
GreenSlot: Scheduling Energy Consumption
in Green Datacenters

Íñigo Goiri
UPC/BSC and Rutgers Univ.

goiri@cs.rutgers.edu

Kien Le
Rutgers University

lekien@cs.rutgers.edu

Md. E. Haque
Rutgers University

mdhaque@cs.rutgers.edu

Ryan Beauchea
Rutgers University

rybeauch@cs.rutgers.edu

Thu D. Nguyen
Rutgers University

tdnguyen@cs.rutgers.edu

Jordi Guitart
UPC/BSC

jguitart@ac.upc.edu

Jordi Torres
UPC/BSC

torres@ac.upc.edu

Ricardo Bianchini
Rutgers University

ricardob@cs.rutgers.edu

ABSTRACT
In this paper, we propose GreenSlot, a parallel batch job scheduler
for a datacenter powered by a photovoltaic solar array and the elec-
trical grid (as a backup). GreenSlot predicts the amount of solar
energy that will be available in the near future, and schedules the
workload to maximize the green energy consumption while meet-
ing the jobs’ deadlines. If grid energy must be used to avoid dead-
line violations, the scheduler selects times when it is cheap. Our
results for production scientific workloads demonstrate that Green-
Slot can increase green energy consumption by up to 117% and
decrease energy cost by up to 39%, compared to a conventional
scheduler. Based on these positive results, we conclude that green
datacenters and green-energy-aware scheduling can have a signifi-
cant role in building a more sustainable IT ecosystem.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management

General Terms
Design, Performance

Keywords
Green energy, energy-aware job scheduling, datacenters.

1. INTRODUCTION
As of 2006, the datacenters in the United States were consuming

61.4 Billion kWh per year, an amount of energy that is equivalent
to that consumed by the entire transportation manufacturing indus-
try (the industry that makes airplanes, ships, cars, trucks, and other
means of transportation) [33]. Even worse, datacenter energy con-
sumption has increased significantly since 2006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC’11, November 12-18, 2011, Seattle, Washington, USA.
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

Large Internet companies (e.g., Google and Microsoft) have sig-
nificantly improved the energy efficiency of their multi-megawatt
datacenters. However, the majority of the energy consumed by dat-
acenters is actually due to countless small and medium-sized data-
centers [33], which are much less efficient. These facilities range
from a few dozen servers housed in a machine room to several hun-
dreds of servers housed in a larger enterprise installation.

Unfortunately, the cost of the energy consumed by these datacen-
ters is not the only problem. Their energy consumption also con-
tributes to climate change, since most of the electricity produced in
the US and around the world comes from burning coal and natural
gas, which are carbon-intensive approaches to energy production
[21]. In fact, a single server can have roughly the same carbon
footprint as a Sports Utility Vehicle [8]. We refer to energy pro-
duced by carbon-intensive means and distributed via the electrical
grid as “brown energy”.

These cost and environmental concerns have been prompting
many “green” energy initiatives. One initiative is for datacenters to
either generate their own solar/wind energy or draw power directly
from a nearby green solar/wind farm. This approach is becoming
popular, as demonstrated by the many small and medium datacen-
ters (partially or completely) powered by solar and/or wind energy
that are popping up all over the globe (see http://www.ecobusiness-
links.com/green_web_hosting.htm for a partial list). We expect that
this trend will continue, as these technologies’ capital costs keep
decreasing (e.g., the cost of solar energy has decreased by 7-fold
in the last two decades [28]) and governments continue to provide
generous incentives for green power generation (e.g., federal and
state incentives in New Jersey can reduce capital costs by 60% [5]).
In fact, the trend may actually accelerate if carbon taxes and/or cap-
and-trade schemes spread from Europe and Asia to the rest of the
world. For example, a cap-and-trade scheme in the UK imposes
caps on the brown energy consumption of large consumers [32].

We argue that the ideal design for green datacenters connects
them to both the solar/wind energy source and the electrical grid
(as a backup). The major research challenge with solar and wind
energy is that, differently from brown energy drawn from the grid,
it is not always available. For example, photovoltaic (PV) solar
energy is only available during the day and the amount produced
depends on the weather and the season. Datacenters sometimes
can “bank” green energy in batteries or on the grid itself (called net
metering) to mitigate this variability. However, both batteries and
net metering have problems: (1) batteries involve energy losses due

to internal resistance and self-discharge; (2) the cost of purchasing
and maintaining batteries can dominate in a solar system [11]; (3)
batteries use chemicals that are harmful to the environment; (4) net
metering incurs energy losses due to the voltage transformation in-
volved in feeding the green energy into the grid; (5) net metering
is not available in many parts of the world; and (6) where net me-
tering is available, the power company may pay less than the retail
electricity price for the green energy. Based on these observations,
it is clear that the best way to take full advantage of the available
green energy is to match the energy demand to the energy supply.

Thus, in this paper, we investigate how to manage a datacen-
ter’s computational workload to match the green energy supply.
Our focus is scientific workloads running on commodity servers
in small and medium datacenters (such as those operated by many
enterprises and universities), rather than large supercomputing in-
stallations. In particular, we design a parallel batch job scheduler,
called GreenSlot, for a datacenter powered by an array of PV solar
panels and the electrical grid. Jobs submitted to GreenSlot come
with user-specified numbers of nodes, expected running times, and
deadlines by which they shall have completed. The deadline in-
formation provides the flexibility that GreenSlot needs to manage
energy consumption aggressively.

GreenSlot seeks to maximize the green energy consumption (or
equivalently to minimize the brown energy consumption) while
meeting the jobs’ deadlines. If brown energy must be used to
avoid deadline violations, GreenSlot schedules jobs for times when
brown electricity is cheap. In more detail, GreenSlot combines so-
lar energy prediction, energy-cost-awareness, and least slack time
first (LSTF) job ordering [3]. It first predicts the amount of solar en-
ergy that will likely be available in the future, using historical data
and weather forecasts. Based on its predictions and the information
provided by users, it schedules the workload by creating resource
reservations into the future. When a job’s scheduled start time ar-
rives, GreenSlot dispatches it for execution. As it should be clear
by now, GreenSlot departs significantly from most job schedulers,
which seek to minimize completion times or bounded slowdown.

We implement GreenSlot as an extension of the widely used
SLURM scheduler for Linux [1]. Our experiments use real sci-
entific workloads (and their actual arrival times and deadlines) that
are in current use at the Life Sciences Department of the Barcelona
Supercomputing Center. We model the datacenter’s solar array as
a properly scaled-down version of the Rutgers solar farm in New
Jersey. The brown electricity prices are from a power company
in New Jersey. Our results demonstrate that GreenSlot accurately
predicts the amount of solar energy to become available. The re-
sults also demonstrate that GreenSlot can increase green energy
consumption and decrease energy cost by up to 117% and 39%,
respectively, compared to a conventional backfilling scheduler.

Based on these positive results, we conclude that green datacen-
ters and green-energy-aware scheduling can have a significant role
in building a more sustainable Information Technology ecosystem.

In summary, we make the following contributions:

• Introduce GreenSlot, a batch job scheduler for datacenters
partly powered by solar energy;

• Introduce job scheduling that is aware of green energy;
• Introduce job scheduling that is aware of brown electricity

prices; and
• Present extensive results isolating the impact of different as-

pects of the scheduler.

The remainder of the paper is organized as follows. The next
section provides background on solar energy generation, its use to
power computer systems, and discusses its costs. Section 3 dis-

Solar
Panels

Battery Inverter

Grid

Grid-tie AC Load

Figure 1: Components of a solar-powered computer system. Dashed
boxes represent optional components.

cusses the related work and compares GreenSlot to other job sched-
ulers. Section 4 presents our approach to solar energy prediction,
our scheduling policy, and GreenSlot. Section 5 describes our ex-
perimental methodology and results. Finally, Section 6 draws our
conclusions and mentions a few avenues for future work.

2. BACKGROUND
Solar energy and its use in datacenters. Solar energy is perhaps
the most promising of the clean energy technologies, as it does
not cause the environmental disruption of hydroelectric energy and
does not have the waste storage problem of nuclear energy. Wind
energy is also promising, but is not as abundant as solar energy at
our locations. Except for our (solar) energy predictions, our work
is directly applicable to wind energy as well.

Transforming solar energy into (direct-current or DC) electricity
is most commonly done using PV panels. The panels are made of
cells containing PV materials, such as monocrystalline and poly-
crystalline silicon. The photons of sunlight transfer energy to the
electrons in the material. This extra energy causes the electrons to
transfer between the two regions of the material, producing a cur-
rent that is driven through the electrical load (e.g., a datacenter).

There are multiple ways to connect solar panels to a datacenter.
Figure 1 shows a general setup with all the components present.
The solar panels can be connected to batteries for storing excess
energy during periods of sunlight and discharging it during other
periods. Since current server and cooling equipment run on alter-
nating current (AC), the DC electricity produced by the panels must
be converted to AC electricity using an inverter. When the datacen-
ter must be operational even when solar energy (stored in batteries
or otherwise) is not available, it must also be connected to the elec-
trical grid via a grid-tie device. Where net metering is available, it
is possible to feed excess solar energy into the grid for a reduction
in brown energy costs.

The design we study in this paper does not include batteries or
net metering, for the reasons we mentioned in the Introduction. In
this scenario, any energy that is not immediately used by the data-
center is wasted. Fortunately, GreenSlot is very successful at lim-
iting waste. In fact, assuming the results from Section 5 and the
governmental incentives in NJ, the current capital cost of installing
solar panels for the datacenter we model can be amortized by sav-
ings in brown energy cost in 11 years of operation. This amortiza-
tion period is substantially shorter than the typical lifetime of the
solar panels, 20-30 years. The period will be even shorter in the
future, as solar costs continue to decrease at a rapid pace [28].

Brown electricity prices. Datacenters often contract with their
power companies to pay variable brown electricity prices, i.e. dif-
ferent dollar amounts per kWh of consumed brown energy. The
most common arrangement is for the datacenter to pay less for
brown electricity consumed during an off-peak period than dur-
ing an on-peak period. Typically, off-peak prices are in effect dur-
ing the night, whereas on-peak prices apply during the day. Thus,
it would be profitable for the datacenter to schedule part of its
workload (e.g., maintenance or analytics tasks, activities with loose
deadlines) during the night.

3. RELATED WORK
Exploiting green energy in datacenters. GreenSlot schedules the
use of green energy in datacenters to lower brown energy consump-
tion, monetary costs, and environmental impact. Some previous
works have addressed these issues [13, 14, 19, 29]. In a short posi-
tion paper, Stewart and Shen discuss how to maximize green energy
use in datacenters [29]. However, their main focus was on request
distribution in multi-datacenter interactive Internet services. Simi-
larly, [13, 14, 19] focused on these multi-datacenter services. Our
work differs from these previous efforts in many ways. Specifi-
cally, only [19] considered green energy predictions, and only [13,
14, 19] considered variable brown electricity prices. None of these
papers considered batch job scheduling. Batch jobs typically run
longer than interactive service requests and often have loose dead-
lines, thereby increasing the opportunity to exploit green energy.

Another key difference between our paper and these previous ef-
forts is that we focus on a single datacenter. Also targeting a single
datacenter, Willow [12] assumes that reductions in green energy
supply affect the servers differently, and migrates load away from
energy deficient servers. In contrast, Blink [25] considered manag-
ing server power states when the amount of green energy varies but
the datacenter is not connected to the electrical grid. We argue that
it is not realistic for datacenters to depend completely on green en-
ergy, since this may cause unbounded performance degradation. In
addition, our approach for managing green energy consumption is
through job scheduling, rather than load migration or server power
state management.

In contrast with these higher level approaches, SolarCore [17]
is a multi-core power management scheme designed to exploit PV
solar energy. SolarCore focuses on a single server, so it is closer to
the works that leverage green energy in embedded systems.

Managing electricity prices. Most of the works that have con-
sidered variable electricity prices have targeted request distribution
across multiple datacenters in interactive Internet services [13, 14,
19, 22]. The exception is our recent work [15], which consid-
ers variable electricity prices in multi-datacenter high-performance
computing clouds. Our current work differs from these previous ef-
forts as it seeks to maximize green energy use, predict green energy
availability, and schedule batch jobs within a single datacenter.

GreenSlot vs. other job schedulers. GreenSlot has a few unique
characteristics, compared to other job schedulers, e.g. [1, 6]. First,
it promotes the use of green energy and cheap brown energy, pos-
sibility at the cost of increasing job waiting times (but not violat-
ing deadlines). Talby and Feitelson [30] introduced the notion of
increasing waiting times up to certain bounds in the context of ba-
ckfilling. However, most job schedulers seek to minimize waiting
times, makespan, and/or bounded slowdown; they never consider
green energy or brown electricity prices.

Second, GreenSlot borrows ideas from (soft) real-time systems:
(1) jobs and/or workflows (i.e., sequences of related jobs [4]) have
deadlines by which they shall complete; (2) it keeps the queued
jobs in LSTF order [3]; and (3) new jobs that cannot be run before
their deadlines are not admitted into the system. Although some
previous job schedulers have considered deadlines (e.g., [9, 27]),
most of them typically do not.

Many scientific workloads have natural deadlines, even if they
are not always explicitly stated. For example, it is common to sub-
mit jobs before leaving work on Friday and not needing their results
until Monday. Importantly, deadlines provide the flexibility that al-
lows GreenSlot to achieve its goals. Nevertheless, users that need
their jobs/workflows to complete quickly can also use GreenSlot.
They simply need to specify tight deadlines. However, the presence

Green availability Green energy used Brown energy used

J1

J1

J2

J2

J3

J3

J1 J2J3

TimeNow

N
od

es

Pow
er

N
od

es

Pow
er

Queued job

Figure 2: Scheduling 3 jobs (J1-J3) with backfilling (top) and Green-
Slot (bottom). The jobs’ deadlines are the vertical lines.

of these jobs/workflows reduces flexibility, and may cause brown
energy consumption and/or energy cost to increase.

GreenSlot suspends jobs that have outrun their allowed run times,
instead of canceling them like most other schedulers do. It does so
because these jobs have already consumed energy, so it would be
wasteful to cancel them.

Run time estimates and deadlines. Prior research showed that
users typically provide inaccurate estimates of run time [16, 20].
In fact, users often consciously overestimate to avoid job cancel-
lations. Deadlines create another avenue for “gaming” the system;
users may provide unnecessarily tight deadlines so that the sched-
uler executes their jobs ahead of others.

To alleviate these problems, we envision a computation pricing
model for use with GreenSlot. To encourage users not to overes-
timate run times, users would pay in proportion to the actual run
time of their jobs/workflows, but also pay a charge when they sig-
nificantly overestimate those times. From this value, an amount
proportional to how loose the deadlines are would be deducted.
This model would achieve our two goals: tight expected run times;
and loose deadlines. To compensate the user in case GreenSlot is
unable to meet a deadline, the datacenter operator would reimburse
the user for an amount proportional to the length of the violation.
Obviously, the payments in our model need not be in a real cur-
rency; rather, they could be effected in a virtual currency represent-
ing the right to use resources in the future, for example.

As another approach to tackling poor run time estimates, Green-
Slot could easily combine them with automatic predictions based
on recent executions by the same users, as in [31].

4. SCHEDULING IN GREEN DATACENTERS
We propose GreenSlot, a parallel job scheduler for datacenters

powered by PV solar panels and the electricity grid. GreenSlot
relies on predictions of the availability of solar energy, as well as
on a greedy job scheduling algorithm.

Figure 2 illustrates the behavior of GreenSlot (bottom), in com-
parison to a conventional EASY backfilling scheduler (top) for three
jobs. Each rectangle represents the number of nodes and time that
each job will likely require. The vertical lines represent the jobs’
deadlines. Note that backfilling uses less green energy (more brown
energy), as it does not consider the energy supply in making deci-
sions. Any scheduler (including a real-time one) that is unaware
of green energy would behave similarly. In contrast, GreenSlot de-

J1
J2Now

J3

Now

Now

J5

J4

N
od

es

Time

Green actual

Green energy used

Brown energy used

Queued job

Scheduling Window

Brown electricity price

P
ow

er

J2

J1

J2

J3

J4

J3

J4

J5J1

J2

J1

T2)

T1)

T3)

Green predicted

Figure 3: GreenSlot scheduling window at times T1 (top), T2 (middle),
and T3 (bottom).

lays the execution of some jobs (as long as they do not violate their
deadlines) to guarantee that they will use green energy. This de-
lay is not a concern since users only need their jobs completed by
the jobs’ deadlines. Similarly, GreenSlot may delay certain jobs to
use cheaper brown electricity (not shown). GreenSlot is beneficial
because datacenters are not fully utilized at all times.

In the next few subsections, we describe GreenSlot in detail.
First, we describe our scheduling algorithm. Then, we present our
model for solar energy prediction and discuss how GreenSlot ad-
justs the predictions when it finds inaccuracies.

4.1 Greedy Scheduling Algorithm
Overview. GreenSlot seeks to minimize brown energy consump-
tion by instead using solar energy, while avoiding excessive perfor-
mance degradation.

At submission time, users can specify the workflows to which
their jobs belong. As in many other job schedulers, users must
inform the number of nodes and the expected running time for each
of their jobs. Deadlines can be specified per job or workflow.

At the beginning of each slot, GreenSlot determines if a new
schedule must be prepared. If so, it goes through the list of queued
jobs and schedules them (i.e., reserves resources for them) into the
future. This scheduling window corresponds to the range of our
hourly solar energy predictions, i.e. two days. The window is di-
vided into smaller time slots (15 minutes in our experiments). The
scheduling window moves with time; the first slot always repre-
sents the current time.

GreenSlot is cost-aware in that it favors scheduling jobs in time
slots when energy is cheapest. To prioritize green energy over
brown energy, green energy is assumed to have zero cost. In con-
trast, brown electricity prices often depend on time of use, as afore-
mentioned. When the price of brown electricity is not fixed and
brown energy must be used, GreenSlot favors the cheaper time

slots. To avoid selecting slots that may cause deadline violations,
GreenSlot assigns a high cost penalty to those slots.

GreenSlot is greedy in two ways: (1) it schedules jobs that are
closer to violating their deadlines first; and (2) once it determines
the best slots for a job, this reservation does not change (unless it
decides to prepare a new schedule during a later scheduling round).
The next job in the queue can only be scheduled on the remaining
free slots. Moreover, GreenSlot constrains its scheduling decisions
based on workflow information, i.e. a job belonging to phase i of a
workflow cannot begin before all jobs of phases < i have completed.

GreenSlot dispatches the jobs for execution on the cluster, ac-
cording to the schedule. Dispatched jobs run to completion on the
same nodes where they start execution. GreenSlot deactivates any
idle nodes to conserve energy.

Figure 3 illustrates GreenSlot’s operation, from time T1 (top) to
T3 (bottom), with a very simple example. At T1, job J1 is executing
and job J2 is queued waiting for green energy to become available
(according to GreenSlot’s solar energy predictions). More than a
day later than T1, at T2, J1 and J2 have completed, and J3 has just
been dispatched. Because GreenSlot predicts two days of very little
solar energy, J4 is scheduled for the following day during a period
of cheap brown electricity. More than a day later than T2, at T3, we
see that GreenSlot initially mispredicted the amount of solar energy
at time T2. It later adjusted its prediction and ran J4 earlier. Finally,
we also see J5 queued waiting for solar energy to become available.

Details. Figure 4 presents the GreenSlot scheduling algorithm.
Line 0 represents the inputs that users must provide about each of
their jobs and workflows. GreenSlot adds a small amount of tol-
erance (20% in our experiments) to each expected running time.
Although this is not shown in Figure 4, jobs that take longer than
this extended amount of time are suspended and must be re-started
by hand. Our goal is to tolerate some inaccuracy in the information
provided by users, while avoiding deadline violations.

When a workflow has a deadline, GreenSlot creates tight inter-
nal deadlines for each of the phases of the workflow, based on the
final deadline and the expected duration of the jobs (plus tolerance)
in those phases. For example, consider a workflow that has three
phases that must be executed without overlap, each of which is ex-
pected to take 60 minutes. Suppose also that the tolerance is 20%,
i.e. the adjusted expected phase durations are 72 (60 + 12) minutes
each. If the deadline for the workflow is 4pm, the internal deadlines
for the first phase would be 4pm minus 144 minutes (1:36pm) and
for the second phase 4pm minus 72 minutes (2:48pm).

Using the deadlines and the expected running times, GreenSlot
determines the latest possible start time for each job. In the example
above, the jobs of the first phase can start no later than 12:24pm,
those of the second phase no later than 1:36pm, and those of the
third phase no later than 2:48pm.

Lines 1-6 describe GreenSlot’s behavior at the beginning of each
time slot. GreenSlot first determines whether its predictions for the
amount of solar energy were accurate in the most recent slot (line
2). If the predictions were inaccurate, it adjusts the future predic-
tions (line 3). We detail our approach to green energy prediction in
the next subsection. If the predictions were adjusted, a new sched-
ule must be prepared (line 4-5). In addition, a new schedule is
needed whenever a job arrives, a job completes, a job that was sup-
posed to complete in the previous slot did not terminate, or there
are jobs that were not scheduled in the previous scheduling round.

If a new schedule is needed, GreenSlot first subtracts the en-
ergy that the currently running jobs are likely to consume from the
predicted amount of green energy for the scheduling window (line
8). (Currently, GreenSlot assumes that the datacenter administra-
tor determines the average energy consumed by the jobs of each

0. Users specify the number of nodes, expected running time, deadline for each job/workflow
Add tolerance to expected running times

1. At the beginning of each time slot:
2. Determine whether the green energy predictions produced most recently were accurate
3. If they were inaccurate: adjust the future predictions
4. If predictions were just adjusted, a job arrived, a job completed,

a job expected to complete on the previous slot did not, OR
there are jobs to schedule:

5. Prepare a new schedule
6. Dispatch jobs according to schedule

7. Prepare schedule:
8. Update the availability of green energy over time based on currently running jobs
9. Try to schedule the next queued job in Least Slack Time First (LSTF) order
10. Calculate the cost of scheduling the job to start in each slot in the scheduling window
11. The cost of starting the job on a slot should be infinite in the following cases:
12. (1) a preceding job in the same workflow will not have completed until this slot
13. (2) the job will end outside of the window
14. (3) there are not enough nodes on this or at least one other needed slot
15. When the cost is not infinite and brown energy is likely to be used:
16. Account for the cost of the brown energy
17. When the cost is not infinite, but the deadline will likely be violated:
18. Add a violation penalty to the cost of the appropriate slots
19. If cost is infinite for every slot:
20. If job was submitted in this slot and deadline is within this window: reject it
21. Otherwise: try to schedule this job in the next scheduling round
22. Move to the next job (line 9)
23. If a job would likely violate the deadline in every slot:
24. Decrease its deadline (internally) by one slot
25. Schedule job at the cheapest slot, except:
26. A job with deadline outside this window should only be scheduled in this window

if it can use green energy only (i.e., cost for cheapest slot = 0)
27. Account for the energy and the nodes that will be used by the job

28. Dispatch jobs and adjust the number of active nodes:
29. Activate nodes from S3 state, if necessary
30. Start jobs that should be started now, according to the current schedule
31. Send idle nodes to S3 state

Figure 4: GreenSlot algorithm. For simplicity, the pseudo-code assumes that no single job takes longer than the scheduling window. In addition, it
does not show the suspension of jobs that have exceeded their expected running times (plus the tolerance).

workflow based on their previous executions. We plan to automate
this energy monitoring and integrate it into the scheduler. Another
option would be for GreenSlot to take this average energy as input.
However, energy estimates are hard for users to produce.)

After updating the green energy availability, GreenSlot sorts the
queued jobs in LSTF order. In more detail, it orders the queued
jobs based on their remaining “slack”, i.e. the difference between
the current time and the latest possible start time (line 9). It then
goes through the ordered list and schedules (reserves resources for)
the jobs into the future (line 10-26). The key to scheduling each job
is computing the energy cost of starting the job at each slot (lines
11-18). This computation accounts for the amount of energy the
job is expected to consume. GreenSlot selects the starting slot that
will lead to the lowest overall cost for the job (line 25), assuming
that: (1) solar energy has zero cost; (2) the cost is infinite for any
slot on which the job cannot start (lines 11-14); and (3) violating
the deadline incurs an extra cost (lines 17-18). In computing costs,
GreenSlot accounts for brown electricity prices (line 16).

When multiple slots would lead to the same lowest overall cost,
GreenSlot selects the earliest of the tied slots for the job, if the low-
est cost is zero (only green energy would be used). When there is
a tie but the lowest cost is not zero, GreenSlot selects the latest of
the tied slots but only if there is a chance that more green energy
may become available (due to a misprediction) until then. In this
case, when the prediction is corrected, GreenSlot can move the job
back earlier in the schedule so that it uses all the green energy that
is really available. If instead GreenSlot overestimated the amount
of green energy, it will still use all the available green energy. How-
ever, it might have to resort to using expensive brown electricity for
some of the jobs that were delayed.

A new job with deadline within the current window that cannot
be scheduled on any slot of the window is not admitted into the
system (line 20). This behavior allows the user to re-submit the job
with a later deadline or fewer nodes. Any other job that cannot be
scheduled is simply put back on the queue; the job has already been
admitted into the system, so GreenSlot cannot reject it any more.
GreenSlot will try to schedule it in the next scheduling round (line
21). Similarly, GreenSlot leaves any job with a deadline beyond the
current window for the following scheduling rounds, unless it pre-
dicts to have enough green energy to execute it within the current
window (line 26).

GreenSlot treats jobs that are expected to take longer to execute
than the length of the time window differently (not shown in Figure
4 for clarity). These jobs are scheduled as soon as resources allow.

Because GreenSlot is greedy and only sees a finite amount of
time into the future, it may be unable to prevent deadline violations
by leaving too many jobs to be executed beyond its horizon. It miti-
gates this problem by internally decreasing by one slot the deadline
of any job expected to miss its deadline according to the schedule
(line 23-24). The earlier deadline decreases the job’s slack time.
As a result, the next time the schedule is prepared, this job will
have a greater chance of being scheduled before the jobs that are
preventing it from meeting its deadline.

Finally, lines 28-31 implement GreenSlot’s job dispatcher. The
dispatcher is mainly tasked with starting the jobs scheduled to start
on the current time slot (the first slot of the scheduling window).
Before doing so, the dispatcher may need to activate nodes that it
earlier transitioned to ACPI’s S3 state (also known as suspend-to-
RAM state). This state consumes very low power (8.6 Watts in our
machines) and can be transitioned to and from very quickly (7 sec-

onds total in our machines). Because of these fast transitions, the
dispatcher sends any idle nodes to S3 state instead of turning them
completely off. Turning nodes off would involve transition times
of multiple minutes, which would represent a significant overhead
compared to the length of GreenSlot’s time slots.

Limitations. A potential drawback of GreenSlot is that it may re-
ject more jobs or miss more deadlines than a scheduler that delays
fewer jobs. However, as our sensitivity study in Section 5.2 demon-
strates, this is only likely to occur in datacenters with uncommonly
high utilizations. In fact, we have not seen any job rejections or
missed deadlines under the more common (yet still relatively high)
utilizations and real workloads we study. A full evaluation of these
effects is a topic for our future work.

4.2 Predicting the Availability of Solar Energy
Our model for predicting the generation of solar energy is based

on a simple premise: various weather conditions, e.g., partly cloudy,
reduce the energy generated in a predictable manner from that gen-
erated on an ideal sunny day. This premise is expressed as Ep(t) =
f(w(t))B(t), where Ep(t) is the amount of solar energy predicted
for time t, w(t) is the weather forecast, f(w(t)) is a weather-
dependent attenuation factor (between 0 and 1), and B(t) is the
amount of solar energy expected under ideal sunny conditions.

We implement solar energy prediction using the above model at
the granularity of an hour. We use weather forecasts widely avail-
able from sites such as The Weather Channel and Weather Under-
ground to instantiate w(t). These sites provide hourly predictions
for up to 48 hours in the future. Each prediction includes a string
describing the forecasted condition such as “sunny”, “cloudy”, or
“scatter thunderstorm”. This string is the output of w(t).

We use historical data to instantiate both B(t) and f(t). Specif-
ically, for a given hour t, we use the actual weather conditions and
energy generated during the month centered on t from the previ-
ous year. We choose this period around t, called H(t), to account
for seasonal effects. We set B(t) to the maximum observed energy
generated for the same hour of any day in H(t). For each differ-
ent weather condition wc, we compute f(wc) using recorded data
from all hours in H(t) with the same weather condition.

Unfortunately, weather forecasts can be wrong. For example, we
have observed that predictions for thunderstorms are frequently in-
accurate and can remain inaccurate throughout a day; i.e., the fore-
cast continues to predict thunderstorm hour-by-hour but the storm
does not arrive during that day. Further, weather is not the only fac-
tor that affect energy generation. For example, after a snow storm,
little energy will be generated while the solar panels remain cov-
ered by snow even if the weather is sunny.

To increase accuracy during the above “mispredictions”, we also
use an alternate method of instantiating f(t). Specifically, we as-
sume that the recent past can predict the near future, and compute
f(t) using the observed energy generated in the previous hour.
When invoked, our prediction module compares the accuracy of
the two methods for predicting the energy generated during the last
hour and chooses the more accurate method to instantiate f(t) for
the remainder of the current day. Beyond the current day, we al-
ways instantiate f(t) using weather forecasts because weather con-
ditions can change significantly from one day to the next.

Although we do not claim our prediction approach as a contribu-
tion of this paper, it does have three important characteristics: it is
simple, relies on widely available data, and is accurate at medium
time scales, e.g. a few hours to a few days. Previous works have
proposed more complex models based on historical weather data
[10]. However, these models tend to be inaccurate at medium time
scales [26]. Based on this observation, Sharma et al. proposed a

simple model based on historical data and weather forecasts [26].
Our approach is similar, but also embodies error correction based
on the recent green energy production.

5. EVALUATION

5.1 Methodology
Hardware and software. We evaluate GreenSlot using a 16-node
cluster, where each node is a 4-core Xeon server with 8GBytes of
memory, 1 7200rpm SATA disk, and a 1Gbit Ethernet card. Green-
Slot runs on an additional server. The servers are connected by a
Gigabit Ethernet switch.

GreenSlot extends the popular SLURM scheduler for Linux with
roughly 2800 uncommented lines of Python code. We study 2 ver-
sions of GreenSlot: “GreenOnly”, which makes decisions based on
green energy availability, but not variable brown electricity prices;
and “GreenVarPrices”, which considers both green energy and vari-
able brown electricity prices.

For comparison, we also study a variant of EASY backfilling
[18] that considers the deadlines in sorting the job queue in LSTF
order. The scheduler backfills jobs, as long as the first job in the
queue is not delayed. We refer to this baseline scheduler as “Con-
ventional”. Like GreenSlot, Conventional assigns a 20% tolerance
to the user-estimated job run times. If a job’s run time estimate and
tolerance are exceeded, Conventional cancels the job. Conventional
is oblivious to energy sources and costs.

Workloads. Our 3 workloads are currently in production use at the
Life Sciences Department at the Barcelona Supercomputing Center
[7]. Each workload implements a different pipelined approach to
the sequencing and mining of the genome of a baker’s yeast. Each
workload runs for 5 days and comprises a set of workflows, each
of which analyzes a different yeast sample. Workload1 and Work-
load3 have 8 workflows each, whereas Workload2 has 12 work-
flows. Each workflow of Workload1 comprises 4 phases: initial-
ization (1 job that runs for 8 minutes on our cluster), data splitting
(1 job that runs for 1 minute), computation (16 jobs that last be-
tween 6 minutes and 9 hours, with an average of 2.4 hours), and
collect/visualization (1 job that runs for 5 minutes). Each work-
flow of Workload2 comprises 3 phases: initialization and splitting
(1 job that runs for 10 minutes), computation (8 jobs that last be-
tween 2 hours and 9 hours, with an average of 4 hours), and col-
lect/visualization (1 job that runs for 5 minutes). Each workflow of
Workload3 also comprises 3 phases: initialization and splitting (1
job that runs for 10 minutes), computation (8 jobs that last between
1.25 hours and 2.27 hours, with an average of 1.26 hours), and col-
lect/visualization (1 job that runs for 5 minutes). In total, there are
352 jobs and 28 workflows in these workloads. On average, the in-
put data for each workflow is 1.2GBytes, the intermediate file sizes
are 800MBytes each, and the final output size is 100MBytes. Our
Life Sciences colleagues run these workloads on a cluster of the
same size as our own, so we do not scale them in any way.

Starting on Monday at 9:30am of every week, a workflow from
each workload is submitted every 30 minutes. The workflows of
Workload1 and Workload3 have deadlines every day at 9:00am
and 2:00pm from Tuesday until Friday. The workflows of Work-
load2 have deadlines every day at 9:00am, 1:00pm, and 4:00pm
from Tuesday until Friday. The reason for the staggered deadlines
is that they give the researchers time to interpret the results before
they are shipped to another research group. Since our workloads
run from Monday to Friday, we loosely refer to these five days as a
week throughout the paper.

As it is clear from the description above, the computation jobs

represent the vast majority of the jobs and the time in the work-
loads. These are multithreaded jobs that use as many cores as are
available at the server on which they run. There are no multi-node
jobs in the real workloads. In Section 5.2, we study workload varia-
tions that include some multi-node jobs to demonstrate GreenSlot’s
behavior in the face of such jobs. In the same section, we also con-
sider workload arrivals that are staggered over the week, rather than
clustered on Monday. Note that both the real workloads and their
variations have enough single-node jobs to mitigate node fragmen-
tation in our cluster. Finally, most of our experiments assume that
the user-provided estimates of job run time are exactly the run times
listed above. Nevertheless, in that section, we also study the impact
of inaccuracies in these estimates.

Power consumption and solar panel array. Using an accurate
Yokogawa multimeter, we measured the power consumption of each
job in each workflow. The computation jobs almost constantly con-
sume 105W, whereas the initialization jobs consume 140W, the
splitting jobs consume 90W, and the collection/visualization jobs
consume 102W. In addition, the switch consumes 55W and the low-
power server that runs GreenSlot consumes roughly 30W. Overall,
the common-case peak power consumption of our system for our
workloads is 1765W = 16 × 105W + 55W + 30W. When some
servers are idle, GreenSlot sends each of them to S3 state, which
consumes 8.6W. Transitioning into and out of S3 takes 7 seconds.

We model the solar panel array as a scaled-down version of the
Rutgers solar farm. The farm can produce 1.4MW of power (after
DC to AC de-rating) that is used by the entire campus. By com-
puting the actual energy production over time with respect to this
maximum power, we can estimate the production of smaller instal-
lations. In particular, we scale the farm’s production down to 10
solar panels capable of producing 2.3kW of power. We selected
this scaled size because, after de-rating, it produces roughly the
common-case peak power consumption of our system.

We considered one year worth of solar energy production by the
farm, from March 8th 2010 to March 7th 2011. The scaled-down
daily productions for the weekdays in this period can be found in
http://www.darklab.rutgers.edu/GreenDC/solar.html. We collected
weather forecast data for 30 of these weeks. From this set, we
picked 4 weeks to study in detail: the week with the most so-
lar energy (starting on May 31th 2010), the week with the aver-
age amount of solar energy (starting on July 12th 2010), the best
week for our system as compared to Conventional (starting on Au-
gust 23rd 2010), and the worst week for our system compared to
Conventional (starting on March 7th 2010). We call these weeks
“Most”, “Average”, “Best”, and “Worst”, respectively.

Brown electricity prices. We assume the most common type of
variable brown electricity pricing, namely on-peak/off-peak pric-
ing. In on-peak/off-peak pricing, electricity costs less when used
during off-peak consumption times (from 11pm to 9am) and more
when consumed during on-peak times (from 9am until 11pm). The
difference between on-peak and off-peak prices is largest in the
summer time (June-September). We assume the prices charged by
PSEG in New Jersey: $0.13/kWh and $0.08/kWh (summer) and
$0.12/kWh and $0.08/kWh (rest of year). Summer prices apply to
the Most, Average, and Best weeks.

Accelerating and validating the experiments. It would be im-
possible to perform all of the experiments in this paper in real time.
This would require 200 days of non-stop experiments. To speed up
our study, we accelerate the experiments by a factor of 100. This
means that a job that takes 100 minutes in real time completes in
just 1 minute in the accelerated experiment. In addition, it means
that five days of real time elapse in 72 minutes.

Prediction Error (%)
1 3 6 12 24 48

Median 12.9 15.6 15.8 16.1 16.5 19.0
90th % 24.6 33.9 40.5 44.1 42.5 44.4

Table 1: Error when predicting 1, 3, 6, 12, 24, and 48 hours ahead.

To verify that an accelerated run is faithful to its real-time coun-
terpart, we run a validation experiment for 31 hours (from Monday
at 9am until Tuesday at 4pm) with GreenVarPrices scheduling our
real workloads with their estimated run times and deadlines. The
corresponding accelerated run uses this same version of GreenSlot,
but shortens all job-related times by 100x. Specifically, the ac-
celerated jobs do not perform actual work; they simply occupy the
nodes for the proper amount of time. Both runs assume on-peak/on-
peak brown prices. GreenSlot itself cannot be accelerated. In this
experiment, it takes a maximum of 0.3 seconds (without any opti-
mizations) to prepare a full schedule on an Intel Atom-based server.
This maximum occurs when the largest number of jobs (70) is in
the queue. As Figure 4 suggests, GreenSlot’s execution time is pro-
portional to the number of jobs in the system.

The validation results demonstrate that the accelerated runs are
very accurate. In detail, the real-time and accelerated runs differ by
at most 2.3% with respect to the 4 metrics of interest: amount of
green energy used (difference of 0.7%), amount of brown energy
used (2.3%), energy cost (1.9%), and number of deadlines violated
(no violations in either run).

5.2 Results
This section presents our experimental results. First, we evalu-

ate the accuracy of our solar energy predictions independently of
GreenSlot. Second, we isolate the impact of being aware of green
energy by comparing GreenOnly with Conventional. These results
also assess the impact of the quality of green energy predictions
on our scheduling. Third, we study GreenVarPrices to isolate the
benefit of being aware of brown electricity prices. Fourth, we study
the impact of the workload characteristics on the GreenVarPrices
results. Fifth, we study the impact of the datacenter utilization on
GreenVarPrices. Finally, we quantify the impact of poor run time
estimates by users.

Throughout these experiments, Conventional and GreenSlot do
not violate any deadlines, except when we explore high datacenter
utilizations to purposely cause violations.

Predicting solar energy. We evaluate our solar energy predictor
using data collected from the Rutgers solar farm, scaled as de-
scribed above, and weather.com (actual and predicted conditions)
for seven months: June–September 2010 and January–March 2011.
Table 1 shows the normalized percentage prediction error for daily
energy production when predicting 1 to 48 hours ahead. We com-
pute this error as the sum of the absolute difference between the
predicted value and actual energy production for each hour in a
day, divided by the ideal daily production (i.e.,

P23
t=0 B(t)). When

predicting x hours ahead, we use the weather forecast obtained at
time t− x to predict production at t.

These results show that our predictor is reasonably accurate,
achieving median and 90th percentile errors of 12.9% and 24.6%,
respectively, when predicting energy production for the next hour.
That is, 50% of the time, our predictions across the hours of a day is
off by 12.9% or less of the daily generation capacity (∼14.8kWh).
Further, while prediction accuracy degrades with prediction hori-
zon, this degradation is quite small beyond 3 hours. Even when
predicting 48 hours ahead, the median daily error is 19.0%.

Of the 4 weeks we use to study GreenSlot in detail, week Best
has the best prediction accuracy, with a median 1-hour ahead pre-

Time (hour)

Prediction

Actual

E
ne

rg
y

(k
W

h)

07 08 09 10 11 13 15 17 1912 16 181406

1.6

1.2

0.8

0.4

0

Figure 5: Predicted and actual energy for June 1, 2010.

diction error of 9.3%, while week Worst has the worst prediction
accuracy, with a median 1-hour ahead prediction error of 18.4%.
The other two weeks have errors close to the ones listed above.

Figure 5 plots the 1-hour ahead predictions and actual energy
generation for an interesting day to demonstrate the workings of
our predictor. Throughout the morning of the day, the weather fore-
cast predicted “mostly cloudy” conditions even though the actual
cloud cover was light. This led to significant prediction errors at
hours 8 and 9. Our predictor detected this weather misprediction
and switched to its alternative prediction mode, which improved
predictions for hours 10-12. When a light rain developed during
hour 13, actual production dropped, leading to a large prediction
error (production during hour 12 was not a good predictor for hour
13). Our predictor adjusted appropriately for hours 14 and 15. A
thunderstorm developed during hour 16, again leading to a drop
in production and a prediction error. The thunderstorm stopped in
hour 17, leading to a misprediction in the reverse direction. This
day illustrates the fact that GreenSlot’s use of two predictors en-
ables it to quickly correct prediction errors.

Scheduling for solar energy and impact of predictions. Figure 6
shows the behavior of Conventional for our real workloads, the
Average week, and accurate job run time estimates. The X-axis
represents time, whereas the Y-axis represents cluster-wide power
consumption (left) and brown electricity prices (right). The figure
depicts the green and brown energy consumptions using areas col-
ored light gray and dark gray, respectively. The two line curves
represent the green energy available (labeled “Green actual”) and
the brown electricity price (“Brown price”).

The figure shows that the cluster utilization is roughly 50%, which
is comparable to (or even higher than) many real scientific-compu-
ting datacenters and grids [23, 24]. As Conventional schedules
the workloads to complete as soon as possible, it heavily uses the
servers early in the week and leave them in deep-sleep state late
in the week. This approach is ideal in terms of conserving energy,
since keeping modern servers powered on involves a high “static”
energy [2]. However, Conventional wastes a large amount of green
energy, which could be used instead of brown energy. In this ex-
periment, only 26% of the energy consumed is green.

Figure 7 depicts the behavior of GreenOnly, under the same con-
ditions as in Figure 6. Note that, in this figure, we plot the amount
of green energy that GreenSlot predicted to be available an hour
earlier (labeled “Green predicted”). The green prediction line does
not exactly demarcate the light gray area, because our predictions
sometimes do not match the actual green energy available.

A comparison between Figures 6 and 7 clearly illustrates how
GreenOnly is capable of using substantially more green energy than
Conventional, while meeting all job/workflow deadlines. Green-
Only spreads out job execution across the week, always seeking to
reduce the consumption of brown energy within resource and dead-
line constraints. Overall, GreenOnly consumes 47% more green
energy than Conventional in this experiment. Although GreenOnly
does not explicitly consider brown electricity prices in making de-

cisions, its energy cost savings reach 20% compared to Conven-
tional. More than 80% of these cost savings comes from replacing
brown energy with green energy.

The results for the other weeks are similar, as we can see in Fig-
ure 8. The figure shows two sets of 4 bars. Each bar in a set rep-
resents a week. The set on the left represents the increase in green
energy consumption, whereas the set on the right represents the
energy cost savings. Overall, GreenOnly increases green energy
consumption between 13% and 118%, whereas it reduces costs be-
tween 7% and 35%. Interestingly, GreenOnly improves on Con-
ventional even for the worst-case week (Worst) for us.

Another interesting observation is that our predictions of green
energy availability are plenty accurate for our purposes. The green
availability curve traces the gray area in Figure 7 well. To quantify
the impact of prediction accuracy, consider Figure 9. The figure
shows the behavior of GreenOnly under the same conditions, ex-
cept that we use the actual green energy availability (representing
idealized perfect knowledge of future energy production) instead of
our predictions of it. A comparison of Figures 7 and 9 shows sim-
ilar schedules. Overall, we find that perfect knowledge increases
green energy use and decreases cost both by only 1%. Thus, this
experiment is the only one in which we consider perfect knowledge
of green energy availability.

Scheduling for solar energy and brown electricity prices. So far,
we have studied scheduling that does not explicitly exploit variable
brown electricity prices. However, GreenSlot can reduce costs fur-
ther when brown electricity prices vary and brown energy must be
consumed to avoid deadline violations. To quantify these savings,
we now consider the GreenVarPrices version of GreenSlot.

Figure 10 shows the behavior of GreenVarPrices again for our
real workloads, the Average week, and accurate job run time esti-
mates. Comparing this figure against Figure 7, one can clearly see
that GreenVarPrices moves many jobs that must consume brown
energy to periods with cheap brown electricity. For example, Green-
Only runs many jobs on Tuesday night, Wednesday night, and Thurs-
day night that consume expensive brown electricity. Those jobs
get scheduled during periods of cheap electricity under GreenVar-
Prices. As a result, GreenVarPrices exhibits higher energy cost sav-
ings of 25% compared to Conventional for this week, while con-
suming almost the same amount of green energy as GreenOnly.

GreenVarPrices achieves positive results for the other weeks as
well, as illustrated in Figure 11. Overall, the GreenVarPrices cost
savings range between 13% and 39%, whereas its increases in green
energy consumption range between 11% and 117%.

A comparison between Figures 8 and 11 illustrates the benefit of
considering brown electricity prices explicitly in GreenSlot. As one
would expect, doing so decreases costs with respect to GreenOnly.
To isolate GreenSlot’s ability to exploit cheap brown electricity in
the absence of green energy, we also consider an idealized week
with absolutely no solar energy. For this week, GreenVarPrices
reduces energy cost by 13% with respect to Conventional.

Impact of workload characteristics. The results so far have as-
sumed workloads with the exact characteristics they have in the
field. However, one may argue that these characteristics are fa-
vorable to GreenSlot, in that there are no multi-node jobs and all
workflows are submitted on Monday. Here, we create variations of
the workloads to assess the benefits of GreenVarPrices under other
scenarios. In particular, we create a variation called “Staggered”,
in which the workflow submissions are staggered across the week.
In the variation called “Multi-node”, we assume that the 8 compute
jobs of Workload3 should be gang-scheduled together and take as
long as the longest compute job.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3
P

ow
er

 (
kW

)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed

Green actual
Brown price

Figure 6: Conventional scheduler and Average week.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed
Green predicted

Brown price

Figure 7: GreenOnly scheduler and Average week.

Green energy increase Cost savings
0

20

40

60

80

100

120
Most
Best
Average
Worst

%

Figure 8: GreenOnly’s green energy increase and cost savings.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Green consumed
Green actual
Brown price

Brown consumed

Figure 9: GreenOnly with actual green energy availability.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed
Green predicted

Brown price

Figure 10: GreenVarPrices scheduler and Average week.
Green energy increase Cost savings

0

20

40

60

80

100

120
Most
Best
Average
Worst

%

Figure 11: GreenVarPrices’ green energy increase and cost savings.

Figures 12 and 13 present the behavior of Conventional and Green-
VarPrices, respectively, for Staggered, the Average week, and ac-
curate run time estimates. With Staggered, Conventional lucks into
exploiting more green energy. However, most jobs are scheduled
in periods of high brown electricity prices. In contrast, GreenVar-
Prices takes advantage of both green energy and cheaper brown
electricity. Overall, the GreenVarPrices green energy increase and
energy cost savings are 19% and 30%, respectively.

Conventional behaves similarly for Multi-node and our real work-
loads, as depicted in Figure 14, again for the Average week and ac-
curate run time estimates. In contrast, Figure 15 shows that Green-
VarPrices spreads the load across the week, achieving a green en-
ergy increase and a cost savings of 45% and 25%, respectively.

These results show that GreenSlot is robust to different workload
characteristics, providing green energy increases of at least 19%
and energy cost savings of at least 25% compared to Conventional.

Impact of datacenter utilization. Another important factor in
evaluating GreenSlot is its behavior as a function of datacenter uti-
lization. Under high enough utilization, GreenSlot may unable to
avoid using expensive brown electricity, may be forced to violate
deadlines, and/or even cancel newly submitted jobs.

To investigate these effects, we perform experiments with Con-

ventional and GreenVarPrices for four additional datacenter utiliza-
tions: 67%, 72%, 87%, and 92%. Starting with our real workloads,
we achieve these higher utilizations by adding four, five, eight, and
nine extra copies of Workload3, respectively. Recall that our other
experiments utilize the datacenter at 50%, which is already a rela-
tively high utilization in many scientific environments [23, 24].

These results show that GreenVarPrices does not start violating
deadlines until the utilization reaches an uncommon 72%. At 67%
utilization, GreenVarPrices still increases green energy consump-
tion by 31% and reduces energy cost by 14% in comparison to
Conventional at the same utilization. In contrast, Conventional only
starts violating deadlines at 92% utilization.

Although one could concoct scenarios that would challenge Green-
Slot to a greater extent, these results with real workloads suggest
that GreenSlot is robust to high but still realistic utilizations. More-
over, a higher level scheduler could easily select between GreenSlot
or Conventional based on the current utilization.

Impact of inaccurate run time estimates. Although the pricing
model we propose in Section 3 would lead to more accurate user-
provided run time estimates, users could still (involuntarily) mis-
estimate them. Our final experiments investigate the impact of in-
accuracies in the estimates on Conventional and GreenVarPrices.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3
P

ow
er

 (
kW

)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed

Green actual
Brown price

Figure 12: Conventional for staggered workloads.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed
Green predicted

Brown price

Figure 13: GreenVarPrices for staggered workloads.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed

Green actual
Brown price

Figure 14: Conventional for multi-node workloads.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Mon
00:00

Mon
12:00

Tue
00:00

Tue
12:00

Wed
00:00

Wed
12:00

Thu
00:00

Thu
12:00

Fri
00:00

Fri
12:00

Sat
00:00

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ow

er
 (

kW
)

B
ro

w
n

en
er

gy
 p

ric
e

($
/k

W
h)

Brown consumed
Green consumed
Green predicted

Brown price

Figure 15: GreenVarPrices for multi-node workloads.

In particular, we consider four scenarios of normally distributed in-
accuracies for GreenVarPrices, our real workloads, and the Average
week: (1) inaccuracies ranging between -20% and +20% with an
average of 0%; (2) ranging between 0% and +20% with an average
of +10%; (3) ranging between -20% and 0% with an average of
-10%; and (4) ranging between -40% and 0% with an average of -
20%. Recall that GreenSlot (Conventional) builds into its schedule
a tolerance of +20% for every job, and suspends (cancels) any job
with an inaccuracy > +20%. This is why we do not include jobs
with inaccuracies > +20% in this sensitivity analysis. In turn, this
means that no job in our sensitivity experiments runs longer than
Conventional or GreenSlot expects.

Our analysis shows that Conventional is essentially insensitive
to these inaccuracies for our workloads. The main reason is that
each job in the workloads reserves a single node, meaning that ba-
ckfilling is always capable of fully loading the system for half of
the week. Prior works have shown that backfilling is sensitive to
inaccuracies when workloads are dominated by parallel jobs [31].

The inaccuracies have only a minor impact on GreenSlot. Com-
pared to having accurate estimates, the largest impact occurs in sce-
nario (1), where the energy cost increases by less than 2% and the
green energy consumption stays almost exactly the same. To un-
derstand why the green energy consumption is insensitive to these
inaccuracies, consider a job that should be consuming green en-
ergy at the time GreenSlot expects it to terminate (its start time
plus the user-estimated run time plus the 20% tolerance). If this
job completes earlier than this expected time, GreenSlot will likely
schedule one or more jobs to consume the leftover green energy.

To understand why the energy cost changes only marginally, note
that GreenSlot may not always change its schedule as a result of an
inaccuracy; it only does so only if a change would reduce cost. On
the other hand, some inaccuracies may increase cost when jobs start
consuming expensive brown energy as a result. Our experiments
show that these effects typically balance out for our real workloads.

6. CONCLUSIONS
In this paper, we proposed GreenSlot, a parallel job scheduler for

datacenters partially powered by solar energy. GreenSlot predicts
solar energy availability two days into the future. Using these pre-
dictions, it schedules jobs to maximize the use of green energy and
limit brown energy costs, while avoiding deadline violations. Our
results demonstrated that GreenSlot’s schedules consume signifi-
cantly more green energy and incur substantially lower brown en-
ergy costs than those of a conventional scheduler. With GreenSlot,
the capital cost of our datacenter’s solar array can be amortized in
11 years, whereas it would take 18 years to amortize those costs
under the conventional scheduler. Based on our positive results, we
conclude that green datacenters and green-energy-aware schedul-
ing can have a significant role in building a more sustainable IT
ecosystem.

To demonstrate this in practice, we are building a prototype micro-
datacenter powered by a solar array and the electrical grid. The
micro-datacenter will use free cooling almost year-round and will
be placed on the roof of our building at Rutgers.

Our future work will further explore our approach for green en-
ergy prediction, improve GreenSlot’s ability to gracefully handle
very high datacenter utilizations, and extend GreenSlot for manag-
ing peak brown power consumption for those datacenters that are
subject to peak brown power charges.

Acknowledgements
We would like to thank Narayan Desai and the anonymous review-
ers for their help in improving our paper. We thank Oscar Flores
and Modesto Orozco for the genomics workloads we used in this
paper. We would also like to thank Julita Corbalan for comments on
the paper. Finally, we are grateful to our sponsors: Spain’s Ministry
of Science and Technology and the European Union under con-
tract TIN2007-60625 and grant AP2008-0264, the Generalitat de
Catalunya grants 2009-SGR-980 2010-PIV-155, NSF grant CSR-
0916518, and the Rutgers Green Computing Initiative.

7. REFERENCES
[1] A. Yoo and M. Jette and M. Grondona. SLURM: Simple Linux

Utility for Resource Management. In Proceedings of the
International Workshop on Job Scheduling Strategies for Parallel
Processing, June 2003.

[2] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional
Computing. IEEE Computer, 40(12), December 2007.

[3] R. Davis and A. Burns. A Survey of Hard Real-Time Scheduling
Algorithms and Schedulability Analysis Techniques for
Multiprocessor Systems. Technical Report YCS-2009-443, Dept. of
Computer Science, University of York, 2009.

[4] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and
S. Koranda. Mapping Abstract Complex Workflows Onto Grid
Environments. Journal of Grid Computing, 1(1):25–39, 2003.

[5] DSIRE. Database of State Incentives for Renewables and Efficiency.
http://www.dsireusa.org/.

[6] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel Job
Scheduling – A Status Report. In Proceedings of the International
Workshop on Job Scheduling Strategies for Parallel Processing,
2004.

[7] O. Flores and M. Orozco. NucleR: A Package for Non-Parametric
Nucleosome Positioning. Bioinformatics, 2011.

[8] Global Action Plan. An Inefficient Truth, December 2007.
http://globalactionplanorguk.site.securepod.com/upload/resource/-
Exec-Summary.pdf.

[9] M. Islam. QoS in Parallel Job Scheduling. PhD thesis, Dept. of
Computer Science and Engineering, Ohio State University, 2008.

[10] S. Jebaraj and S. Iniyan. A Review of Energy Models. Renewable
and Sustainable Energy Reviews, 10(4), August 2006.

[11] A. Jossen, J. Garche, and D. Sauer. Operation conditions of batteries
in pv applications. Solar Energy, 76(6):759–769, 2004.

[12] K. Kant, M. Murugan, and D. H. C. Du. Willow: A Control System
for Energy and Thermal Adaptive Computing. In Proceedings of the
International Parallel and Distributed Processing Symposium, May
2011.

[13] K. Le, R. Bianchini, M. Martonosi, and T. D. Nguyen. Cost- And
Energy-Aware Load Distribution Across Data Centers. In
Proceedings of HotPower, 2009.

[14] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen.
Capping the Brown Energy Consumption of Internet Services at
Low Cost. In Proceedings of the International Green Computing
Conference, August 2010.

[15] K. Le, J. Zhang, J. Meng, Y. Jaluria, T. D. Nguyen, and R. Bianchini.
Reducing Electricity Cost Through Virtual Machine Placement in
High Performance Computing Clouds. In Proceedings of
Supercomputing, November 2011.

[16] C. Lee, Y. Schwartzman, J. Hardy, and A. Snavely. Are User
Runtime Estimates Inherently Inaccurate? In Proceedings of the
International Workshop on Job Scheduling Strategies for Parallel
Processing, 2004.

[17] C. Li, W. Zhang, C. Cho, and T. Li. SolarCore: Solar Energy Driven
Multi-core Architecture Power Management. In Proceedings of the
International Symposium on High-Performance Computer
Architecture, February 2011.

[18] D. Lifka. The ANL/IBM SP Scheduling System. In Proceedings of
the International Workshop on Job Scheduling Strategies for Parallel
Processing, 1995.

[19] Z. Liu, M. Lin, A. Wierman, S. Low, and L. Andrew. Greening
Geographical Load Balancing. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems,
June 2011.

[20] A. W. Mu’alem and D. G. Feitelson. Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the IBM SP2
with Backfilling. IEEE Transactions on Parallel and Distributed
Systems, 12(6):529–543, 2001.

[21] Power Scorecard. Electricity from Coal.
http://www.powerscorecard.org/tech_detail.cfm?resource_id=2.

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs.

Cutting the Electric Bill for Internet-Scale Systems. In Proceedings
of SIGCOMM, August 2009.

[23] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. Ensemble-level
Power Management for Dense Blade Servers. In Proceedings of the
International Symposium on Computer Architecture, June 2006.

[24] I. Rodero, F. Guim, and J. Corbalan. Evaluation of Coordinated Grid
Scheduling Strategies. In Proceedings of the International
Conference on High-Performance Computing and Communications,
2009.

[25] N. Sharma, S. Barker, D. Irwin, and P. Shenoy. Blink: Managing
Server Clusters on Intermittent Power. In Proceeding of the 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, March 2011.

[26] N. Sharma, J. Gummeson, D. Irwin, and P. Shenoy. Cloudy
Computing: Leveraging Weather Forecasts in Energy Harvesting
Sensor Systems. In Proceeding of the International Conference on
Sensor Mesh and Ad Hoc Communications and Networks, June
2010.

[27] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: A
Computational Economy-Based Job Scheduling System for Clusters.
Software Practice and Experience, 34(6), May 2004.

[28] SolarBuzz. Marketbuzz, 2011.
http://www.solarbuzz.com/our-research/reports/marketbuzz.

[29] C. Stewart and K. Shen. Some Joules Are More Precious Than
Others: Managing Renewable Energy in the Datacenter. In
Proceedings of the Workshop on Power Aware Computing and
Systems, October 2009.

[30] D. Talby and D. Feitelson. Supporting Priorities and Improving
Utilization of the IBM SP2 Scheduler Using Slack-Based
Backfilling. In Proceedings of the International Parallel Processing
Symposium, April 1997.

[31] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Backfilling Using
System-Generated Predictions Rather Than User Runtime Estimates.
IEEE Transactions on Parallel and Distributed Systems,
18(6):789–803, 2007.

[32] UK Government. Carbon Reduction Commitment.
http://www.carbonreductioncommitment.info/.

[33] US Environmental Protection Agency. Report to Congress on Server
and Data Center Energy Efficiency, August 2007.

