoting biofuel use assign specific 
time horizons, and thus implicitly make judgements on the bio-
fuel volume that can be supplied. The European Renewable Energy 
Directive (RED) 2009/28/EC43 requires that GHG savings of biofu-
els should be at least 35% until 2016, 50% from 2017 to 2018 and 
60% thereafter while Annex V of the directive states that biofuel 
GHG calculations should have a 20 year time horizon. Using the 
methods developed in this study, we can estimate the biofuel sup-
ply—produced only from dedicated energy crops, not from resi-
dues—in 2020, 1 EJBiofuel yr−1 is globally consistent with this target, 
increasing to 3 EJBiofuel yr−1 by 2050. Using a more optimistic land 
scenario does not lead to much higher potentials, highlighting that 
the available locations with such a low EF20 are very limited. Instead, 
if the EF85 emission curves were used, the RED conformant biofuel 
supply would be 31 EJBiofuel yr−1 in 2020 (8–30 EJBiofuel yr−1 for individ-
ual biofuels), increasing to 46 EJBiofuel yr−1 in 2050 (12–40 EJBiofuel yr−1 
for individual biofuels). Note that this is the supply in those particu-
lar years and cannot be derived from Fig. 2 where biofuel potentials 
are presented as 2016–2100 averages. To put these numbers into 
context, in 2012 the global demand for transport fuels was in the 
order of 100 EJ yr−1 and is projected to approach 150 EJ yr−1 by 20504. 
Consequently, combining a 60% reduction target and the 20 year 
time horizon in the RED severely limits the potential of biofuels 
produced from energy crops. Furthermore, the results of this study 
show that GHG effects of biofuels vary hugely across both locations 
and source of emissions (instant and gradual LUC and conversion). 
This heterogeneity creates challenges for successful policies as 
restrictions and guidelines (on land use, technology, management 
and so on) have to be precise to be effective.

Future avenues for research
We present a novel method that allows for better quantification of 
the relationship between spatially heterogeneous biophysical pro-
cesses and biofuel supply. By presenting biofuel supply in terms of 
emission curves, this study aims to provide a clearer understanding 
of biofuel quantities and their climate implications. Furthermore, 
by tracking the long-term changes in carbon stocks due to biofuel 
production and natural changes, this study highlights the impor-
tance of accounting for both the spatial and temporal aspects of bio-
fuel production, which may lead to more pessimistic results than 
existing assessments13,21. The concept of emission curves provides a 
transparent tool to contrast the emissions and mitigation potential 
of biofuels, and to explore the impact of different assumptions and 
uncertainties across models. The use of such curves could help to 
evaluate the trade-off between biofuel supply and afforestation pos-
sibilities, which would increase biogenic carbon uptake, and could 
provide further insights for land-use and climate policy22,47. However, 
while we assess the potential of biofuels at different emission levels, 
the challenge of policy implementation still remains. Without very 
specific regulations, the production of any of the abovementioned 
potentials would very probably involve higher emissions. To actually 
make use of the low-EF locations presented here, production would 
have to be directed towards low-carbon ecosystems. Recent devel-
opments seem to favour direct LUC for biofuel production, as it can 
be better monitored than highly uncertain ILUC41. Furthermore, the 
method can be combined with biofuel cost estimates as well as other 
important constraints not explored in this study48. Improvements in 
the understanding of the spatial heterogeneity in water availability, 
biodiversity, climate change impacts and the effects of bioenergy 
production on food prices and human well-being, combined with 
the presented concept of emission curves, could give a better under-
standing of the sustainable potential of biofuels.

Finally, it is important to note that besides biofuels, biomass can 
be used for a number of other energy and material processes (elec-
tricity, heat and chemicals) and can possibly be combined with car-
bon capture technologies to achieve so-called negative emissions. 
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The method introduced here can be used together with bioenergy 
mitigation curves for various end uses and conversion technologies 
to better evaluate different biomass use strategies. With such flex-
ibility for user-defined specifications, emission curves can act as a 
basis for a more constructive discussion of the advantages and dis-
advantages of different bioenergy uses in terms of their GHG bal-
ances.
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Methods
General. We calculate GHG emissions per GJ of biofuel produced for di�erent 
crops in a geographically explicit way. �e information on emissions is 
subsequently used to derive emission curves (by sorting and summing grid cells 
in an ascending order). �e curves can be compared with the avoided emissions of 
the fossil fuels that are substituted to biofuels to assess the possible gains of using 
biofuels. �e GHG emissions included in this study are CO2 and N2O from LUC, 
biomass production and non-renewable energy use for conversion of biomass to 
biofuels. �e calculations of the study are done on 30 minute ×  30 minute raster 
maps. �e crops/biofuel chains included are grass methanol, wood methanol and 
sugarcane ethanol. Grass crops are assumed to be Miscanthus, and woody crops are 
willow and eucalyptus for temperate and tropical biomes, respectively.

We use the integrated assessment modelling framework IMAGE49, which 
makes use of the fully coupled vegetation, crop and hydrological model LPJmL50,51. 
This framework projects the biofuel potentials and long-term carbon fluxes of 
LUC while also accounting for other dynamic factors such as the land-use scenario 
and the impact of climate change. The results assume a median land-use scenario 
(SSP2) in combination with a 2.6 W m−2 radiative forcing climate scenario19,52–55. 
We only evaluate biofuels that are grown on non-agricultural lands, thereby 
avoiding the uncertainties related to the dynamics of the use of agricultural land, 
such as the induced displacement of food production and ILUC, and the potential 
impacts on diets and yields. This is contrary to some earlier work with the IMAGE 
framework where we—also making use of the coupled MAGNET model—assessed 
ILUC effects explicitly56. Here, we analyse non-agricultural lands for biofuel EFs, 
to show which potentials exists when just considering direct LUC. The spatially 
explicit EF values account for emissions along the complete supply chain, including 
the instantaneous and gradual changes in carbon stocks due to LUC, foregone 
sequestration, nitrogen from fertilizer application and non-renewable energy use in 
biofuel production.

Tracking carbon fluxes. Many studies and established methods for assessing 
biofuel GHG emissions simplify the emissions from LUC21,42,57,58. They tend to 
ignore or simplify carbon fluxes in the years following the initial LUC by  
assuming static soil carbon stocks in the baseline and ignoring natural vegetation 
dynamics and land-use history59,60. In this study, IMAGE-LPJmL is used to project 
the development of above- and belowground carbon stocks for two opposing  
cases for the 2015–2100 time period: natural vegetation (NV) and biofuel 
profuction (BP).

Natural vegetation. This case assumes no biofuel production. Land cover is 
either natural vegetation or agricultural land. This case acts as the benchmark 
with which biofuel production is compared. As mentioned above, the land-use 
scenario is based on the SSP2 baseline. For agricultural lands that are projected 
to be abandoned in this scenario, it is assumed that they return to their natural 
vegetation (regrowth).

Biofuel production. Starting in 2015, natural vegetation or abandoned agricultural 
lands are replaced by biofuel crops. The only constraint applied is that potential 
yields should be more than negligible. The aboveground carbon content of biofuel 
crops is ignored since it is assumed that all produced biofuels are combusted, and 
belowground carbon thus rebalances according to the new conditions. Climate 
feedbacks from land clearing are ignored (that is, climate is assumed to be identical 
to the NV case), but climate effects on yields and carbon stocks follow the RCP2.6 
(default) or RCP6.0 (sensitivity) trajectory. The BP case is repeated for the three 
primary crop types included in this study: grass, wood and sugarcane.These 
projections are not intended to be realistic scenarios, but rather stylized model 
results to make the EF and PBP calculations possible. The methodology applied 
here takes into account future developments of carbon and nitrogen stocks. 
Thus re-balancing of soil carbon in the BP case and projections of above- and 
belowground carbon stocks in the NV case are accounted for.

Calculating EFs. All emissions are calculated as the difference in the carbon stocks 
between NV and BP. Instantaneous emissions are those due to land clearing take 
place in 2015, while in all following years (2016–2100) the differences in carbon 
stocks between the two cases form the gradual increase (or decrease) of cumulative 
emissions. Spatially explicit EFs are calculated by determining the ratio of 
cumulative biofuel production to cumulative emissions over the 85 year projection 
period (2015–2100). Consequently, if cumulative production of biofuels increases 
faster than the cumulative emissions, the EF will decrease over time, highlighting 

the importance of the time horizon. As explained above, our calculations for the 
emission factors are based on an 85 year time horizon to better capture the long-
term effects of biofuel production and land-based carbon stocks. The PBPGHG is the 
time required for the EFs to fall (and remain) below that of gasoline, as beyond that 
point the cumulative emissions from biofuel production are less than the emission 
savings from gasoline replacement.

Further details of the methods used are available in the Supplementary 
Information.

Data availability. The following data sets generated during the current study are 
available online.

The maps of the biofuel EFs (in kgCO2e GJBiofuel
−1) for time horizons of 2015 

to 2035, 2050, 2075 and 2100 are available at the following websites for grass 
methanol (ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-
16071233/NWSecEF.nc), wood methanol (ftp://ftp.pbl.nl/image/public/biofuel_
emission_curves_NCLIM-16071233/WSecEF.nc) and sugarcane ethanol (ftp://ftp.
pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSecEF.nc).

The maps of the average annual biofuel potentials (in GJBiofuel) for 2035, 2050, 
2075 and 2100 are available at the following websites for grass methanol (ftp://
ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSec.nc), 
wood methanol (ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-
16071233/WSec.nc) and sugarcane ethanol (ftp://ftp.pbl.nl/image/public/biofuel_
emission_curves_NCLIM-16071233/SCSec.nc).

The land areas that are potentially available for biofuel production (that is, 
non-agricultural, non-negligible yield lands) according to the SSP2 baseline for the 
period 2015–2100 are available at the following websites for grass methanol (ftp://
ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSec.nc), 
wood methanol (ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-
16071233/WLand.nc) and sugarcane ethanol (fftp://ftp.pbl.nl/image/public/
biofuel_emission_curves_NCLIM-16071233/SCLand.nc).

The IMAGE projections of the SSP2 scenario used in this analysis can be found 
on the IMAGE download website (http://themasites.pbl.nl/models/image/index.
php/Download).

references
 49. Stehfest, E. et al. Integrated Assessment of Global Environmental Change with 

IMAGE 3.0: Model Description and Policy Applications (PBL Netherlands 
Environmental Assessment Agency, 2014).

 50. Beringer, T., Lucht, W. & Schapho�, S. Bioenergy production potential of 
global biomass plantations under environmental and agricultural constraints. 
GCB Bioenergy 3, 299–312 (2011).

 51. Müller, C. et al. Drivers and patterns of land biosphere carbon balance 
reversal. Environ. Res. Lett. 11, 44002 (2016).

 52. Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth 
projections in the shared socioeconomic pathways. Glob. Environ. Chang. 42, 
200–214 (2017).

 53. Samir, K. & Lutz, W. �e human core of the shared socioeconomic pathways: 
Population scenarios by age, sex and level of education for all countries to 
2100. Glob. Environ. Change 42, 181–192 (2017).

 54. O’Neill, B. C. et al. �e roads ahead: Narratives for shared socioeconomic 
pathways describing world futures in the 21st century. Glob. Environ. Change 
42, 169–180 (2017).

 55. van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions 
trajectories under a green growth paradigm. Glob. Environ. Change 42, 
237–250 (2017).

 56. Banse, M. et al. Global impact of multinational biofuel mandates on land use, 
feedstock prices, international trade and land-use greenhouse gas emissions. 
Landbauforschung 64, 59–72 (2014).

 57. Hoefnagels, R., Smeets, E. M. W. & Faaij, A. Greenhouse gas footprints of 
di�erent biofuel production systems. Renew. Sustain. Energy Rev. 14, 
1661–1694 (2010).

 58. Cherubini, F. GHG balances of bioenergy systems - Overview of key steps in 
the production chain and methodological concerns. Renew. Energy 35, 
1565–1573 (2010).

 59. Haberl, H. et al. Correcting a fundamental error in greenhouse gas 
accounting related to bioenergy. Energy Policy 45, 18–23 (2012).

 60. Wise, M. et al. An approach to computing marginal land use change carbon 
intensities for bioenergy in policy applications. Energy Econ. 47,  
307–318 (2015).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NAturE CliMAtE ChANGE | www.nature.com/natureclimatechange

ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSecEF.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/NWSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCSec.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WLand.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/WLand.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCLand.nc
ftp://ftp.pbl.nl/image/public/biofuel_emission_curves_NCLIM-16071233/SCLand.nc
http://themasites.pbl.nl/models/image/index.php/Download
http://themasites.pbl.nl/models/image/index.php/Download
http://www.nature.com/natureclimatechange

	Greenhouse gas emission curves for advanced biofuel supply chains
	Spatial variation
	Biofuel supply and corresponding emissions
	Importance and interpretation of uncertainties
	Time-horizon selection and relevance for biofuel policies
	Future avenues for research
	Fig. 1 Maps of EF85 and its components.
	Fig. 2 EF85 emission curves disaggregated for different initial land-cover types.
	Fig. 3 Effect of assumptions on potential at different EF85 values.


