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ABSTRACT

This paper deals with modelling and identification of a river system using physical insights about the

process, experience of operating the system and information about the system dynamics shown by

measured data. These components together form a linear model structure in the state space form.

The inputs of the prospective model are physical variables, which are not directly measured.

However, the model inputs can be found by a nonlinear transformation of measured variables.

Unknown parameters of the model are estimated from measured data. The modelling work focuses

on the principle of parsimony, which means the best model approach is the simplest one that fit the

purpose of the application.

The goal of the model is to control the water level of the river, where the water flow is mainly

determined by the demand for energy generation produced by the hydropower stations along the

river. The energy requirement increases in the morning and decreases in the evening. These flow

variations, caused by the energy demand, have to be compensated by controlling the power plants

downstream, in such a way that the water level between the power stations is guaranteed.

Simulation of the control system by using an adaptive model predictive controller shows that the

water levels vary less and can be maintained at a higher level than during manual control. This

means that more electric power can be produced with the same amount of water flow.

Key words | extended Kalman filter, grey box model, model predictive control, parameter

estimation, river

INTRODUCTION

An important way of producing electrical energy is by

using hydropower stations along rivers. Since electrical

energy cannot be stored on a large scale, the energy has to

be generated exactly when the order occurs. The demand

for energy varies during the day; increasing during the

daytime and decreasing at night. There is also a variation

over a 7-day period; the demand is higher during working

days compared to other days. Further, the resources of

water are depending on seasonal variations. To make it

possible to maintain such a varying energy production, the

water is held back in reservoirs and rivers. This leads to a

situation with varying water levels and flows.

There are also environmental and ecological aspects

of using waterpower. Varying water levels affect the

gardens of the local residents, aquatic sport and fishing

facilities, etc. Changing water flow also has an impact

on erosion along the river. Furthermore, continuous

operation of the turbine will increase wear of the

machinery and increase maintenance cost (Meier et al.

1992).

To accommodate and coordinate the various interests

optimally, statutory rules are indispensable. They provide

a basis for cooperation aimed at doing justice to both

the economic and the environmental aspects of any

interference with the natural water cycle. Together with

the individual concession stipulations, they provide the

guidelines for operating the specific hydropower stations.

To predict and control the water flows and levels of a

river automatically, it is necessary to have access to an

adequate model of the system. Generally, modelling the
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water flows and the levels in a river involves the

experience of the specialists to determine the model

structure, which is influenced by many factors, such as

the water depth, water velocity, friction force, lateral

inflow and boundary conditions, etc. Models constructed

in this way are called white box models or simulation

models.

A second way of making a model of a process is to

adapt a standard parametric model to measured data

obtained from the process. This will give a model that does

not reflect any specific physical structure of the system,

namely a black box model.

For many physical processes, there exists some, but

incomplete, knowledge about the structure of the system.

It implies that, between the white box models and the

black box models, there is a grey zone, where so-called

grey box models are appropriate (Bohlin 1991). These give

a third way of making models of physical systems, whereby

a priori knowledge concerning the process is used directly

and unknown parts are estimated from measured data.

The system under investigation is a nonlinear process

and is also dependent on specific weather and seasons.

Therefore, the model must be able to cope with varying

operating situations. This means that the model has to be

adapted to the specific operation of the river and some

unknown parameters have to be estimated on line.

This paper demonstrates how the grey box technique

can be applied when different kinds of knowledge and

information are used to formulate a model structure of a

river system. It shows that knowledge about physical

relations, experience from operating the system, dynamics

revealed from measured data and nonlinear parameter

transformation should be considered when the structure

of the model is formulated.

In our case the resulting process description is a

state space model. A direct way to estimate unknown

parameters of a state space model is to use an Extended

Kalman Filter (EKF), which estimates simultaneously

both the states and the parameters. Wilson et al. (1998)

discuss practical experience of applying EKF to industrial

processes and parameter estimation is presented by Wu &

Bellgardt (1998).

The river system is mainly affected by the flows at

the power stations located sequentially. The flow at the

upstream station is estimated from energy production

measurements and the flow at the downstream station is

manipulated by adjusting the turbine generators to main-

tain the water levels at specified locations to defined

limits. The system consists also of time delays. This makes

the process suitable for control by a model predictive

controller. An overview of model predictive control is

given by Morari & Lee (1999).

PROCESS DESCRIPTION

The system considered is part of the river Dalälven,

Sweden, and consists of the section between the hydro-

power plants at Långhag and Stora Skedvi. The distance

between the power plants is about 12 km and an outline of

the river is presented in Figure 1.

The water level is measured at five places along the

route: upper and lower level at Långhag hydropower

station, upper and lower level at Stora Skedvi hydro-

power station and finally at a place named Översätra

located between the two power plants. The water level at

Översätra is restricted by law to a specific interval.

The water flow through the power stations at Långhag

and at Stora Skedvi consists of two parts: one part

originates from the flow through the turbine generators

and one part originates from the flow passing through the

floodgates. Normally, the floodgates are closed but they

are opened during the spring flood. At Långhag there

are two turbine generators and three floodgates and at

Stora Skedvi there are two turbine generators and two

floodgates.

Figure 1 | Schematic outline of the process.
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The river flow is also influenced by inflow from small

rivers along the river, rainfall, evaporation and melting

snow. These flows can be regarded as slowly varying

disturbances. Along the river, there is a bare hillock about

two km upstream from Stora Skedvi, which to some extent

influences the water flow.

The flow through the generators at Långhag power

plant is regulated by energy requirements from the energy

market. These flow variations at Långhag must be com-

pensated for by controlling the energy production at Stora

Skedvi power plant in such a way that the water level at

Översätra is maintained at a given level. Furthermore, the

upper level at Stora Skedvi must be kept high to maintain

the efficiency of the power generation and also kept

constant to reduce the impact on the environment.

One of the difficulties in controlling the water levels is

that there is no basin between the two power stations.

Basins work as a buffer and reduce the influence of the

variations in the water flows and prevent flooding. It is

also a time delay system: it takes about 10–15 minutes for

a variation in the flow at Långhag to influence the water

level at Stora Skedvi.

Another difficulty is the backwater effect. The water

level declines from the lower water level at Långhag to

the upper level at Stora Skedvi and the decrease varies

from 0.2 m to 0.5 m. This means that the slope for this

part of the river is about 0.002–0.004%. Backwater

effects will occur when the slope is less than 0.01%

(Chow et al. 1988). Consequently, upstream propagation

must be considered when the river is controlled and

the water levels considered along the river cannot be

controlled independently of each other; a change in

the water flow will influence all levels considered in a

complex way.

The flows at the hydropower stations are not

measured. However, estimation of the flows can be made

based on the generated electric power produced and the

difference between the upper and lower levels at the

power stations. The precision of the estimated flows

depends on the quality of the measurements and the

accuracy of the model the estimation is based on.

When the net inflow, the mean of the difference

between the flows at Långhag and Stora Skedvi and the

other kinds of flows affecting the river, is positive the

water levels will increase and the reverse will happen

when the net inflow is negative: the water levels will

decrease. To make a rough estimate of the influence of the

accuracy in the estimates of the water flow, we regard the

part of the river considered to be a uniform water tank,

which is 12 km long and 30 m wide. Assuming the flow at

Långhag and Stora Skedvi is 500 m3/s stationary; a

change of 1% of the water flow at Stora Skedvi will cause

the water level to deviate 2 cm per hour. This means the

system is very sensitive due to bias in the estimates of the

water flows.

To summarize, the system consists of two interacting

hydraulic complexes situated sequentially. The hydraulic

degrees of freedom contain:

• flow and level upstream of Långhag power station,

• flow and level downstream of Långhag power

station,

• flow and level upstream of Stora Skedvi power

station,

• flow and level downstream of Stora Skedvi power

station.

This leads to eight unknown variables, although the flows

are equal at each power station.

GREY BOX MODELLING

The river system considered is a distributed parameter

process, because the flow rate, the velocity and the depth

vary in space throughout the watershed. Based on physical

laws, this type of process can be described by using partial

differential equations from the Saint-Venant equations

(Chow et al. 1988). This model is not well suited, because

the control problem will be ill conditioned and sensitive

due to bias in the estimates of the flows.

The situation focuses on the principle of parsimony,

which was first formulated by the medieval philosopher

Ockham. The rule says the best model approach is the

simplest one that fits the purpose of the application. This

means that a description of the system has to model the

main behaviour of the process, which is important to

the control design, and operation of the process.
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To solve the problem we apply the grey box method,

which is based on a priori knowledge about the process

and measured data. The amount of knowledge varies from

one process to another. The grey zone in Figure 2 repre-

sents the area between the two extremes of the white box

and black box models, where the grey box model can be

found. In this application, the model may be located

somewhere in the middle of the grey zone.

The grey box modelling technique has been focused in

different ways. One way emanates from the black box

model frame. A priori knowledge is incorporated as con-

straints on model parameters or variables (Bohlin &

Graebe 1994). Further, Lindskog & Ljung (2000) incorpor-

ate constraints on the model gain where the static gain is

restricted to being a nonlinear function.

Another way is to start with a model originating from

mathematical relations, which describe the behaviour of

the system. This means the starting point is a specific

model structure based on physical relations. Basing our

conclusions on hypotheses concerning the process, we

can formulate the relations between the variables for

the process. Typically, the equations consist of three

types: balance equations, algebraic equations and logical

expressions.

The balance equations relate dependent variables

to the independent variables and are derived from

the principle of conservation, which is formulated as

(Stephanopoulos 1984)

=

+ ∂

∂

(1)

Time period

Accumulation of S

Time period

Total input of S

Time period

Total output of S

Time period

Total consumption of S

Time period

Total generation of S

Equation (1) means that the accumulation of a quantity, S,

per time period within the process is equal to the net

sum of total input to the process plus the net sum of S

generated inside the process. For example, the quantity S

may denote energy, mass or momentum.

Recently, several successful attempts have been made

in the area of grey box modelling based on mathematical

relations (Sohlberg 1998; Bechmann et al. 2000).

Another possible way, which deals with the non-

linearities of a process, is to make a nonlinear transfor-

mation of the measured data into new variables. In this

case, a priori knowledge of the process is used to generate

new input output variables, which are used to estimate

unknown parameters in a black box model. The resulting

model will typically be linear in the new variables and the

method is named semi-physical modelling (Lindskog &

Ljung 1994; Sjöberg et al. 1995).

In this paper we use a combination of the grey box

methods discussed earlier. Physical insight is used to form

a linear model structure with both known and unknown

parameters. The inputs of the prospective model are physi-

cal variables, which are not directly measured. However,

the model inputs can be found by a nonlinear transfor-

mation of the measured input variables. The process

operators, who have experience of operating the process

over several years, have an intuitive understanding of the

relation between different process variables. This knowl-

edge is considered when formulating the expanded model

structure, where the model structure is extended with

supplementary relations about important variables.

Furthermore, there is information from measured data to

be considered, which reflects the behaviour of the system.

This is a kind of pattern recognition information, which is

also incorporated into the model structure. The expanded

model consists of several unknown parameters, which

need to be estimated. This is done by parameter estimation

using established black box identification procedures.

APPLICATION OF GREY BOX MODELLING

Model structure

Consider a demarcated volume of the river, with water

depth y and cross section area A. Let the inflow to the

Figure 2 | Grey scale for grey box modelling.
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volume be qin and outflow qout. From the principle of

conservation, a reasonable basic lumped parameter model

is given as

A = qin∂qout . (2)
dt

dy

Using the Euler approximation (Åström & Wittenmark

1997), Equation (2) is converted into a discrete form,

where ∆t is the sample interval:

y(k) = y(k∂1) + [qin (k∂1)∂qout (k∂1)]. (3)
A

∆t

Equation (3) means that the river is considered as a system

with water flows at the two power stations as inputs and

the water levels at the power stations together with the

water level at Översätra as outputs. To be more specific, let

the input u1 be the sum of flows caused by the generators

at Långhag power station and the input u2 be the sum of

the flows from the power generation at Stora Skedvi. The

outputs y1, y2 and y3 are the lower water level at Långhag,

the water level at Översätra and the upper water level at

Stora Skedvi, respectively. Consequently, the process is

characterized by two inputs and three outputs shown by

Figure 3.

From Equation (3), a model structure is formed as

y1(k) = y1(k − 1) + p11u1(k − n11) − p12u2(k − n12) (4)

y2(k) = y2(k − 1) + p21u1(k − n21) − p22u2(k − n22) (5)

y3(k) = y3(k − 1) + p31u1(k − n31) − p32u2(k − n32) (6)

where pij are unknown parameters and nij are unknown

time delays, i = 1,2,3 and j = 1,2.

Principally, Equations (4)–(6) give a linear model

describing the behaviour of the water levels at three dif-

ferent places along the river. The model consists of three

sub-models M1, M2 and M3, where each sub-model is

formulated with two inputs and one output. A schematic

structure of the model is shown in Figure 4.

Transformation of the measured inputs

Water flowing through the turbine generates electricity by

changing the potential energy into electrical energy. The

power generated is proportional to the product of the flow

rate through the turbine and the difference between the

water levels above and below the power station, see

Figure 5. The difference in water levels is named the net

head and is represented by ∆y. The net head is a function

of the flow through the turbine, but over a short time

horizon ∆y does not vary much. The loss of power when

water energy is transformed into electricity is modelled by

the efficiency of the turbine and is denoted by h. The

Figure 3 | Schematic diagram of the system.

Figure 4 | Schematic model structure.

Figure 5 | Hydropower generation.
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efficiency is a nonlinear function of the flow ug and the net

head ∆y. Generally; the power generated by a turbine is

modelled as (Philpott et al. 2000)

P(ug,∆y) = ug∆yh(ug,∆y). (7)

Referring to Equation (7), it is possible to measure the

generated power and the net head. The efficiency is not

known directly, but from the flow–power curves produced

from tests with the turbines, it is possible to form a relation

between the flow and the measured electricity power and

the net head.

By parameter estimation and validation, the relation

estimating the flow trough the turbines are approximated

with Equation (8). This equation is valid for both power

plants, but the estimates of the parameters a1, a2 and a3

differ:

2 3

.
∆y

P
ug = a1 + a2 + a3 (8)& / ∆y

P& / ∆y

P& /
Since Equation (8) is a nonlinear function of the power

and the net head, the computation of water flow has to

be made for each turbine separately. A layout of the

transformation, from the measured variables net-head and

generated power to flows, is shown in Figure 6. The

variables ∆y1 and ∆y2 represent the net head at Långhag

and Stora Skedvi, the generated electric power is repre-

sented by P1–P4 and the flow through the turbines by

ug1–ug4.

A typical data sequence achieved from the river

system is shown in Figures 7 and 8, where the flows

are estimated from Equation (8). The sample interval

is 5 minutes and the duration of the measurement is

160 hours or about one week. The sample interval is a

compromise between a desired short time due to the Euler

approximation and a desired longer time due to rise times

and time delays of the system.

The flow through the turbines at Långhag is in-

creased in the morning due to increased demand for

energy and consequently the flow at Stora Skedvi is

increased to maintain the water levels at the desired

height. In the evenings the flows are decreased again.

Due to the variations in the flows the water levels will

also vary. Since the variations in both the water levels

and water flows are significant, the variables can be con-

sidered as informative and may be used for parameter

estimation.

Expanded model structure

The estimation and validation procedure is not very

successful, since the sub-models given by Equations

(4) and (5) are not able to describe the variation in

water. This means that additional sources of infor-

mation need to be considered when forming the model

structure.

Figure 7 shows that the shapes of the three water

levels are somewhat different. The level at Långhag

responds very fast to the change in the turbine flows. The

water level is measured close to Långhag power station, so

the fast variation is attributable mainly a result of the

changes in the flows through the turbines at this station. It

is possible to generate a principal curve, which describes

the dynamics of the water level, by means of simulation

based on a transfer function H(q − 1), given by Equation

(9), see Figure 9. This curve is achieved by letting the input

signal be a square wave, which imitates the flow variations

at Långhag:

H(q–1) = (9)
1∂q–1

p11∂p12q–1

where q − 1 is the shift operator.

Figure 6 | Model structure.
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This implies that the model given by Equation

(4) should be expanded into the form given by Equation

(10):

y1(k) = y1(k − 1)

+ p11u1(k − n11) − p12u1(k − n11 − 1)

− p13u2(k − n12) (10)

The sub-model M2 given by Equation (5) is not suitable

for use as a model structure, since estimation of the

unknown parameters gives large variations in the esti-

mates depending on the actual measured data sequence

used. From empirical knowledge, gained during dis-

cussion with the process operators, the water level at

Översätra depends very much on the variations of the

water levels at Långhag and Stora Skedvi. This justifies

changing the model structure to a structure given by the

following equation:

y2(k) = p21y2(k − 1) + p22y1(k − n21) + p23y3(k − n22) (11)

Equation (11) can be interpreted as that the flows u1(k)

and u2(k) affect the water level at Översätra via the

levels at Långhag and Stora Skedvi.

The water level changes fast at Stora Skedvi but not so

fast as at Långhag. The model structure may still be given

as Equation (6):

y3(k) = y3(k − 1) + p31u1(k − n31)–p32u2(k − n32). (12)

From the discussion in this section, the model structure

given by Figure 4 should be changed to the structure given

by Figure 10. This means that the inputs of the sub-model

M2 are exchanged to be the water levels at Långhag and

Stora Skedvi.

Figure 7 | Water levels at Långhag, Översätra and Stora Skedvi. Solid: Långhag, dotted:

Översätra and dashed: Skedvi.

Figure 8 | Estimated water flow through the turbines at Långhag and Stora Skedvi.

Figure 9 | Principal appearance of the water level at Långhag.

Figure 10 | Expanded schematic structure of the model.
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Parameter estimation

Since the system is a multi-input–multi-output process, a

state space form is often preferred:

x(k + 1) = F(O)x(k) + G(O)u(k) + v(k)

y(k) = Cx(k) + w(k) (13)

where x(k) is the state vector, y(k) is the output vector,

u(k) is the control vector and O is a vector of unknown

parameters. The matrices F(O) and G(O) consist of the

unknown parameters. The matrix C consists entirely of

known parameters. The disturbance vectors v(k) and w(k)

are considered as white noise with covariance matrices Rv

and Rw.

The unknown parameters are estimated by using the

Matlab® System Identification Toolbox (Ljung 2000). The

estimation routine minimizes the quadratic prediction

error criterion, VN(�|), with an iterative Gauss–Newton

algorithm. The prediction error is formulated by Equation

(14) and the criterion by Equation (15) (Ljung 1999),

where ŷ(kzO) is the predicted output:

e(k,O) = y(k) − ŷ(kzO) (14)

(15)VN(θ̂) = det e(k, θ)eT (k, θ)
N

k=1
∑

N

1
.fi ^

The flow at Långhag, u1(k), is reduced by the mean value,

um, of the difference between the two flows u1(k) and

u2(k). This parameter includes evaporation, rainfall, inlet

from small flows along the river and error resulting from

estimation of the flows u1(k) and u2(k). During the par-

ameter estimation the mean value between the flows is

eliminated:

ū1(k) = u1(k) − um. (16)

In the state space model, given by Equations (17) and (18),

the water levels at Långhag, Översätra and Stora Skedvi

are modelled by the state variables x4(k), x5(k) and x7(k).

The flows are delayed via the states x1(k), x2(k), x3(k) and

x6(k). The number of delayed samples is selected as the

number minimizing the loss function given by Equation

(15).

(17)+

=

x1 (k+1)

x2 (k+1)

x3 (k+1)

x4 (k+1)

x5 (k+1)

x6 (k+1)

x7 (k+1)
fi fi^ ^

0     0      0     0    0     0     0

0     0      0     0    0     0     0

0     1      0     0     0     0     0

p12     0     p13     1     0     0     0

0     0      0    p22   p21  0    p23

1     0      0     0    0     0    0

0     0      0     0    0    p31    1

+

x1 (k)

x2 (k)

x3 (k)

x4 (k)

x5 (k)

x6 (k)

x7 (k)
fi fi^

n1 (k)

n2 (k)

n3 (k)

n4 (k)

n5 (k)
n6 (k)

n7 (k)
fi ^^

1     0
0     1

0     0

p11     0

0     0

0     0

0    p32

fi ^u1 (k)

u2 (k)

}

(18)

=

0     0      0     1    0     0     0

0     0      0     0    1     0     0

0     0      0     0     0     0     1

+

x1 (k)

x2 (k)

x3 (k)

x4 (k)

x5 (k)

x6 (k)

x7 (k)
fi ^ w1 (k)

w2 (k)

w3 (k)

fi ^

fi ^

fi ^
y1 (k)

y2 (k)

y3 (k)

}

In Equation (17), all eight unknown parameters are esti-

mated based on the measurement sequence presented in

Figures 7 and 8. Simulation of the model is presented

in Figure 11 together with the measured water levels.

Comments on the water level at Långhag

The water level varies very fast when the flows change. It is

seen that the model is able to predict these variations. The

model predicts even the slow variations between the fast

changes.

Comments on the water level at Översätra

The model is able to predict the variations in the water

level. Note: the transducer of the water level indicates a

constant level several times when the water level reaches
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its lowest values. It is possible that some problem with the

transducer arises when the level has been decreased and

increases again.

Comments on the water levels at Stora Skedvi

The model describes the dynamics of the water level

satisfactorily. However, the model is not able to predict

the very fast increase in the water level after approxi-

mately 90 h.

Model analysis

To analyse the influence of weather conditions, seasonal

variations and other varying conditions, the parameter

estimation is made based on eleven different measurement

sequences spread over a year. Each measurement

sequence is approximately seven days. From the esti-

mation based on the different sequences, it is shown that

the parameter values differ, depending on which measure-

ment sequence is used to estimate the parameters. The

result of the estimation is presented in Table 1, showing

the mean together with the 95% confidence interval and

standard deviation of each parameter listed.

Comments on the flow difference

The mean value, um, varies and depends on the measure-

ment sequence used. Consequently, it is necessary to adapt

the model for the influence from this parameter; otherwise

the water level will not be stable.

Comments on estimation of sub-model M1

The estimation gives that the sign of the parameters p11

and p12 is reversed for two of the measurement sequences.

However, simulation based on the mean value of the

parameters listed gives a satisfactory result for all

measurement sequences, provided that we compensate for

the mean value of flow difference.

Figure 11 | Measured and simulated water levels. Solid: measured, dashed: simulated.

Table 1 | Parameter estimates of the resulting model

Parameter Mean value
Standard
deviation

Flow difference um 8.2 3.2

Långhag M1 p11 10 − 3 1.422 ± 0.019 0.295

p12 10 − 3 − 1.259 ± 0.013 0.297

p13 10 − 3 − 7.165 ± 2.06 3.304

Översätra M2 p21 0.981 ± 0.0004 0.011

p22 10 − 3 7.849 ± 0.375 3.807

p23 10 − 3 12.496 ± 0.555 8.916

Stora Skedvi M3 p31 10 − 3 1.049 ± 0.017 0.478

p32 10 − 3 −1.050 ± 0.017 0.479
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Comments on estimation of sub-model M2

The variance of parameter p21 is small compared to the

estimate, which indicates that the estimate of the par-

ameter is accurate. On the other hand, the model is very

sensitive to this parameter. The parameters p22 and p23

vary approximately the same amount from one measure-

ment sequence to another. Estimation and simulation

show that it is possible to merge the parameters p22 and

p23 into one parameter and estimate this parameter

together with parameter p21 for each measurement

sequence. This implies that two parameters need to be

adapted to different operating situations.

Comments on estimation of sub-model M3

The estimates of the parameters are almost equal, but

depend on the measurement sequence is used. This means

that the parameters p31 and p32 can be merged to one

common parameter.

From the discussion above, we have a reduced model

consisting of four parameters, which need to be estimated

from measured data. The other parameters are regarded as

constants and assigned the mean values shown in Table 1.

The results from simulation of the reduced model are

presented in Figure 12 and the corresponding parameter

estimates are given in Table 2.

Comments on the reduced model

The simulation with the reduced model gives approxi-

mately the same results as the previous model presented in

Figure 11. From Table 2, we can see that parameter p21 is

about the same as the mean value given in Table 1. The

common parameter for p22 and p23 gives an estimate,

which lies between the estimates given in Table 1. The

common parameter for p31 and p32 gives an estimate

higher than the mean value presented in Table 1.

REAL-TIME ESTIMATION

From the discussion in the previous sections, we conclude

that four parameters need to be estimated recursively. The

other parameters are set to constant values and equal the

mean values given by Table 1. Recursive identification

methods are necessary to solve the real-time estimation

Figure 12 | Measured and simulated water levels based on the reduced model. Solid:

measured, dashed: simulated.

Table 2 | Parameter estimates of the reduced model

Parameter
Set
value

Estimated
value

Flow difference um 8.58

Långhag p11 10 − 3 1.42

p12 10 − 3 − 1.26

p13 10 − 5 − 7.20

Översätra p21 0.9815 ± 0.0002

p22 = p23 10 − 3 9.252 ± 0.110

Stora Skedvi p31 = − p32 10 − 4 1.203 ± 0.018
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problem and the subject is treated in detail by Anderson &

Moore (1979) and Ljung & Söderström (1983).

From Equation (13), the process is described by a

model with time varying parameters:

x(k + 1) = F[O(k)]x(k) + G[O(k)]u(k) + v(k)

y(k) = Cx(k) + w(k) (19)

where v(k) and w(k) represent white noise with covari-

ance matrices Rv and Rw. The time varying vector O(k)

given by Equation (20) consists of the unknown

parameters to be estimated:

O(k) = [um(k) p21(k) p22(k) p31(k)]T. (20)

An attractive approach to the parameter estimation

problem is to estimate simultaneously both the process

states and the unknown parameters by an augmented

model in which the unknown parameters are regarded

as additional states and then apply the Extended

Kalman Filtering (EKF) algorithms to the augmented

model; see Appendix A. Theoretical and practical aspects

of Kalman filters are presented by Grewal & Andrews

(1993).

Generally, O(k) is modelled by the following difference

equation:

O(k + 1) = O(k) + vO(k). (21)

The discrete white noise is represented by vO(k), with zero

mean and covariance matrix RO.

At start-up of the Extended Kalman Filter, the state

vector is initialized with probable values. The initial

value of the covariance matrix of the estimation error is

chosen by repeated simulation so O(k) will have an

acceptable settling time without unnecessary overshoots,

although the choice is not critical. The covariance

matrices of Rv and Rw are set to the same values as were

used during off-line parameter estimation, while RO is

chosen by means of repeated simulations until accept-

able results have been achieved for the parameter vector

O(k). Note that the elements of RO are chosen at smaller

values than the values of Rv, which means that the

process disturbances will be modelled mainly by v(k) and

less by vO(k). Real-time estimation of the unknown

parameter vector is shown in Figure 13 in which the

estimation is based on the same sequence of data as used

for the off-line estimation.

Comments on the real-time estimation

The estimates of the flow difference converge towards

approximately 8 m3/s, which is about the same result as

achieved from offline estimation. The other parameters

converge also towards approximately the same values as

presented in Table 2. The other measurement sequences

Figure 13 | Real-time estimation based on measured data.
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collected during a year show about the same performance

but converge to other values. This means the Extended

Kalman Filter is applicable in this case.

CONTROL OF THE SYSTEM

The purpose of controlling the system is to keep important

process variables within specified levels so that the energy

production is efficient. In our case, it means that the water

levels at the specific locations are limited to certain inter-

vals restricted by law and practice. To avoid too much

impact on the environment, there are also constraints on

changes of the water flows. The control strategy can be

formulated as follows: keep the net level at the power

station Stora Skedvi as high as possible without violating

the restriction of the water levels and without changing

the water flow too fast.

Controller design

To formulate the optimal control problem for a dynamic

system, the following are needed (Kirk 1970): a mathemati-

cal model of the process to be controlled, concretization

of the physical limits of the system and a specification of a

performance measure.

The Model Predictive Controller, MPC (Camacho &

Bordons 1995), is closely related to the optimal control

problem. The MPC system is not a specific control strategy

but more a range of control methods developed around

certain ideas. The main differences between the optimal

controller and the general MPC are that, for the MPC,

two predictive horizons can be used, one for the control

variable and other for the process output.

The model of the river is given in a state space form

and is characterized by two input variables, of which

one can be manipulated while one is only measurable.

There are also constraints on both the manipulated and

controlled variables and considerable time delays, which

motivates application of a model predictive controller.

The computation of the control signal is performed by

minimization of a loss function; see Appendix B. The

procedure is repeated at every new sample index with a

moving horizon and only the control variable from sample

k is used as a control action.

Simulation of the control system

For simulation of the control system, we use the same

sequence of the flow at Långhag as used for the previous

parameter estimation. This sequence is considered as a

measurable disturbance since this input variable is a result

of the energy demand and not possible to use as a manipu-

lated variable to control the water levels. The system is

controlled by merely manipulating the flow at Stora

Skedvi.

All simulation is done by using the Matlab/Simulink®

environment. The implementation of the process model

is based on Equations (17) and (18). The process and

Figure 14 | Model predictive control scheme.

Table 3 | Statistical properties

Översätra Stora Skedvi

Measured
Simulated
control Measured

Simulated
control

Mean value (m) 93.92 93.96 93.64 93.70

Standard deviation (m) 0.05 0.02 0.07 0.03
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measurement noise are generated as white noise and the

difference between the flows at Långhag and Stora Skedvi

is set to the same value as achieved from the measurement

sequence, 8.5 m3/s.

Implementation of the Extended Kalman Filter is

based on the equations given in Appendix A, which esti-

mates both the model states and the unknown parameters

of the reduced model. In the Simulink scheme is the

process model and the EKF are implemented, by using

an S-function from the Simulink blocks, see Figure 14.

The MPC block is based on a routine from the Model

Predictive Toolbox (Morar and Ricker 1994) and is an

MPC-type controller for constrained problems. The MPC

routine is reconstructed to compute the control variable

based on the reduced model and the equations given in

Appendix B at every sample index. A hysteresis block

prevents the control equipment from wearing out. From

experience of operating the river system, the hysteresis

level is set to 10 m3/s.

The Model Predictive Controller is tuned by repeated

simulation and the control horizon is set to m = 5 and

p = 40 samples, see Appendix B and Figure 19. The refer-

ence levels at Översätra and Stora Skedvi are set to 93.9 m

and 93.7 m above sea level. These levels are also restricted

to remain within the intervals 93.75–94.00 m and 93.50–

94.00 m. The water level at Långhag has no restrictions.

The results of the simulation of the automatic control

system are presented in Figures 15–18.

Comments on the water levels

It is seen from Figure 15 that the water levels at Översätra

and Långhag vary less under simulated automatic control

than during manual control. The mean and standard

deviation for the water levels are presented in Table 3.

Further, the water level at Stora Skedvi can be kept at a

higher level than during manual control. This gives that

about 5% more electric power can be achieved from this

hydropower station.

Comments on the controlled water flow

Approximately the same amount of water is used during

manual operating and simulated automatic control of the

system. The results from the simulation shows also that

it is possible to change the control signal in smaller

steps and, by that, avoid too fast changes in the water

flow, which reduces the impact on the environment, see

Figure 17.

Comments on the estimated parameters

The estimate of the flow difference converges towards the

same value given in the process model, see Figure 18. It is

Figure 15 | Measured and under simulated automatic control of water levels. Solid:

measured, dashed: simulated.

Figure 16 | Estimated water flow through the turbines at Långhag.
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also seen that the dynamic of the estimates has about the

same appearance and converges towards about the same

values as achieved when real data are used, see Figure 13

and Table 2.

CONCLUSIONS

This application shows that the grey box method can be a

successful way to construct process models by using dif-

ferent kinds of information. Knowledge gained from

various areas is collected to construct a useful model

structure. Physical insight is used to form a linear model

structure with both known and unknown parameters.

Experience from manual control of the river system indi-

cates that there is a relation between the water levels at the

power stations and a specific location along the river. The

inputs of the prospective model are physical variables,

which are not directly measured. However, the model

inputs can be found by a nonlinear transformation of the

measured input variables. Furthermore, the appearance of

estimated flows and the measured water levels give

additional insight into the process behaviour.

The resulting model is given in the state space form,

which consists of unknown parameters, which need to be

estimated on line. The model consists also of a parameter

describing the flow difference between the flows at the two

hydropower stations including evaporation, rainfall, inlet

from small flows along the river and error resulting from

computation of the flows. The state space model is aug-

mented to include the unknown parameters as additional

states and an Extended Kalman Filter is used to estimate

both the states and the unknown parameters.

The river system is characterised by constraints on the

manipulated and controlled variables, time delays and

measurable disturbances. This makes the system suitable

for manipulation by a Model Predictive Controller. Simu-

lation of the control system based on the model predictive

control system shows that the water levels vary less than

during manual control. Further, the level at Stora Skedvi

can be maintained at a higher level than during manual

control, which means that about 5% more electric power

can be produced with the same amount of water flow.
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APPENDIX A. EXTENDED KALMAN FILTER

Establish the augmented state vector and referring to the

variables introduced earlier:

(22)x(k) =
θ(k)

x(k)
.fi ^

The state equations of the augmented system are described

by the following system:

x(k + 1) = F′[x(k),u(k)] + vx(k)

y(k) = C′x(k) + w(k) (23)

where the process noise of the augmented state vector is

vx(k) with covariance matrix Rx:

nx(k) =
nx(k)

n(k)
.fi ^ Rx =

0    Rθ

R1 0

fi ^
Application of the EKF on the augmented system, which

estimates both the process states and the unknown par-

ameters according to the prediction–estimation algorithm

is given by Equation (24)–(30) (Grewal & Andrews 1993).

The linearizing of the model around a nominal state

trajectory gives the transition and the measurement matri-

ces as

(24)
∂x

∂C′
Γ(k) =

x=x(k), u=u(k) ∂x

∂F′
Φ(k) =

x= x̂ (k), u=u(k)

Prediction

�(k + 1zk) = F′[�|(kzk),u(k)] (25)

ȳ(k) = C′ �(k) (26)

P(kzk − 1) = Φ(k − 1)P(k − 1zk − 1)Φ(k − 1)T + Rx (27)

Estimation

K(k)

= P(kzk − 1)Γ(k)T[Γ(k)P(kzk − 1)Γ(k)T + R2] − 1 (28)

�|(kzk) = �(kzk − 1) + K(k)[y(k) − ȳ(k)] (29)

P(kzk)

= [I − K(k)Γ(k)]P(kzk − 1)[I − K(k)Γ(k)]T

+ K(k)R2K(k)T (30)

where the indices k and k − 1 denote values pertaining to

the current and previous sample, respectively.

APPENDIX B. MODEL PREDICTIVE CONTROLLER

Referring to Figure 19, for a set of control moves

∆u(k),∆u(k + 1), . . ., ∆u(k + m − 1), the future behaviour

of the process outputs y(k + 1zk), y(k + 2zk), . . .,

y(k + pzk) can be predicted over a horizon p. The m

moves of the manipulated variable (m≤p) are computed to

minimize a quadratic function:

(31)

J =
min

∆u(k). .∆u(k+m—1)

Γy
j[y(k+ j |k)— r(k+ j)]

+
2p

j=1
∑

Γu
j[∆u(k+ j—1]

2m

j=1
∑

where Γy
j and Γu

j are weighting matrices to penalise par-

ticular components of y and u at certain future intervals.

Figure 19 | Model predictive control.
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The references are denoted by r(k + j). Only the first move,

∆u(k), is implemented, because the quadratic function is

minimized at every new sample instance.

Computation of the control signal is based on con-

straints on the manipulated variables and outputs:

umin(j)≤u(k + j)≤umax(j)

z∆u(k + j)z≤ ∆umax(j) (32)

ymin(j)≤y(k + jzk)≤ymax(j)

where Equation (32) limits the values of the control signal

and the outputs.
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