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ABSTRACT 43 

The proliferation of digital cameras co-located with eddy covariance instrumentation provides 44 

new opportunities to better understand the relationship between canopy phenology and the 45 

seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of 46 

canopy color metrics measured by digital repeat photography to track seasonal canopy 47 

development and photosynthesis, determine phenological transition dates, and estimate intra-48 

annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera 49 

imagery and net ecosystem exchange measurements from 17 towers spanning three plant 50 

functional types (deciduous broadleaf forest, evergreen needleleaf forest and grassland/crops) to 51 

derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated 52 

with greenness derived from camera imagery in all three plant functional types. Specifically, the 53 

beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the 54 

end of the photosynthetic period in grassland/crops were both correlated with changes in 55 

greenness; changes in redness were correlated with the end of the photosynthetic period in 56 

deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or 57 

ending of the photosynthetic period using camera greenness in evergreen needleleaf forest.  At 58 

deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly 59 

correlated up to 60 days after the mean onset date for the start of spring. More generally, results 60 

from this work demonstrate that digital repeat photography can be used to quantify both the 61 

duration of the photosynthetically active period as well as total GPP in deciduous broadleaf 62 

forest and grassland/crops, but that new and different approaches are required before comparable 63 

results can be achieved in evergreen needleleaf forest.  64 

 65 
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INTRODUCTION 68 

Climate change impacts on vegetation phenology have been widely documented across a range 69 

of biomes and plant functional types (Richardson et al. 2013). In particular, long-term records of 70 

leaf and flower phenology in temperate and boreal forest indicate that spring onset is occurring 71 

earlier (Miller-Rushing and Primack 2008, Thompson and Clark 2008, Aono and Kazui 2009, 72 

Linkosalo et al. 2009), and more generally, that growing seasons are becoming longer on decadal 73 

to millennial scales (Menzel 2000).  Studies using satellite remote sensing have documented 74 

trends towards longer growing seasons over large regions of in mid- and high-latitude 75 

ecosystems of the Northern Hemisphere (Myneni et al. 1997, Zhang et al. 2007, Jeong et al. 76 

2011, Xu et al. 2013). At lower latitudes, warmer temperatures have led to earlier spring 77 

phenology and longer growing seasons in Mediterranean ecosystems (Penuelas et al. 2002, 78 

Gordo and Sanz, 2010), while desert plant communities have experienced shifts in species 79 

composition in response to changes in the timing of winter precipitation (Kimball et al. 2010).  80 

 81 

While a large number of studies have identified widespread patterns of change, the impacts of 82 

changes in phenology on ecosystem function and feedbacks to the climate system remain poorly 83 

understood and quantified (Richardson et al. 2013). For example, multi-site comparisons show 84 

that growing season length is positively correlated with net ecosystem productivity (NEP; 85 

Churkina et al. 2005, Baldocchi 2008), but spatial patterns observed across sites are not identical 86 

to temporal patterns at individual sites, which are driven primarily by interannual variability in 87 

weather (Richardson et al. 2010). Warmer springs and longer growing seasons have been shown 88 

to increase annual carbon uptake in boreal deciduous forest (Barr et al. 2004, 2007), mixed 89 

temperate forest (Dragoni et al. 2011) and evergreen needleleaf forest (Richardson et al. 2009a, 90 
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2010). In subalpine forest, on the other hand, longer growing seasons can lead to lower NEP if 91 

warmer temperatures (Sacks et al. 2007) or shallower spring snowpacks (Hu et al. 2010) reduce 92 

soil moisture sufficiently to create drought conditions. Similarly, drought conditions in grassland 93 

can also shorten the growing season length, thereby lowering annual NEP (Flanagan and 94 

Adkinson 2011).  95 

 96 

Because phenology is a key regulator of ecosystem function, substantial effort has recently been 97 

devoted to expanding networks that track seasonal vegetation dynamics (Morisette et al., 2009).   98 

Methods to monitor phenology fall into two broad categories: visual observations and remote 99 

sensing. Visual observations provide the oldest and longest running phenology records in 100 

existence (e.g., Aono and Kazui 2008), but visual observations are labor intensive to collect, and 101 

the spatial extent of observations collected by an individual is inherently limited. Spaceborne 102 

remote sensing, which provides synoptic and global views of land surface phenology and its 103 

responses to natural climatic variability, helps to address this limitation (Piao et al. 2006, 104 

Dragoni and Rahman 2012, Elmore et al. 2012). However, imagery from remote sensing 105 

platforms such as the Moderate Resolution Imaging Spectradiometer (MODIS) is often collected 106 

at coarse spatial resolutions (250-500m) that encompass considerable landscape heterogeneity 107 

within each pixel. An additional weakness is the relatively low temporal resolution of some 108 

space-borne remote sensing instruments. While coarse spatial resolution sensors such as MODIS 109 

provide observations with repeat intervals of 1-2 days, moderate spatial resolution sensors such 110 

as Landsat provide a revisit frequency of 16 days, a relatively long interval for capturing rapid 111 

changes during seasonal transition periods. In both cases, persistent cloud cover can significantly 112 

reduce the frequency of useable observations, which can substantially decrease the utility of 113 
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space-borne remote sensing for observing and characterizing the timing of key phenological 114 

transitions. 115 

 116 

Digital repeat photography, a form of near-surface remote sensing, provides data at higher 117 

temporal frequency and finer spatial scale than satellite remote sensing (Richardson et al. 118 

2009b). Specifically, digital repeat photography can provide imagery that is nearly continuous in 119 

time, rarely obscured by clouds, and robust to variation in illumination conditions (Sonnentag et 120 

al. 2012). Exploiting this, color indices derived from digital repeat photography have been used 121 

to characterize the phenology of diverse plant communities and functional types (PFT) including 122 

deciduous broadleaf forest (Richardson et al. 2007, Ahrends et al. 2008, Ide and Oguma 2010, 123 

Sonnentag et al. 2012, Hufkens et al. 2012, Dragoni et al. 2011), evergreen broadleaf forest 124 

(Zhao et al. 2012), evergreen needleleaf forest (Richardson et al. 2009b, Ide and Oguma 2010, 125 

Bater et al. 2011), desert shrublands (Kurc and Benton 2010), bryophyte communities (Graham 126 

et al. 2006) and invasive plants (Sonnentag et al. 2011). Several studies have used these data to 127 

evaluate uncertainties in satellite-based phenological monitoring (Graham et al. 2010, Hufkens et 128 

al. 2012, Elmore et al. 2012, Klosterman et al. 2014). 129 

 130 

Color indices derived from digital repeat photography have also been correlated with canopy 131 

photosynthesis in deciduous broadleaf forest (Richardson et al. 2007, 2009a, Ahrends et al. 2009, 132 

Mizunuma et al. 2012), grasslands (Migliavacca et al. 2012), and desert shrublands (Kurc and 133 

Benton 2010). However, each of these studies was limited to one or two sites and it is unclear 134 

how well results from these efforts generalize within and across PFTs at regional to continental 135 

scales. Further, a large proportion of previous studies have focused on temperate deciduous 136 
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forest. Not only does the relationship between annual carbon exchange and the length of the 137 

carbon uptake period vary substantially across PTFs (e.g., Richardson et al. 2010), but 138 

relationships among camera-based color metrics, phenology, and carbon exchange remain under-139 

studied in ecosystems and PFTs outside of deciduous broadleaf forest (Richardson et al. 2013). 140 

Hence, there is a need for improved understanding regarding how canopy photosynthesis is 141 

linked to canopy phenology across and within PFTs, and by extension, the role of digital repeat 142 

photography for studying these relationships.  143 

 144 

With these issues in mind, our objective in this study was to perform a systematic analysis of 145 

digital repeat photography as a tool for understanding the relationship between canopy 146 

phenology and canopy photosynthesis, both within and among multiple PFTs. To this end, the 147 

specific questions guiding this study were:  148 

 149 

1) Can camera-derived color indices be used to monitor the seasonality of GPP within and across 150 

multiple PFTs?  151 

2) How does the relationship between canopy phenology and GPP vary within and across PFTs?  152 

3) What is the relationship between dynamics in greenness measured from digital camera 153 

imagery and key phenophase transitions in different PFTs?  154 

4) Can interannual variation in annual GPP be estimated using camera-derived color indices? 155 

 156 

To address these questions, we used data from the PhenoCam network of co-located cameras and 157 

eddy covariance towers to assess the relationship between canopy phenology and the seasonality 158 

of photosynthesis. Our study, conducted across a range of PFTs, provides the most 159 
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comprehensive analysis of canopy development and photosynthesis using digital repeat 160 

photography to date, and provides useful new understanding regarding the ability of camera-161 

derived color indices to track the seasonality of GPP across space and time. 162 

 163 

METHODS 164 

Study Sites  165 

The study spanned 13 geographically distinct research sites, including 17 flux towers in total 166 

(Table 1; Appendix A). We used all possible sites that were members of both the PhenoCam 167 

(http://phenocam.sr.unh.edu/) and the AmeriFlux (http://ameriflux.ornl.gov/) or Canadian 168 

Carbon Program (http://fluxnet.ornl.gov/site_list/Network/3) networks. In addition, we included 169 

four towers, managed by the University of Illinois (UI), that were not members of either 170 

network. Each site was dominated by one of three PFTs: deciduous broadleaf forest (DBF), 171 

evergreen needleleaf forest (ENF), and grassland/crops (GRS; Table 1). The Groundhog site in 172 

Ontario is most accurately described as mixed ENF/DBF; here, we group it with ENF sites 173 

because conifer species are dominant.  Together, measurements from these sites comprised 59 174 

site-years of concurrent flux and camera data, with 26, 11, and 22 site-years in DBF, ENF and 175 

GRS PFTs, respectively. Most sites had 2-5 years of data. One notable exception, however, is the 176 

ARM site in Oklahoma, where data were collected nearly continuously from 2003-2011. One of 177 

the UI sites featured a crop rotation from maize to soybean in the second year (out of two), 178 

which caused significant changes in the magnitude of carbon fluxes. To address this, we treat the 179 

two site-years (2009 vs. 2010) as separate sites: UI Maize and UI Soy. 180 

 181 

Digital repeat photography 182 
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On each eddy covariance tower, the digital camera was installed in a fixed position, with a view 183 

across the top of the canopy. Cameras were pointed north to minimize shadows and lens flare, 184 

enclosed in commercial waterproof housings, and inclined up to 20° below horizontal. Most 185 

cameras collected photos, which were saved in 24-bit JPEG format, at 30-60 minute intervals, 186 

12-24 hours a day.  Exceptions include Bartlett (10-20 minute intervals, 12:00-14:00) and ARM 187 

Oklahoma (1 midday photo). Half of the towers used StarDot NetCam XL or SC cameras 188 

(StarDot Technologies, Buena Park, CA), while the other sites used cameras from a variety of 189 

manufacturers (Table 1). To minimize the impact of variation in scene illumination (e.g. clouds 190 

and aerosols), auto white/color balance was turned off, and exposure adjustment for each camera 191 

was set to automatic mode. Note, however, that Vaira was an exception in this regard. To correct 192 

for variability induced by auto color balancing at this site, we used a grey reference panel in the 193 

camera field of view (e.g., Jacobs et al. 2009).  194 

 195 

Images were either archived by the site investigator or automatically transferred to the 196 

PhenoCam server via file transfer protocol (FTP). Time series were first visually inspected for 197 

camera shifts and changes in field of view. Noting these changes, we processed the image 198 

archives to extract regions of interest (ROI) that encompassed all portions of the full canopy 199 

within the foreground (Fig. 1). At Vaira, the ROI was restricted to the grass portion of the image, 200 

excluding distant oak trees from analysis. To quantify canopy greenness, we calculated the green 201 

chromatic coordinate (GCC), which is widely used to monitor canopy development and identify 202 

phenological phase changes (Richardson et al. 2007, Ahrends et al. 2009, Sonnentag et al. 2012, 203 

Zhao et al. 2012): 204 

  (1) 205 
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where DN is the digital number and R, G and B denote the red, green and blue channels, 206 

respectively. For completeness, we also calculated the Excess Green (ExG) index: 207 

2  (2) 208 

which has been shown to be less noisy than GCC in some coniferous canopies (Sonnentag et al. 209 

2012). To characterize canopy coloration in fall, the red chromatic coordinate (RCC) was 210 

calculated using the same form as Eq. 1, substituting DNR in the numerator. 211 

 212 

Following Sonnentag et al. (2012), we calculated the 90th percentile of GCC, ExG and RCC 213 

values for 3-day moving windows, yielding up to 122 observations each year.  Only photos taken 214 

during daylight hours (6:00 – 18:00 local time) were included, and any images with under-215 

exposed ROIs (which we defined as <15% color saturation, or DN < 39, in any band) were 216 

excluded. We did not exclude photos due to poor weather conditions or snow, as the 90th 217 

percentile filter successfully removed these (Sonnentag et al. 2012). To eliminate any residual 218 

noise we removed GCC or ExG values that exceeded ±2 standard deviations of the mean within 219 

27-day windows. To account for changes in camera settings or shifts in camera fields of view, 220 

GCC, RCC and ExG values were manually screened and rescaled (as needed) to preserve a 221 

smooth and continuous time series at each site.  222 

 223 

We used nonlinear least squares regression to fit logistic functions to GCC, RCC and ExG time 224 

series, which were then used to estimate phenophase transition dates from DBF and GRS sites 225 

(e.g., Fisher et al. 2007, Richardson et al. 2009b). For GRS sites, we used separate logistic 226 

functions in spring and fall: 227 

 (3a) 228 
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 (3b) 229 

where t is the day-of-year and the remaining terms are empirically estimated coefficients. For 230 

DBF sites, we used the modified logistic function presented by Elmore et al. (2012), which 231 

includes an additional parameter (a2) that accounts for “summer greendown” that is widely 232 

observed in DBF greenness time series (Keenan et al., 2014):  233 

 (4) 234 

Note that in Equation 4, a1+b denotes the early summer maximum GCC, while the minimum 235 

summer GCC value preceding fall coloring is given by (b – a2*t). Coefficients in Equations 3 236 

and 4 were estimated using the Levenberg-Marquardt method. 237 

 238 

Following a widely used remote sensing approach (e.g., Zhang et al. 2003), phenophase 239 

transitions were determined by calculating local minima and maxima in the curvature change 240 

rate of Equations 3 and 4. In spring, maxima correspond to dates of leaf unfolding (start of 241 

spring) and maximum greenness (end of spring). In autumn, the onset of fall coloring (start of 242 

senescence) and leaf abscission (end of fall) correspond to the timing of minima. The midpoints 243 

of each season, middle of spring and middle of fall, were identified using the local minimum and 244 

maximum, respectively. We also tested one additional method to estimate the end of fall in DBF 245 

sites based on the timing of maximum fall coloring (Richardson et al. 2009b), which was 246 

determined using the date of the maximum RCC value in the second half of the growing season. 247 

 248 

Early analysis indicated that the logistic function provided a poor representation of GCC 249 

dynamics at many ENF sites; a separate method was needed to explore links between GCC and 250 

GPP seasonality in evergreen sites. Hence, we calculated splines along GCC curves and  251 
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examined correlations between dates at which a range of GCC thresholds (5–75% of seasonal 252 

amplitude, in 5% intervals) were reached, and dates at which a similar range of GPP thresholds were 253 

reached. 254 

 255 

Eddy covariance data 256 

To assess the ability of camera-based indices to capture seasonal dynamics in carbon fluxes, we 257 

compared color indices with estimates of GPP derived from eddy covariance measurements.  258 

To do this we used 30-minute non-gap-filled NEE data to estimate GPP, except at the Harvard 259 

Forest and Morgan Monroe sites, where only hourly data were available. NEE was partitioned 260 

into GPP (μmol CO2 m
-2 s-1) using the Q10 method (Raich and Schlesinger 1994):  261 

/  (5) 262 

where Rref is a scaling parameter, Q10 is the temperature sensitivity of ecosystem respiration 263 

(Reco), and Tref (= 10°) is the base temperature where Reco = Rref. Friction velocity (u*) filtering 264 

was used to remove nocturnal NEE measurements when there was insufficient turbulence using 265 

site-specific u*
 values. The Q10 function was estimated independently for every site-year, 266 

yielding 30-minute estimates of Reco and GPP. When available, we compared our GPP estimates 267 

with estimates provided by site investigators. Results from this comparison showed that the 268 

estimates were in close agreement (mean R2 = 0.95; range: 0.91-0.98). 269 

 270 

To make the GPP data comparable to the camera-based color indices, we calculated the mean 271 

daily-integrated GPP (g C m-2 d-1) across the three-day periods over which the camera data were 272 

processed.  In addition, we also calculated mean daytime instantaneous flux rates (calculated 273 

across all daytime hours, defined as PPFD ≥ 5 mol m-2 s-1), as well as estimates of the light-274 



 12

saturated rate of photosynthesis (Amax,mol CO2 m
-2 d-1), which was derived by fitting a 275 

Michaelis-Menten light response function to the high-frequency (hourly or half-hourly) flux 276 

measurements.  The use of these alternative metrics did not change our interpretation of the 277 

results described below.  To allow comparison at annual time scales, we calculated annual GPP 278 

sums, using the same Q10 method as above, but including gap-filled NEE. When gap-filled NEE 279 

data were not provided by site investigators, we used an online tool (http://www.bgc-280 

jena.mpg.de/~MDIwork/eddyproc/) that implements standardized gap filling methods 281 

(Reichstein et al. 2005). 282 

 283 

To evaluate GCC as a predictor of photosynthesis, daily GPP was regressed against 3-day GCC 284 

for each tower site. We also regressed the mean daytime instantaneous flux rate (GPP30; 285 

averaged over equivalent 3-day periods) against GCC, which allowed us to assess this 286 

relationship independent of day length. Goodness-of-fit was based on the coefficient of 287 

determination (R2), calculated using linear and quadratic functions at a significance level of 0.05. 288 

 289 

A key goal of this analysis was to assess how well dynamics in GCC capture changes in 290 

photosynthetic activity corresponding to phenological transitions. For example, one question we 291 

examined was, “Does start of spring, estimated by GCC, correspond to the first day of 292 

photosynthesis (GPP > 0 g C m-2 d-1) in spring?” To compare relative photosynthetic capacity 293 

across sites, we fit smoothing splines to the daily GPP time series for each of the six DBF sites 294 

and calculated the percentage of maximum annual flux (maximum daily GPP within a given year 295 

= 100%) at 1% intervals along the estimated splines. These data were then pooled, providing a 296 

composite DBF data set of 19 site-years. Using phenophase transition dates (start of spring, 297 



 13

middle of spring, middle of fall, end of fall) extracted from the GCC and RCC time series, we 298 

performed geometric mean regression between camera-derived dates and a range of flux 299 

amplitudes (1-90%). Goodness-of-fit was evaluated using the coefficient of determination and 300 

the slope of the regression. Bias was quantified using the mean deviation, and accuracy was 301 

evaluated using the root mean square deviation (RMSD) between transition dates estimated from 302 

GCC data and transition dates estimated from GPP data.  303 

 304 

To explore these relationships at the GRS sites, we pooled data from the four UI sites and 305 

performed a parallel analysis. The ARM site in Oklahoma was excluded because both the flux 306 

data and the camera data included mixtures of differing phenological patterns associated with 307 

multiple crop cycles. We also excluded the Vaira site because it is characterized by 308 

asynchronous seasonality (winter active vs. summer active elsewhere) relative to the rest of the 309 

sites in our analysis of transition dates. To compare the timing of maximum greenness (GCC90%) 310 

and carbon flux (GPP90%), we determined the dates when each metric reached 90% of the 311 

maximum annual value at each site using only complete site-years. 312 

  313 

Because the rates of spring increase and fall decrease in daily GPP or GCC can vary between 314 

years (see Richardson et al. 2010), dates corresponding to the start and end of the growing season 315 

may not fully characterize patterns of interannual variability in phenology. To assess this, we 316 

tested the hypothesis that during the spring or fall transition periods time-integrated GCC values 317 

provide more information about anomalies in GPP than start-of-season or end-of-season dates 318 

estimated from GCC time series. To do this, we first re-scaled the GCC and GPP data to account 319 

for differences across sites in the magnitude of carbon fluxes and canopy greenness. This 320 
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provided normalized time series of daily GPP and GCC, both on a scale from 0 to 1. We then fit 321 

splines to the normalized GPP and GCC values over 60 day-periods following the earliest start of 322 

spring and preceding the latest end of fall, and calculated the integral under each spline curve 323 

using numerical approximation. These integrals were then converted to anomalies relative to 324 

each site-level mean and used to calculate linear correlations between integrated GCC anomalies 325 

and integrated GPP anomalies. To determine whether integrated GCC values provide greater 326 

explanatory power than discrete dates such as the start of spring, we compared these results with 327 

linear correlations between phenophase transition date anomalies and integrated GPP anomalies. 328 

Lastly, we tested whether spring and fall greenness anomalies were correlated with integrated 329 

annual GPP anomalies via multiple linear regression, using spring and fall normalized integrated 330 

GCC anomalies as independent variables and annual GPP anomalies as the response variable. 331 

 332 

RESULTS 333 

Canopy development and photosynthesis – patterns among plant functional types 334 

Time series of GCC and daily GPP (Fig. 2; Appendix B) demonstrate broadly consistent 335 

relationships within each of the three PFTs, with some notable exceptions. DBF and GRS sites 336 

exhibited clear seasonality in both GCC and GPP, with high values during the photosynthetically 337 

active season and low values during the inactive season. GRS sites exhibited shorter but well-338 

defined growing seasons compared to those in DBF (Fig. 2c). In ENF sites, the annual cycle in 339 

GCC was roughly sinusoidal, with a relatively short period of minimum values in winter (Fig. 340 

2b). Relationships between GCC and GPP in both the active and dormant seasons were phase-341 

shifted, with spring increases in GCC preceding those in GPP, and autumn decreases in GCC 342 

lagging behind GPP.  343 
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 344 

We also noted distinct differences among the PFTs with regard to the amplitude and range of 345 

GCC values. In DBF and GRS, GCC time series were characterized by low values (0.33-0.36) 346 

during the winter and high values (0.40 to 0.50) in peak growing season (Table 1; Appendix B). 347 

In contrast, the dynamic range of ENF was much smaller (e.g., seasonal amplitude was 0.04 348 

GCC units for Chibougamau vs. 0.08 GCC units for Harvard, Figs. 2b and 2a, respectively). The 349 

smallest range was observed for Wind River, where GCC values varied by just 0.03 throughout 350 

the year.  There was also a wide range in GPP among PFTs owing to differences in ecosystem 351 

productivity arising from factors such as species composition, leaf area, and local climate. 352 

Across all sites and PFTs, daily GPP values showed strong seasonal patterns, but there was 353 

substantial day-to-day variation caused by changes in short term environmental conditions (e.g. 354 

clouds, vapor pressure deficits, and soil moisture) that limit short-term productivity, and by 355 

extension, decrease correlation between GPP and GCC on short (i.e., hours to days) time scales.  356 

 357 

Canopy development and photosynthesis – patterns within plant functional types 358 

DBF sites exhibited two primary modes of variation in GCC during the photosynthetically active 359 

season. First, over the course of two or three weeks in late spring, GCC tended to exhibit a 360 

distinct late-spring “green peak” that was not observed in either ENF or GRS. Second, following 361 

this peak, GCC tended to gradually decline over roughly three months, leading to a decrease in 362 

GCC of about 30% relative to the seasonal amplitude. At the onset of leaf coloration, GCC 363 

tended to decrease rapidly, leading into the annual winter minimum. Daily GPP, by contrast, 364 

increased more slowly throughout the spring, reaching its maximum value 2-4 weeks after the 365 
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GCC peak. And, whereas GCC remained high during the summer months, daily GPP tended to 366 

decline almost immediately after its peak, well in advance of the fall decline in GCC.  367 

 368 

As we noted above, daily GPP exhibited substantial day-to-day variability in all PFTs.  At the 369 

Missouri Ozarks site in 2007, however, daily GPP decreased sharply in July, nearly two months 370 

before the autumn decrease in GCC, likely in response to moisture stress (Yang et al. 2010).  371 

Otherwise, covariance between daily GPP and GCC for DBF sites was generally strong overall 372 

(R2 = 0.50 – 0.79; Table 2; Fig. 3a; Appendix C) and tended to be linear at lower values of GCC. 373 

At higher values of GCC, however, there was little or no relationship between daily GPP and 374 

GCC for most DBF sites, which reflects the fact that daily GPP during mid-summer is controlled 375 

by day-to-day variation in weather that does not affect canopy greenness on short time scales. 376 

Correlations between daily GPP and GCC were comparable with those between GCC and GPP30 377 

(Table 2), indicating that GCC-GPP relationships are robust and independent of seasonal 378 

changes in day length. 379 

 380 

ENF sites were characterized by unique patterns of seasonality in GCC and GPP. Most notably, 381 

the period associated with minimum GCC values during winter dormancy was short lived. At 382 

most ENF sites GCC continued to decline into early winter, even when daily GPP was near zero, 383 

before rising again in late winter well in advance of the spring onset of photosynthesis. This 384 

pattern was not observed at the Wind River site, which was photosynthetically active throughout 385 

almost the whole year (Appendix B). Among all ENF sites, the summertime peak in GCC 386 

occurred close to the peak in daily GPP. Overall, correlations between daily GPP and GCC were 387 

almost as strong (R2 = 0.53 – 0.76; Appendix C; Table 2) as those for DBF sites. As with DBF, 388 
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correlation between GCC and GPP30 were comparable with those between GCC and daily GPP 389 

(Table 2). 390 

 391 

For all but one GRS site, correlations between daily GPP and GCC were high (R2 = 0.80-0.90; 392 

Table 2; Appendix C), and the relationship was linear. Similar to the ENF sites, GCC at GRS 393 

sites exhibited a short summer plateau. At the UI Switchgrass and UI Prairie sites, GCC was 394 

modestly phase shifted, with GCC leading daily GPP in spring and lagging daily GPP in fall.  395 

Covariance between GPP and GCC at the ARM Oklahoma site, where the growing season 396 

extends well beyond that at most other sites, was substantially higher between GCC and GPP30 397 

than between GCC and daily GPP (Table 2).  398 

 399 

For DBF and GRS, relationships between GPP and ExG were similar to those observed for GCC 400 

(Table 2). At ENF sites, correlations between ExG and GPP were marginally higher than those 401 

between GCC and GPP, but the magnitude of these differences was site-specific. At Wind River, 402 

in particular, ExG accounted for about 15% more variance in daily GPP than GCC because of 403 

the greater stability (less day-to-day noise) in ExG. Similar (but less pronounced) increases were 404 

also observed at Chibougamau, Howland, and Niwot.  405 

 406 

Camera and flux-based phenophase transitions 407 

Using a combination of greenness (GCC) and redness (RCC) indices, digital repeat photography 408 

facilitated accurate determinations of the start and end of the photosynthetic period for DBF and 409 

GRS. In ENF sites, however, the lack of a discernible winter baseline prevented accurate 410 

estimation of the start and end of canopy photosynthesis. In ENF and GRS, GCC provided a 411 



 18

relatively accurate estimation of the date of maximum photosynthesis; however, the relationship 412 

in ENF was statistically insignificant. In the section below we elaborate on these themes, 413 

discussing four camera-based phenology metrics – start of spring, middle of spring, middle of 414 

fall, and end of fall – and their relationship with the seasonality of GPP. 415 

 416 

At DBF sites, camera-derived spring and fall phenophase transition dates successfully captured 417 

spatiotemporal variability in the beginning and end of the photosynthetic period. Start of spring, 418 

estimated using Equation 4 fit to the GCC time series, was most highly correlated with the day of 419 

year corresponding to when flux amplitudes were between 24-30% of maximum GPP (R2 = 0.62; 420 

n = 17).  Mean deviation (MD) and RMSD between start of spring from GCC and GPP was 421 

smallest at 20% and 24% of GPP amplitudes, respectively (Fig. 4a). Results were even stronger 422 

(Fig. 4b) for the “middle of spring” (the date on which 50% of the seasonal amplitude in GCC 423 

was reached), which corresponded to 30-40% of the spring amplitude in GPP (R2 = 0.82). In 424 

contrast, GCC was a relatively poor predictor of the date of maximum photosynthesis (GPP90%) 425 

in DBF sites, with the date of GCC90% consistently preceding the date of GPP90% by more than 426 

three weeks, on average. Note, however, that the magnitude of this bias was disproportionately 427 

influenced by one site-year (Harvard Forest in 2010), in which a late summer increase in GPP 428 

delayed the 90% threshold significantly (Fig. 5A).  429 

 430 

Correlations between the date at which 50% of the seasonal amplitudes in GCC and GPP were 431 

reached in fall was relatively weak (R2 = 0.43; Fig. 4D). Similarly, correspondence between 432 

GCC- and GPP-derived end of fall dates was also weak.  Canopy redness (RCC), rather than 433 

greenness, provided the best indicator of the end of the photosynthetically active period, with the 434 
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date of peak RCC strongly correlated to the date when GPP amplitude reached 14% (R2 = 0.69; 435 

Fig. 4c).  436 

 437 

At GRS sites, GCC provided more information about seasonal dynamics in photosynthesis 438 

during spring than in fall. GCC was a good indicator of the beginning of the photosynthetically 439 

active period, with high correlation between both the start and middle of spring derived from 440 

GCC time series and the date corresponding to a wide range of amplitudes in spring GPP (Fig. 441 

6a, b). Relative to GPP90%, GCC90% was less biased at GRS sites than that at DBF sites (Fig. 5c).  442 

Similar to patterns observed in spring, the timing of both the middle and end of fall from GCC 443 

showed significant (but lower relative to spring) correlations across a broad range of GPP 444 

amplitudes (Fig. 6c).  445 

 446 

At ENF sites, GCC typically started to increase prior to the onset of the growing season, when 447 

GPP was still zero, and continued to decrease late in the year after GPP had returned to zero. 448 

Thus, at both the start and end of the growing season, significant variations in GCC occur that 449 

are not associated with dynamics in GPP. Indeed, correlations between the timing of changes in 450 

GCC and GPP across a wide range of spring and fall amplitude thresholds (5–75% of seasonal 451 

amplitude, in 5% intervals) were statistically insignificant at p ≤ 0.05. It would appear, therefore, 452 

that camera-based GCC time series cannot be used to predict the beginning or end of the 453 

photosynthetically active period for ENF sites. It is worth noting, however, that GCC did provide 454 

a rough indication of the date of maximum GPP. While the correlation between the dates on 455 

which 90% of the spring amplitudes in GCC and GPP were reached was statistically insignificant 456 

(R2 = 0.32, p = 0.11), the mean bias (across all site-years) was less than one day (0.3 ± 10 d). 457 
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 458 

Integrated GCC and GPP 459 

In the final element of our analysis, we investigated whether spring and fall time-integrated sums 460 

of daily GCC provide additional or complementary information regarding interannual variation 461 

in GPP relative to phenophase transition dates estimated from the GCC time series. To do this, 462 

we first focused on the Barlett Forest site and calculated springtime integrated daily GPP and 463 

GCC from 2006 to 2012 (Fig. 7). Starting on DOY 115 (selected to precede the earliest observed 464 

green-up day, DOY 118), we integrated both GCC and GPP over successively longer time 465 

segments at 5-day increments (e.g., DOY 115-120, 115-125, etc.).  Results from this analysis 466 

showed that springtime integrated GCC anomalies were strongly and significantly correlated 467 

with integrated GPP anomalies for up to 30 days (R2 = 0.56-0.88; n = 7), by which time 468 

cumulative photosynthetic uptake had reached nearly 150 g C m-2 in some years. GCC and GPP 469 

integrals beyond DOY 145 did not show statistically significant correlations. In fall, integrated 470 

GCC anomalies computed for time segments spanning 30 days preceding the end of fall (DOY 471 

290) were moderately correlated with corresponding GPP anomalies (R2 = 0.47; p = 0.09; data 472 

not shown). For comparison, start- and middle-of-spring transition dates were modestly 473 

correlated with integrated GPP anomalies over the period from DOY 115 to 145 (R2 = 0.69 and 474 

0.43), while GCC-based middle and end-of-fall transition dates were highly correlated with time 475 

integrals of GPP over the period from DOY 265 to 290 (R2 = 0.96, 0.70). Thus, at Bartlett, GCC 476 

integrals provide more information about flux anomalies than do individual phenological 477 

transition dates in the spring, but less information in the fall.  478 

 479 
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We then extended this analysis to include all DBF and three of the four Illinois GRS sites (we 480 

excluded the UI Maize and UI Soy notes, for which only a single year of data was available). For 481 

the DBF sites, we found moderate correlation (as high as R2 = 0.49; n = 19 after 30 days) 482 

between normalized GCC integral anomalies and normalized GPP integral anomalies up to 60 483 

days after green-up (Fig. 8). Over this period, anomalies of up to 158 gC m-2 (Harvard), or ~8% 484 

of the annual total GPP, were observed. Correlations based on time integrals extending beyond 485 

60 days after the earliest green-up were not statistically significant. In contrast to results at 486 

Bartlett Forest, start- and middle-of-spring transition date anomalies were more highly correlated 487 

with normalized GPP integral anomalies (R2 = 0.71 and 0.60 at 20 and 30 days, respectively). In 488 

fall, correlations between GCC integral anomalies and GPP anomalies were not statistically 489 

significant, whereas end-of-fall transition date anomalies were weakly correlated with 490 

normalized GPP integral anomalies (R2 = 0.30). Multiple linear regression analysis showed that 491 

about half the variance in annual GPP integral anomalies is explained by a combination of spring 492 

and fall GCC anomalies (R2 = 0.54).  By comparison, a linear model using anomalies in the start-493 

of-spring and end-of-fall transition dates determined from the GCC time series explained less 494 

than one-third of the variance in annual GPP integral anomalies (R2 = 0.30).  Thus, it is not clear 495 

whether integrated GCC provides more information related to interannual variation in GPP than 496 

specific transition dates.  497 

 498 

At GRS sites we found strong correlation between normalized GCC anomalies and normalized 499 

GPP anomalies up to 60 days after the start of spring (R2 = 0.97; n = 6; Fig. 9) and during the 500 

period 20-50 days preceding the end of the growing season (R2 = 0.83). While these results are 501 

promising, it is important to note that the sample size is small (n = 6) and each tower is 502 
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represented by only two site-years. As at DBF sites, information related to interannual variation 503 

in fall GPP from time-integrated GCC values was comparable to that provided from transition 504 

dates, but provided less information related to spring GPP variations. For example, correlation of 505 

start-of-spring with spring GPP anomalies was lower than that for GCC anomalies (R2 = 0.85) 506 

while correlation of end-of-fall with fall GPP anomalies (R2 = 0.81) was equivalent to that of the 507 

integrated GCC anomaly. 508 

 509 

DISCUSSION  510 

Canopy development and photosynthesis 511 

Results from this study demonstrate that canopy greenness is correlated with rates of 512 

photosynthesis in both forest and grassland.  Consistent with results from previous studies, 513 

canopy greenness and GPP were correlated across DBF sites (Ahrends et al. 2009, Richardson et 514 

al. 2007, 2009).  For reasons that are unclear, we found a stronger relationship between 515 

greenness and photosynthesis in grassland than Migliavacca et al. (2012). At ENF sites, our 516 

results are consistent with those obtained by Richardson et al. (2009b) and showed moderate to 517 

strong correlation between canopy greenness and GPP across all of the sites we examined. This 518 

was particularly true for ExG, suggesting that camera-based modeling of GPP in ENF should be 519 

based on this index. Specifically, ExG was less sensitive than GCC to variation in illumination 520 

conditions. Thus, ExG appears to minimize the impact of shadows, which are prominent and 521 

highly variable in conifer canopies. 522 

 523 

Our analysis also revealed several limitations of canopy greenness as a predictor of GPP. For 524 

example, there was a pronounced peak in GCC at the end of spring in DBF sites (also noted by 525 



 23

Sonnentag et al. 2012, Mizunuma et al. 2012) that preceded the peak in GPP by several weeks. 526 

Peak GCC is caused by seasonal variation in foliage pigments (e.g., Sims and Gamon, 2002) and 527 

is accentuated by the oblique viewing angle used by the cameras in this study (Keenan et al. 528 

2014). As a result, GCC90% tended to occur several weeks before GPP90%. Data from the 529 

Missouri Ozarks site also demonstrated limitations of GCC during drought conditions when 530 

photosynthesis was reduced by moisture stress, but canopy color was unaffected. As a result, 531 

GPP and GCC became decoupled as GPP dropped rapidly while GCC remained high (Appendix 532 

B). Even though ENF sites exhibited well-defined seasonality in greenness, GCC was only 533 

weakly correlated to GPP at these sites. Conifers undergo seasonal changes in chlorophyll 534 

content, with winter minima approximately 40% lower than summer maxima (Billow et al. 1994, 535 

Ottander et al. 1995). Hence, seasonal variation in chlorophyll concentrations at sites with long 536 

winters (Chibougamau, Groundhog, Niwot) may be driving observed patterns in canopy 537 

greenness, even during the non-photosynthetic period (Fig. 2; Appendix C).  538 

 539 

Phenophase transitions and integrated GCC-GPP 540 

Start of spring and end of fall, determined based on GCC and RCC, provided biased estimates 541 

for the beginning and cessation of the photosynthetically active period (i.e. GPP > 0 g C m-2 d-1). 542 

In deciduous broadleaf forest and grassland/crops sites, the MD and RMSD for the start of spring 543 

were lowest for GPP values between 20-26% of the spring amplitude, while for end of fall, 544 

deviations were lowest for GPP at 14-16% of the fall amplitude. Local maxima in the change in 545 

curvature rate, which is used to identify the start of spring and end of fall (Zhang et al. 2003), 546 

occurs above wintertime minimum values, when GCC reach ~10% and 90% of the amplitude of 547 

equations 3 and 4, respectively. In DBF, an additional source of disagreement between the 548 
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timing of GCC and GPP is early season photosynthesis from sub-dominant evergreen trees, 549 

which can increase ecosystem GPP well before leaf emergence in deciduous trees.  550 

 551 

Garrity et al. (2011) tested 13 metrics of canopy phenology (excluding cameras) and found that 552 

no single source provided adequate characterization of the full seasonality of carbon flux 553 

phenology. Notably, the beginning of the photosynthetic period was generally well characterized 554 

while the end of the photosynthetic period was poorly characterized, and the timing of maximum 555 

GPP was not significantly correlated with any radiometric or remotely sensed variable (Garrity et 556 

al. 2011). Although we found similar patterns for DBF sites, there was relatively close 557 

association between GPP90% and GCC90% in GRS. Other researchers have found that maximum 558 

GCC at DBF sites precedes maximum GPP (Ahrends et al. 2009, Richardson et al. 2009b), leaf 559 

area index (Keenan et al., 2014), and leaf chlorophyll content (Nagai et al. 2011) by several 560 

weeks to two months. Likewise, leaf-level studies indicate long periods (50-80 days) between 561 

green-up and maximum photosynthesis (Reich et al. 1991, Bassow and Bazzazz 1998, Morecroft 562 

et al. 2003). Thus, it is perhaps not surprising that we found that changes in GCC tend to lead 563 

changes in GPP in both spring and autumn in DBF. 564 

 565 

A particularly important conclusion from this work is that repeat digital photography not only 566 

allows us to identify when photosynthesis begins and ends, but also helps us estimate how much 567 

of an impact phenological variability has on seasonal and annual carbon budgets. Using an 568 

independent measure of canopy phenology, we showed how changes in the timing of green leaf 569 

phenology in the spring and fall affects cumulative photosynthesis. Among DBF sites, we also 570 
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found significant correlation between combined spring-fall GCC anomalies and anomalies in 571 

annual GPP.  572 

 573 

Impacts and future work 574 

By examining relationships between camera-derived metrics of greenness and GPP across a large 575 

set of sites spanning multiple years and three plant functional types, this research provides an 576 

improved foundation for using digital repeat photography to model the impact of phenological 577 

dynamics on the carbon cycle of terrestrial ecosystems. Key contributions of this study are (1) 578 

demonstration of relatively general relationships between GPP and GCC, and (2) quantification 579 

of spatiotemporal variability in canopy development and GPP among and across three major 580 

PFTs. More generally, results from this study highlight the role that cameras can play in refining 581 

and calibrating phenological sub-routines in Earth System models, which vary widely in their 582 

representation of green leaf phenology (e.g., Richardson et al. 2012). The Community Land 583 

Model, for instance, includes seven PFTs (Bonan et al. 2002), four of which were represented in 584 

our study: deciduous broadleaf forest (DBF), coniferous evergreen forest (ENF), grasses (GRS), 585 

and crops (GRS). Our study did not include broadleaf evergreen forest, deciduous and evergreen 586 

shrubs, and we are not aware of any studies that have compared camera-based phenology and 587 

carbon fluxes in broadleaf evergreen forest, (but see Doughty and Goulden 2007 for radiometry-588 

based phenology). However, given the major role of humid tropical forest in the global carbon 589 

cycle, there is a clear need for camera-based studies in this biome. 590 

  591 

Although our study was focused on canopy-scale phenology, digital repeat photography also has 592 

significant potential as a tool for bridging the gap between canopy-to-landscape scale processes 593 
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and organismal-level observations of leafing and flowering phenology. Digital repeat 594 

photography can also play an essential role in scaling organismal- and canopy-level observations 595 

to the synoptic scale provided by remote sensing (Hufkens et al. 2012). As networks of spatially 596 

referenced online camera imagery rapidly expand (Graham et al. 2010, Sonnentag et al. 2012, 597 

Abrams and Pless 2013), opportunities to leverage these networks to monitor and calibrate 598 

models of terrestrial phenology are likely to increase. Exploiting this, future work will explore 599 

how such camera networks can be used to characterize spatiotemporal variability in phenology 600 

and determine the environmental drivers (e.g. temperature, precipitation, photoperiod, snow 601 

cover) that regulate canopy development and senescence at regional to continental scales. 602 

 603 

CONCLUSIONS 604 

In this study, we demonstrate the strengths and limitations of camera-based canopy greenness for 605 

monitoring the phenology of photosynthesis in three PFTs: deciduous broadleaf forest, evergreen 606 

needleleaf forest and grassland/crops. We encountered key differences among PFTs in the 607 

relationship between canopy development, expressed as greenness, and the seasonality of carbon 608 

fluxes. These differences were also evident in the detection of discrete phenophase transitions. 609 

Canopy greenness proved effective at detecting the beginning and end of the photosynthetically 610 

active period in GRS sites. In DBF sites, greenness was effective for detecting the beginning of 611 

the photosynthetic period, whereas redness was most effective for detecting the end. A key 612 

finding of this study was that integrated GCC was significantly correlated with total GPP during 613 

the first 30-60 days following green-up, in both DBF and GRS. In some cases, integrated GCC 614 

was a better predictor of summed spring/fall GPP than discrete transitions dates. Further, in DBF 615 

there was a moderate correlation between combined spring-fall GCC anomalies and the annual 616 
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GPP integral anomalies, indicating significant seasonal control of shifts in phenology on 617 

ecosystem productivity. Camera data thus provide a valuable and independent means by which 618 

ecosystem-scale phenology can be characterized (cf. phenological metrics derived from CO2 619 

fluxes themselves, as in Richardson et al. 2010). Finally, our results suggest that digital repeat 620 

photography may be used to estimate interannual variability in GPP resulting from phenological 621 

variability with greater accuracy than many existing ecosystem process models provide (Keenan 622 

et al. 2012, Richardson et al. 2012).  623 

 624 

 625 

 626 
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 630 
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 633 
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Appendices 937 
 938 

Appendix A. Map of PhenoCam sites. 939 

Appendix B. Time series of daily GPP (gC m-2 d-1) and GCC for all deciduous broadleaf forest 940 

(DBF) evergreen needleleaf forest (ENF) and grassland (GRS) sites, listed by plant functional 941 

type. One characteristic year of data is featured in each sub-plot. 942 

Appendix C. Scatter plots of daily GPP (gC m-2 d-1) vs. GCC for all deciduous broadleaf forest 943 

(DBF) evergreen needleleaf forest (ENF) and grassland (GRS) sites, listed by plant functional 944 

type. Linear (blue) and quadratic regression lines (red) are superimposed (see Table 2 for 945 

coefficients of determination). All years of data are featured in each sub-plot. 946 
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Table 1. Summary of camera/eddy covariance sites used in this study, arranged by plant functional type. DBF = broadleaf deciduous 972 

forest, ENF = evergreen needleleaf forest, GRS = grassland/crops. 973 

Site PFT Lat. Long. 
Alt. 

(m) 
Years Camera Citation 

Bartlett DBF 44.0646 -71.2881 268 2006-2012 Axis 211 Richardson et al. 2007 

Harvard DBF 42.5378 -72.1715 340 2008-2011 StarDot NetCam SC Urbanski et al. 2007 

Missouri Ozarks DBF 38.7441 -92.2000 219 2007-2008 Olympus D-360L Yang et al. 2010 

Morgan Monroe DBF 39.3231 -86.4131 275 2009-2010 StarDot NetCam SC Schmid et al. 2000 

U Michbio1 DBF 45.5598 -84.7090 225 2008-2011 StarDot NetCam SC Nave et al. 2011 

U Michbio2 DBF 45.5598 -84.7138 230 2009-2011 StarDot NetCam SC Curtis et al. 2002 

Chibougamou ENF 49.6924 -74.3420 380 2008-2010 StarDot NetCam SC Bergeron et al. 2006 

Groundhog ENF/DBF 48.2174 -82.1555 350 2008-2011 StarDot NetCam SC McCaughey et al. 2006 

Howland ENF 45.2041 -68.7403 80 2010-2012 Stardot NetCam SC Hollinger et al. 1999 

Niwot ENF 40.0328 -105.5470 3055 2008-2011 Canon VB-C10R Sacks et al. 2007 

Wind River ENF 45.8213 -121.9521 371 2011 StarDot NetCam SC Wharton et al. 2012 

ARM Oklahoma GRS 36.6970 -97.4888 316 2003-2011 Nikon Coolpix 990 Torn et al. 2010 
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UI Maize/Soy GRS 40.0628 -88.1961 314 2009-2010 Axis 211M Zeri et al. 2011 

UI Miscanthus GRS 40.0628 -88.1984 314 2009-2010 Axis 211M Zeri et al. 2011 

UI Prairie GRS 40.0637 -88.1973 314 2009-2010 Axis 211M Zeri et al. 2011 

UI Switchgrass GRS 40.0637 -88.1973 314 2009-2010 Axis 211M Zeri et al. 2011 

Vaira GRS 38.4133 -120.9506 129 2009-2010 D-Link DCS-900 Baldocchi et al. 2004 
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Table 2. Coefficients of determination for linear (R2) and quadratic regression (R2
quad) of GCC 989 

and ExG with daily GPP and mean 30-minute GPP rate (GPP30). N = number of observations. In 990 

all reported correlations, p < 0.0001. 991 

    GCC-GPPd GCC-GPP30   ExG-GPPd   

Site PFT R2 R2
quad R2 R2

quad R2 R2
quad N 

Bartlett DBF 0.782 0.783 0.765 0.773 0.787 0.793 740 

Harvard DBF 0.787 0.809 0.754 0.781 0.710 0.720 428 

Missouri Ozarks DBF 0.498 0.571 0.496 0.551 0.340 0.517 116 

Morgan Monroe DBF 0.629 0.680 0.618 0.706 0.623 0.680 221 

U Michbio1 DBF 0.776 0.776 0.794 0.800 0.791 0.792 333 

U Michbio2 DBF 0.788 0.819 0.771 0.794 0.415 0.456 356 

Chibougamou ENF 0.723 0.794 0.728 0.792 0.754 0.888 293 

Groundhog ENF/DBF 0.756 0.833 0.754 0.840 0.747 0.789 276 

Howland ENF 0.714 0.735 0.758 0.779 0.769 0.794 310 

Niwot ENF 0.654 0.675 0.707 0.714 0.707 0.761 169 

Wind River ENF 0.527 0.529 0.498 0.547 0.743 0.747 70 

ARM Oklahoma GRS 0.547 0.597 0.648 0.751 0.591 0.629 142 

UI Maize GRS 0.837 0.838 0.874 0.875 0.837 0.837 120 

UI Miscanthus  GRS 0.861 0.870 0.872 0.888 0.811 0.828 243 

UI Prairie GRS 0.901 0.916 0.887 0.911 0.892 0.897 238 

UI Soy GRS 0.820 0.822 0.823 0.824 0.786 0.798 120 

UI Switchgrass  GRS 0.805 0.815 0.789 0.808 0.749 0.764 243 

Vaira GRS 0.793 0.815 0.759 0.763 0.728 0.815 195 
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Figures 992 

Figure 1. Examples of webcam photographs, representing the three plant functional types: (a) 993 

Harvard (deciduous broadleaf forest), (b) Chibougamau (evergreen needleleaf forest), and (c) UI 994 

miscanthus (grassland). Polygons indicate the Region of Interest for extracting image greenness. 995 

Figure 2. Time series of daily GPP (blue circles, gC m-2 d-1) and GCC (green diamonds) for 996 

deciduous broadleaf forest (DBF; a) evergreen needleleaf forest (ENF; b) and grassland/crops 997 

(GRS; c). Two characteristic years of data are featured in each sub-plot. 998 

Figure 3. Scatter plots of daily GPP (gC m-2 d-1) vs. GCC for deciduous broadleaf forest (DBF; 999 

a) evergreen needleleaf forest (ENF; b) and grassland (GRS; c). Linear (blue) and quadratic 1000 

regression lines (red) are superimposed (see Table 2 for coefficients of determination). All years 1001 

of data are featured in each sub-plot. 1002 

Figure 4. Four metrics comparing estimates of DOY for start of spring (a), middle of spring (b), 1003 

and middle of fall (d) using dates extracted from GCC curve fitting and % of maximum GPP. 1004 

The plots represent 19 DBF site-years. End of fall (c) camera dates are derived from date of 1005 

maximum RCC. On left axes, R2 (0.0 – 1.0) and slope for geometric mean regression. On right 1006 

axes, mean deviation (MD) and root mean square deviation (RMSD) of estimates; units are days.  1007 

Figure 5. Comparisons of derived dates (DOY) of maximum greenness and fluxes – GCC90%  1008 

and GPP90%, respectively – for deciduous broadleaf forest (a), evergreen needleleaf forest (b) and 1009 

grassland/crops (C) sites. 1010 

Figure 6. Four metrics comparing estimates of DOY of start of spring (a), middle of spring (b), 1011 

end of fall (c) and middle of fall (d) using dates extracted from GCC curve fitting and % of 1012 

maximum GPP. Plots represent 8 GRS site-years. On left axes, R2 and slope for geometric mean 1013 
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regression. On right axes, mean deviation (MD) and root mean square deviation (RMSD) of 1014 

estimates; units are days. 1015 

Figure 7. Regression of GPP integrated sums (gC m-2) vs. GCC integrated sums (dimensionless) 1016 

during the first 30 days following green-up (in 5-day increments) for 2006-2012 at Bartlett. 1017 

Figure 8. Regression of GPP integrated sums (dimensionless) vs. GCC integrated sums 1018 

(dimensionless) during the first 60 days following green-up (shown in 10-day increments) for 1019 

deciduous broadleaf sites. Legend colors are equivalent to Figure 5a.  1020 

Figure 9. Regression of normalized GPP integrated sums (dimensionless) vs. GCC integrated 1021 

sums (dimensionless) during the first 60 days following green-up (in 10-day increments) for  the 1022 

GRS sites, UI Miscanthus (black circles), UI Prairie (white circles) and UI Switchgrass (grey 1023 

circles). 1024 
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