
Introduction

The Norwegian North Atlantic rift system contains not
only one of Europe’s largest offshore hydrocarbon pro-
vinces, but also one of Europe’s most investigated
mountain belts, the Caledonian Orogen (Figs. 1 & 2).
In this paper we combine data from both the onshore
and offshore realms of this region and propose a con-
ceptual model for the Scandinavian side of the North
Atlantic rift system. The model takes into account a re-
definition of the physical boundaries of the passive
margin, a re-assessment of the crustal-scale structure of
the conjugate Greenland-Norway margins, and a plate
tectonic history that links rifting events and geometries
from the Permian through to the Present. Changing
the traditional boundaries of the passive margin neces-
sarily affects calculations of the amount of extension an
area has undergone, as well as interpretations of crustal
structure in regional cross-sections that display both
extended passive margin and unaffected craton. Our
interpretation of the crustal-scale structure suggests
predominantly asymmetric crustal extension and we
discuss the implications of the margin structure and

asymmetry on the regional evolution of the European
North Atlantic passive margin.

Regional geology, and polyphase rifting

The continental crust in the Scandinavian Caledonides
contains stacked nappes that resulted from thrusting
and tectonic underplating of the exotic terranes from
Laurentia/Iapetus and the imbrication of the W-sub-
ducting margin of Baltica in Paleozoic times (Gee et al.
1985, Stephens et al. 1985, Ziegler 1988a, Stephens &
Gee 1989, Ziegler 1990, Rey et al. 1997). The collisional
climax in Silurian-Early Devonian time was followed
by a generalized collapse of the mountain belt and the
probable break-off of the subducting slab. Subsequent
geodynamic re-equilibration led to the development of
intramontane, detrital Devonian basins (Steel et al.
1985, Osmundsen et al. 1998, Osmundsen & Andersen
2001). The present-day Caledonian thrust front (Fig. 2)
of the overriding upper plate is the eroded remainder
of an original thrust front located further to the east
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Fig. 1.Map of the North Atlantic Ocean with the Greenland and Norway conjugate margins. Major geographic areas and structural elements
are shown: ocean basins, ocean ridges, main transform and fault systems, basins offshore Norway (modified from Blystad et al. 1995), and mag-
netic anomalies (from Skogseid et al. 2000). The different passive margin segments are highlighted. Tertiary inversion structures (domes) are
shown for the Vøring and Færoes margins, and also for the Barents Sea, Svalbard and Wandel Sea margins. Note that the Jan Mayen Fracture
Zone (JMFZ) incorporates a very broad zone along the western Vøring Basin margin.
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(Hossack & Cooper 1986, Andréasson 1994, Garfunkel
& Greiling 1998). While the mechanisms and causes of
the mountain chain collapse (lithospheric root remo-
val, slab breakoff, elastic rebound and gravitational
body forces) and the transition to the purely extensio-
nal (rifting) regime are still debated (Andersen & Jamt-
veit 1990, Wilks & Cuthbert 1994, Hartz & Andresen
1997, Milnes et al. 1997, Marotta et al. 1998, Schott &
Schmeling 1998, Koyi et al. 1999, Fossen 2000, Milnes &
Koyi 2000), lithospheric 'root adjustment' following
orogenic collapse probably left the mountain belt with
a thinned lithosphere. The relict mountain belt was
subsequently exposed to repeated rifting.

Extensional faulting and basin formation are demon-
strated to have been active in the Late Devonian and
Carboniferous on Norway and East Greenland (Braat-
hen et al. 2002, Eide et al. 2002, Hartz et al. 2002,
Osmundsen et al. 2002, 2003). The development of
these basins was related to Devonian sinistral transla-
tion of Greenland-Laurentia relative to Baltica which
led, in turn, to the formation of transtensional/trans-
pressional basins and the collapse of the Arctic-North
Atlantic Caledonides (Ziegler 1988b, a). Rifting sensu
stricto started around Mid Carboniferous times, as seen
in East Greenland, and was well underway by the Late
Permian (see also Hartz et al. 2002). During this rifting
process, the continental crust of Norway was repeatedly
stretched and extended and a series of important basins
was created above normal fault systems which may have
rooted in the ductile zone of the middle crust (Mosar
2000). The successive rifting events eventually culmina-
ted with continental break-up and the opening of the
North Atlantic Ocean in Tertiary time. Models for and
general discussions of these rifting episodes can be
found in e.g. Vogt (1986), Torske & Prestvik (1991),
Parker (1993), Lundin & Doré (1997), Doré et al.
(1999), Fleet & Boldy (1999), Brekke (2000), Nøttvedt
(2000), Skogseid et al. (2000), Brekke et al. (2001).

Extensional faulting (Fig. 2) associated with the rift
development was not restricted to what is now the offs-
hore realm, but can also be seen on the Scandinavian
mainland (Norton 1986, 1987, Gee 1988, Sjöström &
Bergman 1989, Wilks & Cuthbert 1994, Færseth et al.
1995, Hartz & Andresen 1997, Braathen 1999). Post-
Permian rift-related faults have been described in
small, nearshore basins such as the Beitstadfjord Basin,
north of Trondheim (Bøe & Bjerkli 1989, Sommaruga
& Bøe 2003) as well as in Western Norway (Eide et al.
1997, Andersen 1998, Andersen et al. 1999).

The passive margin: from Innermost Boundary Fault 
system to the Continent Ocean Boundary

The Scandinavian Atlantic passive margin extends from
Svalbard to the intersection with the North Sea Gra-

bens (Fig. 1 & 2). The structure of the Norwegian offs-
hore portion can be subdivided into several distinct
segments from SW to NE (Dalland et al. 1988, Doré et
al. 1997, Lundin & Doré 1997, Brekke et al. 1999,
Osmundsen et al. 2002): the Møre margin (Gabrielsen
et al. 1999), the Vøring margin together with the Trøn-
delag Platform (Brekke 2000), the Lofoten margin (Tsi-
kalas et al. 2001) and the Barents Sea - Svalbard margin
(Eldholm et al. 1987, Faleide et al. 1991). In addition, a
large portion of the onshore mountain belt, not traditi-
onally considered as part of the passive margin, is
included in our definition of the passive margin.

In the following we use  passive margin to refer to the
area that extends from the boundary for continent-
ocean transition zone to the innermost continental
fault system that can be related to rifting. This inner-
most normal fault is considered by some authors (Lis-
ter et al. 1986, Wernicke & Tilke 1989, Lister et al. 1991)
as the detachment or break-away zone/fault and corres-
ponds to the rift shoulder (Beaumont et al. 2000). In
order to avoid ambiguities with the zone/fault along
which sea-floor spreading occurs, often also referred to
as a 'break-away zone/fault' (or final break-up), we
choose here to refer to the innermost boundary fault
system - IBF (Mosar et al. 2001, Mosar submitted).

The continent-ocean boundary (COB) corresponds to
the transition from oceanic lithosphere to continental
lithosphere. Rather than a discrete limit, this boundary
forms a narrow band or zone of varying width. We
identify here a new IBF system on the Norway margin,
and use a rough new COB in the North Atlantic realm.
The proposed IBF system (Mosar submitted) has been
identified on the basis of map fault traces, topographic-
geomorphic features, age determinations and kinema-
tics of extensional faults and published seismic and
potential field interpretations. The COB has been defi-
ned on the basis of the location of magnetic anomalies
in the oceanic crust (Skogseid et al. 2000), new inter-
pretations of potential field data, and information from
seismic data (Figs. 1 & 2). Critically, the width of the
passive margin and related issues of extension magni-
tude through time, are measured between the IBF and
the COB. Essentially, by 'moving' the IBF from a nears-
hore (coastal) position to a continentward position, we
alter the perspective geometries and crustal responses
to the Late Carboniferous through Present rifted mar-
gin.

The IBF. - A distinctive, linked fault system – the IBF –
has been proposed to extend over a distance exceeding
2000 km from the Barents Sea to the North Sea and is
located to the west of the present-day Caledonian
thrust front (Figs. 2 & 3). The IBF runs from southwest
to north and northeast across the topographic crest of
the present mountain chain and separates a gently east-
dipping domain to the east from more rugged topo-
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graphy and glacial valleys to the west; as such, the IBF
forms the innermost rift shoulder that separates the
unextended craton from the rifted passive margin
(Figs. 2 & 3). This position of the IBF at the surface cor-
responds at depth to a zone of slight crustal thinning
(Dyrelius 1985, Hurich & Kristoffersen 1988, Hurich et
al. 1989, Hurich & Roberts 1997, Andersen 1998) and
to the important negative Bouguer gravity anomaly of
Scandinavia (in excess of –100 mGal; Balling 1984,
Kinck et al. 1993, Korhonen et al. 1999, Skilbrei et al.
2001, Olesen et al. 2002, Skilbrei et al. 2002). The IBF
trace also lies directly to the west of a series of small
basement massifs which are themselves located above
the shallow décollement of the Caledonides (Fig. 2).
The IBF, as defined here, is not a single fault, but a lin-
ked fault system that reactivated former reverse or nor-
mal ductile faults of probable Devonian-Carboniferous
ages along the western slopes of these massifs. The IBF
probably experienced several successive periods of
extension since the late Carboniferous/Permian and
was most likely active as recently as the Tertiary and
possibly the Present.

The COB. - Along the North Atlantic volcanic margins,
the COB, or transition zone between continental and
oceanic lithosphere, is frequently associated with, but
also masked by, magmatic rocks linked to the break-up
process (Skogseid et al. 1992, Saunders et al. 1997, Eld-
holm et al. 2000, Berndt et al. 2001). The magmatic
rocks developed along the marginal highs and are cha-
racterized by substantial amounts of intrusive rocks, as
well as thick layers of seaward-dipping reflectors related
to extrusive volcanic rocks. Volcanism was associated

with the initial break-up of the NE Atlantic and impor-
tant crustal thinning and magmatic underplating.
Along the Lofoten, Barents Sea, Svalbard, Wandel Sea,
Boreas Basin, and East Greenland margins we adopted
a COB based on a combined interpretation of gravity
and magnetic data and commercial seismic surveys; at
the Møre and Vøring Marginal High, the COB trace
closely follows that proposed by Skogseid et al. (2000).
Along the Jameson, Liverpool Land and Færoes mar-
gins the COB more loosely follows the location of the
oldest magnetic anomalies.

Width of the passive margin

With the COB and IBF as primary markers, we can
quantify the width of the passive margin along its
extent (Figs 1 & 2). The smallest width of some 165 km
is found along a section across the Lofoten area, while
the broadest margin width of c. 710 km is measured
along a section across the Vøring Basin into Sweden
(Åre-Östersund). Some 550 km of extended margin are
measured along a section through the Møre Basin and
the Western Gneiss Region. These widths correspond to
the finite extension of the margin since Permo-Carbo-
niferous time and represent the cumulative effect of the
successive rifting-stretching events from the Mid-Late
Carboniferous to Present. In a simple, first-order,
semi-quantitative attempt to measure the pre-rift mar-
gin width, we used a combined approach with plate tec-
tonic reconstructions and line-length balancing of the
top-to-basement surface. In agreement with other stu-
dies (Gabrielsen et al. 1999, Reemst & Cloetingh 2000,
Skogseid et al. 2000) and discussion in Brekke et al.
(2001), we estimated an average total extension in the
order of 200% (β=2), which means that the margin
doubled its width since the Permo-Carboniferous.
Conversely, in Late Permian-Early Jurassic plate recon-
structions, the COB can be restored considerably far-
ther inboard from its present position, and a very tight
fit between Greenland and Scandinavia can be achie-
ved. This implies important shortening of the existing
basins and may restore sediment source areas closer to
depositional realms.

Asymmetric rift geometry of the 
conjugate Norway-Greenland margins
The development and the geometry of rifts has been
extensively discussed in recent years (e.g. Wernicke
1985, Lister et al. 1991, Ziegler 1996, Ziegler et al.
1998). In our analysis of the rifting in the North Atlan-
tic, we use a model with an asymmetric rift geometry
(Fig. 3) with correspondingly clear differences in the
development of the conjugate margins (Voggenreiter et
al. 1988, Lister et al. 1991, Stampfli et al. 2001, Ziegler et
al. 2001). The rift geometry controls the development

Fig. 2. Tectonostratigraphic map of the Atlantic Scandinavian passive
margin. The post-Late Permo-Carboniferous normal faults onshore
and offshore are emphasized. The IBF is defined in Western Norway
by the Lærdal-Gjende-Olestøl (LGO) fault system, and in central
Norway it includes the Åre and Kopperå faults and the Røragen
detachment system and the northern tip of the Møre Trøndelag Fault
Complex (Andersen 1998, Mosar 2000). The IBF is traced along the
topographic culmination of the mountain chain and connects former
ductile extensional faults located on the western slopes of basement
windows: the Børgefjellet window, the Nasafjället window, and the
Rombak window (Rykkelid & Andresen 1994, Essex & Gromet
2000). In the Nordland area, the IBF and equivalent faults are propo-
sed to consist of fault segments defined by the topographic crest of the
mountain chain, the location of the basement windows, and inter-
pretations of potential field data indicating major basement offset in
the structures (Olesen et al. 2002). To the north-northeast of Tromsø
in the Finnmark area, a set of large normal faults including the Lang-
fjord-Vargsund fault form the northernmost branch of the IBF, that
terminates against the Trollfjord-Komagelv fault at the edge of the
Barents Sea (Siedlecka & Roberts 1996b, a). Offshore map: from Bly-
stad et al. 1995; Brekke et al. 1999, Gabrielsen et al. 1999; Smethurst,
2000, and data from NPD-Olje Direktorat. Scandinavian Caledoni-
des tectonostratigraphic map: Sveriges geologiska undersökning Ser.
Ba nr. 35; compiled by Gee et al. 1985. Onshore-Offshore map: modi-
fied from Mosar 2000, Offshore magnetic anomalies: from Skogseid
et al. 2000.
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of an upper plate, or flexural margin, and a lower plate,
or tilted-block margin. In an initial stage of rifting, the
brittle upper crust of both the upper and lower plates is
extended over a ductile basal layer along a series of lis-
tric normal faults; this configuration facilitates deve-
lopment of tilted blocks and half-graben structures. As
rifting progresses, the lower and upper plate continue
to extend and are ultimately separated during final
break-away. The lower crust and the lithospheric
mantle behave in a ductile manner, generating hetero-
geneous stretching and boudinage (Malavieille & Tabo-
ada 1991, Brun & Beslier 1996, Gartrell 1997). In such a
scenario, detachment faults need not necessarily cut
through the entire lithosphere. Models of the compres-
sional strength of passive margins with an upper-plate
geometry versus a lower-plate geometry (Ziegler et al.
1998, Ziegler et al. 2001) show that the upper-plate
margin is weaker than the lower-plate margin.

The development of extensional normal faults in a
combined upper- and lower-plate setting creates a vari-
ety of geometries (Gabrielsen 1986) such as half-gra-
bens with roll-over structures, crestal grabens and antit-
hetic faults, ramp-flat geometries, forced folds, and 
linked fault systems. In order to determine the regional
structure and geometry of the major fault systems and
to determine the primary, large-scale dip-directions
since Permian time, we built upon the many published
studies on Mid Norway’s offshore domain (Bukovics &
Ziegler 1985, Roberts & Yielding 1991, Yielding &
Roberts 1992, Blystad et al. 1995, Grunnaleite & Gabri-
elsen 1995, Jongepier et al. 1996, Bjørnseth et al. 1997,
Grevemeyer et al. 1997, Lundin & Doré 1997, Doré et al.
1999, Pascoe et al. 1999, Sanchez-Ferrer et al. 1999,
Brekke 2000, Osmundsen et al. 2002, and references the-
rein). Additional constraints on regional normal fault
systems, their orientations and related geometries were
provided from new interpretations of a high-quality,
long-offset seismic reflection survey recorded to 14
seconds two-way time in the Norwegian Sea area
(Osmundsen et al. 2002). In Scandinavia's North Atlan-
tic passive margin these geometries are, to an important
extent, linked to older, major Paleozoic detachment
faults and basement core-complexes (Braathen et al.
2002, Osmundsen et al. 2003).

Structural provinces north and south of the Jan Mayen
Fracture Zone

At a crustal scale, two large provinces with different
geometries and different dip directions of major fault
systems are found north and south of the Jan Mayen
Fracture Zone (JMFZ) and the Jan Mayen Lineament
(JML) (Fig. 1). In the oceanic realm, the JMFZ separa-
tes the extinct Ægir Ridge system (Grevemeyer et al.
1997) and the Kolbeinsey Ridge to the south from the
Mohns Ridge system to the north (Fig. 1). Towards the
north, the Mohns Ridge extends into the oblique-trans-
form ridge system of the Knipovitch Ridge (Vogt 1986,
Thiede et al. 1990, Vogt et al. 1998).

In the prolongation of the JMFZ, the JML forms the
'soft link' or transition zone between the Møre and
Vøring Basins (Figs. 1 & 2 and discussion in Lundin &
Doré 2002, Mosar et al. 2002). To the south of the
JMFZ and JML are the Færoe and Møre margins on the
Norwegian side, and Jan Mayen and Liverpool Land -
Jameson Land areas of the Greenland margin. To the N,
on the Greenland side, are the extended offshore mar-
gin of East Greenland and the Boreas Basin margin,
and on the Scandinavian side, the Vøring and Lofoten
margins.

In the Norway margin this transition or 'soft link' zone
is located between the Frøya High and the Modgunn
Arch and runs over the Helland-Hansen Arch and the

Figure 3: A. Geometry and terminology of an asymmetric rift system
just prior to sea-floor spreading. B,C. Asymmetric margin geometry
as discussed in this paper for sections north and south of the Jan
Mayen Fracture Zone and Jan Mayen Lineament. Models are tenta-
tive reconstructions for a geometry prior to break-up and sea-floor
spreading, possibly in the Jurassic-Cretaceous.
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Ormen Lange Dome (Lundin & Doré 2002, Mosar et al.
2002; Figs. 2 & 4). Transfer geometries such as conver-
gent, divergent and synthetic, normal-fault systems
(Morley 1995), are a common feature along passive
margins. Thus the Ormen Lange Dome and the South
Helland-Hansen Arch show predominantly NW- and
W-dipping normal faults along their eastern parts,
whereas the North Helland-Hansen Arch shows E-dip-
ping normal faults along its western edge (Fig. 2 & 4;
Bukovics et al. 1984, Bukovics & Ziegler 1985, Blystad
et al. 1995, Grunnaleite & Gabrielsen 1995, Sanchez-
Ferrer et al. 1999, Brekke 2000, Osmundsen et al. 2002).
The transition from south to north forms a convergent
step-over zone, especially visible in the geometries of
the normal faults bounding the deep Cretaceous basin
underlying the Helland-Hansen Arch.

Crustal-scale cross sections and changing fault geometries

Crustal-scale cross sections on the Mid-Norway Atlan-
tic margin, and across the ocean into Greenland, high-
light the important changes in the dip direction of the
major extensional faults on both conjugate margins
(Figs. 5 & 6). Interpretations of the offshore setting are
based on work by Osmundsen et al. (2002) as well as
work from published geoseismic profiles which are
based on seismic reflection data (Blystad et al. 1995),
seismic refraction data (Planke et al. 1991, Mjelde et al.
1993, Planke & Eldholm 1994, Mjelde et al. 1996,

Mjelde et al. 1997, Mjelde et al. 1998), and geophysical
modeling (Skogseid 1994, Skogseid & Eldholm 1995,
Olesen et al. 1997, Digranes et al. 1998). Interpretations
onshore are based on available deep seismic surveys
and interpretations of the crustal structure (Dyrelius
1985, Hurich & Kristoffersen 1988, Hurich et al. 1989,
Palm 1991, Palm et al. 1991, Hurich 1996, Hurich &
Roberts 1997, Andersen 1998, Mosar 2000, submitted).
Below we discuss these sections across the margin, on
which the change of fault geometry is evident, mainly
from dominantly W-dipping in the south to E-dipping
in the north. The importance of the JMFZ and JML as
a linking- or transition-zone is emphasized in this
series of figures.

South of the JMFZ, the architecture of the Norwegian
margin is dominated by W-dipping crustal faults. Simi-
larly, the structure of Jameson Land and Liverpool
Land is characterized by an important extensional fault
system dipping to the west (Fig. 6B). The Jameson Land
Basin develops over an important crustal-scale normal
fault dipping to the west. Seismic investigations further
southwest along the volcanic margin show similar, W-
dipping faults (Larsen & Saunders 1998). The extent to
which basement underlies the Jan Mayen microconti-
nent remains unknown, but its subsurface structure
appears to show dominantly W-dipping normal faults
(Gudlaugsson et al. 1988, Kuvaas & Kodaira 1997,
Planke & Alvestad 1999), a crustal root at a depth of 20
km, and crustal thickness of 10 km. Seismic studies

Fig. 4. Tentative 3D rendering of the transition/transfer zone from lower plate geometry and tilted block margin to upper plate geometry and
flexural margin between the Møre-South Vøring Basins and the Central Vøring Basin. Faults are the same as in map of figure 2. Red faults are
west-dipping, black faults are east-dipping; IBF is innermost boundary fault system. No structures are shown west of the future break-up zone
on the conjugate Greenland margin. West of the Gjellar Ridge the major fault dips to the east below the sudsidiary west-dipping faults of the
Gjallar Ridge according to interpretation from (Osmundsen et al. 2002).
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from the Møre Basin show that normal faults, over
which half-graben basins develop, are the dominant
structural features. The dip of the major normal faults
is clearly towards the west. The Møre-Færoe-Shetland
escarpment forms the transition to the outermost crus-
tal block of the Norwegian margin, the Møre Marginal
High. The Lærdal-Gjende-Olestøl fault (LGO) in the
Western Gneiss Region, comprises a NW-dipping set of
rift-related faults (Fig. 2 & 5C). The W-dipping crustal
faults nearshore dip steeply in upper crustal levels and
gently at depth where they continue into the offshore
continental crust (Færseth et al. 1995, Milnes et al.
1997, Christiansson et al. 2000, Odinsen et al. 2000,
Smethurst 2000).

The geometry of the East Greenland margin, north of
the JMFZ, is dominated by extensional normal faults
dipping to the east and related to development of
important basins since the Permian (Surlyk 1991,
Whitham et al. 1999; Fig. 6A). Deep geophysical studies
show a basin geometry in agreement with major E-dip-
ping faults (Whitham et al. 1999, Schlindwein & Jokat
2000). Along strike, major basin-bounding faults form
relay ramp structures such as in the Hold with Hope
area (Peacock et al. 2000).

Offshore Mid Norway, in the northern Vøring Basin
and in the center and at the western edge of the Trøn-
delag Platform, the major faults are E-dipping (Fig. 5B;
Osmundsen et al. 2002). The Trøndelag Platform is
separated from the onshore domain by an important
W-dipping normal fault system, here referred to as the
Border Fault Complex. The onshore Mid Norway/Swe-
den area is also affected by extensional, crustal-scale
faulting, and the development of small basins. The
major rift-related faults in this onshore region are dip-
ping to the west. Similarly, further north, additional
normal, W-dipping faults are observed in the onshore
basement (Fig. 2, 4 & 5A).

This series of cross-sections suggests that: 1) Norway's
North Atlantic passive margin developed as an asym-
metric passive margin, 2) the asymmetry of the passive
margin in the Møre Basin and Western Gneiss Region is
of lower-plate or tilted-block margin type, 3) the cen-
tral Vøring Basin-Trøndelag Platform and Mid Norway
domain exhibit an upper-plate or flexural margin geo-
metry, 4) in the northern Vøring Basin, major normal
faults dip to the east, whilst in the Møre Basin and sout-
hern Vøring Basin they dip to the west (see also Mosar
et al. 2002, Mosar submitted). This geometry indicates
a shift from an upper-plate to a lower-plate geometry
between the northern Vøring and the Møre Basins.
Furthermore, the Færoe-Shetland area to the south of
the Møre Basin and to the northwest of the Shetland
Platform could also be a potential candidate for an
upper plate geometry: the  major normal faults in the
area are E-dipping as indicated from shallow and deep

seismic profiles, though W-dipping faults also exist
(Duindam & van Hoorn 1987, Gibbs 1987, Grant et al.
1999, Smallwood et al. 2001).

Asymmetric rifting and development of upper/lower
plate margins has previously been proposed for various
portions of the conjugate margin in the North and Cen-
tral Atlantic, such as the Galicia-Flemish Cap margin
(Boillot et al. 1989, Sibuet 1992) south of Charlie-Gibbs
fracture zone and the Bay of Biscay rift. Other examples
were documented between Nova Scotia and Morocco
(Favre & Stampfli 1992), the Tarfaya Basin-Baltimore
Canyon Trough, the Senegal Basin-Carolina Trough,
and the Blake Plateau Basin-Guinea Basin (Lister et al.
1991). Similarly, alternating upper/lower plate margin
geometries have been proposed for the conjugate mar-
gins of Greenland and Norway, south and north of the
JMFZ (Torske & Prestvik 1991). However, unlike the
model we suggest, these latter authors propose a model
with a main crustal detachment dipping to the east,
south of the JMFZ, and dipping to the west, north of the
JMFZ. The analysis of Torske et al. (1991) was based on
rather shallow seismic data and on the occurrence and
possible causes of volcanism on both margins. In this
study, we had the benefit of high-quality, deep-seismic
data sets to constrain the deep geometries.

Polyphase extensional faulting and 
passive margin development
Starting in Late Carboniferous, the area between Green-
land and Norway was affected by a series of rift events
(Ziegler 1982, 1988a, 1989, Doré 1991, Doré et al. 1997,
Roberts et al. 1999, Brekke et al. 2001). Repeated stret-
ching of the continental crust left the Norway passive
margin with a locally strongly thinned crust and the lit-
hospheric mantle may have been close to the base of the
sedimentary basins which contain sediments in excess
of 8-10 km; very deep basins of this sort can be typical
for lower plate margins (Skogseid 1994, Skogseid & Eld-
holm 1995, Mjelde et al. 1997, Mjelde et al. 1998). Other
sections of the stretched margin like the Trøndelag Plat-
form and the onshore domain of Norway show more
moderate crustal thinning.

Offshore and nearshore

During the Permo-Triassic, basin development was
concentrated in nearshore areas such as in the Trønde-
lag Platform (Brekke et al. 2001, Bugge et al. 2002) and
along the Greenland coast (Doré 1992b, Stemmerik et
al. 2000) and was possibly superimposed on important
Paleozoic (Devono-Carboniferous?) basins (Bukovics
et al. 1984, Braathen et al. 2002, Osmundsen et al.
2002). Jurassic rifting seems to have been widespread
(onshore and offshore), but the important, deep Meso-
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zoic basins formed to the west of the Permian basins
(Ziegler 1988a, Doré et al. 1999, Brekke 2000). The
Middle Jurassic to Early Cretaceous is another impor-
tant period of rifting, that was followed by Middle Cre-
taceous rifting (Brekke et al. 2001). During these events
the zone of highest crustal attenuation moved further
westward and maximum subsidence occurred during
the Early and Late Cretaceous in the Vøring and Møre

Basins. The last important rifting event is of Late Creta-
ceous-Early Tertiary age (Doré et al. 1999, Brekke et al.
2001) and preceded crustal separation prior to break-
up. The exact position of this break-up is obscured in
the Vøring and Møre Basins by basalt flows but is cle-
arly developed along the Barents Sea margin, and in the
West Shetland trough. The rift-drift transition occurred
in the Early Eocene just prior to anomaly 24B. During

Fig. 7A. Plate reconstructions for Greenland versus Europe according to revised rotation poles in Torsvik et al. (2001b) with Europe fixed. A. To
highlight opening directions, the successive positions of Greenland are shown, and the dots and connecting lines show the trajectory of three dis-
tinct points on Greenland. The large arrows qualitatively indicate the main different successive opening directions. A very tight fit is achieved
for the earliest Permian fit implying that the margin on the Scandinavian side must be shortened by some 50%. A further consequence of this
type of tight fit is an important overlap of NE Greenland and the Barents Sea implying important subsequent extension in these domains and
detaching Svalbard from the European plate (see Torsvik et al. 2001b) for detailed discussion). B. Displacement path of point on Jameson Land
(same as central path in A) with age attribution for each successive opening stage.

11



the Late Eocene-Early Oligocene and in the Miocene,
compressional structures developed in response to the
build-up of stresses in the elongations of the Iceland
and Jan Mayen Fault zones (Doré & Lundin 1996, Våg-
nes et al. 1998, Lundin & Doré 2002, Mosar et al. 2002).
The migration of the locus of maximum subsidence
and the associated development of accommodation
space is towards the future break-up location, that is
westward on the Norwegian margin. Until the Tertiary,
successive rift periods failed to proceed to crustal sepa-
ration. The successive aborted rifts left the passive mar-
gin with an unequally stretched or 'boudinaged' conti-
nental crust and deep sedimentary basins. This evolut-
ion may be supported by numerical modeling on basin
migration which suggests that successive rift basins are
abandoned due to 'strain hardening', forcing the deve-
lopment of new rifts in the rheologically weaker, neigh-
boring, unstretched crust (van Wijk & Cloetingh 2002);
this appears to apply especially in areas with low lithos-
pheric extension rates.

Onshore

Rift development and sedimentary basin formation in
nearshore to offshore areas cannot be separated from
simultaneous rifting in the onshore domain which pro-
duced uplift and extension. Active uplift and repeated
movement on rift-related faults since the Devonian is
indirectly implied on the Norway margin by the lack of
sedimentary units much younger than latest Devonian
age (Eide et al. submitted). Quantitative information
on the amount and timing of uplift events on the ons-
hore Norway-Sweden side of the passive margin derives
from fission-track data and study of morphology-pale-
osurfaces. The different uplift events are corroborated
by analysis of subsidence offshore.

Fission-track data from the Caledonides in Sweden
indicate a cumulative 2 km section of missing (eroded)
Late Paleozoic to Late Cretaceous sediments from what
was a western foreland basin (Cederbom et al. 2000).
The existence of a foreland basin is corroborated by
models from Garfunkel & Greiling (1998). The former
presence of a sedimentary section agrees with estimates
of 3-4 km of post-Permian erosion in the Oslo rift area
(Rohrman et al. 1994). Cooling events deduced from
fission-track studies for the Norway-Sweden side of the
passive margin indicate uplift in the Late Paleozoic-Tri-
assic, the Late Jurassic (around 140 Ma) and the Creta-
ceous (at around 90 Ma; Rohrman et al. 1995). A final
uplift period started in the Neogene (Riis 1996, Rohr-
man & van der Beek 1996). Studies on morphology-
paleosurfaces-saprolites in Sweden also reveal the exi-
stence of several palaeosurfaces and relics of denuda-
tion/uplift between the Cambrian and the Late Tertiary
(Doré 1992a, Lidmar-Bergstöm 1995, Doré & Jensen
1996, Lidmar-Bergstöm 1996, Riis 1996, Lidmar-Bergs-

töm et al. 1997). In summary, the onshore portion of
the passive margin was probably buried in many areas
during the Mesozoic and possibly the Tertiary (see also
Brekke et al. 2001).

Plate-tectonic reconstructions

Plate tectonic reconstructions provide an independent
tool to understand the dynamic evolution, including
the basin development, of the investigated North Atlan-
tic continental margin. Based on recent reviews of pala-
omagnetic poles (Torsvik et al. 2001a, Torsvik et al.
2001b), palaeomagnetic anomalies and rotation poles
(Roest & Srivastava 1989, Gaina et al. 2002), and the
ages of post-breakup magnetic sea-floor anomalies in
the North Atlantic (Cande & Kent 1995, Skogseid et al.
2000) for Eurasia, Greenland and North America, a
series of reconstructions from Late Permian to Present
is presented in figure 9. The reconstructions highlight
the pre- and syn-rift positions of the plates and pri-
mary trajectories of plate motions.

The initial pre-rift position of Europe, Greenland and
North America is based on a classic Bullard fit (Bullard
et al. 1965) which was slightly modified to achieve a
better (tighter) fit of Greenland and Norway in Per-
mian time. This position is consistent with information
on the overall post-Early Permian extension/shortening
(a 50% narrower pre-rift margin) observed on the Nor-
way-East Greenland margins (Torsvik et al. 2001b).
From Late Permian (250 Ma) to late Early Cretaceous
(100-90 Ma) the opening direction between the pre-
sent-day Norwegian shelf and East Greenland was W-
directed, oblique to the present coastline. During the
Late Cretaceous, the opening followed a more NE-
NNE-direction, perpendicular to the margin's present
coastline (Fig. 9). This change, which is also reflected in
an important change of absolute plate directions
around 85 Ma (Torsvik et al. 2001a), coincides with a
period of important basin infill and high sedimenta-
tion rates (Coniacian-Santonian). The onset of sea-
floor spreading occurred at or just prior to anomaly 24
(24r : 53.347-55.904 Ma, Cande & Kent 1995, Mosar et
al. 2002) which is the oldest normal polarity chron
identified in the NE Atlantic (Talwani & Eldholm 1977,
Hagevang et al. 1983). Most, if not all, of the extension
on the passive margins of the Greenland and Lofoten
seas, was achieved at that time. Extension of the conti-
nental crust continued into Tertiary in the Jan Mayen
area, and the Boreas Basin - Barents Sea domains. A
time of lowest spreading rates during Oligocene (30-25
Ma) coincides with the major changes in post-breakup
plate motion and is coeval with ridge jumps as well as
the final separation of Svalbard (Europe plate) and
Greenland (North America plate).
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Conclusions

Examination of the Mid-Norway onshore and offshore
geology has allowed us to suggest a structural model for
the evolution of the Norwegian North Atlantic passive
margin. The rift processes that led to the formation of
the North Atlantic and the formation of the Greenland
and Norway conjugate passive margins started proba-
bly in late Carboniferous, building on an inherited geo-
metry and structure of the Caledonian orogen and the
Devono-Carboniferous, transtensional, intramontane
basins. The polyphase rift history created a stretched
continental crust between the COB and the IBF, or rift
shoulder. The IBF system determines the boundary bet-
ween rifted passive margin and unextended shield. This
implies that the passive margin is much wider than pre-
viously assumed. The IBF was repeatedly active since
Permo-Carboniferous times in conjunction with episo-
dic uplift of the onshore portion of the margin. The
passive margin is divided into several major domains
separated by discrete faults/fault systems such as the
IBF, the MTFC or the Klakk Fault Complex, that were
probably repeatedly active during the successive rifting
events.

The rifted margins on Greenland and Norway show a
structural asymmetry, which can be described in terms
of upper-plate geometry or flexural margin versus
lower-plate geometry or tilted-block margin. In the
central part of the Vøring Basin, the major normal
faults dip to the east with a large roll-over structure east
of the Nordland Ridge which may be interpreted as an
upper-plate geometry. The conjugate margin portion in
Greenland shows evidence of a tilted-block margin
with the major faults also dipping to the east and con-
sistent with a lower-plate geometry. Across the broad
JMFZ, the conjugate passive margins change polarity.
The transition is gradual between the central portion of
the Vøring Basin and the Møre Basin. The southern
Vøring Basin and the area of the Helland-Hansen
Dome could form a relay structure (soft link) between
the two basins. The Møre Margin shows W-dipping
normal faults which are consistent with a lower-plate
geometry containing tilted blocks. West-dipping faults
are observed in Jan Mayen and on the Greenland mar-
gin, which would be indicative of an upper plate flexu-
ral margin.

The asymmetric structure of the Scandinavian passive
margin and the changing polarities we suggest along its
extent may have profound implications for the tectonic
and dynamic development of the margin. Upper plate
margins could have a lower compressional strength
than lower plate margins (Ziegler et al. 1998, Mosar et
al. 2002). The upper plate margins are therefore more
likely to develop features such as inversion structures.

The plate tectonic reconstructions for the Mesozoic
evolution of the North Atlantic domain show impor-
tant changes, not only in plate motion direction, but
also in plate velocity, which can be correlated with
important events in basin development and related
dynamics.

The development of the different major offshore basins
is intimately associated with uplift history of the main-
land-onshore portion of the passive margin. This ons-
hore portion functions as a long-lasting sediment
source to the deep basins which develop mainly offs-
hore. Most of the sediments sourced from the Scandin-
avian side of the margin and presently found in the
basins of the Trøndelag Platform, in the Lofoten area
and in the Møre and Vøring Basins would appear to
have derived from the eroding rift shoulder, seaward
(west) of the IBF. The rift-shoulder created by the IBF
is a long-lasting drainage divide that appears to have
been active at different periods since Permo-Carbonife-
rous until Recent.

The structural and plate tectonic model presented here
redefines many of the previously accepted definitions
of the Norwegian North Atlantic passive margin. Its
implications will help re-assess the geohistory of the
rifting. The IBF highlights the co-eval onshore uplift
history and basin formation and its importance for
provenance studies and source areas. Lithospheric-scale
modeling will have to take into account the onshore
portion of the margin, but also the asymmetric nature
of the extended continental crust. The plate dynamics
will have to be more intimately linked to the evolution
of the margin, the basin development and the forma-
tion of inversion structures.
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