Greenhouse Gas Emission Impacts of Carsharing in North America

Elliot Martin, Susan Shaheen

Institutions: University of California, Berkeley

Published on: 01 Dec 2011 - IEEE Transactions on Intelligent Transportation Systems (IEEE)

Topics: Population

Related papers:

- Impact of Carsharing on Household Vehicle Holdings: Results from North American Shared-Use Vehicle Survey
- What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm
- Carsharing and Personal Vehicle Services: Worldwide Market Developments and Emerging Trends
- City CarShare: Longer-Term Travel Demand and Car Ownership Impacts
- Growth in Worldwide Carsharing: An International Comparison
Title
Greenhouse Gas Emission Impacts of Carsharing in North America

Permalink
https://escholarship.org/uc/item/6wr90040

Journal
IEEE Transactions on Intelligent Transportation Systems, 12(4)

ISSN
1524-9050

Authors
Martin, Elliot W
Shaheen, Susan A

Publication Date
2011-12-01

DOI
10.1109/TITS.2011.2158539

Peer reviewed
Greenhouse Gas Emission Impacts of Carsharing in North America

IEEE Transactions on Intelligent Transportation Systems

Volume 12, Issue 4, Pages 1074 – 1086

December 2011

Susan A. Shaheen, Ph.D.

Elliot W. Martin, Ph.D.
Greenhouse Gas Emission Impacts of Carsharing in North America

Elliot Martin and Susan Shaheen

Abstract—This paper evaluates the greenhouse gas (GHG) emission impacts that result from individuals participating in carsharing organizations within North America. The authors conducted an online survey with members of major carsharing organizations and evaluated the change in annual household emissions (e.g., impact) of respondents that joined carsharing. The results show that a majority of households joining carsharing are increasing their emissions by gaining access to automobiles. However, individually, these increases are small. In contrast, the remaining households are decreasing their emissions by shedding vehicles and driving less. The collective emission reductions outweigh the collective emission increases, which implies that carsharing reduces GHG emissions as a whole. The results are reported in the form of an observed impact, which strictly evaluates the changes in emissions that physically occur, and a full impact, which also considers emissions that would have happened but were avoided due to carsharing. The mean observed impact is $-0.58 \text{ t} \text{ GHG/year per household}$, whereas the mean full impact is $-0.84 \text{ t} \text{ GHG/year per household}$. Both means are statistically significant. We present a sensitivity analysis to evaluate the robustness of the results and find that the overall results hold across a variety of assumptions. The average observed vehicle kilometers traveled (VKT) per year was found to decline by 27%. We conclude with an evaluation of the annual aggregate impacts of carsharing based on current knowledge of the industry membership population.

Index Terms—Carsharing, greenhouse gas emissions, survey design, statistical analysis.

I. INTRODUCTION

Mounting evidence of climate change and increasing energy costs are motivating many state and local governments to explore policy options that can simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. Within the United States (U.S.), transportation activity accounts for close to 30% of all carbon dioxide (CO$_2$)-equivalent GHG emissions and nearly 70% of all petroleum consumption [1]. Roughly 96% of all energy consumed within this sector in the U.S. is comprised of either gasoline or diesel [1]. Furthermore, a longstanding dependence on the private automobile for urban transportation has placed the U.S., and to a lesser extent Canada, in uniquely difficult positions to adjust travel in ways that lower automotive dependence.

Carsharing (short-term vehicle access) has been continuously operating in North America for about fifteen years. Just over ten years ago, carsharing emerged in select cities within the U.S. as a niche market alternative to offer members auto access without the costs of private vehicle ownership. Carsharing organizations operate by placing vehicles throughout urban neighborhoods, metropolitan centers, and colleges/universities. The vehicles are accessible to members through a reservation that is booked in advance by phone or Internet. Members can pay for carsharing services in a variety of ways, depending on the organization and pricing plan to which they subscribe. But most members pay a monthly or annual fee in some combination with per hour and mile charges [2].

Since its inception, carsharing has grown rapidly under both non-profit and for-profit business models. Today, the industry is comprised of 33 organizations within North America, most of which have primarily focused on serving a single metropolitan region. As of July 1, 2009, there were 16 active programs in Canada and 26 in the U.S., with an estimated 378,000 carsharing members sharing approximately 7,500 vehicles in North America. In addition, 8 of the 26 operators in the U.S. were for-profit (5 of 19), accounting for 86% and 88% of the members and vehicles, respectively. In Canada, 6 of the 16 Canadian carsharing operators were for-profit (5 of the 14) and represented 87% of members and 86% of the total fleet deployed [3], [4].

Research suggests that carsharing may offer considerable environmental and social benefits [3] – [9]. These benefits...
include GHG emission reductions and greater use of alternative modes, such as public transit, walking, and cycling. In the industry today, carsharing vehicles are newer relative to the average personal vehicle and generally have higher than average fuel economy [10]. As carsharing satisfies the mobility needs of consumers without the personal automobile, it has been considered a promising demand management tool capable of displacing gasoline consumption that would otherwise occur in its absence.

This paper presents the results of a survey of carsharing members across the North American continent. The survey was conducted online from September to November 2008 with all of the major carsharing organizations in the U.S. and Canada. The survey asked respondents about past and current vehicle holdings, as well as shifts in travel patterns to estimate changes in GHG emissions that result from carsharing.

This paper proceeds with four main sections: First, the authors present a review of earlier studies and surveys assessing the environmental impacts of carsharing, with an emphasis on North America. Second, we provide a methodological framework that characterizes how carsharing can alter member emissions and describe how GHG impacts are measured within this study. Then in the results, we evaluate the distribution of carsharing impacts along with the sample averages, which is supported by a sensitivity analysis to illustrate how these results vary with assumptions on respondent input. We finish with conclusions that outline the critical insights of this paper and their implications for policy.

II. RELATED WORK

Among the most consistent findings of past research is that carsharing reduces car ownership. The first demonstration of carsharing started in San Francisco with the Short Term Auto Rental (STAR) program. Established in 1983, STAR was a 55-vehicle pilot designed to operate for three years but terminated after 18 months of operation. In the STAR evaluation, Walb and Loudon (1986) reported on changes in car ownership and travel among members. They found that 17% of members sold a vehicle, while 43% postponed a vehicle purchase. However, their assessment of travel changes raised doubts as to whether carsharing would result in more efficient travel, as member travel was reported to have increased slightly [11]. While the STAR program did not gain traction, lessons learned from that effort were used to inform and improve the launch of CarSharing Portland more than a decade later [12]. Similar to STAR, an early study of CarSharing Portland’s impacts found that 26% of members sold a car, while 53% avoided a purchase [13]. The study also reported members using public transit, biking, and walking more. But similar to STAR, the early study found no change in VMT/VKT among members [13]. For a more extensive review on the history of the carsharing industry, see Shaheen et al., (2007) and Shaheen et al., (1998) [6], [14].

Similar results from evaluations of carsharing programs persisted through the early 2000s. Carsharing returned to San Francisco with the launch of City CarShare in March 2001. Cervero (2003) initiated a before-and-after study to evaluate the impacts of City CarShare on both member and nonmember travel behavior three months before the launch and nine months after [15]. A profile of the early members indicated that they were in their early 30s, college graduates, and worked in professional fields. Most significantly, two thirds of members came from zero-car households, while 20% came from one-car households. This early study found that mean daily VMT/VKT dropped for both members and nonmembers, but changes for both groups were not statistically significant. In addition, shares of walking and biking fell, while changes in car ownership were not evaluated. Cervero’s early results of City CarShare were consistent with past work in North America; they found similar demographics among members and that changes in VMT/VKT were not substantial. The early carsharing adopters were those who were primarily carless and used carsharing as a means to augment their mobility [15].

Lane (2005) evaluated the first-year impacts of PhillyCarShare, a non-profit organization operating in Philadelphia as of November 2002. One year after PhillyCarShare’s launch, Lane administered a 500 member online and mail-in survey in November 2003. Roughly 60% of members who joined were from households with zero cars. Members were otherwise demographically similar to the early adopters of City CarShare. Lane (2005) evaluated vehicles sold as a result of membership as well as vehicles not acquired. He reported that each PhillyCarShare vehicle removed roughly 23 cars from the road. Finally, Lane (2005) discusses VMT/VKT drops among members, while acknowledging uncertainty in his estimate. He concluded that a typical reduction would amount to a couple hundred miles per month for members who gave up a car, but that there is considerable variance in his estimate [9].

As carsharing evolved, researchers began to discern more pronounced effects on VMT/VKT. Cervero and Tsai and Cervero et al. revisited City CarShare impacts in 2004 and 2007, respectively [10], [5]. By the third study, VMT/VKT reductions attributable to carsharing were becoming more evident as member VMT/VKT was found to decrease relative to nonmember VMT/VKT. VMT/VKT reductions among carsharing members appeared to occur during the first two years, but large variations existed within the group. Overall, mean mode-adjusted VMT/VKT, which accounted for occupancy levels, dropped 67% for carsharing members in contrast to a 23% increase among nonmembers [5].
III. METHODOLOGICAL APPROACH

The scope of this study is limited to the GHG impacts of changes in travel behavior that result from the population of active carsharing users. The unit of analysis in the survey was the household, as one individual’s carsharing use can affect the travel decisions of all household members. The operating statistic is the change in annualized emissions observed before and after carsharing. That is, this study focuses on assessing the change in annual emissions that result from a household joining carsharing; it describes the “change in the annual GHG emissions rate” of the household. The authors selected this metric because it offers an intuitive illustration of the change in “state of household travel” that carsharing facilitates among its members and is also readily measurable from the responses of a one-time online survey. The state of household travel can be thought of as the new travel routines that are adopted by carsharing households. These new routines may result in lower vehicle ownership and increased use of alternative modes alongside carsharing or in the case of carless households, they could involve the use of carsharing at the expense of public transit and non-motorized travel.

A. Classifications of Carsharing Impact

The authors present two classifications of impact in this study. The classifications are separated by the degree to which they consider unseen emissions that would have occurred in carsharing’s absence. Changes that are “observed” include decreases in emissions that result from a household that sheds a car and drives less, as well as increases in emissions that result from a carless household driving more due to the vehicle access offered by carsharing. These impacts constitute changes that actually happened and are directly measurable. They constitute what the authors call: “observed impact.”

However, carsharing also provides an alternative to households that may substitute for actions that would otherwise occur in its absence. For example, a car-owning household may join carsharing rather than acquire an additional car. The forgone vehicle would have been driven some distance had it been acquired. However, carsharing prevents this from happening, and those emissions never occur in the private vehicle. Instead, travel is shifted to carsharing vehicles and alternative modes to achieve the same purpose. These emissions are not manifested and, when taken in sum with the observed impact, comprise the “full impact.” Hence, the full impact assesses what physically happened with carsharing, as well as “what would have happened otherwise” in the absence of carsharing.

To measure the full impact, respondents were asked to provide an approximation of the number of vehicles that they would have acquired and the distance that they would have driven those vehicles. While the full impact is real, there is an elevated level of uncertainty associated with such responses.

For this reason, the observed and full impacts are always separately considered, as there will always be a larger degree of uncertainty with respect to the measurement and precision of the full impact. The observed impact is also subject to its own measurement error as respondents report actual annual personal VMT (PVMT)/personal VKT (PVKT). To evaluate the impact of the actual distance measurement error, we perform a sensitivity analysis that illustrates how results would have differed had respondents reported overestimations of PVMT/PVKT values.

B. Treatment of Different Travel Modes

The net change in total household VMT/VKT is the primary metric required to assess a difference in member travel patterns that impact GHG emissions. The overall net change in VMT/VKT from carsharing is a result of the balance of impacts across all members. Carsharing is beneficial from a VMT/VKT perspective, if the reductions in private auto use exceed overall carsharing use.

As joining carsharing involves many changes in travel behavior, it is important to consider how shifts to other modes would impact GHG emissions. Some cases are simple. For instance, shifts to non-motorized modes, such as walking and biking, exhibit no increase in GHG emissions. With respect to public transit, the authors consider the effect to be close to the same, as most fixed rail and bus routes operate regardless of capacity use. Energy conservation does dictate that an additional person switching to public transit has to increase GHG emissions by some marginal amount. As a person steps onto a bus or train, the vehicle must exert more energy to move that person to his or her destination. However, because public transportation travels regardless of the presence of the additional passenger, a carsharing member who rides transit is only responsible for the marginal emissions caused by his or her presence. These emissions are smaller than the marginal emissions of a personal vehicle or taxi trip. Hence, if a trip has to be made within an urban region (e.g., to go to work, etc.), and non-motorized travel is infeasible for such a trip, traveling by public transit on an established network is the most efficient decision an individual can make from an energy and emission perspective.

With emissions from motorized public transit minimal at the margin, the evaluation of GHG emission impacts attributable to carsharing is predominantly determined by the change in mileage traveled by personal vehicles and carsharing vehicles. However, local use of rental cars (as opposed to vehicles rented for travel in a distant city) and local taxis should be considered. After joining carsharing, motor vehicle use is more complicated, consisting of personal autos that still remain in the household (if any), carsharing vehicles, local rental vehicles, and local taxi trips.
C. Survey Design and Data Collected

The respondents only completed one survey, and researchers designed the questionnaire to provide “before-and-after” carsharing data to assess impacts. Respondents were asked key questions about their household travel lifestyle during the year before they joined carsharing. The respondents were then asked to evaluate the same annual parameters “at present,” as this permitted simpler recollection and prevented respondents from self-assessing the “after” timeframe in which they may have shifted to a new set of travel patterns.

The survey collected the make, model, and year of each vehicle within the household both before joining carsharing and at the time of the survey. In addition, the annual PVMT/PVKT driven during the year before the member joined and at the time of the survey was solicited for each vehicle. Respondents were given guidelines to make a “best estimate” of annual PVMT/PVKT. To remove the influence of very high distance drivers, any respondent listing a PVMT/PVKT for any vehicle that was over 48,000 km (30,000 mi) was not included in the analysis. The make, model, and year of each vehicle were used to determine the vehicle’s fuel economy. Each vehicle dating back to 1978 was linked to an appropriate entry in the U.S. Environmental Protection Agency (EPA) fuel economy database. Vehicles manufactured prior to 1978 were not listed in the database; these vehicles were given a standard combined fuel economy of 15 mi/gal (15.7 L/100 km). The forgone distances driven in vehicles not acquired (as per the full impact) were all assigned a conservative 42 mi/gal (5.6 L/100 km). The GHG emissions of all vehicle travel are computed using the standard methodology published by the EPA [16].

Respondents were also asked to indicate the carsharing vehicle that they used most often, and the approximate monthly miles that they drove on it. They were not expected to know the vehicle model year, so the link to the fuel economy database assumed a 2007 model year. The respondents only completed one survey, and the approximate monthly miles that they drove on it. They were not expected to know the vehicle model year, so the link to the fuel economy database assumed a 2007 model year. In addition, respondents were asked whether they would purchase a vehicle in the absence of carsharing. If any observed changes in travel behavior are not considered facilitated by a service that is effectively not used. The impact of the inactive membership share on aggregate emissions is discussed later in the results.

D. Participating Organizations

The survey was administered to organizations across the U.S. and Canada. Researchers sent the Canadian and American respondents to separate surveys due to the different units used in the respective countries. The participating North American organizations in the survey included: 1) AutoShare, 2) City Carshare, 3) CityWheels, 4) Community Car Share of Bellingham, 5) CommunAuto, 6) Community Car, 7) Co-operative Auto Network, 8) IGo, 9) PhillyCarShare, 10) VrtuCar, and 11) Zipcar (in North America). The organizations distributed solicitations to their members, which included the link to the survey. The survey opened at the start of September 2008, and closed on November 7, 2008. To encourage participation, two reminders were sent in addition to the original survey solicitation. The survey did start before a major financial crisis. However, a majority of respondents were members of carsharing for a year or longer. A forthcoming sensitivity analysis will illustrate how results vary across respondents by membership duration.

Most organizations, which are located in a single city, distributed survey solicitations to all of their members. Because of Zipcar’s size and geographic distribution, the
sample capped at 30,000 members within specific markets. This included 5,000 each within New York City; Boston; Washington, D.C.; Portland; and Seattle. An additional 2,500 each in Vancouver and Toronto also received survey solicitations. Based on the membership sizes of the participating organizations, the authors estimate that nearly 100,000 carsharing members received the survey solicitation. In total, 9,635 surveys were completed, constituting a response rate of approximately 10%.

Based on the coverage, size, and selection of this population, the authors consider the sample to be random and representative of the active carsharing population within North America. The size of the membership base of each individual organization is proprietary information and cannot be reported. As with all surveys, respondents must consent to being surveyed, and this injects some self-selection into the sample. However, this self-selection applies to the propensity of the respondent to take an online survey. Among active carsharing users, we consider this propensity to be random. However, the inactive cohort would be less likely to take a survey about a service that they use infrequently and are thus subject to non-response bias. Because this cohort is outside of the targeted population of this study, they do not influence the mean impacts. But they do influence the assessment of aggregate carsharing impacts, as the exact size of the inactive cohort is uncertain and arguably a lower bound as defined by their share in the sample. This issue will be discussed further in the results.

IV. RESULTS

The survey results illustrate how carsharing interacts with different households in different ways. Across all respondents, carsharing facilitates both decreases and increases in annual emissions among members. But on balance, this facilitates a net emission reduction that is statistically significant for both the observed and full impact. However, it is important that the “how and why” of this result is understood in the context of the broad diversity of carsharing impacts. While carsharing does facilitate lower emissions, this result is not generalizable across all members or even a majority of members. Rather, carsharing as a system facilitates large decreases in the annual emissions of some households, which compensate for the collective small emission increases of other households.

A. Demographics

Researchers logged a total of 9,635 completed surveys across the U.S. ($N_{US} = 6,895$) and Canada ($N_{CAN} = 2,740$). The complete dataset ($N_{complete} = 9,635$), included all respondents that completed the survey. As respondents were filtered for confounding factors, the final dataset ($N_{final} = 6,281$) includes only those respondents who remained after all filters were applied. Table 1 illustrates the distribution of age, education, and income, among respondents. The table presents a comparison of the complete and final dataset to illustrate that the filtering induced very minor shifts on the demographics for the final sample. The main differences include a slight shift towards older populations and slightly higher incomes.

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Complete Dataset ($N_{complete} = 9,635$)</th>
<th>Final Dataset ($N_{final} = 6,281$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Median: 30, Range: 18-80</td>
<td>Median: 31, Range: 18-80</td>
</tr>
<tr>
<td>Education</td>
<td>Bachelor's degree: 82%</td>
<td>Bachelor's degree: 80%</td>
</tr>
<tr>
<td>Income</td>
<td>Median: $50K, Range: $10K-$100K</td>
<td>Median: $55K, Range: $10K-$100K</td>
</tr>
</tbody>
</table>

| B. Overall Impacts of Carsharing

While the distribution shows that carsharing members are skewed towards the young adult demographic, there is considerable representation among older respondents. Both datasets show that at least a third of respondents are over 40 years old. The income and education of respondents illustrates a similar level of diversity. Carsharing members tend to be well educated, with more than 80% holding at least a bachelor’s degree. In addition, a majority of households (~60%) had 2007 household incomes less than $80K, but more than 20% of households had incomes greater than $100K. Females outnumber males (55%/45%). The size of respondent households tends to be smaller than average. The average household size in the U.S. is 2.6, whereas the average among all respondents was 1.9 persons [18], [19].

Figure 1 presents the distribution of annual emission impacts by respondent frequency for both the observed and full impact. The horizontal axis define “bins” of annual GHG change in metric tons of GHG per year (t GHG/yr), while the vertical axis defines the count of respondents within each bin.

Figure 1 Distribution of Annual Household GHG Emission Impact

A striking feature of the distribution is the high number of respondents that exhibit an increase in annualized emissions within the bounds of 0 and 0.25 t GHG/yr. The spike is evident within both the observed and full impact. Members increasing their annual emissions by some amount under .25 t GHG/yr outnumber the frequency of any other bin along the horizontal axis. Another notable feature of the distribution of
members increasing their emissions is the exponential trend of respondent frequency decline as the rate of annual emissions increases. This decline is far faster to the right of zero than it is to the left. The decline is rapid enough such that the frequency of respondents exhibiting a change of 1.25 to 1.5 t GHG/yr (n = 58) is smaller than the frequency of respondents altering their annual emissions by -1.25 to -1.5 t GHG/yr (n = 78) and for all bins extending to positive and negative infinity. The distribution of members lowering their emissions is far more evenly spread for both the observed and full impact. In total, 4,456 (71%) of respondents have a positive observed impact (emissions increase), while 1,825 (29%) have a negative observed impact (emissions decrease). For the full impact, the balance is more evenly distributed by respondent frequency, as 3,281 respondents (53%) have a positive full impact (emission increase) while 2,953 respondents (47%) have a negative full impact (emission reduction).

The difference between the number of respondents decreasing their emissions in the observed and full impacts highlights the importance of considering avoided emissions. When the full impact is considered, 1,175 respondents (~19%) that appear to be increasing observed emissions were in fact reducing emissions when accounting for avoided travel.

The exponential drop in annual emissions to the right of zero suggests that those joining carsharing for access to automotive mobility do not drive much. To illustrate this point in more detail, Figure 2 presents the distribution of the annual distance driven by carsharing members and the distribution of PVMT/PVKT both before and after the survey.

Figure 2 Distribution of the carsharing distance driven and the personal vehicle distance driven

The top graph in Fig. 2 shows that most households drove very low annual distances on carsharing vehicles. Thirty-seven percent of all households drove less than 500 km (~300 mi) per year on carsharing vehicles. An additional 24% reported driving between 500 and 1000 km (~620 mi). In total, nearly 80% of all households drove less than 2000 km (~1250 mi) per year on carsharing vehicles.

In addition to carsharing miles, the change in the distribution of PVMT/PVKT illustrates simultaneous shifts in the overall driving of private vehicles. The bottom graph in Fig. 2 shows the distribution of the annual distance driven on all personal vehicles held by households before joining carsharing and at the time of the survey.

It shows that the majority of households joining carsharing drove zero distance in personal vehicles. These are essentially carless households, and the only distance they drive is on carsharing vehicles. The “before-and-after” shift in the PVMT/PVKT distribution shows a significant gain in the number of carless households, an increase of nearly 30%. The distribution of annual household PVMT/PVKT distances shows a general decline of households driving all distances. This does not mean that there were no households reporting an increase in household PVMT/PVKT; some did. However, most households that reduced their driving did so by eliminating at least one vehicle.

Figure 3 Profile Cumulative Annual Change in GHG Emissions by Respondent

Although the majority of respondents are increasing their emissions in the observed and full impacts, the net carsharing impact remains unclear from the information presented thus far. The long tail of respondents in Fig. 1 reducing their emissions exhibits greater reductions with greater distance from zero. Fig. 3 shows the same overall distribution, but weighted by the annual emission change of respondents. Each categorical bin of the horizontal axis contains the summation of the annual change in respondent emissions. The result is a distribution that illustrates the cumulative net annual change in emissions for all survey respondents. The top graph in Fig. 3 shows this distribution for the observed impact, whereas the bottom graph shows the full impact.

The horizontal axis in Fig. 3 is in the same units as in Fig. 1, and the respondents represented within each bin are exactly the same for both figures. The difference between Figs. 1 and 3 is that the vertical axis is the sum of the annual emission change (in t GHG/year) of each respondent within each bin. Fig. 4 shows a clearer perspective on the overall net change in annual emissions observed among all respondents. For both the observed and full impacts, it is visually apparent that the area constituting emission reductions is larger than the area constituting increases. Thus, the results show that while the majority of respondents are increasing annual emissions, the cumulative carsharing emission change is negative. It follows that the average emission change across all respondents is also negative. The distribution of the sample population is not normal and is negatively skewed with high kurtosis. However, the central limit theorem and the large sample size establish the appropriate conditions for a paired t-test, as shown in Table II, to evaluate the statistical significance of the overall mean impacts.

Table II Paired Sample t – Test of Mean Household Emission Change

The observed impact across all respondents is an average of −0.58 t GHG/year per household and is statistically significant. The observed impact is contained within a 99% confidence interval −0.50 to −0.65 t GHG/year per household, whereas the full impact, with a mean of −0.84, is contained between −0.76 and −0.91 t GHG/year per household. Thus, the cumulative emission change indicates that carsharing has facilitated a net reduction in the annual rate of GHG emissions
of members across North America. In terms of VKT, the average observed VKT of respondents before joining carsharing was 6468 km/year, whereas the average observed VKT after joining carsharing was 4729 km/year (as calculated by the observed impact). This reduction of 1740 km/year constitutes a decline of 27% in the before-and-after mean driving distance. When the miles that would have been driven in the absence of carsharing are considered, the percentage decline of the mean annual VKT is 43%.

C. Sensitivity Analysis of Aggregate Emission Change

The results of the aggregate analysis are striking in that the mean observed and full impacts of carsharing are negative and statistically significant in spite of the fact that a majority of respondents are technically increasing their emissions through carsharing. The minority decreasing their emissions is doing so in magnitudes that compensate for the small collective increments of the majority. It is natural to wonder whether this result depends on the presence of households reporting very significant emission decreases. To show how this result varies with assumptions and data, we present a sensitivity analysis of several kinds to illustrate how the mean and statistical significance of impacts vary when the most influential observations are adjusted according to certain criteria.

The first analysis illustrates how the results change if the upper bound on PVMT/PKMT responses is gradually lowered such that no PVMT/PKMT response could be greater than the stated upper bound. That is, if an individual stated an annual mileage driven of 32,000 km (20,000 mi), then all responses within the final data set containing PVMT/PVKT values higher than 32,000 km (20,000 mi) are subsequently reset to 32,000 km. The analysis recomputes the mean impacts and associated confidence intervals as this upper bound is taken to zero and the results for all values are presented in Figure 4.

Figure 4 Sensitivity Analysis of Carsharing Impacts Given PVMT/PVKT Ceiling

The shallow slope from 48 000 km (30 000 mi) to 32 000 km (20 000 mi) indicates that the respondents stating PVMT/PVKT distances above 32 000 km (20 000 mi) are not influential on the magnitude of the aggregate impacts. The mean aggregate impacts only gradually increase, and the confidence intervals overlap. If the upper bound were reduced further to 16 000 km PVMT/PVKT, the mean observed impact would be −0.41 t GHG/year per household and statistically significant. In the extreme case, where the upper bound is 3200 km (2000 mi) per year or less, those joining carsharing from carless households begin to dominate, and the observed impact is an increase in emissions.

An additional sensitivity analysis illustrates how results would have varied if the PVMT/PVKT responses given by respondents were systematic over-estimations of their actual mileage driven. That is, the authors assume that the original PVMT/PVKT value given by each respondent is an overestimation by some percentage. The authors then scale the value down to reflect the actual value given the assumed overestimation. Figure 5 provides the mean and confidence interval at each level of overestimation.

Figure 5 Sensitivity of Impacts to PVMT/PVKT Overestimation

Figure 5 shows that even if the assumed overestimation of PVMT/PVKT by respondents was systematically as high as 100% across the entire sample, that both the observed and full impact would still have a mean and confidence interval that is negative and statistically significant.

To evaluate whether the duration of membership influenced the overall carsharing impact, the authors divide the respondents into subgroups as categorized by the time that they have been in their organization. The results, which are presented in Figure 6, show that the average observed and full impact is remarkably stable across different membership durations.

Figure 6 Analysis of Impact by Membership Duration

Figure 6 demonstrates two important points. First, it raises the possibility that near-term changes after joining comprise the bulk of the impact. However, a longitudinal analysis of members would better corroborate this conclusion. Second, it suggests that the circumstantial timing of the survey during the financial crisis of 2008 did not impose any large effect on the results as respondents that joined far earlier exhibit similar average impacts, all of which are statistically significant.

Finally, the filtering of respondents to eliminate the influence of confounding factors on the overall results yields the tighter sample of 6,281, in which carsharing membership is a key lifestyle factor. However, it also introduces the possibility that a bias is inserted if those filtered are systematically skewed towards either negative or positive emission changes. Figure 7 shows how Figure 4 would have appeared if all respondents with calculable emissions were included without any data filter.

Figure 7 Cumulative Change in Annual GHG Emission Change with the Complete Dataset

Figure 7 shows that the profile of the cumulative emissions of all respondents fits the same shape as Figure 4, but exhibits a wider distribution of impacts with larger annual changes. This result is expected, as Figure 7 reintroduces respondents...
that had emission increases and decreases that were large due to other factors or measurement error. Across all 9,506 respondents, the average observed impact was statistically significant at -0.53 t GHG/yr/household and a confidence interval of (-0.59, -0.46). For the full impact, it was -0.8 t GHG/yr/household with an interval of (-0.86, -0.73). The results of Figure 7 also show that although the number of respondents filtered due to confounding factors was relatively large, their removal did not introduce a significant systematic bias that altered the general direction or magnitude of the carsharing impact.

D. Distributions of Subsamples by Membership Circumstance

The impact of carsharing is the composition of a complex and diverse set of relationships pertaining to how individual households incorporate carsharing into their lifestyle. The nuances within the aggregate distributions in Figs. 1 and 3 become more apparent with an analysis of selected subpopulations. At the beginning of the survey, respondents were asked to characterize the circumstances in which their household joined carsharing. These circumstantial categories, as shown in Table III, offer insights as to which subgroups comprise the population.

These circumstances are reflective of the lifestyle that the respondent was leading prior to joining carsharing as they are succinct sentences describing a specific situation. Table III includes information on the share of each circumstantial category within the complete and final sample. For most circumstantial categories, the balance of respondents changes very little. The largest change consists of people who did not have a car and joined carsharing to gain additional personal freedom. This shift is unfavorable to carsharing because the category consists of people who can only increase their observed emissions, as they were not driving prior to joining carsharing.

Table III: Circumstantial Categories of Respondent Membership

Fig. 8 shows graphs of two such influential categories in which households were carless prior to joining. The avoided emissions, which generate the full impact, are applicable for both respondent subsamples.

Figure 8 Respondents Entering Carsharing Without a Vehicle

The change in the distributions of annual GHG emissions illustrates the importance of capturing latent effects. Nearly 35% of respondents using carsharing as an explicit substitute for vehicle acquisition would report higher emissions in carsharing’s absence. Similarly, for the broader population of members that joined carsharing for greater mobility, 26% suggest that carsharing is resulting in lower emissions than would otherwise occur. While it is clear that carless households joining carsharing are by-in-large increasing emissions as a result of their membership, the avoided emission impact that would occur otherwise is an important offset. Another key distinction of both distributions is the range of emission change observed on both sides of zero. The changes exhibited by households entering carsharing without a history of personal vehicle holdings are contained within a small range relative to the aggregate data. More than 90% of baseline and avoided impacts are contained with +/- 2 t GHG/yr, thus emphasizing that emission increments generated by carless households are small.

In contrast to carless households, Figure 9 illustrates the distribution of changes in emissions yielded by respondents that entered carsharing with vehicles that they subsequently shed.

Figure 9 Joined Carsharing and Shed Vehicles

Both distributions in Fig. 9 are characterized by a significant majority of respondents reducing annual GHG emissions. Among multivehicle households shedding cars, 88% of respondents reduced emissions. Similarly, among single-vehicle households shedding cars, 93% exhibited an emission reduction. It is important to note that, within Fig. 9, the observed and full impacts are the same. This is a function of the methodological calculation to prevent the full impact from being overstated. As respondents in this category are already shedding vehicles, the application of avoided driving constitutes a replacement of PVMT/PVKT. Thus, the application of avoided emissions would constitute double counting. For this and other categories in which a vehicle was shed, similar rules were followed.

E. Impacts by Organization and by Country

Both for-profit and nonprofit organizations have grown to achieve sizable membership rosters within their respective markets. A comparative analysis was done to evaluate the degree to which impacts differ by organization type and by country. The comparison found that the nonprofit organizations exhibited higher reductions per member than for-profit organizations. The analysis also found that the average impact in the U.S. is larger than that in Canada. However, the average observed and full impacts by organization and by country are negative and statistically significant for all categories (for further details, see [17]). While the nonprofits exhibit a higher emission impact per household, the scale of the for-profit impact is likely larger due to the larger membership base. The impact of carsharing in the U.S. is likely larger than that in Canada because Americans drive longer distances and thus have more PVMT/PVKT to reduce. Overall, the data from this study
support that both nonprofit and for-profit organizations are reducing emissions. The reason for the apparent discrepancy between organization types remains an open question.

F. Aggregate Carsharing GHG Impacts

The analysis thus far has shown that carsharing members have reduced their emissions from driving. However, until now, the results have presented these impacts in the context of emissions/household or vehicles shed/household. No information thus far has been presented to translate these impacts to the aggregate carsharing industry. To gain insight into this issue, several assumptions must be made.

First, we need to define the population size that is represented by the sample of active carsharing households that use the neighborhood carsharing model. As of mid-2009, the carsharing industry had 378,000 members within North America. The sample represents a proportion of this total population. From the sample, the authors estimate that 2% of the population was exclusive business users, and 6% were college students at the time of the survey. In addition, the unit of analysis is the household, and the survey found that 19% of respondents were members living in households with another carsharing member. The share of respondents with more than two members/household was negligible. The authors scaled the household population to 314,390 households. Finally, the authors accounted for the share of inactive members, which are considered to have an impact of zero. From the sample, the authors know that the share of inactive members is at least 8%, but because a non-response bias among this cohort, the authors conducted a sensitivity analysis of the aggregate impacts assuming a range of inactive members within the population. As that share rises, the population to which the average impacts derived from the sample falls. Table IV illustrates this result across the range of plausible inactive member shares.

Table IV Sensitivity of Aggregate Carsharing GHG Emission Impacts

Based on consultation with the carsharing industry, the authors believe that at the time of the survey, the share of inactive members ranged from 15 to 40%. Given this range, the results suggest that carsharing reduces between 109,000 to 155,000 t GHG / yr by the observed impact and 158,000 to 224,000 t GHG / yr by the full impact. It is important to note that this range could shift over time as the industry evolves. This evolution may occur in ways that either increase or decrease the expected share of inactive members. For example, if free and low fixed cost membership plans become less common in the industry, the share of inactive memberships will probably fall.

V. CONCLUSIONS

Based on this study, carsharing is reducing net annual GHG emissions in North America. This reduction is not the result of all members universally reducing their emissions. Rather, it is derived from the balance of the distribution of changes across all members that are increasing and decreasing emissions. The number of carless households increasing their emissions is comparatively large, constituting more than half of the respondents in both of the evaluated metrics. The degree to which these households are increasing emissions as a result of carsharing is small on an individual basis. The overall emission reduction is driven by the remaining respondents that are reducing their emissions by larger amounts that collectively more than compensate for incremental increases of the majority. Carsharing appears to enable members to collectively converge to a shared-vehicle, low-mileage lifestyle. Carless households converge to this lifestyle by increasing emissions, and car-holding households converge by decreasing emissions.

The scope of the emission impact is travel based. That is, no impacts from vehicle holding reductions or land-use changes are included. The results and scope of the study have important implications for policy design. Carsharing systems provide environmental benefits. However, caution regarding the caveats of this study in any policy design and emission crediting is necessary. It is clear from the data collected that not all members reduce emissions. More importantly, not all members of carsharing organizations are active members. For this reason, a blanket application of emission factors to carsharing membership numbers is not recommended as an appropriate policy design, as an organization can increase casual members by initiating zero fixed cost membership plans. The diversity of impacts by member (and member type), region, and organization type suggests that credits for carsharing impacts should be certifiable.

This study shows that carsharing in North America has provided: 1) mobility to thousands of carless households with some increase in emissions and 2) a mobility alternative to urban households that can adapt to a less auto-intensive lifestyle with emission reductions. The net effect of these two trends is an overall reduction in annual emissions. Future studies should continue to evaluate these trends, as they will likely evolve. As long as carsharing continues to thrive economically, its benefits are likely to grow as more car-holding households find carsharing to be an established option for meeting automotive travel needs within North American cities.

ACKNOWLEDGMENT

The authors are grateful to the Mineta Transportation Institute for funding this study. The authors would like to thank the numerous carsharing programs in North America that
participated in this survey. The authors would also like to thank C. Rodier, A. Cohen, D. Allen, M. Chung, B. Dix, K. Brown, J. Ma, J. Bato, S. Contreras, and E. Mao of the Transportation Sustainability Research Center, University of California, Berkeley, for assistance with the literature review and survey development, as well as A. Gershenson and A. Zia of San Jose State University, N. Weiss of Arizona State University, D. Brook, C. Lane, and K. McLaughlin for assistance with survey development and report review. The contents of this report reflect the views of the authors and do not necessarily indicate acceptance by the sponsors.

REFERENCES

Elliot W. Martin is a Post-Doctoral Research Engineer at the Transportation Sustainability Research Center (TSRC) within the Institute of Transportation Studies at UC Berkeley. He holds a PhD in Civil and Environmental Engineering from UC Berkeley, completed in August of 2009. In 2006, he completed a dual Masters in Transportation Engineering and City and Regional Planning also at UC Berkeley. Prior to graduate school, Elliot worked as an Assistant Economist at the Federal Reserve Bank of Richmond. He graduated from Johns Hopkins University in 2001 with a degree in Economics and Computer Science.

Susan A. Shaheen holds a joint research appointment at the Transportation Sustainability Research Center (TSRC) and at the Institute of Transportation Studies-Davis. She is co-director of the transportation track of the Energy Efficiency Center at UC Davis and was honored as the first Honda Distinguished Scholar in Transportation in 2000. In October 2007, Susan became a Research Director at TSRC. She served as the Policy & Behavioral Research Program Leader at California Partners for Advanced Transit and Highways from 2003 to 2007, and as a special assistant to the Director’s Office of the California Department of Transportation from 2001 to 2004. She has a Ph.D. in ecology, focusing on technology management and the environmental aspects of transportation, from the University of California, Davis (1999) and a MS in public policy analysis from the University of Rochester (1990).
Table 1: Demographics

<table>
<thead>
<tr>
<th>Age Category</th>
<th>Complete N = 9482</th>
<th>Final N = 6197</th>
<th>Education</th>
<th>Complete N = 9591</th>
<th>Final N = 6263</th>
<th>Income (HH, $ US)</th>
<th>Complete N = 9536</th>
<th>Final N = 6281</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 20</td>
<td>0.6%</td>
<td>0.1%</td>
<td>Grade School</td>
<td>0%</td>
<td>0%</td>
<td>Under $20,000</td>
<td>8%</td>
<td>6%</td>
</tr>
<tr>
<td>20 to 30</td>
<td>39.3%</td>
<td>35.3%</td>
<td>Graduated High School</td>
<td>2%</td>
<td>2%</td>
<td>$20,000 - $40,000</td>
<td>18%</td>
<td>17%</td>
</tr>
<tr>
<td>30 to 40</td>
<td>29.1%</td>
<td>31.0%</td>
<td>Some College</td>
<td>12%</td>
<td>12%</td>
<td>$40,000 - $60,000</td>
<td>19%</td>
<td>20%</td>
</tr>
<tr>
<td>40 to 50</td>
<td>15.8%</td>
<td>16.9%</td>
<td>Associate’s Degree</td>
<td>4%</td>
<td>4%</td>
<td>$60,000 - $80,000</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>50 to 60</td>
<td>10.4%</td>
<td>11.1%</td>
<td>Bachelor’s Degree</td>
<td>42%</td>
<td>42%</td>
<td>$80,000 - $100,000</td>
<td>11%</td>
<td>11%</td>
</tr>
<tr>
<td>60 to 70</td>
<td>4.1%</td>
<td>4.8%</td>
<td>Master’s Degree</td>
<td>27%</td>
<td>27%</td>
<td>$100,000 - $120,000</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>70 to 80</td>
<td>0.6%</td>
<td>0.6%</td>
<td>Juris Doctorate Degree</td>
<td>4%</td>
<td>4%</td>
<td>$120,000 - $140,000</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>80 to 90</td>
<td>0.1%</td>
<td>0.1%</td>
<td>Doctorate</td>
<td>8%</td>
<td>8%</td>
<td>More than $140,000</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
<td>2%</td>
<td>Decline to Respond</td>
<td>10%</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Distribution of Annual Household GHG Emission Impact
Figure 2 Distribution of the carsharing distance driven and the personal vehicle distance driven
Figure 3 Profile Cumulative Annual Change in GHG Emissions by Respondent

Table II: Paired Sample t – Test of Mean Household Emission Change

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>99% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Change in Emissions</td>
<td>-.58</td>
<td>2.23</td>
<td>.03</td>
<td>-.65, -.50</td>
<td>-20.479</td>
<td>6280</td>
<td>.000</td>
</tr>
<tr>
<td>Full Change in Emission</td>
<td>-.84</td>
<td>2.20</td>
<td>.03</td>
<td>-.91, -.76</td>
<td>-30.027</td>
<td>6280</td>
<td>.000</td>
</tr>
</tbody>
</table>
Figure 4 Sensitivity of impacts to given PVMT/PVKT ceiling
Figure 5 Sensitivity of Impacts to PVMT/PVKT Overestimation
Figure 6 Analysis of GHG Impact by Membership Duration
Figure 7 Cumulative Change in Annual GHG Emissions Change with the Complete Dataset
<table>
<thead>
<tr>
<th>Circumstantial Category</th>
<th>Percent of Respondents Completing the Survey (N = 9635)</th>
<th>Percent of Respondents in Final Dataset (N = 6281)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owned at least one car, but needed an additional car for greater flexibility, and joined carsharing instead of acquiring an additional car.</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>I am in college, and I joined carsharing to gain access to a vehicle while in college.</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Owned one car, but I joined carsharing and got rid of the car.</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>My household did not have a car, but joined carsharing to gain additional personal freedom.</td>
<td>43%</td>
<td>51%</td>
</tr>
<tr>
<td>My household did not have a car, but changes in life required a car and I joined carsharing instead.</td>
<td>6%</td>
<td>7%</td>
</tr>
<tr>
<td>My employer joined carsharing, and I joined through my employer.</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>A car of mine stopped working, and instead of replacing it I joined carsharing.</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Owned more than one car. Got rid of at least one car and joined carsharing.</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>I live in an apartment building with a designated carsharing vehicle, and I joined through its membership arrangement.</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>I joined carsharing for reasons other than those listed above. Please explain:</td>
<td>9%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Question: Please select the statement that best characterizes the circumstances under which you joined carsharing.
Figure 8 Respondents Entering Carsharing Without a Vehicle
Figure 9 Joined Carsharing and Shed Vehicles
<table>
<thead>
<tr>
<th>Inactive Share</th>
<th>Active Carsharing Household Population</th>
<th>Observed Impact Total Annual Emissions (t GHG / yr)</th>
<th>Full Impact Total Annual Emissions (t GHG / yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>314,390</td>
<td>-182,000</td>
<td>-264,000</td>
</tr>
<tr>
<td>5%</td>
<td>298,671</td>
<td>-173,000</td>
<td>-251,000</td>
</tr>
<tr>
<td>10%</td>
<td>282,951</td>
<td>-164,000</td>
<td>-238,000</td>
</tr>
<tr>
<td>15%</td>
<td>267,232</td>
<td>-155,000</td>
<td>-224,000</td>
</tr>
<tr>
<td>20%</td>
<td>251,512</td>
<td>-146,000</td>
<td>-211,000</td>
</tr>
<tr>
<td>25%</td>
<td>235,793</td>
<td>-137,000</td>
<td>-198,000</td>
</tr>
<tr>
<td>30%</td>
<td>220,073</td>
<td>-128,000</td>
<td>-185,000</td>
</tr>
<tr>
<td>35%</td>
<td>204,354</td>
<td>-119,000</td>
<td>-172,000</td>
</tr>
<tr>
<td>40%</td>
<td>188,634</td>
<td>-109,000</td>
<td>-158,000</td>
</tr>
<tr>
<td>45%</td>
<td>172,915</td>
<td>-100,000</td>
<td>-145,000</td>
</tr>
<tr>
<td>50%</td>
<td>157,195</td>
<td>-91,000</td>
<td>-132,000</td>
</tr>
</tbody>
</table>