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GREIN: An Interactive Web 
Platform for Re-analyzing GEO 
RNA-seq Data
Naim Al Mahi1, Mehdi Fazel Najafabadi1, Marcin Pilarczyk1, Michal Kouril2 & 

Mario Medvedovic  1

The vast amount of RNA-seq data deposited in Gene Expression Omnibus (GEO) and Sequence Read 

Archive (SRA) is still a grossly underutilized resource for biomedical research. To remove technical 

roadblocks for reusing these data, we have developed a web-application GREIN (GEO RNA-seq 

Experiments Interactive Navigator) which provides user-friendly interfaces to manipulate and analyze 

GEO RNA-seq data. GREIN is powered by the back-end computational pipeline for uniform processing 

of RNA-seq data and the large number (>6,500) of already processed datasets. The front-end user 
interfaces provide a wealth of user-analytics options including sub-setting and downloading processed 

data, interactive visualization, statistical power analyses, construction of differential gene expression 
signatures and their comprehensive functional characterization, and connectivity analysis with LINCS 

L1000 data. The combination of the massive amount of back-end data and front-end analytics options 
driven by user-friendly interfaces makes GREIN a unique open-source resource for re-using GEO RNA-

seq data. GREIN is accessible at: https://shiny.ilincs.org/grein, the source code at: https://github.com/

uc-bd2k/grein, and the Docker container at: https://hub.docker.com/r/ucbd2k/grein.

Depositing RNA-seq datasets in Gene Expression Omnibus (GEO)1 and Sequence Read Archive (SRA)2 reposi-
tories ensures the reproducibility of published studies and facilitates its reuse. Re-analysis of these data can lead 
to novel scientific insights3 and it has been routinely used to inform the design of new studies4. However, reuse of 
GEO RNA-seq data is made difficult by the complexity of the processing protocols5 and analytical tools6 which 
are often inaccessible to biomedical scientists not specializing in bioinformatics.

Recent efforts at re-processing GEO/SRA RNA-seq data alleviate this problem by providing access to large 
number of processed and per-transcript summarized RNA-seq datasets which significantly simplifies its use7–10. 
Other resources provide access and analysis tools for specific datasets11,12. While these platforms are extremely 
useful, they do not support additional functionalities for downstream analyses. For example, exploratory data 
analysis, differential expression analysis with batch effect adjustment, or statistical power analysis (Table 1). 
Therefore, open-source user-friendly tools with comprehensive analytical toolbox for re-analysis of public 
RNA-seq data are still lacking. We address this problem by developing and deploying GEO RNA-seq Experiments 
Interactive Navigator (GREIN) web tool for analysis of GEO RNA-seq data. In addition to the rich repertoire 
of analysis tools, GREIN provides access to more than 6,500 uniformly processed human, mouse, and rat GEO 
RNA-seq datasets with >400,000 samples that are ready for analysis. These datasets were retrieved from GEO and 
uniformly reprocessed by the back-end GEO RNA-seq experiments processing pipeline (GREP2). The pipeline 
also curates metadata for each of the datasets and annotates each sample with biomedical ontologies provided by 
MetaSRA13. As the number of new studies are included in GEO, more datasets are processed and added to GREIN 
on a regular basis. Apart from the preprocessed datasets, GREIN also facilitates user requested processing of 
GEO RNA-seq datasets on-the-fly (Table 1). We also release GREP2 as an R14 package and GREIN as a Docker15 
container for easy local deployment of the complete infrastructure which can be used to reproduce GREIN results 
off-line.
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Results
The conceptual outline of GREIN is showed in Fig. 1. Individual RNA-seq datasets are processed by the GREP2 
pipeline and stored locally as R Expression Sets. User can access and analyze preprocessed datasets via GREIN 
graphical user interface (GUI) or submit for processing datasets that have not yet been processed. GUI-driven 

Comparison

RNA-seq processed data resources

GREIN Recount27 ARCHS48 Toil9 Skymap10
Expression 
Atlas11

Data availability
Gene and 
transcript read 
counts

Gene and 
transcript read 
counts

Gene and transcript 
read counts

Transcript read 
counts

Allelic and 
transcript read 
counts

Gene read 
counts

Quantification type
Read mapping 
(Salmon)

Read 
alignment 
(Rail-RNA)

Read mapping 
(Kallisto)

Read mapping 
(Kallisto)

Read alignment 
(Bowtie2)

Read 
alignment 
(Tophat)

Number of samples >400,000* >80,000 >300,000 >20,000 >400,000 >120,000

Interactive exploratory 
analysis

Yes No No No No No

QC report Yes No No Yes No Yes

Power analysis Yes No No No No No

Differential expression 
analysis on-the-fly

Yes No No No No No

Enrichment analysis for 
differential expression 
signature

Yes No No No No Yes

Pipeline availability
R package 
and Docker 
container

R package 
and Docker 
container

Docker container Docker container Python scripts NA

Process data on-the-fly Yes No No No No No

Ontological annotations 
of samples

Yes No No No No No

Table 1. Comparison of different RNA-seq data resources. All these resources provide access to processed RNA-
seq data, however most of them do not provide interactive interfaces for further manipulation and analyses of the 
datasets; *>250,000 are already processed and the rest are accessible using user-initiated processing.

Figure 1. Schematic workflow of GREP2, web interface and outputs of GREIN. GEO datasets are systematically 
processed using GREP2 pipeline and stored within the back-end dataset library. GUI-driven GREIN workflows 
facilitate comprehensive analysis and visualization of processed datasets.

https://doi.org/10.1038/s41598-019-43935-8
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workflows facilitate examination and visualization of data, statistical analysis, transcriptional signature construc-
tion, and systems biology interpretation of differentially expressed (DE) genes. Both GREIN and the back-end 
pipeline (GREP2) are written in R and released as Docker container and R package respectively. Graphical user 
interfaces for GREIN are implemented in Shiny16, a web framework for building dynamic web applications in R. 
The web instance at https://shiny.ilincs.org/grein is deployed via robust Docker swarm of load-balanced Shiny 
servers. The complete GREIN infrastructure, including processing pipeline is deployed via Docker containers.

User friendly GUI driven workflows in GREIN facilitate typical reuse scenarios for RNA-seq data such as 
examination of quality control measures and visualization of expression patterns in the whole dataset, sample size 
and power analysis for the purpose of informing experimental design of future studies, statistical differential gene 
expression, gene list enrichment, and network analysis. Besides standard two-group comparison, the differential 
gene expression analysis module also supports fitting of a generalized linear model that accounts for covariates 
or batch-effects. The interactive visualization and exploration tools implemented include cluster analysis, inter-
active heatmaps, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), 
etc. (Supplementary Table S1). User can also search for ontological annotations of human RNA-seq samples and 
datasets provided by the MetaSRA project13. Each processed human RNA-seq sample is labelled with MetaSRA 
mapping of biomedical ontologies including Disease Ontology, Cell Ontology, Experimental Factor Ontology, 
Cellosaurus, and Uberon. Biological interpretation of differential gene expressions is aided by direct links to 
other online tools for performing typical post-hoc analyses such as the gene list and pathway enrichment analysis 
and the network analysis of differentially expressed (DE) genes. The connection to these analytical web services 
is implemented by submitting the differential gene expression signature (i.e., the list of average changes in gene 
expression and associated p-values for all/up/down regulated genes analyzed) to iLINCS17 (Integrative LINCS). 
iLINCS also provides the signatures connectivity analysis for recently released Connectivity Map L1000 signa-
tures18. Detailed step-by-step instructions about GREIN analysis workflows are provided in the Supplementary 
Material and ‘Help’ section in GREIN.

Key functionalities. Search or submit for processing. User can either search for an already processed GEO 
data set in the ‘Search for GEO series (GSE) accession’ box or submit a dataset for processing if the dataset is not 
already processed (Supplementary Fig. S2). At this point in time, the vast majority of GEO human, mouse, and 
rat RNA-seq datasets have been preprocessed and the user-submission of GEO datasets for processing will be 
required only occasionally. User can check the processing status of the requested dataset in the ‘Processing console’ 
tab (Supplementary Fig. S3). Other search options include keyword search through metadata of the datasets and 
search samples through biomedical ontologies via MetaSRA ontological annotations.

Explore dataset. GREIN allows access to both raw and normalized (counts per million and transcript per mil-
lion) gene and transcript level data. GREIN comes with several interactive and customizable tools to visualize 
expression patterns such as interactive heatmaps of clustered genes and samples, density plots for all or a subset 
of samples, between and within group variability analysis through 2D and 3D dimensionality reduction analyses 
and visualizations such as PCA and t-SNE (Fig. 2). User can also visualize expression profile of each gene sepa-
rately (Supplementary Fig. S6).

Quality control. The quality of the RNA-seq data in public repositories continues to be a major problem. In a 
recent study by Deelen et al.19, more than half of 65,000 processed public RNA-seq samples had to be removed 
due to QC issues. Rather than removing samples, GREIN provides a comprehensive quality control (QC) report 
of raw sequence data and sequence mapping for each sample (Supplementary Fig. S7), and allows user to make a 
decision about which samples should be excluded from downstream analyses.

Statistical power analysis. The power analysis module in GREIN facilitates calculation and visualization of sta-
tistical power of detecting differentially expressed genes in future studies utilizing similar biological samples. 
Estimating appropriate sample size for future studies with similar biological samples is often the key motivating 
factor in re-analysis of RNA-seq data. Power analysis also facilitates the post-hoc analysis of false negative rates in 
the current dataset. The lack of statistical power and differences in statistical power between genes can produce 
false negative results leading to wrong conclusions20. The ‘Power curve’ segment provides power estimates for dif-
ferent number of samples based on a single gene (Fig. 3A). User can modify the default values of the parameters. 
The ‘Detectability of genes’ plot visualizes power estimate of each of the genes based on the selected groups and 
gene-wise dispersion (Fig. 3B). Mean coverage of the genes are plotted against their biological variability and are 
displayed in two sets based on their detectability status (power ≥0.8 and power < 0.8).

Differential gene expression. Creating and interpreting differential gene expression signature is a typical anal-
ysis scenario in RNA-seq experiments. With GREIN, user can create a signature by comparing gene expression 
between two groups of samples with or without adjustments for experimental covariates or batch effects. GREIN 
can handle complex experimental designs by providing the flexibility of rearranging groups and sub-groups 
or selecting specific samples. Differential expression signature can be visualized via interactive graphics that 
include heatmap of top differentially deregulated genes (Supplementary Fig. S15) ranked by false discovery rate 
(FDR), log fold change vs. log average expression (MA) plot (Supplementary Fig. S16), and gene detectability 
plot (Supplementary Fig. S17). Differential expression signature, with or without accounting for potentially false 
negative results, can be directly exported to iLINCS for enrichment and connectivity analysis.

https://doi.org/10.1038/s41598-019-43935-8
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Use case: Analysis of transcriptional and translational regulation of hypoxia in non-malignant 
breast epithelial and triple-negative breast cancer cell lines. We demonstrate the usage of GREIN 
by re-analyzing a recently published GEO RNA-seq data (GSE104193). Sesé et al.21 examined the transcriptional 
and translational regulation of hormone-refractory triple-negative breast cancer (TNBC) subtype under a com-
bination of hypoxia and mTOR (mechanistic target of rapamycin) inhibitor treatment. In particular, the authors 
analyzed the expression profiles of TNBC (MDA-MB-231) and non-malignant breast epithelial (MCF10A) cells 
exposed to normoxic (21% O2) and hypoxic (0.5% O2) conditions and/or treated with an mTORC1 and −2 

Figure 2. Exploratory analysis plots in GREIN. (A) Correlation heatmap shows a higher correlation within 
cell lines and low correlation between cell lines. Generally high correlations within each cell line indicate high 
quality of transcriptional profiles. (B) Hierarchical clustering based on Pearson correlation of top 500 most 
variable genes based on median absolute deviation as the variability measure. Data is normalized and centered 
to the mean. (C) Three-dimensional principal component analysis plot of the cell lines. (D) Two-dimensional 
t-SNE plot of treatment condition and cell line shows clear separation of the cell lines, and then the RNA 
fractions indicating two dominant sources of the variability between RNA-seq profiles.

Figure 3. Power analysis for assessing transcriptional changes in non-malignant MCF10A cell line. (A) Single-
gene based power estimates for different number of samples in each group with a minimal fold change of 2 and 
statistical significance α = 0.01. (B) Gene-wise detectability on the log2CPM-BCOV plane with FDR ≤0.1 and 
two samples in each group.

https://doi.org/10.1038/s41598-019-43935-8
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inhibitor PP242. Each of the samples were sequenced for total (T) and polysome-bound (P) mRNA. The dataset 
contains 32 samples, representing two biological replicates for each combination of cell line, oxygen level, treat-
ment status, and mRNA fraction.

Exploratory analysis of the processed dataset in GREIN (Fig. 2) shows that the strongest source of variation in 
between samples comes from differences between the two cell lines. This is re-enforced by the correlation analysis 
of full expression profiles (Fig. 2A), the hierarchical clustering of top 500 highly variable genes based on median 
absolute deviation (Fig. 2B), 3D PCA plot of the samples (Fig. 2C), and the 2D t-SNE plot (Fig. 2D). Furthermore, 
high correlations between expression profiles for the same cell line (Fig. 2A) indicates good signal-to-noise in 
the gene expression measurements. The additional substructure of data indicated by the 2D t-SNE plot has been 
examined by painting samples according to different attributes (Supplementary Fig. S1). This analysis revealed 
that separations within each cell line are induced by different mRNA fractions and then differences between 
experimental conditions.

Next, we used GREIN to perform statistical power analysis based on the pattern of biological variability 
observed in this dataset. We considered transcriptional profiles of each cell line exposed to hypoxia and treated 
with or without PP242 which leads to four comparisons. Assuming an expression difference of at least two-fold 
between the groups, at the statistical significance of α = 0.01, and with only two replicates in each group, statis-
tical power of a gene to be detected as differentially expressed is below 0.55 in all the comparisons (Table 2). Our 
analysis indicates that one would need four replicates per group to achieve 80% power detecting two-fold change 
in expression (Table 2 and Fig. 3A). In a typical RNA-seq experiment, a sequencing depth of 20–30 million is 
sufficient to quantify gene expression for almost all genes4,22 which is also evident in this dataset. We also evalu-
ated statistical power of each gene to be detected as differentially expressed from the ‘Detectability of genes’ plot. 
Average log of counts per million (CPM) values of the genes were plotted against gene-wise biological coefficient 
of variation (BCOV) and power was calculated for the corresponding genes (Fig. 3B). A controlled false discov-
ery rate of 0.05 and expected percentage of true positives of 10% was used to estimate statistical significance. 
We define a gene to be detectable as differentially expressed in hypoxic condition if its power is 0.8 or above. As 
expected, there exists an inverse relationship between BCOV and power (Fig. 3B). Also, power to detect differen-
tial expression of a gene increases with a higher log CPM or effect size.

One of the goals of the study was to analyze transcriptional changes in hypoxic and normoxic conditions 
with and without PP242 treatment in both MCF10A and MDA-MB-231 cell lines. We created transcriptional 
signatures of hypoxia and hypoxia + PP242 in total mRNA by differential expression analysis between hypoxia 
and hypoxia + PP242 samples respectively against the control samples while adjusting for batch effect by treating 
‘replicate’ as a covariate, for each cell line separately. We found a higher number of genes differentially expressed 
(DE) in MCF10A cell lines compared to MDA-MB-231 in both hypoxia and hypoxia + PP242 (Fig. 4A) indi-
cating that perhaps the tumor cell line is better equipped to deal with hypoxia. This analysis also showed that 
most non-differentially expressed genes are also not detectable, indicating that they may represent false negative 
results. This is in accordance with the power analysis showing that 4 samples per group would be needed to con-
sistently identify differentially expressed genes with average BCOV. To identify lower expressed genes an even 
higher sample size would be required.

To interpret differentially expressed genes in terms of affected biological pathways, we submitted the differ-
ential gene expression signatures of hypoxia to online enrichment tools (DAVID23, ToppGene24, Enrichr25, and 
Reactome26) via iLINCS. The submitted signatures included a combined list of DE and NDE&DT genes repre-
senting likely true positive and true negatives. Genes were selected based on a cutoff of 0.7 and 0.01 for statistical 
power and FDR respectively. Figure 5 illustrates the enrichment results obtained from ToppGene for the MCF10 
hypoxia signature. Significantly enriched (FDR < 0.05) top 10 gene ontology (GO) categories from ToppGene 
and DAVID functional annotation tool include response to hypoxia, response to decreased oxygen levels, angi-
ogenesis, regulation of cell proliferation, oxidation-reduction process, and response to abiotic stimulus that are 
common in both cell lines (Supplementary Table S2 and Supplementary Table S3). Most of these categories are 
consistent with the original study. In addition, ToppGene suite identified hypoxia induced factor (HIF-1-alpha) 
transcription factor network that was activated in both cell lines (Supplementary Table S4 and Supplementary 
Table S5).

Finally, we utilized GREIN connection with iLINCS to “connect” the uploaded signature with LINCS27 con-
sensus (CGS) gene knockdown signatures18. We found 3,727 LINCS consensus gene knockdown signatures 
that were significantly (pValue < 0.05) connected with our uploaded signature. The target genes of top 100 

Cell line
Comparison 
groups

Average sequencing 
depth (in million)

Common 
BCOV

Power  
(2 samples)

Power  
(3 samples)

Power  
(4 samples)

MCF10A
Hypoxia and 
normoxia

41.72 0.21 0.52 0.74 0.87

MCF10A
Hypoxia + PP242 
and normoxia

38.18 0.31 0.28 0.44 0.59

MDA-MB-231
Hypoxia and 
normoxia

27.86 0.24 0.38 0.73 0.86

MDA-MB-231
Hypoxia + PP242 
and normoxia

29.52 0.19 0.51 0.73 0.86

Table 2. Statistical power analysis to assess transcriptional changes in malignant and non-malignant cell lines. 
With a minimal fold change of 2 between the groups and statistical significance at α = 0.01, all the comparisons 
are under-powered with two samples in each group. However, power increases as we increase the sample size.

https://doi.org/10.1038/s41598-019-43935-8
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connected signatures were selected for further enrichment analysis. We found cellular response to hypoxia and 
regulation of Hypoxia-inducible Factor (HIF) by oxygen in the list of top 10 activated pathways in both cell lines 
(Supplementary Table S6 and Supplementary Table S7). While this analysis yields similar enriched functional cat-
egories as the initial enrichment analysis, it complements the original analysis by implicating several target genes 

Figure 4. Differential expression and detectability of the genes. (A) The number of genes (log10 scale) not 
differentially expressed and not detectable (NDE&NDT), differentially expressed (DE), and not differentially 
expressed but detectable (NDE&DT) in the comparisons with normoxia for total mRNA fraction. We call a 
gene detectable (DT) if its power ≥0.8 and differentiable if FDR < 0.05. (B) The gene detectability plot for the 
first comparison (MCF10A and hypoxia) which visualizes the above-mentioned list of genes along with their 
respective fold changes (FC).

Figure 5. Snapshot of some of the significant pathway and gene ontology (GO) categories from ToppGene via 
iLINCS. These categories are found in the comparison between hypoxia and normoxia in MCF10A cell line 
using a combined list of DE and NDE&DT genes. The red vertical line is the selected cutoff of 0.05.

https://doi.org/10.1038/s41598-019-43935-8
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that are not differentially expressed although they are sufficiently highly expressed to be detectable according to 
our power analyses. Tying these two results together implicates these genes as potential higher level regulators of 
the response to hypoxia.

Discussion
The combination of the access to a vast number of preprocessed mRNA expression data and the diversity of 
the analytical tools implemented makes GREIN a unique new resource for reuse of public domain RNA-seq 
data. GREIN not only removes technical barriers in reusing GEO RNA-seq data for biomedical scientists, but 
also facilitates easy assessment of the validity and reproducibility of the analysis results while uncovering new 
insights of the experiments. Our case-study analysis indicated that GREIN can be used for quickly reproducing 
results of the published studies as well as for gleaning additional insights that go beyond the original analysis. The 
complete analysis can be reproduced in less than 10 minutes. The web instance deployed on our server provides 
no-overhead use and requires no technical expertise. Open source R packages and the Docker container provide 
a flexible and transparent way for computationally savvy users to deploy the complete infrastructure locally with 
very little effort.

The GUI-driven analysis workflows implemented by GREIN covers a large portion of use cases for RNA-seq 
data analysis, making it the only tool that a scientist may need to meaningfully re-analyze GEO RNA-seq data. 
In Table 1 we provide a comprehensive comparison of GREIN with existing resources in terms of data processed 
and implemented analysis tools (Recount27, ARCHS48, Toil9, Skymap10, and Expression Atlas11). Two key fea-
tures distinguish GREIN from other currently available resources, it provides access to an exhaustive collection 
of RNA-seq samples in GEO, and it provides by far the most comprehensive set of interactive tools for analyzing 
RNA-seq datasets. Of existing tools, ARCHS4 and SkyMap both aim to provide access to the similar set of pro-
cessed samples, but lack the interactive analytical toolbox. Other resources provide access to fewer processed 
samples and interactive analysis tools. In addition to standard analysis and visualization tools, the GREIN’s power 
analysis workflow provides means to assess the statistical reasons for detecting or not-detecting specific differ-
entially expressed genes. This kind of analyses is not common in the standard RNA-seq pipelines, but the results 
can be extremely useful when assessing false negative results. For example, when performing gene list enrichment 
analysis of differentially expressed genes, genes that do not meet a statistical significance cut-off are considered 
not differentially expressed. However, our power analysis indicates that the vast majority of these genes may 
simply be below detection limits for the available number of samples. GREIN allows user to distinguish between 
genes not detectable due to sample size limitations and/or their low expression levels, vs genes that are expressed 
at high enough expression levels but were not differentially expressed. This kind of resolution allows for more 
nuanced interpretation of analysis results. Off-line use of GREP2 and GREIN packages, as well as flexible export 
options enable additional analyses of GREIN-processed and pre-analyzed datasets.

Methods
GREIN back-end pipeline. To consistently process GEO RNA-seq datasets through a robust and uniform 
system, we have developed GEO RNA-seq experiments processing pipeline (GREP2) which is available as an R 
package in CRAN. Both GREP2 and GREIN are simultaneously running on different Docker containers. The 
whole processing workflow can be summarized in the following steps:

 1. Obtain GEO series accession ID (series type: Expression profiling by high throughput sequencing) from 
GEO that contain at least two human, mouse, or rat RNA-seq samples. We then retrieve metadata for each 
GEO series accession using Bioconductor package GEOquery28. We also obtain metadata files from the 
Sequence Read Archive (SRA) to get corresponding run information and merge both the GEO and SRA 
metadata.

 2. Download corresponding experiment run files from SRA using ‘ascp’ utility of Aspera Connect29 and con-
vert them into FASTQ file format using NCBI SRA toolkit30. All the downloaded files are stored in the local 
repository until processed.

 3. Run FastQC31 on each FASTQ file to generate QC reports and remove adapter sequences if necessary using 
Trimmomatic32.

 4. Quantify transcript abundances by mapping reads to reference transcriptome using Salmon33.
 5. Transcript level abundances are then then summarized to gene level using Bioconductor package tx-

import34. We use lengthScaledTPM option in the summarization step which gives estimated counts scaled 
up to library size while considering for transcript length. Gene annotation for Homo sapiens (GRCh38), 
Mus musculus (GRCm38), and Rattus norvegicus (Rnor_6.0) are obtained from Ensemble35 (release-91).

 6. Compile FastQC reports and Salmon log files into a single interactive HTML report using MultiQC36.

Power analysis. The power analysis in GREIN is performed using the Bioconductor package RNASeqPower4 
which uses the following formula:

σ
+ =

∆

+
α β

µ

−( )
( )

z z
nlog

2
#

(1)

e
1

2

2 2

1 2

where, α is the target false positive rate, β is the target false negative rate or 1-β is power, n is the sample size, 
∆ is the effect size, µ is the average sequencing depth, and σ is the biological coefficient of variation (BCOV) 
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calculated as the square root of the dispersion. We use common dispersion and tagwise dispersion estimates from 
Bioconductor package edgeR37 for computing power of a single gene and multiple genes respectively.

Typically, thousands of genes are tested simultaneously for differential expression in RNA-seq experiments. 
Therefore, the above method for estimating power needs further adjustment to correct for multiple testing. Jung 
et al.38 derived an FDR correction formula and consequently the significance level (α*) to calculate sample size for 
microarray data in the following form:

α =
−

⁎ r f

m f(1 )
#

(2)

1

0

where, r1 is the expected number of true positives in m1 rejected null hypotheses, m0 denote the number of genes 
for which null hypotheses are true, and f implies desired FDR level. Hence, to calculate power for each of the 
genes, we replace α with α* in eq. (1).

Differential expression analysis. GREIN uses negative binomial generalized linear model as imple-
mented in edgeR to find differentially expressed genes between sample groups. Data is normalized using trimmed 
mean of M-values (TMM) as implemented in edgeR. All the analyses are based on CPM values and genes are 
filtered at the onset with a cutoff of CPM > 0 in m samples, where m is the minimum sample size in any of the 
groups. Besides two-group comparison, GREIN also supports adjustment for experimental covariates or batch 
effects. A design matrix is constructed with the selected variable and groups. We use gene-wise negative binomial 
generalized linear models with quasi-likelihood tests and gene-wise exact tests to calculate differential expression 
between groups with and without covariates respectively. P-values are adjusted for multiple testing correction 
using Benjamini-Hochberg method39. Interactive visualization of the differentially expressed genes is also availa-
ble via heatmap of the top ranked genes, MA plot, and gene detectability plot.
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