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Abstract. During the Last Interglacial (LIG, ∼ 130–

115 kiloyears (kyr) before present (BP)), the northern high

latitudes were characterized by higher temperatures than

those of the late Holocene and a lower Greenland Ice Sheet

(GIS). However, the impact of a reduced GIS on the global

climate has not yet been well constrained. In this study, we

quantify the contribution of the GIS to LIG warmth by per-

forming various sensitivity studies based on equilibrium sim-

ulations, employing the Community Earth System Models

(COSMOS), with a focus on height and extent of the GIS. We

present the first study on the effects of a reduction in the GIS

on the surface temperature (TS) on a global scale and sepa-

rate the contribution of astronomical forcing and changes in

GIS to LIG warmth. The strong Northern Hemisphere sum-

mer warming of approximately 2 ◦C (with respect to pre-

industrial) is mainly caused by increased summer insolation.

Reducing the height by ∼ 1300 m and the extent of the GIS

does not have a strong influence during summer, leading to

an additional global warming of only +0.24 ◦C compared to

the purely insolation-driven LIG. The effect of a reduction in

the GIS is, however, strongest during local winter, with up

to +5 ◦C regional warming and with an increase in global

average temperature of +0.48 ◦C.

In order to evaluate the performance of our LIG simu-

lations, we additionally compare the simulated TS anoma-

lies with marine and terrestrial proxy-based LIG temperature

anomalies derived from three different proxy data compila-

tions. Our model results are in good agreement with proxy

records with respect to the warming pattern but underesti-

mate the magnitude of temperature change when compared

to reconstructions, suggesting a potential misinterpretation of

the proxy records or deficits in our model. However, we are

able to partly reduce the mismatch between model and data

by additionally taking into account the potential seasonal bias

of the proxy record and/or the uncertainties in the dating of

the proxy records for the LIG thermal maximum. The sea-

sonal bias and the uncertainty of the timing are estimated

from new transient model simulations covering the whole

LIG. The model–data comparison improves for proxies that

represent annual mean temperatures when the GIS is reduced

and when we take the local thermal maximum during the LIG

(130–120 kyr BP) into account. For proxy data that represent

summer temperatures, changes in the GIS are of minor im-

portance for sea surface temperatures. However, the annual

mean and summer temperature change over Greenland in the

reduced GIS simulations seems to be overestimated as com-

pared to the local ice core data, which could be related to the

interpretation of the recorder system and/or the assumptions

of GIS reduction. Thus, the question regarding the real size

of the GIS during the LIG has yet to be answered.

1 Introduction

One important application of atmosphere–ocean general cir-

culation models (AOGCMs) is the computation of future cli-

mate projections (Collins et al., 2013; Kirtman et al., 2013),

which allow insight into possible future climate states that

may be notably different from present day. In order to en-
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sure the reliability of such climate projections, the climate

models’ ability to replicate climate states that are different

from the present needs to be tested (e.g. Braconnot et al.,

2012; Flato et al., 2013). Past time periods provide the means

for evaluating the performance of general circulation models

(e.g. Dowsett et al., 2013; Lohmann et al., 2013; Lunt et al.,

2013).

In particular, the simulation of interglacial climates pro-

vides an example of how models can respond to well known

changes in astronomical forcing (Mearns et al., 2001) and

the possibility to analyse the main drivers leading to an inter-

glacial climate that was warmer than the present interglacial.

The Last Interglacial (LIG, ∼ 130–115 kiloyears (kyr) before

present (BP)) is considered to be on average warmer than the

Holocene (10–0 kyr BP) (CLIMAP Project Members, 1984;

Martinson et al., 1987; Kukla et al., 2002; Bauch and Er-

lenkeuser, 2003; Felis et al., 2004; Kaspar et al., 2005; Jansen

et al., 2007; Turney and Jones, 2010; Masson-Delmotte et

al., 2013). Model simulations indicate a pronounced warm-

ing during boreal summer in northern high latitudes (Har-

rison et al., 1995; Kaspar et al., 2005; Otto-Bliesner et al.,

2006; Lohmann and Lorenz, 2007; Stone et al., 2013). Proxy

records located in the Northern Hemisphere indicate also that

LIG climate is characterized by temperatures that are several

degrees Celsius above pre-industrial values in several regions

(Kaspar et al., 2005; CAPE-Last Interglacial Project Mem-

bers, 2006; Turney and Jones, 2010; Mckay et al., 2011).

Simulated winter in high latitudes is considered to be warmer

during the LIG due to sea ice feedbacks (Montoya et al.,

2000; Kaspar et al., 2005; Yin and Berger, 2010). One cause

of LIG summer warmth was increased summer insolation at

middle to high latitudes. Greenhouse gas (GHG) concentra-

tions during the LIG were similar to the pre-industrial period

(PI) (Bakker et al., 2014).

Studies based on reconstructions and climate model sim-

ulations suggest a partial or complete absence of the Green-

land Ice Sheet (GIS) during the LIG, and that the sea level

was higher than the PI (Veeh, 1966; Stirling et al., 1998;

Cuffey and Marshall, 2000; Otto-Bliesner et al., 2006; Over-

peck et al., 2006; Jansen et al., 2007; Kopp et al., 2009,

2013; Alley et al., 2010; van de Berg et al., 2011; Robin-

son et al., 2011; Dutton and Lambeck, 2012; Quiquet et al.,

2013; Church et al., 2013; Stone et al., 2013), while a more

recent study based on ice core data proposes only a mod-

est GIS change (i.e. equivalent to a contribution to sea level

rise of ∼ 2 m; NEEM community members, 2013; Masson-

Delmotte et al., 2013). An increase in sea level during the

LIG is estimated to be between 6 and 9 m (Kopp et al., 2009;

Dutton et al., 2015), with a possible contribution of 3 to 4 m

from Antarctica (Sutter et al., 2016). The contribution of a

partially melted GIS to LIG sea level rise is, however, not yet

well determined; various studies suggest a sea level rise due

to meltwater from Greenland of +0.3 to +5.5 m (Cuffey and

Marshall, 2000; Tarasov and Peltier, 2003; Lhomme et al.,

2005; Otto-Bliesner et al., 2006; Colville et al., 2011; Qui-

quet et al., 2013; Stone et al., 2013), part of the uncertainty

arising from different climate scenarios used to assess the ice

sheet response.

Existing studies on the effects of a reduced GIS during the

LIG have been centred mostly on the Northern Hemisphere

and focused on implications related to sea level rise (Stone

et al., 2013) and Atlantic Meridional Overturning Circula-

tion (AMOC) (Bakker et al., 2012). The studies by Bakker et

al. (2012) and Stone et al. (2013) assume a relatively modest

reduction of the GIS and find a mismatch between the sim-

ulated and the proxy-based temperature anomalies with re-

spect to PI (CAPE-Last Interglacial Project Members, 2006).

Otto-Bliesner et al. (2006) find that a GIS elevation reduced

by 500 m leads to a pronounced warming of up to +5 ◦C in

middle- to high-latitude summer. However, they also find a

mismatch between model and data, with the model under-

estimating the temperature anomaly indicated by the proxy

record. In an LIG study based on transient climate model

simulations performed with an Earth system model of inter-

mediate complexity (EMIC), Loutre et al. (2014) find that

changes in the Northern Hemisphere ice sheet configuration

(extent and albedo) have only a small impact on the climate at

the beginning of the LIG. They find as well that the model un-

derestimates the magnitude of the temperature change when

compared to reconstructions.

Other model–data comparison studies for the LIG (Lunt

et al., 2013; Otto-Bliesner et al., 2013) based on AOGCMs

(but with no changes in GIS elevation or extent) also show

an underestimation of reconstructed temperature anomalies

(Turney and Jones, 2010; McKay et al., 2011). Bakker and

Renssen (2014), who perform an analysis of transient sim-

ulations for the LIG, provide a partial explanation for the

model–data mismatch, proposing that such large differences

between the reconstructed and simulated LIG temperatures

may stem from the fact that commonly used climate synthe-

ses represent a single time slice assuming synchronous LIG

thermal maximum in space and time. Their study suggests

that global compilations of reconstructed LIG thermal max-

imum overestimate the warming. However, different studies

(modelling as well as proxy-based) indicate that the max-

imum LIG warmth occurred at different times throughout

the LIG depending on the geographical location (Bakker

et al., 2012; Govin et al., 2012; Langebroek and Nisan-

cioglu, 2014). The lack of climate synthesis for the LIG go-

ing further than proposing a single snapshot on LIG maxi-

mum warmth and thus accounting for asynchronous changes

across the globe is due to the difficulty in building robust and

coherent age models for different climatic archives during

the LIG (Govin et al., 2015). Recently, Capron et al. (2014)

have proposed a new climate synthesis for the high-latitude

regions based on a coherent temporal framework between ice

and marine archives. This allows for the first time to assess

both the temporal and the spatial evolution of the climate

throughout the LIG (Capron et al., 2014).
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Transient LIG climate simulations provide the possibility

to determine when and where maximum LIG warmth oc-

curred, and whether a given record may be seasonally biased

or rather represents annual mean temperatures. Therefore,

transient climate simulations may help to clarify the origin

of the disagreement between model and data. In this study,

we analyse the effect of a reduced GIS on LIG global cli-

mate with a focus on surface temperature (TS) at 130 kyr BP.

The TS is derived from equilibrium simulations performed

with an AOGCM. We perform several sensitivity simulations

with different boundary conditions and use three different

methods of reducing GIS elevation to half its pre-industrial

elevation and/or extent. This approach enables us to deter-

mine what GIS configuration has the strongest impact on

the global temperature. Additionally, we assess the impor-

tance of insolation and albedo. Furthermore, in order to val-

idate our results, we perform a model–data comparison us-

ing three different proxy-based temperature compilations by

CAPE-Last Interglacial Project Members (2006), Turney and

Jones (2010), and Capron et al. (2014). For model–data com-

parison, we additionally consider the timing uncertainty on

the maximum LIG warmth as determined from our transient

simulations as well as the potential seasonal bias of the proxy

record.

2 Data and methods

2.1 Model description

The Community Earth System Models (COSMOS) consist

of the general atmosphere circulation model ECHAM5 (5th

generation of the European Centre Hamburg Model; Roeck-

ner et al., 2003); the land surface and vegetation model JS-

BACH (Jena Scheme of Atmosphere Coupling in Hamburg;

Raddatz et al., 2007); the general ocean circulation model

MPIOM (Max Planck Institute Ocean Model; Marsland et

al., 2003); and the OASIS3 coupler (Ocean–Atmosphere–

Sea Ice–Soil; Valcke et al., 2003; Valcke, 2013), which en-

ables the atmosphere and ocean to interact with each other.

COSMOS is mainly developed at the Max Planck Institute

for Meteorology in Hamburg (Germany). The atmospheric

component ECHAM5 is a spectral model, which is used in

this study at a horizontal resolution of T31 (∼ 3.75◦ × 3.75◦)

with a vertical resolution of 19 hybrid sigma-pressure lev-

els, the highest level being located at 10 hPa. JSBACH sim-

ulates fluxes of energy, momentum, and CO2 between land

and atmosphere and comprises the dynamic vegetation mod-

ule by Brovkin et al. (2009), which enables the terrestrial

plant cover to explicitly adjust to variations in the climate

state. MPIOM is formulated on a bipolar orthogonal spher-

ical coordinate system. We employ it at a horizontal resolu-

tion of GR30 (corresponding to ∼ 3◦ × 1.8◦) with 40 vertical

levels. MPIOM includes a Hibler-type zero-layer dynamic-

thermodynamic sea ice model with viscous plastic rheol-

ogy (Semtner, 1976; Hibler, 1979). No flux correction is ap-

plied (Jungclaus et al., 2006). Model time steps are 40 min

(atmosphere) and 144 min (ocean). This COSMOS config-

uration has been applied for the mid- and early Holocene

(Wei and Lohmann, 2012), glacial conditions (Gong et al.,

2013; Zhang et al., 2013, 2014), the Pliocene (Stepanek and

Lohmann, 2012), the Miocene (Knorr et al., 2011; Knorr

and Lohmann, 2014), future climate projections (Gierz et al.,

2015), and the LIG (Lunt et al., 2013; Pfeiffer and Lohmann,

2013; Bakker et al., 2014; Felis et al., 2015; Gong et al.,

2015; Jennings et al., 2015).

2.2 Experimental setup

As control climate, we use a PI simulation described by Wei

et al. (2012). Greenhouse gas concentrations and astronom-

ical forcing of the PI simulation are prescribed according to

the Paleoclimate Modelling Intercomparison Project Phase 2

(PMIP2) protocol (Braconnot et al., 2007). Several equilib-

rium simulations covering the LIG are performed using fixed

boundary conditions for 130 and 125 kyr BP time slices. The

latter simulation is performed in order to assess whether a

reduction in the GIS at 125 kyr BP improves the agreement

between the model and the three proxy compilations con-

sidered in this study (CAPE-Last Interglacial Project Mem-

bers, 2006; Turney and Jones, 2010; 125 kyr BP time slice by

Capron et al., 2014). Astronomical parameters for the time

slices considered in this study have been calculated accord-

ing to Berger (1978) and are given in Table 1. It is known that

one main driver for LIG climate is the Earth’s astronomical

parameters (Kutzbach et al., 1991; Crowley and Kim, 1994;

Montoya et al., 2000; Felis et al., 2004; Kaspar and Cubasch,

2007). During the early part of the LIG, the axial tilt (obliq-

uity) was higher which caused stronger summer insolation

at high latitudes of the Northern Hemisphere, while the low

latitudes received less insolation; this effect manifests in en-

hanced seasonality (i.e. warmer summers and cooler winters)

in the early LIG climate. The Earth’s orbital eccentricity was

more than twice the present-day value (Berger and Loutre,

1991), and boreal summer coincided with the Earth passing

the perihelion (Laskar et al., 2004; Yin and Berger, 2010).

Our main focus is the effects of height and extent of the

GIS and of insolation changes on climate; consequently,

GHG concentrations are prescribed at mid-Holocene levels

(278 parts per million by volume (ppmv) CO2, 650 parts per

billion by volume (ppbv) CH4, and 270 ppbv N2O, Table 1).

An additional simulation is performed using values for GHG

concentrations proposed in the Paleoclimate Modelling Inter-

comparison Project Phase 3 (PMIP3) for the 130 kyr BP time

slice (e.g. Lunt et al., 2013) and corresponding to 257 ppmv

for CO2, 512 ppbv for CH4, and 239 ppbv for N2O (LIG-

GHG, Table 1, Fig. S1 in the Supplement). This simula-

tion is included in the Supplement as a control run for the

GHG concentrations used in our LIG sensitivity simulations

in order to show that there is no large-scale impact of lower

GHG concentrations relative to our LIG control simulation
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Table 1. Overview of model configuration and climate forcings. PI: pre-industrial; Veg.: vegetation; dyn.: dynamic; e: eccentricity; ε:

obliquity; ω: length of perihelion. The Greenland Ice Sheet (GIS) configurations are displayed in Fig. 1.

Simulation Time CO2 CH4 N2O Greenland Veg. e ε ω

(kyr BP) (ppmv) (ppbv) (ppbv) Ice Sheet (◦) (◦)

LIG-ctl 130 278 650 270 PI dyn. 0.0382 24.24 49.1

LIG-× 0.5 130 278 650 270 × 0.5 dyn. 0.0382 24.24 49.1

LIG-1300m 130 278 650 270 −1300 m dyn. 0.0382 24.24 49.1

LIG-1300m-alb 130 278 650 270 −1300 m + alb dyn. 0.0382 24.24 49.1

LIG-1300m-alb-CH4 130 280 760 270 −1300 m + alb dyn. 0.0382 24.24 49.1

LIG-GHG∗ 130 257 512 239 PI PI 0.0382 24.24 49.1

LIG-125k∗ 125 278 650 270 −1300 m + alb dyn. 0.0400 23.79 128.1

PI 0 280 760 270 PI dyn. 0.0167 23.45 282.2

LIG-ctl-tr 130–115 278 650 270 PI dyn. varying varying varying

LIG-× 0.5-tr 130–115 278 650 270 × 0.5 dyn. varying varying varying

LIG-1300m-alb-tr 130–115 278 650 270 −1300 m + alb dyn. varying varying varying

LIG-GHG-tr 130–115 varying varying varying PI PI varying varying varying

HOL-tr 8–0 278 650 270 PI dyn varying varying varying

∗ Simulations presented in the Supplement.

(Fig. S1). Another LIG simulation is forced with increased

CH4 (760 ppbv) and slightly increased CO2 (280 ppmv) in

order to have one LIG simulation that has identical GHG

concentrations to the ones prescribed in the PI simulation

(Wei et al., 2012) (Table 1).

The size of the GIS during the LIG is not well constrained

by reconstructions (Koerner, 1989; Koerner and Fisher, 2002;

NGRIP members, 2004; Johnsen and Vinther, 2007; Willer-

slev et al., 2007; Alley et al., 2010; NEEM community mem-

bers, 2013). We take this uncertainty into account and per-

form sensitivity simulations with three different elevations

and two different ice sheet areas of the GIS (Fig. 1). An

LIG simulation with a pre-industrial GIS elevation (LIG-ctl,

Table 1, Fig. 1a) is used as a control run for our LIG sim-

ulations, which allows us to quantify the exclusive effects

of Greenland elevation on climate. Four simulations are per-

formed using a modified GIS (Table 1). We consider the fol-

lowing four options:

1. A GIS lowered to half its pre-industrial elevation with

unchanged GIS area (LIG-× 0.5, Fig. 1b).

2. A GIS lowered by 1300 m (LIG-1300m); at locations

where the pre-industrial Greenland elevation is below

1300 m, we set LIG orography to 0 m, but define the

ground to be ice-covered and keep the albedo at values

typical for the GIS (Fig. 1c).

3. A GIS similar to LIG-1300m, but with albedo adjust-

ment at locations where prescribed LIG orography is

0 m (LIG-1300m-alb); at such locations the land surface

is defined as being ice-free and the background albedo

is reduced from 0.7 to 0.16 (Fig. 1d), an albedo value

that is typical for tundra (Fitzjarrald and Moore, 1992;

Eugster et al., 2000). This simulation, in combination

with LIG-1300m and LIG-ctl, allows us to separate the

climatic effects of a lowered and spatially reduced GIS

from those of changes in albedo.

4. A simulation similar to (3), but with an atmospheric

concentration of CH4 that is increased to 760 ppbv

(LIG-1300m-alb-CH4, Fig. 1d); this simulation enables

us to quantify the combined effect of a lowered GIS el-

evation, changes in albedo, and insolation with respect

to PI.

Such changes in GIS elevation and extent would lead to

a sea level rise of about 3 m for the present situation due

to the post-glacial rebound effect, when assuming no elastic

lithosphere deformation (Fowler, 2004). A sea level change

of +3 m is in agreement with other studies that suggest an in-

crease in sea level of 0.3 to 5.5 m during the LIG as a result of

GIS melting (Cuffey and Marshall, 2000; Tarasov and Peltier,

2003; Lhomme et al., 2005; Otto-Bliesner et al., 2006; Carl-

son et al., 2008; Colville et al., 2011; Quiquet et al., 2013;

Stone et al., 2013). It is, however, not compatible with the el-

evation change inferred from the air content at North Green-

land Eemian Ice Drilling (NEEM) (NW Greenland), which

suggests a decrease in elevation of less than 400 m (albeit

with a large uncertainty) starting from an ice sheet thicker

than today at the end of the penultimate deglaciation, and

along the LIG period (NEEM community members, 2013).

Generally, other boundary conditions of the simulations

are kept at their pre-industrial state, except for vegetation,

which is computed dynamically according to the prevailing

climate conditions (the only equilibrium simulation that con-

siders fixed pre-industrial vegetation is LIG-GHG).

Furthermore, we perform one transient model simulation

that covers the Holocene (8–0 kyr BP) and four transient sim-

ulations of the LIG (130–115 kyr BP). The Holocene tran-
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Figure 1. Greenland Ice Sheet (GIS) elevation and land ice cover prescribed in our model simulations: (a) pre-industrial GIS and land ice

mask, (b) × 0.5 GIS and pre-industrial land ice mask, (c) −1300 m GIS and pre-industrial land ice mask, and (d) −1300 m and adjusted

land ice mask. In (a), the pre-industrial elevation and land ice mask are unchanged. In (b), the pre-industrial elevation over the GIS area is

multiplied by 0.5; the land ice mask is unchanged. In (c), for each grid point over the GIS, 1300 m is subtracted from pre-industrial elevation;

the land ice mask is unchanged. In (d), for each grid point over the GIS, 1300 m is subtracted from pre-industrial elevation; at grid locations

where the elevation is lower than 1300 m, land ice is removed and albedo is adjusted accordingly.

sient simulation is included in this study as a control run

for the LIG transient simulations in order to assess the dif-

ferences and similarities between the present and LIG. For

the LIG, we apply orography configurations of LIG-ctl, LIG-

× 0.5, LIG-1300m-alb, and LIG-GHG, respectively. These

LIG transient simulations enable us to extract the tempera-

tures at the LIG thermal maximum. The transient simulations

are started from a near-equilibrium state, meaning that the

climate system is already adjusted to the prescribed forcings,

except for the ocean, which needs about 3000 years in order

to reach an equilibrium state. Performing such long equilib-

rium simulations is not feasible due to the involved compu-

tational effort. Each transient simulation is accelerated by a

factor of 10 in order to reduce the computational expense.

To this end, astronomical forcing is accelerated following

the method of Lorenz and Lohmann (2004). The astronom-

ical parameters are calculated after Berger (1978). During

the simulations, the greenhouse gas concentrations remain

fixed – except for LIG-GHG-tr, where a time series is pre-

scribed according to Lüthi et al. (2008) for CO2, Loulergue

et al. (2008) for CH4, and Spahni et al. (2005) for N2O, as

proposed for PMIP3. The respective values are interpolated

to a 0.01 kyr resolution that corresponds to the accelerated

model time axis. A fixed pre-industrial vegetation is consid-

ered only in the LIG-GHG-tr; in the other transient simula-

tions, vegetation is computed dynamically. For the Holocene

run, the orography is identical to pre-industrial conditions.

In order to determine whether TS anomalies between sim-

ulations are statistically significant or rather caused by inter-

nal variability (noise), we perform an independent two-tailed

Student’s t test following Eq. (1). For each grid cell, it relates

time averages X and standard deviations σ of model output

time series of two given model simulations X1 and X2 of a

length of n time steps, depending on the effective degrees of

freedom (DOFeff). The DOFeff are calculated considering the

lag-1 autocorrelation acf (von Storch and Zwiers, 1999):

DOFeff = n (1 − acf)/ (1 + acf) with acf = max(acf,0) ,

meaning that the DOFeff cannot be higher than 50, as the last

50 model years of each simulation are used for the analysis.

For each grid point from X1 and X2 simulations, the smaller

DOFeff value is used for calculating the significance value

with a 95 % confidence interval.

t =
X1 − X2

√

σ 2(X1)
n

+
σ 2(X2)

n

(1)

Surface temperature at locations where the t test of two data

sets indicates a significance value below the critical value

is considered to be statistically insignificant and is marked
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by hatches on geographical maps presented throughout this

study.

For the analysis of time slice simulations, we define win-

ter and summer as the mean of the 50 coldest and warmest

months, respectively, for each grid cell, as we are mainly

interested in local seasons. In all performed simulations, a

modern calendar is assumed. Although in reality the defi-

nition of seasons changes over time due to orbital preces-

sion (Joussaume and Braconnot, 1997; Lorenz and Lohmann,

2004), taking this calendar shift into account would only

have a minor influence on our results since we calculate the

summer and winter seasons by extracting the warmest and

coldest month, respectively. Maximum and minimum LIG

TS are calculated from the transient simulations consider-

ing the time interval between 130 and 120 kyr BP. In order

to filter out internal variability, a 100-point running average

representing the average over 1000 calendar years is applied.

Maximum and minimum LIG warmth of the summer are de-

fined as the warmest and coldest average of 100 warmest

months, respectively, which reflects the warmest or coldest

1000 summer seasons with respect to the astronomical forc-

ing. For the maximum and minimum LIG warmth of annual

mean, we consider the warmest and coldest average of 100

model years, respectively. The seasonality range is defined

by calculating the summer maximum LIG warmth (warmest

average of 100 warmest months of the model years) and win-

ter minimum LIG TS (coldest average of 100 coldest months

of the model years).

2.3 Temperature reconstructions

In order to test the robustness of our simulations, we ad-

ditionally perform a model–data comparison using proxy-

based temperature anomalies that are available for the north-

ern high latitudes (CAPE-Last Interglacial Project Members,

2006), across the globe (Turney and Jones, 2010), and in

middle to high latitudes (Capron et al., 2014). The temper-

ature reconstructions from CAPE-Last Interglacial Project

Members (2006) are based on terrestrial and marine proxy

records and estimate summer temperatures for maximum

LIG warmth relative to PI. The global data set by Turney and

Jones (2010) comprises terrestrial and marine proxy records

and estimates annual mean temperatures for maximum LIG

warmth (terrestrial) and for the period of levelled δ18O (ma-

rine), relative to present day (PD, 1961–1990; Smith and

Reynolds, 1998; New et al., 1999). The high-latitude climate

synthesis by Capron et al. (2014) provides temporal air and

sea surface temperature (SST) reconstructions based on ice

core and marine records, respectively, across the interval 115

to 130 kyr BP (in our study covering the period between 125

and 115 kyr BP). They also propose snapshots of surface tem-

perature anomalies and associated quantitative uncertainties

at 115, 120, 125, and 130 kyr BP, but here we use the last

two snapshots. Detailed information regarding the proxy data

is given in CAPE-Last Interglacial Project Members (2006),

Turney and Jones (2010), and Capron et al. (2014), respec-

tively.

In order to quantify the agreement between model and

data, we calculate the root-mean-square deviation (RMSD)

which is a measure of the differences between an estimator

(ymodel) and estimated parameter (ydata) (Gauss and Stewart,

1995; Mudelsee, 2010). RMSD is defined in Eq. (2):

RMSD=

√

√

√

√

1

n

n
∑

i=1

(ymodel − ydata)2, (2)

where ymodel is the simulated TS anomaly at the location

of the proxy record, ydata indicates the reconstructed TS

anomaly, and n is the number of data samples.

3 Results

In the first part of this section, we present results from our

LIG GIS sensitivity simulations, focusing on TS anomalies.

Afterwards, a short description of results from the transient

simulations is presented, followed by the model–data com-

parison and consideration of potential uncertainties in the

data.

3.1 Greenland Ice Sheet elevation and albedo influence

on global surface temperature

3.1.1 Annual mean anomalies

Figure 2 shows the TS changes of lowering GIS by various

methods. We observe the strongest warming over Greenland

(of up to +12.5 ◦C) in LIG-1300m-alb (Figs. 1d and 2c).

Northern North America and the Arctic Ocean warm by up

to +2 ◦C in all GIS sensitivity simulations. A pronounced

warming is found over the southernmost Southern Ocean of

up to +4 ◦C (Fig. 2a–c).

Considering all LIG sensitivity simulations, the highest

TS mean anomalies globally and in the Southern Hemi-

sphere are simulated in LIG-1300m-alb, with an average

of 1TS = +0.37 ◦C and 1TS = +0.31 ◦C, respectively (Ta-

ble 2). However, for the Northern Hemisphere, the highest

average TS anomaly of 1TS = +0.47 ◦C is found in LIG-

× 0.5 (Table 2). Consequently, the exact method of chang-

ing GIS configuration influences the hemispheric tempera-

ture anomalies.

The most affected areas by changes in GIS configura-

tion are the northern high latitudes, which experience a

warming of 1TS = +1.45 ◦C in LIG-1300m-alb, as well as

1TS = +1.07 ◦C and 1TS = +1.03 ◦C in LIG-× 0.5 and

LIG-1300m, respectively. This indicates that albedo plays

a significant role in the temperature changes over north-

ern high latitudes, where it is causing an average temper-

ature anomaly of 1TS = +0.42 ◦C. A local cooling of up

to −1.60 ◦C is limited to the Barents Sea in LIG-× 0.5 and
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Figure 2. Effect of (a–c) Greenland Ice Sheet elevation and (c, d) albedo in the 130 kyr BP simulations. Annual mean surface temperature

(TS) anomalies for (a) LIG-× 0.5 minus LIG-ctl, (b) LIG-1300m minus LIG-ctl, (c) LIG-1300m-alb minus LIG-ctl, and (d) LIG-1300m-alb

minus LIG-1300m. Hatched areas mark statistically insignificant TS anomalies.

Table 2. Atlantic Meridional Overturning Circulation (AMOC) and absolute values of surface temperature (TS) for global, Northern Hemi-

sphere (NH), and Southern Hemisphere (SH) coverage, calculated for annual mean, local summer mean (warmest month), and local winter

mean (coldest month).

Annual mean TS (◦C) Winter mean TS (◦C) Summer mean TS (◦C)

Simulation AMOC (Sv) global NH SH global NH SH global NH SH

LIG-ctl 12.8 14.77 15.57 13.98 8.76 6.53 10.98 21.00 24.78 17.22

LIG-× 0.5 13.3 15.13 16.03 14.22 9.19 7.12 11.25 21.25 25.09 17.41

LIG-1300m 14.8 15.07 15.95 14.18 9.14 7.05 11.22 21.17 24.96 17.39

LIG-1300m-alb 15.0 15.14 16.00 14.29 9.24 7.10 11.37 21.24 25.02 17.46

LIG-1300m-alb-CH4 14.4 15.32 16.34 14.29 9.40 7.49 11.31 21.43 25.35 17.50

LIG-GHG 12.8 14.65 15.50 13.80 8.69 6.56 10.82 20.82 24.64 17.00

LIG-125k 14.8 15.19 16.11 14.27 9.46 7.74 11.17 21.20 24.94 17.46

PI 16.3 14.51 15.35 13.67 8.84 7.44 10.23 20.09 22.84 17.33

LIG-1300m (Fig. 2a, b), south-west of Greenland in LIG-

1300m (Fig. 2b), and a cooling of up to −2.30 ◦C over the

Sea of Okhotsk (western Pacific Ocean) in LIG-1300m-alb

caused by a reduction in albedo in the prescribed ice-free

areas (Fig. 2c, d). In the latter simulation, the Barents Sea

cooling is counteracted by a warming caused by changes in

albedo (Fig. 2d).

At 130 kyr BP, the AMOC was reduced by 3.5 Sv as

compared to the PI (Table 2). However, a reduction in the

GIS partly counteracts the negative anomaly and leads to a

smaller reduction of AMOC (3.5–2.2 = 1.3 Sv) relative to the

PI (Table 2). After performing an independent two-tailed Stu-

dent’s t test with 95 % confidence interval, we find that these

changes in AMOC are statistically significant.
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Figure 3. Effect of Greenland Ice Sheet elevation and albedo on surface temperature in the 130 kyr BP simulation (LIG-1300m-alb). Same

as Fig. 2c but for (a) local winter mean (coldest month) and (b) local summer mean (warmest month). Violet dashed lines represent the

LIG-1300m-alb 50 % compactness sea ice isoline, while violet continuous lines represent the LIG-1300m-alb sea ice edge. Green dashed

lines represent the LIG-ctl 50 % compactness sea ice isoline, while green continuous lines represent the LIG-ctl sea ice edge.

3.1.2 Winter and summer mean anomalies

The seasonal effect of a reduced GIS elevation is strongest

during local winter in both hemispheres in all GIS sensitivity

simulations (Table 2). However, for simplicity we focus here

only on the GIS sensitivity simulation that includes changes

in GIS elevation and corresponding changes in albedo (LIG-

1300m-alb, Fig. 3). In the Northern (Southern) Hemisphere,

winter TS changes by 1TS = +0.57 ◦C (1TS = +0.39 ◦C),

with the northern high latitudes (60–90◦ N) experiencing the

highest positive anomalies of 1TS = +2.08 ◦C (Fig. 3a, Ta-

ble 2).

During summer, the TS anomaly is also positive but of

lower magnitude, with an average of 1TS = +0.24 ◦C for

the Northern Hemisphere, Southern Hemisphere, and glob-

ally (Fig. 3b, Table 2). The northern high latitudes warm dur-

ing summer by 1TS = +0.46 ◦C, which is a modest change

compared to winter warming. Relatively strong cooling oc-

curs over the Sea of Okhotsk and south-west of Greenland

(Fig. 3), again with the strongest effect being present during

winter.

3.2 Combined effects of LIG forcings on global surface

temperature

The combined effects on TS of reducing the GIS by 1300 m,

adjusting albedo, and applying astronomical changes that

represent an LIG climatic setting are presented in Fig. 4. As-

suming linearity of the different climatic drivers, we can ad-

ditionally split the anomaly of PI and LIG-1300m-alb-CH4

(equivalent to LIG-1300m-alb, but with a CH4 concentration

adjusted to PI simulation) into the isolated contributions of

changes in elevation and albedo and in astronomical forcing

(calculated as the difference between the anomaly of LIG-

1300m-alb-CH4 and PI, and the anomaly of LIG-1300m-alb

and LIG-ctl).

Considering the TS values from Table 2, we find that the

magnitude of the astronomical forcing influence is stronger

than the effects of lowering the GIS and respective adjust-

ment of the albedo in the global average of annual mean

TS, as well as the annual mean average over the North-

ern Hemisphere (Fig. 4a). In the Southern Hemisphere, both

forcings have equal contributions to changes in annual mean

TS (Fig. 4a). During winter, changes in the GIS have the

strongest influence globally and in the Northern Hemisphere,

while in the Southern Hemisphere changes in astronomical

forcing are dominant (Fig. 4b). During summer, there is an

opposite pattern (Fig. 4c). The strongest combined effect of

insolation and changes in the GIS and albedo occurs in the

Northern Hemisphere during summer, with an anomaly of

1TS = +2.51 ◦C. Globally, the combined effect leads to a

warming of 1TS = +1.34 ◦C during summer. In the South-

ern Hemisphere, the strongest combined effect is simulated

during winter with 1TS = +1.08 ◦C.

The winter (local minimum TS) of the LIG is in general

cooler than the PI at northern low to middle latitudes, while

at northern high latitudes and Southern Hemisphere winter is

warmer (Fig. 4b). If we separate the astronomical effect from

the GIS lowering and albedo changes, we can attribute to in-

solation a cooling of 1TS = −0.52 ◦C in the Northern Hemi-

sphere, and a warming of 1TS = +0.69 ◦C in the Southern

Hemisphere.

Summer (local maximum TS) anomalies of the LIG with

respect to PI are stronger than winter anomalies in the North-

ern Hemisphere (Fig. 4c). Strongest continental summer TS

anomalies are located in the Northern Hemisphere (up to

1TS = +16.7 ◦C). Locations where the LIG is cooler than

PI are found at ∼ 10◦ N over Africa and at ∼ 25◦ N over In-

dia.
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Figure 4. Effect of Greenland Ice Sheet elevation, insolation, and albedo at 130 kyr BP relative to pre-industrial (PI). Surface temperature

(TS) anomalies between LIG-1300m-alb-CH4 and PI for (a) annual mean, (b) local winter mean (coldest month), and (c) local summer mean

(warmest month). Violet dashed lines represent the LIG 50 % compactness sea ice isoline, while violet continuous lines represent the LIG

sea ice edge. Green dashed lines represent the PI 50 % compactness sea ice isoline, while green continuous lines represent the PI sea ice

edge. Hatched areas mark statistically insignificant TS anomalies.

3.3 Surface temperature evolution during the present

and Last Interglacial

In Figs. 5, S2, and S3, a comparison of transient TS de-

rived from the five transient simulations (Table 1) is shown.

The LIG transient simulations are important for determin-

ing when the maximum LIG warmth occurred as a func-

tion of the location as well as seasons. The TS evolution

in the northern high latitudes (60–90 ◦ N) is displayed in

Fig. 5. All LIG (130–115 kyr BP) simulations (LIG-ctl-tr,

LIG-× 0.5-tr, LIG-1300m-alb-tr, and LIG-GHG-tr) indicate

a similar annual mean trend, starting with a plateau until mid-

LIG (around 123 kyr BP) followed by a pronounced cooling

trend (Fig. 5a). The LIG-ctl-tr starts at a slightly higher TS

than the LIG-GHG-tr, but although the trace gas concentra-

tions are mostly lower throughout the latter, the LIG-GHG-tr

simulates higher TS throughout the LIG. This indicates that

changes in the vegetation which are simulated in the LIG-ctl-

tr lead to a cooling in the Northern Hemisphere, partly coun-

teracting the warming induced by higher GHG concentra-

tions. The most extreme case is represented by LIG-1300m-

alb-tr, which shows predominantly the highest TS relative to

TS of other LIG transient simulations. The Holocene (8–

0 kyr BP) transient simulation (HOL-tr) also starts with a

warming until around the mid-Holocene (6 kyr BP), followed

by a cooling trend.

During winter, all LIG simulations indicate a positive

trend in the early LIG, with maximum TS at around mid-LIG

(Fig. 5b), followed by a strong cooling. The relative order

of magnitudes of TS trends during different simulations is

the same as for annual mean TS, but with a relatively larger

offset in between simulations. Simulation HOL-tr shows a

warming, followed by a cooling trend that starts at the mid-

Holocene (Fig. 5b). Winter TS is characterized by stronger

temporal variability than summer TS (Fig. 5b, c). Summer

TS in all LIG simulations indicates a slight warming trend

until around 128 to 126 kyr BP, followed by a pronounced

cooling. The offset between transient TS is smaller than for

annual mean and winter, but with the same order on the

temperature scale. A dramatic cooling is also present in the

Holocene simulation starting at the mid-Holocene (Fig. 5c).

Furthermore, the timing of the maximum LIG warmth does

not occur simultaneously between the winter and summer
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Figure 5. Simulated surface temperature evolution for the Last In-

terglacial (LIG-_) and the Holocene (8–0 kyr BP, HOL-tr) in north-

ern high latitudes (60–90◦ N) calculated as a running average with

a window length of 21 model years representing 210 calendar years

for (a) annual mean, (b) local winter mean (coldest month), and

(c) local summer mean (warmest month). The lower x scale rep-

resents the LIG timescale, while the upper x scale indicates the

Holocene timescale. The upper x scale is matched to the timescale

between 128 and 120 kyr BP, assuming that Termination I and Ter-

mination II are similar with respect to obliquity (Drysdale et al.,

2009).

seasons, with the winter season indicating a later peak than

summer (Figs. 5, S2, and S3).

3.4 Comparison of model results to temperature

reconstructions

Due to the large amount of simulated data, in the model–

data comparison we display simulated LIG TS derived from

only one equilibrium simulation with changes in the GIS,

namely LIG-1300m-alb. For the calculation of the maximum

LIG warmth, we consider the corresponding transient simu-

lation (LIG-1300m-alb-tr). However, the comparison of the

proxy-based temperatures with the other GIS sensitivity sim-

ulations is considered in Tables S1, S2, and S3 in the Sup-

plement, which give the RMSD values between temperature

reconstructions and simulated TS extracted at the location of

each given proxy record and derived from simulations with

different GIS boundary conditions. Furthermore, we display

also results from control simulation for 130 kyr BP (LIG-ctl)

and the corresponding transient simulation (LIG-ctl-tr) for

maximum LIG warmth, in order to determine if and where

GIS changes lead to an increase in model–data agreement.

3.4.1 Proxy-based summer temperature reconstructions

Figures 6, 8a, and S4a present a model–data comparison

that consider LIG terrestrial and marine proxy-based summer

temperature anomalies relative to PI derived by CAPE-Last

Interglacial Project Members (2006). Simulated and recon-

structed temperature anomalies agree reasonably well with

respect to the sign of the change in the simulation with a

reduction in the GIS (LIG-1300m-alb, Fig. 6a) and with

pre-industrial GIS configuration (LIG-ctl, Fig. 6c). The best

agreement between model and proxy reconstructions occurs

over northern Asia and Europe. In the North Atlantic Ocean

and the Arctic Ocean, the model underestimates the mag-

nitude of change indicated by the marine-based tempera-

ture reconstructions (Fig. 6a, c). However, a reduction in the

GIS and albedo leads to slightly higher summer tempera-

ture anomalies at the location of some marine proxies in the

North Atlantic Ocean, partly reducing the model–data mis-

match (Fig. 6a). Over Greenland, the elevation changes lead

to an overestimation of the reconstructed temperature anoma-

lies – proxy records show anomalies of +4 to +5 ◦C, while

the simulated TS anomalies are above +7 ◦C (Fig. 6a). How-

ever, in the LIG-ctl, there is an underestimation of the mag-

nitude of change indicated by the reconstructed temperatures

(Fig. 6c).

In the case of the terrestrial proxies, the temperature span

covers +2 to +6 ◦C, while the corresponding simulated

anomalies cover +1 to +11 ◦C. In addition to the 130 kyr BP

simulation (LIG-1300m-alb), for each given core location

we also consider TS anomalies relative to PI calculated at

the minimum and maximum LIG summer warmth as derived

from the LIG-1300m-alb-tr (Fig. 8a). In about half the cases

(14 records out of 27), the error bars touch the 1 : 1 line,

possibly indicating better agreement than when compared

to summer TS anomalies at 130 kyr BP (Fig. 8a). However,

the number of unresolved records can be reduced from 13 to

11 when the terrestrial proxy-based temperature anomalies

are compared to the LIG-ctl-tr (Fig. S4a). Marine-based tem-

perature anomalies and the corresponding simulated anoma-

lies (from LIG-1300m-alb) cover temperature spans of 0 to

+3 and of ∼ 0 to +4 ◦C, respectively (Fig. 8a). Seven out

of 13 marine records cannot be reconciled with the simu-

lations when considering maximum and minimum summer

TS anomalies during the LIG (Figs. 8a and S4a). When the

reconstructed data are compared to simulated annual mean
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Figure 6. Effect of (a, b) Greenland Ice Sheet elevation, insola-

tion, albedo, and atmospheric methane concentration and (c, d) in-

solation and atmospheric methane concentration for the Last In-

terglacial (LIG) relative to pre-industrial (PI). Model–data com-

parison of mean local summer temperature anomalies. The shad-

ing represents the simulated surface temperature (TS) anomalies at

(a, c) 130 kyr BP derived from (a) LIG-1300m-alb and (c) LIG-ctl,

and (b, d) summer maximum LIG warmth (warmest 100 warmest

months between 130 and 120 kyr BP) derived from (b) LIG-1300m-

alb-tr and (d) LIG-ctl-tr, relative to PI. Hatched areas in (a, c) mark

statistically insignificant TS anomalies. The squares and circles

show marine and terrestrial proxy-based maximum LIG summer

temperature anomalies relative to PI derived by CAPE-Last Inter-

glacial Project Members (2006). The colours inside the squares

and circles represent the proxy-based temperature anomalies de-

rived from the intervals provided by CAPE-Last Interglacial Project

Members (2006), that agree best with the simulated TS anomalies

at the location of the proxies.

TS anomalies at 130 kyr BP (Figs. S5a, c and S6) and at an-

nual mean minimum or maximum LIG warmth (Figs. S5b, d

and S6), we find an even higher discrepancy than when com-

pared to the summer average, implying that the reconstructed

records are indeed biased towards summer when assuming

that the model is realistic.

The proxy data set by CAPE-Last Interglacial Project

Members (2006) is considered to represent summer tempera-

tures at the maximum LIG warmth. Thus, in the model–data

comparison we additionally include the simulated maximum

LIG warmth calculated from our transient LIG simulations

(Fig. 6b, d). We find that the agreement between model and

data increases in some cases. For the northern North Atlantic

Ocean, for example, marine records agree best with simu-

lated TS anomalies at the maximum LIG warmth (between

121.5 and 124.5 kyr BP, Fig. 9a) in LIG-1300m-alb (Fig. 6b).

However, the RMSD between the simulated TS and recon-

structed temperature anomalies reveals that the best agree-

ment occurs with TS anomalies at maximum LIG warmth in

the LIG-ctl-tr (Table S1). A reduction in the GIS thus does

not in general improve the model–data agreement when the

data set by CAPE-Last Interglacial Project Members (2006)

is considered. However, changes in the GIS lead to high tem-

perature anomalies during local winter (Fig. 3a), while sum-

mer season is not strongly influenced (Fig. 3b). Therefore, in

a comparison with proxy reconstructions that represent sum-

mer temperature anomalies, changes in the GIS do not have

a significant impact on model–data agreement.

3.4.2 Proxy-based annual mean temperature

reconstructions

Both reconstructed (Turney and Jones, 2010) and simulated

global annual mean temperature anomalies indicate that the

high latitudes experienced warmer temperatures during the

LIG than in the PI, with strongest anomalies being present

in the northern high latitudes (Fig. 7). However, the model

underestimates the strong positive anomalies derived from

proxy records, and in low and middle latitudes the model

cannot capture the magnitude of the cooling that the proxy

records show (Figs. 7a, c, 8b, and S4b).

Changes in the GIS have no significant influence in low

to middle latitudes but cause strong positive anomalies in the

northern high latitudes, thus improving the model–data com-

parison (Fig. 7a, Table S2), although the model still under-

estimates the amplitude of the signal depicted by reconstruc-

tions. Terrestrial proxy records indicate stronger anomalies

with 1TS = +2.21 ◦C (globally), 1TS = +2.21 ◦C (North-

ern Hemisphere), and 1TS = +2.11 ◦C (Southern Hemi-

sphere). The corresponding simulated anomalies indicate

a global average of 1TS = +1.44 ◦C, underestimating the

temperature change indicated by the records by ∼ 1 ◦C. The

Northern Hemisphere and Southern Hemisphere average TS

anomalies are 1TS = +1.48 ◦C and 1TS = +0.92 ◦C, re-

spectively. Marine records capture lower anomalies than their

terrestrial counterparts but still larger anomalies than the cor-

responding simulated anomalies.

The majority of the terrestrial records shows a stronger sig-

nal than the simulated anomalies (Fig. 8b). The temperature

anomaly range in the terrestrial reconstructed data covers −5

to +15 ◦C, while the model covers 0 to +12 ◦C. Out of 100

terrestrial records, 33 agree with the simulated TS anomalies

somewhere between the annual mean minimum and maxi-

mum LIG warmth derived from LIG-1300m-alb-tr (Fig. 8b),

and 19 records with simulated TS anomalies derived from

LIG-ctl-tr (Fig S4b).
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Figure 7. Effect of (a, b) Greenland Ice Sheet elevation, insolation, albedo, and atmospheric methane concentration and (c, d) insolation

and atmospheric methane concentration for the Last Interglacial (LIG) relative to pre-industrial (PI). Model–data comparison of mean annual

temperature anomalies. The shading represents the simulated surface temperature (TS) anomalies at (a, c) 130 kyr BP derived from (a) LIG-

1300m-alb and (c) LIG-ctl, and (b, d) maximum LIG warmth (warmest 100 model years between 130 and 120 kyr BP) derived from (b) LIG-

1300m-alb-tr and (d) LIG-ctl-tr, relative to PI. Hatched areas in (a, c) mark statistically insignificant TS anomalies. The squares and circles

show marine and terrestrial proxy-based LIG annual mean temperature anomalies relative to present day (1961–1990) derived by Turney and

Jones (2010).

The reconstructed marine temperature anomalies cover a

range of −6 to +11 ◦C compared to 0 to +3 ◦C in the model,

indicating pronounced underestimation of the marine proxy-

based anomalies by the model (Figs. 7a and 8b). When we

consider both annual mean minimum and maximum LIG

warmth, the simulated TS span increases by ∼ 1 ◦C (−0.5

to +3.5 ◦C). Twenty records (out of 162) agree with the

model data somewhere between the minimum and maximum

LIG warmth with respect to annual mean derived from LIG-

1300m-alb-tr, and 25 records when LIG-ctl-tr is considered

(Fig. S4b).

The proxy records derived by Turney and Jones (2010)

are considered to record an annual mean temperature signal.

Nevertheless, some records may be biased towards a specific

season. Therefore, we also consider the minimum winter and

maximum summer TS during the LIG (Fig. 8c). Seasonality

increases the span of the vertical bars, providing the possi-

bility of a better agreement with the reconstructed temper-

ature anomalies. The agreement between proxy records and

model simulations increases, with 51 (69) terrestrial and 53

(51) marine records being reconciled by considering season-

ality derived from LIG-1300m-alb-tr (LIG-ctl-tr) (Figs. 8c

and S4c).

As already mentioned, the terrestrial proxy records by Tur-

ney and Jones (2010) are considered to record annual mean

temperature anomalies at the maximum LIG warmth. There-

fore, we additionally compare the terrestrial records with

the simulated annual mean at the LIG thermal maximum

(Fig. 7b, d). Over Europe, the agreement between model and

data is increased for those records that indicate a warming,

since the simulated anomalies derived from LIG-1300m-alb-

tr indicate a warming at the maximum LIG warmth, while

presenting nearly no change at 130 kyr BP (Fig. 7a). A bet-

ter agreement is also found over northern Asia. According

to Table S2, the terrestrial proxy-based temperature anoma-

lies indicate the best agreement with the simulated annual

mean TS at the maximum LIG warmth derived from the LIG-

1300m-alb-tr. The annual mean anomalies are influenced by
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Figure 8. Effect of Greenland Ice Sheet elevation, insolation, albedo, and atmospheric methane concentration for the Last Interglacial (LIG)

relative to pre-industrial (PI). (a) Proxy-based maximum LIG summer temperature anomalies relative to PI derived by CAPE-Last Interglacial

Project Members (2006) plotted against simulated local summer surface temperature (TS) anomalies at 130 kyr BP (LIG-1300m-alb) relative

to PI at the location of the proxies. The horizontal bars represent the proxy-based temperature intervals derived by CAPE-Last Interglacial

Project Members (2006). The vertical bars indicate the simulated TS anomalies at the maximum and minimum LIG TS with respect to local

summer (i.e. the coldest and warmest 100 warmest months) derived from the time interval 130 to 120 kyr BP (LIG-1300m-alb-tr) relative

to PI, for each given proxy record location. (b) Proxy-based LIG annual mean temperature anomalies relative to present day (1961–1990)

derived by Turney and Jones (2010), plotted against simulated annual mean TS anomalies at 130 kyr BP (LIG-1300m-alb) relative to PI at

the location of the proxies. The vertical bars indicate the simulated TS anomalies at the maximum and minimum LIG TS with respect to

annual mean (i.e the coldest and warmest 100 model years) derived from the time interval 130 to 120 kyr BP (LIG-1300m-alb-tr) relative

to PI, for each given proxy record location. (c) Same as (b) but displaying vertical bars that represent local summer and local winter mean

(i.e. the warmest 100 warmest months and coldest 100 coldest months). The squares (red) and circles (black) represent marine and terrestrial

proxy-based temperature anomalies, respectively. The solid thick lines represent the 1 : 1 line, which indicates a perfect match of simulated

and reconstructed anomalies.

winter temperatures, the season during which GIS leads to

strong positive anomalies. Therefore, a model–data compari-

son with proxy reconstructions that represent an annual mean

signal shows a better agreement than when summer proxies

are considered.

3.4.3 Time-resolved proxy-based summer temperature

reconstructions

For a more robust model–data comparison, we addition-

ally compare our simulated TS to a compilation of high-

latitude LIG temperature anomalies derived from synchro-

nized records representing 130 kyr BP (Figs. 10 and S12;

Capron et al., 2014). The synchronization is performed by

aligning marine sediment records onto the recent AICC2012
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Figure 9. Timing of the maximum Last Interglacial warmth for

(a) local summer (warmest 100 warmest months) and (b) annual

mean (warmest 100 model years) derived from the LIG-1300m-alb-

tr, between 130 and 120 kyr BP.

ice chronology (Capron et al., 2014, and references therein).

This method reduces the uncertainty in relative dating of the

proxy reconstructions. The marine records from the North

Atlantic Ocean indicate mostly negative anomalies, while the

model simulates nearly no changes. The melting of the rem-

nant Northern Hemisphere ice sheets from the penultimate

glaciation leads to a cooling of the North Atlantic Ocean

(Stone et al., 2016), a factor that is not considered in our sim-

ulations, which indicate only a modest change in this region.

As shown above, GIS reduction leads to a small increase in

summer TS anomalies, thus increasing the model–data dis-

agreement (Figs. 10a and S12a). A warming in the Southern

Ocean is captured by both the model and proxies, though the

model underestimates the amplitude of the signal when com-

pared to reconstructions. Reducing the GIS and albedo leads

to an increase in local summer TS anomalies in the South-

ern Ocean, bringing the model and data into slightly closer

agreement (Figs. 10b and S12a).

Considering Table S3, the reconstructed temperatures

agree best with the simulated summer TS at 125 kyr BP in

LIG-125k (Fig. S15), which considers a reduced GIS con-

figuration (as in LIG-1300m-alb), both indicating a warm-

ing. However, this result is not conclusive with respect to the

GIS elevation, as a simulation with pre-industrial GIS eleva-

tion has not been yet performed for this particular time slice.

For 130 kyr BP, the best agreement occurs for the LIG-ctl but

for annual mean rather than summer, since the model sim-

ulates an annual mean cooling in the North Atlantic Ocean

(Fig. S5c).

A model–data comparison of LIG temperature trends is

also considered in our study (Figs. S13 and S14). The proxy-

based temperature trends by Capron et al. (2014) are com-

pared to the temperature evolution derived from our transient

simulations (LIG-ctl-tr and LIG-1300m-alb-tr), between 125

and 115 kyr BP. Depending on the location, an underestima-

tion or overestimation of the signal depicted by the proxy

records in our simulation is again identified (Figs. S13 and

S14). Changes in the GIS do not strongly influence the

results, with the exception of a few locations where such

changes lead to a less pronounced warming, thus reducing

the mismatch.

4 Discussion

4.1 Effects of insolation and Greenland Ice Sheet

elevation on surface temperature

The main focus of our study is to quantify the possible con-

tribution of reduced GIS elevation in comparison with the

contribution of insolation forcing to the climate of the LIG.

We can confirm the importance of insolation for the North-

ern Hemisphere, especially for the northern middle to high

latitudes (Figs. 4, 6, 7, 10). The belt of decreased TS, ob-

served around 10◦ N over Africa and 25◦ N over the Ara-

bian Peninsula and India (Figs. 4a, b and 7a, c), is related to

increased cloud cover (Fig. S9) and increased summer pre-

cipitation of up to +6 mm d−1 (not shown). This effect has

been described by Herold and Lohmann (2009), who pro-

pose a mechanism for the temperature anomalies that relies

on changes in insolation in conjunction with increased cloud

cover and increased evaporative cooling.

In general, and independent of GIS elevation, we observe

an annual mean global warming of 1TS = +0.44 ◦C in our

LIG simulations relative to PI, pointing to positive feedbacks

(such as sea ice–albedo) that amplify the high-latitude inso-

lation signal (Fig. 4).

In Sect. 3.1.2, we have shown that the most pronounced

impact of reduced GIS elevation (in LIG-1300m-alb) occurs

during local winter in both hemispheres (Fig. 3a). The win-

ter warming of up to +3 ◦C over the Arctic Ocean may be

linked to a decrease in sea ice and a delayed response to a

warming occurring in October (not shown), which is caused

by positive sea ice–albedo feedbacks. A systematic analy-

sis of insolation-driven feedbacks (e.g. sea ice, water vapour,

clouds) has been done by Masson-Delmotte et al. (2011). A
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Figure 10. Effect of (a, b) Greenland Ice Sheet elevation, insolation, albedo, and atmospheric methane concentration and (c, d) insolation and

atmospheric methane concentration at 130 kyr BP relative to pre-industrial (PI). Model–data comparison of mean local summer temperature

anomalies. The shading represents the simulated surface temperature (TS) anomalies derived from (a, b) LIG-1300m-alb and (c, d) LIG-ctl.

Hatched areas mark statistically insignificant TS anomalies. The squares show marine proxy-based LIG (130 kyr BP) summer temperature

anomalies relative to present day derived by Capron et al. (2014).

decrease in albedo over Greenland has the strongest influ-

ence during summer especially over the southernmost region

(Figs. 2d and 3b), caused by insolation absorption by the ice-

free land surface. Furthermore, we note cold annual mean

anomalies in the Barents Sea (Fig. 2a, b) and Sea of Okhotsk

(Fig. 2c) caused by an increase in sea ice cover.

The change in the GIS elevation also leads to a relatively

strong warming in the southern high latitudes, mainly off the

coast of Antarctica, with the strongest positive anomaly oc-

curring during local winter (Fig. 3a) that coincides with a

heat flux transfer anomaly from the ocean to the atmosphere

(not shown). Increased ocean heat flux during winter leads

to a warming of the atmosphere. The Antarctic warming is

most likely related to warmer deep water as well as subsur-

face warming poleward of 50◦ N in the North and South At-

lantic Ocean. The warming may be attributed to enhanced

AMOC (Table 2), which plays an important role in the ex-

change of heat between the hemispheres and between atmo-

sphere and ocean. Our results indicate a weaker AMOC dur-

ing the LIG as compared to the PI of up to 3.5 Sv, but changes

in the GIS lead to an increase of up to 2.2 Sv (Table 2). The

simulated increase in AMOC in the sensitivity simulations

may be triggered by increased salinity of up to +1 psu in

the northern North Atlantic Ocean. Increased salinity cannot

be explained by changes in precipitation minus evaporation,

which show positive anomalies in this area (not shown). An-

other contributing factor to the enhanced AMOC may be an

increase in the atmospheric flow due to a reduction in GIS

elevation. The low-pressure system over Greenland and the

high pressure system above Europe become more extreme,

enhancing the north-eastward air circulation (Fig. 11). We

find that the higher the sea level pressure (SLP) anomaly

(Fig. 11), the stronger the AMOC (Table 2). This change

could also explain the positive TS anomalies of up to +1 ◦C

in the northern North Atlantic Ocean, with more heat be-

ing transported poleward from the low latitudes (Fig. 2a–c).

However, convection cannot be the only explanation for the

southern high latitudes’ warmth, since the heat would be dis-

persed towards the Southern Hemisphere. Nonetheless, we

note a large-scale warming in the subsurface of the Southern
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Figure 11. Effect of (a–c) Greenland Ice Sheet elevation and (c) albedo on sea level pressure (SLP) and surface winds in 130 kyr BP

simulations. The shading represents December–January–February (DJF) mean SLP anomalies, superimposed by DJF mean surface wind

anomalies (in m s−1) for (a) LIG-× 0.5 minus LIG-ctl, (b) LIG-1300m minus LIG-ctl, and (c) LIG-1300m-alb minus LIG-ctl. The vector

length indicates the wind speed (in m s−1).

Ocean which is probably caused by positive feedbacks. This

warming may be related to changes in the water stratifica-

tion. We observe an invigorated vertical mixing in the north-

ern North Atlantic Ocean and a suppressed vertical mixing in

the Southern Ocean (not shown), the latter causing the heat

at the subsurface to be preserved. The Southern Ocean has a

large heat capacity, leading to a long memory of the system.

Lags of up the 3 months occur in the surface layer including

sea ice (amplifying factor via positive ice–albedo and ice–

insulation feedbacks), while long-term lags occur in deeper

levels below the summer mixed layer that store seasonal ther-

mal anomalies (Renssen et al., 2005).

In contrast to our results that show an increase in the

AMOC in response to GIS elevation changes, Otto-Bliesner

et al. (2006) and Bakker et al. (2012) find a weakening of the

AMOC. Bakker et al. (2012) infer that the AMOC is weaker

by up to 14 % in a regional study of LIG climate of the North

Atlantic Ocean, prescribing a reduction of GIS elevation (by

700 m) and extent (reducing the ice volume by 30 %). The

weakening of the AMOC is caused by additional freshwater

runoff resulting from a melting GIS, a factor that is not con-

sidered in our study and that would probably cancel out or

reduce the effect of changes in the atmospheric transport on

the AMOC. In the study by Bakker et al. (2012) using a sim-

plified atmosphere model, reducing GIS elevation and extent

leads to changes in the atmospheric flow pattern and creates

a special pattern of surface pressure anomalies. In particular

in the Norwegian Sea, Barents Sea, and south-east of Green-

land, the low-pressure system is weaker, inhibiting the over-

turning circulation.

The reduction of the GIS elevation and albedo alone leads

in the study by Bakker et al. (2012) to a local warming of up

to +4 ◦C in July, a substantially lower anomaly (by a factor of

∼ 3) than simulated in our model for local summer when re-
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ducing both GIS and albedo. However, when comparing their

simulated data to proxy-based temperature anomalies rela-

tive to PI (CAPE-Last Interglacial Project Members, 2006),

Bakker et al. (2012) find an overestimation of the magni-

tude of temperature change recorded by reconstructions over

Greenland, and an underestimation for eastern Europe and

Baffin Island – locations where we find a similar temperature

tendency (Fig. 6a).

Another climate model study that considers a reduction in

GIS topography by various methods has been performed by

Merz et al. (2014). In their GIS sensitivity simulations, per-

formed with the Community Climate System Model version

4 (CCSM4), they find a rather mixed signal in temperature

anomalies over Greenland relative to the predominant warm-

ing found in our simulations with changes in the GIS. Dur-

ing local winter, their model simulates a warming of up to

+5 ◦C in central Greenland and a cooling of up to −12 ◦C

in areas that become flat and ice-free. However, changes in

the topography of the GIS do not have a significant influ-

ence on climate in the surrounding areas in the study by

Merz et al. (2014). This may be caused by the fact that SSTs

are prescribed in their simulations, while in our study the at-

mosphere model is interactively coupled to an ocean general

circulation model. However, in their study the GIS is recon-

structed by means of high-resolution ice sheet models, while

we consider a relatively simplistic representation of the GIS.

Differences are also found with respect to changes in low-

level winds. They find a rather local influence of the GIS

changes and no major effect on the large-scale atmospheric

circulation. Our model simulates an enhancement of low-

level winds around GIS and on SLP (Fig. 11). As such, the

methods of reducing GIS and the model used have a strong

influence on the local- and large-scale climate. Note, how-

ever, that the aims of our study and the study by Merz et

al. (2014) are different, since the latter focuses on local ef-

fects above Greenland, while our main focus is on the GIS

effects on large-scale climate.

4.2 Surface temperature evolution during the Last

Interglacial and the Holocene

Although our results are not directly comparable to those

derived by Bakker et al. (2013), who analyse transient LIG

January and July temperature anomalies (simulated by seven

different models) with respect to PI, while we use tran-

sient absolute TS for coldest and warmest month, the pat-

tern of the temperature evolution remains the same. We ob-

serve similarities in middle latitudes and in winter temper-

atures at high latitudes characterized by a large variability,

and also note a clear cooling trend for summer caused by a

decrease in summer insolation. At northern high latitudes,

Bakker et al. (2013) find July maximum LIG warmth at

128.4–125.1 kyr BP, while in middle latitudes the maximum

occurs at 129.4–126.3 kyr BP. We also observe a warmest

month maximum at around 128 kyr BP for high and middle

latitudes. A July maximum LIG warmth is found in the study

by Loutre et al. (2014) at 128 kyr BP. They find that the sum-

mer SST during the LIG is smaller in the model than in the

reconstructed temperatures, especially in the North Atlantic

Ocean, but taking into account the evolution of the North-

ern Hemisphere ice sheets reduces the disagreement between

model and data.

During winter, our simulations produce a clear high-

latitude TS maximum around mid-LIG, while the middle

latitudes experience peak warmth around 121–117 kyr BP.

Bakker et al. (2014) compare transient LIG and Holocene (8–

0 kyr BP) temperature trends simulated by different models

(including our COSMOS LIG-GHG-tr and HOL-tr simula-

tions). They find negative warmest month temperature trends

for both LIG and Holocene in the Northern Hemisphere.

Bakker et al. (2013) find a linear relation between changes

in insolation and temperatures for both summer and winter

and for all latitudes. There are, however, some exceptions. In

northern high latitudes, the winter temperature changes re-

sult mainly from sea-ice-related feedbacks and are described

as highly model-dependent. In southern middle to high lati-

tudes, winter temperatures are strongly affected by changes

in GHG concentrations. Comparing all LIG transient sim-

ulations with the Holocene in the three considered latitudi-

nal bands, we observe that the Holocene experiences mostly

lower TS than during the LIG and is characterized by smaller

trends.

In our LIG transient simulations, we find that the differ-

ences in TS between the different model simulations at the

beginning of the LIG (130 kyr BP) are higher than during

the late LIG (115 kyr BP), indicating that the impact of a re-

duced GIS is stronger at the beginning of the LIG as com-

pared to glacial inception (GI, 115 kyr BP), possibly related

to an interplay with insolation forcing. By using different ap-

proaches to simulate the LIG evolution, we offer a spectrum

of possible temperatures, in our model–data comparison, at

each given time between 130 and 115 kyr BP.

4.3 Model–data comparison

In combination with changes in the GIS elevation and lower

albedo, the insolation effect leads to high positive summer

TS anomalies in the Northern Hemisphere (Figs. 4c and 6a,

c). The pattern of these changes is observed also in another

model study of the LIG that includes a reduction in GIS

elevation of 500 m (Otto-Bliesner et al., 2006). The study

shows that the June–July–August (JJA) temperature anomaly

with respect to PI is positive in the Northern Hemisphere,

especially over the continents – yet the magnitude of these

changes is smaller than in our study. In order to validate their

results, Otto-Bliesner et al. (2006) compare the simulated

temperature anomalies to proxy-based temperature anoma-

lies by CAPE-Last Interglacial Project Members (2006).

Comparing our model results to the same proxy compila-

tion, we see most similarities in the local summer, although

www.clim-past.net/12/1313/2016/ Clim. Past, 12, 1313–1338, 2016



1330 M. Pfeiffer and G. Lohmann: Greenland Ice Sheet influence on Last Interglacial climate

at some locations the magnitude differs. Over Greenland, the

warming reaches +5 ◦C according to the proxy reconstruc-

tions, while our results show a higher warming caused by

the reduction of the GIS. However, the results from Otto-

Bliesner et al. (2006) indicate an underestimation. This sug-

gests that the GIS elevation during the LIG may have not

been so drastically reduced as prescribed in our model setup

but was still reduced by at least 500 m. This conclusion is

supported by another model–data comparison study (Stone

et al., 2013) that uses the same data compilation (CAPE-

Last Interglacial Project Members, 2006). In their simula-

tion produced with an AOGCM, Stone et al. (2013) find a

good agreement between model and reconstruction as well

but cannot capture the reconstructed strong warming over

Greenland, where their simulation indicates a warming of

up to +3.5 ◦C. They imply that the GIS was reduced in the

LIG as compared to PI, but not completely deglaciated –

in the simulation with a completely removed GIS, they find

much stronger temperature anomalies over Greenland of up

to +16 ◦C, higher than in our findings when the GIS is re-

duced to half its present elevation (Fig. 2). A high over-

estimation of the magnitude of the temperature change by

the model is also found by Otto-Bliesner et al. (2006) for a

deglaciated Greenland, with summer temperature anomalies

being higher than +10 ◦C. Although in our simulations we

do not completely remove the ice sheet, we find strong TS

anomalies of up to +11 ◦C.

A warming as high as +8 ± 4 ◦C is proposed by NEEM

community members (2013) for the peak LIG warmth at

126 kyr BP, based on NEEM ice core. They propose that the

north-west GIS is characterized only by a modest reduction

of 400 ± 250 m between 128 and 122 kyr BP. In our study,

we find at the location of the NEEM ice core an annual mean

warming of +9.6 ◦C at 125 kyr BP at a GIS height of 553 m,

a warming that is within the temperature range proposed by

NEEM community members (2013). When the temperature

estimate from NEEM ice core is not corrected for elevation

changes, it indicates a positive anomaly of 7.5 ± 1.8 ◦C. Such

dramatic temperature changes at the NEEM site are pro-

posed by another recent study based on ice core air isotopic

composition (δ15N) and relationships between accumulation

rate and temperature (Landais et al., 2016). Their study sug-

gests anomalies between the LIG (126 kyr BP) and the PI of

+7 to +11 ◦C, with +8 ◦C being considered the most likely

estimate. Antarctic ice cores indicate positive temperature

anomalies of up to +3.5 ◦C (Capron et al., 2014), suggesting

stronger warming than the simulated TS. However, a reduc-

tion in the GIS reduces the model–data disagreement. More-

over, our study does not account for possible changes in the

Antarctic ice sheet topography and its potential impacts (Sut-

ter et al., 2016, and references therein).

We go one step further and perform an additional model–

data comparison with global coverage (Turney and Jones,

2010). This proxy compilation is included in another model–

data comparison study for the LIG (Lunt et al., 2013), using

a multi-model approach including the LIG-GHG. None of

the model simulations used in their study consider a reduc-

tion of the GIS elevation or albedo. Lunt et al. (2013) find as

well that the models fail to capture the magnitude of the tem-

perature change suggested by the proxy data. In their study,

none of the simulations manage to capture a strong high-

latitude annual mean warming indicated by the terrestrial

proxy data. In fact, most of the models suggest a slight cool-

ing over Europe and northern Asia and only a slight warming

over Greenland, at 130 kyr BP. The LIG-1300m-alb indicates

a relatively higher warming, reducing the disagreement be-

tween model and data. Over Antarctica, the simulated and

reconstructed temperature anomalies indicate a warming of

similar magnitude, in contrast to the simulations performed

by Lunt et al. (2013), where most of the models indicate a

slight cooling. These results imply that a reduced GIS during

the LIG improves the model–data comparison. The RMSD

values support this assumption (Table S2), although differ-

ences between the considered cases (i.e. with or without a re-

duction in the GIS) are relatively small – in the calculation of

the RMSD, all the proxy records by Turney and Jones (2010)

are considered, including a large number of records in the

low latitudes where a change in the GIS has no influence.

In all considered simulations, the model does not capture

the magnitude of the SST anomalies derived from marine

records. Such an underestimation of temperature changes de-

rived from proxy data by the models is also found in model–

data comparison studies for the Holocene (Masson-Delmotte

et al., 2006; Brewer et al., 2007; Sundqvist et al., 2010;

Zhang et al., 2010; O’ishi and Abe-Ouchi, 2011; Bracon-

not et al., 2012; Lohmann et al., 2013; Bakker et al., 2014).

Lohmann et al. (2013) show that the simulated SST trends

systematically underestimate the marine proxy-based tem-

perature trends, and suggest that such discrepancies can be

caused either by too simplistic interpretations of the proxy

data (including dating uncertainties and seasonal biases) or

by underestimated long-term feedbacks in climate models,

a feature which is probably also valid for the LIG. This also

calls to perform LIG simulations in Earth system models that

account for feedbacks not accounted for in our simulations,

such as those associated with interactive soils (Stärz et al.,

2016) and interactive ice sheet model components (Barbi et

al., 2014; Gierz et al., 2015). For instance, the GIS is ex-

pected to thicken at the start of an interglacial period due

to enhanced accumulation associated with deglacial warm-

ing (see also NEEM community members, 2013). We did not

consider this in our simulations, although potential effects of

the ice sheets during the LIG exist (e.g. Sutter et al., 2016).

As shown above, the TS in low to middle latitudes expe-

riences mostly no change in our simulation, in contrast to

the proxy-based SST anomalies that indicate strong positive

or negative temperature changes. Our results partly contra-

dict results from another early LIG (130 kyr BP) model sim-

ulation (Otto-Bliesner et al., 2013). Their Community Cli-

mate System Model 3 (CCSM3) simulates mostly a cool-
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ing in the ocean, with the exception of the North Atlantic

Ocean south of Greenland, where the anomalies have the

same sign as proxy-based SSTs by Turney and Jones (2010).

The terrestrial records located in the high latitudes indicate,

however, a better agreement with the LIG-1300m-alb. Even

when considering mid-LIG (125 kyr BP) in both studies (see

Fig. S11 for our study), the terrestrial data can be better

reconciled with the simulation in which GIS elevation and

albedo are reduced, especially over Antarctica, where Otto-

Bliesner et al. (2013) find a cooling. Nevertheless, the dif-

ference between the magnitude of change in model and re-

construction is still large. Otto-Bliesner et al. (2013) sug-

gested that this mismatch may arise from the lack of vege-

tation feedback. Here, the fact that we account for the vege-

tation feedback challenges this explanation. Over Greenland,

the CCSM3 model underestimates the amplitude of changes

when compared to reconstructions, while our model simu-

lations with reduced GIS have too large simulated changes

when compared to the same reconstructions. Otto-Bliesner

et al. (2013) propose that the Greenland ice records may cap-

ture temperatures associated with a reduction in GIS eleva-

tion. This suggests again that the LIG GIS was lower, but

possibly not as low as prescribed in our study. Otto-Bliesner

et al. (2013) also take into account possible seasonal biases

considered by Lohmann et al. (2013), comparing the proxy

data to simulated JJA temperature anomalies for which they

find the best fit, suggesting that the proxies record boreal

summer temperatures. In our study, however, we find the

best overall fit for simulated annual mean rather than sum-

mer TS (Figs. S7a, c and S8) in all three cases: reduced

GIS and albedo at 130 kyr BP (LIG-1300m-alb, Figs. 7a and

8b) and at 125 kyr BP (LIG-125k, Fig. S11a, c), and pre-

industrial GIS at 130 kyr BP (LIG-ctl, Figs. 7c and S4b), with

the best agreement between model and data in the first case

(Table S2). This could indicate that the proxies may indeed

record annual mean temperatures, but in a warmer climate

caused by a reduced GIS (Fig. 7a). While the simulated sum-

mer TS is closer to the proxies at some locations (e.g. north-

ern Asia and Europe, Figs. S7a, S8), there are still more

records that agree best with the simulated annual mean TS

(Fig. 7a). Along with the simulated increase in TS, there is

an annual mean reduction in sea ice in the simulations with

reduced GIS compared to the PI (not shown).

Capron et al. (2014) had compared their data compilation

to two other climate model simulations, namely CCSM3 and

HadCM3. For 130 kyr BP, a model–data mismatch is found

in both cases, as most of the records indicate strong neg-

ative anomalies, while the models simulate strong positive

anomalies (Capron et al., 2014), especially CCSM3, which

was run with higher GHG concentrations than HadCM3 and

COSMOS. With respect to the difference between model and

data, COSMOS simulates TS closer to the temperatures de-

rived from marine-based records, since it indicates nearly

no change rather than a strong opposite signal. One cause

of this modest change in the North Atlantic Ocean may be

related to vegetation changes, which may lead to a cooling

as suggested above. The vegetation feedback counteracts the

warming caused by predominantly higher GHG concentra-

tions; in the simulation with dynamic vegetation (LIG-ctl-tr),

the CO2 concentration is higher by up to 15 ppmv than in the

simulation with fixed pre-industrial vegetation (LIG-GHG-

tr). However, higher temperatures are found for the simula-

tion with lower GHG concentrations (LIG-GHG-tr). Another

cause may be the decrease in AMOC at the LIG with respect

to PI, leading to the bipolar seesaw, a pattern that is also ob-

served in the proxy data at 130 kyr BP. We note a relative

cooling in both LIG simulations south of Iceland and Green-

land. This region is very sensitive to changes in the AMOC

as shown in observational and numerical studies (Knight et

al., 2005; Latif et al., 2006; Dima and Lohmann, 2010).

For 125 kyr BP, COSMOS simulates higher anomalies in

the North Atlantic Ocean than at 130 kyr BP, but lower than

CCSM3 and HadCM3, which simulate SSTs closer to the

reconstructed temperatures (Fig. S15a). Note, however, that

the definition of summer is different in our study than in

the study by Capron et al. (2014), as they calculate it as the

average of July–August–September, while we consider the

warmest month.

4.4 Limitations of model–data comparison

One challenge in an effective LIG model–data comparison

is the difficulty to determine an absolute dating of LIG ma-

rine palaeo-proxy records (e.g. Drysdale et al., 2009), as few

techniques exist for this purpose. The dating of most of the

records is derived by lining up their benthic δ18O signal to a

dated benthic δ18O stack (Lisiecki and Raymo, 2005). This

strategy allows a relative dating of sediment cores beyond

the time limit of radiocarbon dating (Fairbanks et al., 2005;

Chiu et al., 2007; Reimer et al., 2009, 2013; Shanahan et al.,

2012), but it may lead to an artificial synchronization of all

records and therefore dampen regional differences in climate

records with respect to the LIG chronozone. An alternative

method for synchronizing different types of proxies is used

in Govin et al. (2012), in which proxy records are aligned to

the AICC2012 ice core chronology. Their study shows that

the maximum temperature changes during the LIG are dif-

ferent between the two hemispheres, with the records from

Southern Ocean and Antarctica showing an early maximum

compared to the records from northern high latitudes. This

method is used by Capron et al. (2014) in their proxy data

compilation, and further applied in Govin et al. (2015), thus

allowing for one less uncertainty in the model–data com-

parison. However, using such a time-resolved temperature

compilation does not improve our model–data comparison,

as when compared to the other proxy-based data sets that

represent the maximum LIG warmth.

Additionally, some proxy records that are considered as

recording annual mean temperatures are seasonally biased,

depending on the type of the proxy or on the region (Leduc

www.clim-past.net/12/1313/2016/ Clim. Past, 12, 1313–1338, 2016
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et al., 2010; Schneider et al., 2010; Lohmann et al., 2013).

Furthermore, defining the timing of the maximum warmth

during the LIG also represents a challenge. Bakker and

Renssen (2014) show that the calculation of the maximum

LIG temperature is largely model-dependent, indicating also

geographical and time dependency (retrieved values differ

between the annual mean and warmest month temperature

anomalies). They propose that the time dependency origi-

nates from the dependency of the time evolution of orbital

forcing on latitude and seasons, as well as from the ther-

mal inertia of the oceans and from different feedbacks in

the climate system. Our model results indicate that the tim-

ing of maximum LIG warmth is indeed regionally dependent

(Fig. 9).

5 Conclusions

In this study, we have analysed data from several LIG sen-

sitivity simulations performed with an AOGCM and have

assessed the influence of the GIS on global climate. We

have compared the simulated TS changes to anomalies as

recorded by LIG climate data synthesis of CAPE-Last In-

terglacial Project Members (2006), Turney and Jones (2010),

and Capron et al. (2014).

We have shown that the exact method by which GIS con-

figuration is changed has a significant influence on hemi-

spheric temperature anomalies. A reduction in the GIS by

1300 m and changes in albedo enhance the warming caused

by changes in the astronomical forcing by up to +5 ◦C. The

LIG is much warmer than the PI, especially during summer

in the Northern Hemisphere, and during winter in the South-

ern Hemisphere as well as northern high latitudes. The influ-

ence of astronomical forcing is dominant (relative to changes

in the GIS) in the global and Northern Hemisphere average

of annual mean and local summer TS, and in the Southern

Hemisphere winter. Changes in the GIS have the strongest

influence (relative to insolation changes) in the global and

Northern Hemisphere average of local winter TS, and in the

Southern Hemisphere summer.

Modification of the GIS alone leads to a warming mostly

in the northern and southern high latitudes. Cooling occurs

locally in Barents Sea or Sea of Okhotsk (depending on the

simulation). The warming caused by a reduced GIS has a

winter rather than a summer signal at both hemispheres.

The simulated TS underestimates the temperature changes

indicated by the proxy reconstructions. However, a reduc-

tion in GIS elevation and extent improves the agreement be-

tween model and data by Turney and Jones (2010). In order

to obtain the maximum LIG warmth, we perform and analyse

transient model scenarios. For the proxy data by CAPE-Last

Interglacial Project Members (2006) that represent summer

temperatures, changes in the GIS are of minor importance

for SSTs.

Throughout the LIG, winter in the northern high latitudes

is characterized by high temporal variability, while sum-

mer TS indicates a clear cooling trend. By considering tran-

sient simulations with different boundary conditions (i.e. GIS

elevation, albedo, insolation, GHG concentrations) we of-

fer a spectrum of potential temperatures at each given time

throughout the LIG, between 130 and 115 kyr BP. We reduce

the mismatch between model and data by additionally con-

sidering uncertainties in absolute dating of the proxy recon-

structions, and uncertainties in the timing of maximum LIG

warmth (calculated in our study as the simulated maximum

LIG warmth between 130 and 120 kyr BP at each given loca-

tion). The missing exact time constraint in CAPE-Last Inter-

glacial Project Members (2006) and Turney and Jones (2010)

therefore provides an additional uncertainty and complicates

direct model–data comparisons. Future studies that provide a

mechanistic multi-proxy interpretation and a better represen-

tation of the climate feedbacks are needed in order to reduce

the model–data mismatch. Our sensitivity simulations repre-

sent a starting point for future studies on transient integra-

tions of the LIG climate that also include transient changes

in GIS elevation and extent, as well as for the comparison

of such results to high-quality proxy data. More sensitivity

studies on the effects of a reduced GIS on global climate are

required in order to understand the response of different mod-

els to such changes, as the ability of the models to properly

simulate future states of the GIS is critical.
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