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Grey-box Modelling of a Household Refrigeration Unit Using Time Series
Data in Application to Demand Side Management

Fabrizio Sossana,∗, Venkatachalam Lakshmanana, Giuseppe Tommaso Costanzoa, Mattia Marinellia,
Philip J. Douglassa, Henrik Bindnera

aDTU Elektro, Frederiksborgvej 399, 4000, Roskilde, Denmark

Abstract

This paper describes the application of stochastic grey-box modeling to identify electrical power
consumption-to-temperature models of a domestic freezer using experimental measurements. The models
are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation
(MLE), validated through the model residuals analysis and cross-validated to detect model over-fitting. A
nonlinear model based on the reversed Carnot cycle is also presented and included in the modeling perfor-
mance analysis. As an application of the models, we apply model predictive control (MPC) to shift the
electricity consumption of a freezer in demand response experiments, thereby addressing the model selection
problem also from the application point of view and showing in an experimental context the ability of MPC
to exploit the freezer as a demand side resource (DSR).

Keywords: Power demand, Modelling, Refrigerators, Smart grids, Demand Response.

1. Introduction

Household refrigerators account for a noticeable
share of the total residential electricity demand (e.g.
7% in the US [1]) and are gaining attention in
the context of demand side management (DSM)
[2–4]. Validated mathematical models and proce-
dures for on-line system identification of refriger-
ation units are of importance for assessing their
energy efficiency, predicting their power consump-
tion and in application to intelligent energy man-
agement strategies to support power system op-
eration, such as model predictive control (MPC)
[5, 6]. In the first part of this paper, we describe
the application of a state-of-the-art grey-box mod-
eling methodology to identify power consumption-
to-temperature prediction models using experimen-
tal measurements from a conventional domestic
freezer. The modeling effort aims to identify the
model structure and parameters of the physical pro-
cesses associated with the operation of the freezer,
i.e. heat transfer and refrigeration cycle coefficient

∗Corresponding author
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of performance (COP). Consumer behavior model-
ing is not considered at this stage. In the second
part of the paper, the proposed models are used
to implement a MPC strategy in order to experi-
mentally achieve a shift in the energy consumption
of the freezer. The contribution of this paper is
twofold. First, novel validated grey-box models for
a domestic freezer are proposed. Existing models
in the literature were mainly developed using first
principle approaches (see for example [7–9]). So-
called white-box models in application to demand
side management do not allow to achieve any de-
gree of differentiation when dealing with different
units. This property does not make them suitable
for future smart grid scenarios, where demand re-
sponse built up from the contribution of heteroge-
neous populations of demand side resources (DSRs)
is expected to play a central role in assuring reliable
power system operation. On the contrary, grey-box
models are adaptive by nature since they are es-
timated from measurements and potentially allow
for tracking system changes on-line by reiterating
the estimation procedure. A set of linear grey-box
models for a domestic fridge was proposed in [10].
In this case, we extend the already existing liter-
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ature by considering a domestic freezer and, espe-
cially, by including in the modeling performance as-
sessment a nonlinear grey-box model based on the
reversed Carnot cycle. Second, by implementing
the consumption shift experiments in a real oper-
ating environment, we address the model selection
problem from the specific perspective of the ap-
plication, that is finally among the most relevant
problems for DSM. Overall, we therefore provide
a global assessment of grey-box modeling for re-
frigeration units analyzing both the pure modeling
performance and application. The structure of the
paper is as follows. Section 2 describes the exper-
imental setup adopted for the model identification
and consumption shift experiments. Section 3 de-
scribes the grey-box modeling framework adopted
to identify the freezer models, which are therefore
presented in Section 4. In Section 6, we perform
an empirical evaluation of the thermal properties
of the considered freezer with the objective of sup-
porting grey-box modeling results. In Section 4, the
models prediction performance are further assessed
using validation data sets. Finally, in Section 7 a
number of the proposed model are used in an MPC
experiments with the objective of shifting the con-
sumption of a freezer in the context of intelligent
energy strategies for demand response applications.

2. Experimental setup

The experimental setup consists of a freezer
equipped with temperature sensors, a power con-
sumption measurements board and an external re-
lay. The objective of the experiment is to collect
the measurements for identifying the freezer mod-
els and to perform the energy shift experiments.
The instrumented freezer (shown in Fig. 1) is a
Bosch GSN40A211, a commercially available do-
mestic unit with 333 L capacity and a single-phase
compressor. During experiments, the freezer was
empty and with closed door. Temperatures are
measured using 10k NTC thermistors, which can
measure temperatures in the range -30 to 80◦C with
an accuracy of ±0.2 ◦C at 25◦C and have a fast mea-
surements response. Thermistors are connected to
a 12bit ADC through a resistance-to-voltage trans-
ducer. A total of 3 thermistors are used, 2 for

1The freezer belongs to Power Flexhouse, an experimental
facility of DTU Elektro for testing demand side management
strategies for smart grid applications.

measuring the freezer interior temperature at dif-
ferent heights and one for the room temperature.
The freezer power consumption is measured using
a DEIF MIC-2. This accuracy class 0.5 instru-
ment is able to measure voltages and currents up
to 400 V/5 A of magnitude on a three phases bus,
although only one phase is used for this applica-
tion. The controllable power plug determines the
state (on-off) of the freezer. In order to override the
internal action of the freezer thermostat, the ther-
mostatic set-point is set to the lowest value, and the
temperature of the freezer is allowed to vary only
above this threshold. In this way, the activation of
the freezer compressor depends only on the state of
the external relay. All the sensors and instruments
are connected to a PC and are accessed by a JAVA
software application. Measurements and actuations
are sampled at 1 second.

Figure 1: The 333 liters domestic freezer used for the iden-
tification and MPC experiments.

3. The grey-box modeling methodology

Grey-box modeling is a framework to identify and
validate a mathematical model of a system incor-
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porating its physical knowledge together with mea-
surements from a real device. It consists of a num-
ber of steps, which are explained in the following.

3.1. Experimental design

A control signal commonly used for model iden-
tification is the PRBS (pseudo binary random sig-
nal), an on-off signal with fixed period and uni-
formly distributed random duty cycle that is able
to excite the system to model in a wide range of fre-
quencies. For identifying the freezer thermal mod-
els, a PRBS was used to set the state of the control-
lable power plug. To avoid damaging the freezer
compressor, the PRBS cycles with on-to-off tran-
sitions shorter than 30 seconds were disregarded.
By doing this, it was not possible to observe very
short transients, which however are of limited in-
terest since we target to capture the dominant sys-
tem dynamics. Fig. 2 shows the set of measure-
ments used for the model identification. In the up-
per panel plot, it is evident the effect of the PRBS
on the freezer power consumption, that is charac-
terized by activation cycles of random length. The
time series are of appropriate duration for the pur-
pose of thermal models identification as they are
considerably longer than the slowest time constant
of the system (≈ 4 hours2). Two additional sets of
measurements were collected to assess the models
prediction performance (Section 6).
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Figure 2: The measurements used to identify the freezer
thermal models: the freezer power consumption under PRBS
regime (upper panel) and temperature (lower panel).

2Approximatively estimated prior the model identifica-
tion as 1/5 of the zero-input temperature transient duration.

3.2. Measurements post-processing

The measured physical quantities are the freezer
and room temperatures and freezer total power con-
sumption. Two freezer temperature sensors are
available, and their readings are averaged in or-
der to obtain a single temperature measurements
time series. Power consumption measurements
were treated to remove the components not play-
ing a role in the refrigeration cycle since they can
interfere with the estimation of the model parame-
ters. First, the power absorption of auxiliary com-
ponents (like the control logic and digital display),
considered constant, was removed by subtracting.
Second, the power consumption spikes due to the
inrush current of the induction motor driving the
compressor were filtered out. The spikes usually
extinguish in a few seconds and are disregarded be-
cause they represent the energy spent to acceler-
ate the compressor and have a negligible impact on
the thermodynamic transformation operated by the
freezer.

3.3. Model Formulation

A set of mathematical relationships to describe
the physical process to model is formulated. In gen-
eral, refrigeration units, like freezers and fridges,
implement a thermodynamic cycle to accomplish
heat transfer from a cold to a hot reservoir by sup-
plying mechanical work to the system. The freezer
models are derived using the thermal equivalent cir-
cuit (TEC) approach, that considers the tempera-
tures and heat fluxes of a thermal system as volt-
ages and currents of an electric circuit. The pro-
posed models as well as the basic thermodynamic
concepts adopted to derive them are detailed in the
following section. The models are formulated using
stochastic differential equations (SDEs) and contin-
uous time state space representation. In the linear
case, the models are:

dxt = A(θ)xtdt+B(θ)utdt+W (θ)dω (1)

Tk = Cxk + v(θ)ek (2)

with x ∈ Rn as the state vector, u ∈ Rp input
vector, A ∈ Rn×n system matrix, B ∈ Rn×p input
matrix, θ ∈ Rm a vector of m model parameters,
W ∈ Rn×n process noise matrix (diagonal), T the
estimated freezer temperature, C ∈ R1×n output
vector, V ∈ R measurement noise, and where the
subscripts t and k respectively denote continuous
and discrete time quantities. The vector ω is a stan-
dard n-dimension Wiener process, i.e. a continuous

3



time stochastic process with independent normally
distributed increment, while ek is normal Gaussian
noise. Eq. (1) describes the stochastic evolution of
the system, while (2) is the observation equation
and links the model state to the estimated freezer
temperature.

3.4. Maximum likelihood estimation of the param-
eters

The parameters of the candidate model are esti-
mated utilizing CTSM, a system identification soft-
ware library for R that implements maximum like-
lihood estimation (MLE) [11]. In the following,
a general insight on the method is given. For a
comprehensive description into the algorithm, the
reader is referred to [12], and to [13] for an alter-
native modeling application. Given a model in the
form as in (1)-(2), the objective of MLE is to deter-
mine the unknown parameters θ by maximizing the
likelihood of the model getting the observed train-
ing data set. Given a time series of the output
variable (such as the freezer temperature) denoted
as YN = {y0, . . . , yN}, the model likelihood func-
tion is derived starting from the joint probability
density:

L(θ,YN ) = p (YN |θ) , (3)

that can be reformulated as a product of conditional
probability densities, like

L(θ,YN ) =

(
N∏
k=1

p(yk|Yk−1,θ)

)
p(y0|θ), (4)

by applying the chain rule. The output of the
stochastic model is completely characterized in
terms of mean and variance, which are respectively
given as:

ŷk|k−1 = E
[
yk|Yk−1,θ

]
Rk|k−1 = V

[
yk|Yk−1,θ

]
.

(5)

The one step ahead prediction errors of the model,
or model residuals, are defined as the following
scalar sequence:

εk = yk − ŷk|k−1, k = 1, . . . , N, (6)

and the model likelihood function can be reformu-
lated as

L(θ,YN ) =

 k∏
j=1

exp
(

1
2ε

2
jR
−1
j|j−1

)
√

2πRj|j−1

 p(y0|θ), (7)

where the formulation of the zero-mean univariate
Gaussian distribution has been used. The model
parameters are finally found by CTSM through
minimizing the negative logarithm of the likelihood
function:

θo = arg min
θ∈Θ

− L(θ,YN ). (8)

where

L(θ,YN ) = ln(L(θ,YN )) (9)

is called model log-likelihood.

3.5. Model validation through the residuals analysis

This phase consists in evaluating if the freshly
identified model was able to capture all the time dy-
namics contained in the measurements. The model
validation is carried out with the residuals analysis,
that consists in evaluating any correlation in time
of the model residuals (defined in (6)): if a model
is acceptable, the model residuals should not show
any autocorrelation or, in other words, the model
explains all the dynamics in the measurements. A
practical example of model validation is presented
in the next section.

3.6. Model extension and cross validation

If the validation results are not satisfactory, an
alternative model should be formulated by, for ex-
ample, increasing the order of the previous model
or adopting an alternative mathematical descrip-
tion of the process. The extended model parame-
ters should be estimated and validated by reiterat-
ing the steps described in the last two paragraphs.
If the model extension consisted in augmenting the
model order, the following procedure is applied to
test the hypothesis that the model extension is valid
[14]. Given the models A and B respectively with
parameters θ ∈ ΩA ⊂ Rm and θ ∈ ΩB ⊂ Rn (m
and n number of parameters, m < n), and with
ΩA ⊂ ΩB (in other words, the simpler model is con-
tained in the second), we test the null hypothesis
H0 : θ ∈ ΩA against the alternative H1 : θ ∈ ΩB .
The deviance (or likelihood-ratio) for the current
model extension is defined as:

D = 2 (L(θ ∈ ΩB ,YN )− L(θ ∈ ΩA,YN )) (10)

where L is the model log-likelihood as defined in (9).
The Wilk’s theorem states that, under the null hy-
pothesis H0, the deviance (10) converges in law to
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a chi-squared distribution with k−m degree of free-
dom (denoted by χ2(k −m)-distribution). Plainly
from (10), a large deviance is in favor of the ex-
tended model. We use Wilk’s theorem to define an
upper threshold above which the deviance is not
likely to be drawn from the χ2(k−m)-distribution,
indeed giving evidence against the null hypothesis.
More specifically, H0 is rejected at α confidence
level (usually 95%) if the following condition is ver-
ified:

D > Φ−1
k−m(α), (11)

where Φ−1
k−m is the inverse CDF of the χ2(k −m)-

distribution. Equivalently, we can look at the prob-
ability of a new realization (of known distribution
under H0) being larger than the current D, i.e.

p = Pr(x > D), x ∈ χ2(k −m) (12)

that can be reformulated as:

p = 1− Pr(x < D)

= 1− Φk−m(D).
(13)

where Φk−m(D) is the CDF of the χ2(k − m)-
distribution calculated in D and can be deter-
mined, for example, using the Matlab command
chi2cdf(D, k − m). In (13), p is said to be the p-
value. If the p-value is smaller than 1 − α (5%),
the null hypothesis H0 is rejected and the model
extension is considered valid. This procedure acts
as a stop condition of the model extension process.
In fact, an extended model usually performs better
than the original because have a larger number of
parameters, but it should be disregarded if the null
hypothesis is failed to reject. A practical example
of the application of this method will be provided
in Section 4 when cross validating the models.

4. Freezer thermal models

In this section, the identified freezer models are
presented in increasing order of complexity. As ex-
plained in the previous section, models are derived
using the TEC analogy, formulated using stochastic
state space representation, estimated by MLE, val-
idated through the model residuals analysis and, in
case of model extensions, cross-validated to detect
model overfitting. For each model, the mathemat-
ical formulation is presented, while the estimated
parameters of all the models are summarized in Ap-
pendix A.

4.1. Model A (linear first order)

4.1.1. Model formulation

Fig. 3 shows the TEC of Model A. The current
Q represents the heat that is extracted from the
freezer interior. In this and following linear models,
Q is modelled as a function of the measured freezer
power consumption P according to the following
relationship:

Q = P · COP, (14)

where COP denotes the coefficient of performance
of the refrigeration cycle, a dimensionless quantity
that expresses the amount of heat transferred from
the cold to the hot heat reservoir per unit of me-
chanical work supplied to the cycle. It is worth to
note that, in the expression above, the mechani-
cal work is approximated with the electrical power
consumption. Therefore in (14), the COP coeffi-
cient should be regarded as a lumped gain that de-
scribes the coefficient of performance while account-
ing for power conversion losses. The capacitor Ca
represents the global heat capacity of the freezer
thermal mass (i.e. air content, heat exchanger and
freezer envelope) and Va corresponds to the mea-
sured freezer temperature. The electrical current
flowing through the resistance Rw represents the
heat losses through the freezer envelope towards
the environment, that is at the room temperature
Tr. The Kirchoff’s voltage law (KVL) applied to
the circuit in Fig. 3 constitutes the deterministic
skeleton of Model A. With reference to the stochas-
tic state space representation (1)-(2) introduced in
Section 3.3, the model state and input vector are
as:

xT = Va

uT =
[
Tr P

]
,

(15)

where Tr and P are the room temperature and
freezer power consumption from measurements.
The stochastic system matrices are:

A = − 1

CaRw
(16)

B =
[

1
CaRw

−COP
Ca

]
(17)

W = w (18)

C = 1 (19)

where Ca, Rw, COP and w are the model parame-
ters to be estimated. Their MLE-estimated values
are in Table A.6.
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Q

Va

Ca

Rw

−
+

Tr

Figure 3: Model A TEC. The components Ca, Rw, Q and
Tr respectively represent the lumped thermal mass of the
freezer interior, thermal resistance of the envelope, the heat
extracted from the freezer interior and the room at constant
temperature. Va is the model output, i.e. the freezer tem-
perature.

4.1.2. Model residuals analysis

Fig. 4 shows the logarithm of the absolute value
of Model A residuals autocorrelation function. The
logarithm is to allow a clear separation between
small values. Checking for autocorrelation in the
model residuals is of importance to assess whether
the model is able to capture all the dynamics con-
tained in the training data set. This analysis con-
sists in a visual comparison between the autocorre-
lation functions of model residuals and white noise
(uncorrelated by definition). The latter is shown
with the dashed line and should be intended as the
threshold above which the model residuals are cor-
related in time. In the case of Model A, residuals
are significantly correlated, an evidence that indi-
cates poor model performance.
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Figure 4: The autocorrelation of Model A residuals (full line)
and white noise (dashed line).

4.2. Model B (linear second order)

4.2.1. Model formulation

From the measurements, it was possible to ob-
serve a time delay between the activation of the
freezer compressor and initial temperature decay.
This is because the thermal inertia of the freezer
cold heat exchanger, that needs to cool down be-
fore being able to extract heat from the freezer in-
terior. To account for such an effect, Model B has

an additional RC branch with respect to the pre-
vious model. From Fig. 5, the new components Ce
and Re respectively represent the thermal mass of
the heat exchanger and the thermal contact resis-
tance between the exchanger and the rest of the
freezer cold mass. The state and input vectors of
Model B are as

xT =
[
Va Ve

]
uT =

[
Tr P

]
,

(20)

while the stochastic state space matrices are:

A =

[
− 1
CaRw

− 1
CaRe

1
CaRe

1
CeRe

− 1
CeRe

]
(21)

B =

[
1

CaRw
0

0 −COP
Ce

]
(22)

W = diag(w0, w1) (23)

C =
[
1 0

]
(24)

where diag(·) denotes the diagonal matrix with el-
ements as in the argument list. The values of the
estimated parameters are shown in Table A.7.

Q

Ve

Ce

Re
Va

Ca

Rw

−
+

Tr

Figure 5: Model B TEC. The additional RC branch decou-
ples between the thermal masses of the freezer interior and
heat exchanger.

4.2.2. Model identification and validation

As visible from Fig. 6, Model B residuals are
significantly less correlated than in the previous
case. This indicates that the additional state ab-
sorbed a part of the dynamics that were left un-
explained by the previous model. We now ap-
ply the procedure described in 3.6 to validate the
model extension. The deviance (10) calculated us-
ing the log-likelihood values in Table A.6 and A.7 is
D = 10665. The p-value (13) of the current model
extension is very close to zero, indeed below the 5%
threshold. The null hypothesis is therefore rejected
and Model B is considered a valid model.
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Figure 6: The autocorrelation of Model B residuals (full line)
and white noise (dashed line).

4.3. Model C (linear third order)

4.3.1. Model formulation

As shown in Fig. 7 and with respect to the pre-
vious model, an additional state Cw is added to
decouple between the thermal masses of the freezer
envelope and air content. The resistor Ra models
the thermal resistance between the two. Model C
state and input vectors are

xT =
[
Ve Va Vw

]
uT =

[
Tr P

]
,

(25)

while the stochastic state space matrices are as:

A =


−1
CeRe

1
CeRe

0
1

CaRe

−1
CaRa

+ −1
CaRe

1
CaRa

0 1
CwRa

−1
CwRw

+ −1
CwRa

 (26)

B =


0 −COP

Ce

0 0
1

CwRw
0

 (27)

W = diag(w0, w1, w2) (28)

C =
[
0 1 0

]
(29)

Q

Ve

Ce

Re
Va

Ca

Ra
Vw

Cw

Rw

−
+

Tr

Figure 7: Model C TEC. The freezer interior thermal mass
is further decoupled by adding another RC branch.

4.3.2. Model identification and validation

The autocorrelation of Model C residuals in
Fig. 8 further improved with respect to the pre-
vious models, and only a few points are above the
autocorrelation threshold. The deviance of the cur-
rent model extension is D = 7.0. The associated
p-value is 3.0%, that is below the 5% significance
level. The null hypothesis is rejected and Model C
is considered a valid model.
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Figure 8: The autocorrelation of Model C residuals (full line)
and white noise (dashed line).

4.4. Model D (linear fourth order)

4.4.1. Model formulation

As visible from Fig. 9 and in comparison with
Model C, an additional RC branch further decou-
ples between freezer thermal masses. The complete
formulation and the model residuals analysis are
skipped because, as shown in the following para-
graph, the model extension is not significant.

Q

Ve

Ce

Re
Va

Ca

Ra
Vw

Cw

Rw
Vf

Cf

Rf

−
+

Tr

Figure 9: Model D TEC.

4.4.2. Model validation

The deviance of the current model extension is
D = 1.0, that produces a p-value of 61%. As the
p-value is well above the 5% threshold, the null hy-
pothesis cannot be rejected and the model exten-
sion is not valid.
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4.5. Model E (nonlinear third order)

4.5.1. Model formulation

As known, the COP of an ideal refrigeration cycle
is given by the reversed Carnot cycle formula:

COPideal(TH , TC) =
TC + 273

TH − TC
, (30)

where TH and TC are the temperatures in ◦C of the
hot and cold heat reservoir, respectively. In other
words, the refrigeration cycle ability to extract heat
depends on the temperature difference with the ex-
terior. This effect was not considered in the pre-
vious linear models, where the COP was modelled
as a constant coefficient. Model E is a third order
model as Model C where the heat extracted from
the freezer chamber is described by:

Q = P · η · COPideal(Tr, Ve), (31)

where η can be regarded to as the efficiency of the
implemented refrigeration cycle with respect to the
ideal case, and the hot and cold heat reservoirs are
approximated with the room and freezer cold side
temperature. With reference to the stochastic state
space representation (1)-(2), the complete formula-
tion of Model E is as:

xT =
[
Ve Va Vw

]
(32)

uT =

[
Tr P

Ve + 273

Tr − Ve

]
(33)

A =


−1
CeRe

1
CeRe

0
1

CaRe

−1
CaRa

+ −1
CaRe

1
CaRa

0 1
CwRa

−1
CwRw

+ −1
CwRa

 (34)

B =


0 − η

Ce

0 0
1

CwRw
0

 (35)

W = diag(w0, w1, w2) (36)

C =
[
0 1 0

]
(37)

that is nonlinear as the input (33) depends on a
component of the state vector.

4.5.2. Model identification and validation

The autocorrelation of the model residuals is
shown in Fig. 10 and has a similar behavior as
for Model C. Again, only a few components of the
autocorrelation function are above the dotted line,
thus indicating a good overall capacity of Model E

to describe the dynamics contained in the training
data set. The deviance test is not computed be-
cause Model E is not an extension of the previous,
rather it relies on a different mathematical descrip-
tion of the refrigeration process. Nevertheless, it
is worth noting than Model E has a better fitting
than Model C because, although the two have same
number of parameters, Model E achieves a larger
log-likelihood value.
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Figure 10: The autocorrelation of Model E residuals (full
line) and white noise (dashed line).

5. An empirical estimation of the freezer
components thermal characteristics

In this section, we perform a purely empirical es-
timation of the physical values of the main freezer
components. This process should not be meant
as a replacement of the previous grey-box mod-
eling methodology, that is in fact a more general
and powerful tool as parameters are estimated from
measurements, regardless of unknown or approxi-
mative information on the physical characteristics
of the freezer components. Moreover, grey-box
models have the advantage of being tuned on the
specific device to model, a degree of freedom that
is not achievable by first principles based models.
Nevertheless, the analysis proposed in this section is
of importance to verify whether the previously iden-
tified parameters are of reasonable order of magni-
tude and if the circuit components absorbed those
dynamics they were designed for. The estimated
physical characteristics of the main freezer compo-
nents are in Table 1. The thermal capacities are
calculated as

C = M · c, (38)

where M , c respectively denote a mass (calculated
as a volume times the density of the component)
and specific heat capacity. Volumes are estimated
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by measuring the size of the components. In the
case of a non-accessible part, the size was reason-
ably guessed. The thermal resistance of the isola-
tion layer is computed as

R =
1

λ
· t
S

(39)

where λ, t, S respectively denote the thermal con-
ductivity, thickness and lateral surface of the freezer
envelope. Discrepancies can be noted when com-
paring the values in Table 1 with the fitted model
parameters. For example, in the case of Model E,
the value of Ca is approximately 2 orders of magni-
tude larger than the empirically calculated thermal
capacity of the air, and vice-versa in the case of
Ce and the thermal capacity of the heat exchanger.
This indicates that the capacitors of Model E did
not absorbed those dynamics for which it was orig-
inally thought. Rather, Ca is a lumped description
of the thermal mass of several freezer parts. In spite
of this, the total values of the best fitting models
thermal capacity and resistance are with same order
of magnitude as the global empirical, an indication
that the found values of the models parameters are
globally meaningful.

Table 1: Physical properties and empirically estimated char-
acteristics of the freezer main components.

Component Chamber
Isolation

Layer
Heat

Exchanger

Material Air
Polyurethane

foam [15]
Aluminium

Specific heat
capacity c

(J kg−1 K−1)
1000 1500 897

Total mass M
(kg)

0.5 8 10

Thermal
capacity C

(J K−1)
5× 102 5× 103 1× 104

Thermal
conductivity λ
(W m−1 K−1)

– 0.025 –

Thickness t
(m)

– 0.08 –

Lateral
surface S (m2)

– 2.4 –

Thermal
resistance R

(K W−1)
– 1.3 –

6. Models Performance Assessment

Table 2 shows, for each identified model, the
mean and standard deviation of the model residu-
als derived from 20-minute-ahead predictions using

a validation data set. The best performing model
(i.e. smallest residuals bias and standard deviation)
is Model E, while Model A is the worst, thus overall
confirming the model identification results. More-
over, Model D does not show better performance
than Model C, therefore validating the outcome of
the previous inference analysis according to which
the extension to a fourth order linear model was
not statistically significant.

Table 2: Model residuals statistics for 20-minute ahead pre-
dictions with a PRBS validation data set.

Model ē [◦C] σe [◦C]

Model A 0.593 2.8

Model B 0.227 0.91

Model C 0.106 0.60

Model D 0.145 0.74

Model E 0.044 0.45

Table 3 shows the same statistical analysis as in
the previous table, but performed with a validation
data set measured under conventional thermostatic
control for the purpose of highlighting the predic-
tion performance of the models during conventional
operation. Overall, the prediction performance of
the models in increased. This could be explained by
the fact that under thermostatic regime, the tem-
perature of the freezer varies in a smaller range than
in the PRBS case, therefore possible nonlinear ef-
fects due to temperature variations not explained
in the models are reduced.

Table 3: Model residuals statistics for 20-minute ahead pre-
dictions under conventional thermostatic regime.

Model ē [◦C] σe [◦C]

Model B 0.15 0.73

Model C 0.056 0.29

Model E 0.023 0.27

7. Optimizing the power consumption of a
freezer using model predictive control

7.1. Introduction and objective

A paradigm often advocated in the existing liter-
ature to increase the proportion of electricity pro-
duction from renewables is to restore an adequate
level of controllability by giving the possibility of
shifting the consumption of DSRs [16–20]. Elec-
tric heating systems, water heaters and refrigera-
tion units are all loads that, although with different
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levels of flexibility, can be controlled to temporar-
ily defer the consumption thanks to the their ther-
mal mass. Among several algorithms for shifting
the consumption of flexible demand, MPC comes
to prominence as a method to achieve the non dis-
ruptive controllability of individual DSRs through
a consumption incentive signal, like for example a
dynamic electricity price [21, 22] or according to
the availability of renewable production, as done in
[23, 24]. MPC consists in determining the electrical
power consumption trajectory of a DSR that min-
imizes a given penalty function (like the total cost
of the operation) while obeying to consumer com-
fort and operational constraints by implementing a
DSR prediction model.

In this section, we describe an experimental ap-
plication of MPC to achieve a shift in the con-
sumption of the previously described instrumented
freezer. The MPC experiments are carried out im-
plementing several of the freezer presented in Sec-
tion 4, with the main objective being to assess their
performance in a practical application.

7.2. MPC general formulation

The MPC strategy is formulated and actuated
at discrete time intervals of duration d. The in-
dex i denotes the rolling time interval, while k is a
generic discrete time index that rolls over the pre-
diction horizon. The freezer temperature prediction
models, which were formulated in continuous time,
are discretized as shown in Appendix B. The ob-
jective of the MPC formulation is to determine the

sequence P o
i =

[
P oi P oi+1 · · · P oi+N

]
∈ RN+1,

i.e. the freezer power consumption from the current
time instant and for the next N . The formulation
consists of the following optimization problem:

P o
i = arg min

P i∈P

i+N∑
k=i

Pk · ck (40)

subject to:

T k+1 = f(Ti, Pk, Tr,k), k = i, . . . , i+N (41)

Tmin ≤ T k+1 ≤ Tmax, k = i, . . . , i+N (42)

0 ≤ Pk ≤ Pmax, k = i, . . . , i+N, (43)

where f(·) denotes a discrete time freezer model, T
is the expected value of the freezer temperature pre-
diction, Ti is the freezer current temperature (from
measurements), Tr is the room temperature, Tmin,

Tmax define the range where the freezer tempera-
ture is allowed, and Pmax is the maximum power
consumption of the freezer. As shown in Appendix
B, freezer linear models lead to convex optimiza-
tion problems because the inequality in (42) can
be written as a linear function of the decision vec-
tor. As known, convexity is an appealing property
for optimization problems because it is a sufficient
condition for the uniqueness of the solution. Said
otherwise, if a solution to the problem exists, it
is the global optimum. Moreover, there exist effi-
cient algorithms to solve convex optimization prob-
lems. On the contrary, the optimization problem
of the MPC with the nonlinear freezer model is
nonconvex. This aspect will be further addressed
when presenting the experimental results. Said in
words, the optimization problem in (40)-(43) seeks
for the freezer power consumption trajectory that
minimizes the penalty function while respecting the
following operational constraints:

• keeping an adequate temperature level to pre-
serve food quality according to the consumer
preferences. According to food storage regu-
lation [25, 26], freezer temperature should be
regulated at −18 ◦C, although temperatures
in the range from −22 to −28 ◦C are indi-
cated to achieve longer storage periods. In
this case, the temperature bounds are chosen
as Tmin = −27 ◦C and Tmax = −18 ◦C.

• the freezer power consumption during the on
phase of the compressor is modelled as a con-
stant term, and it is limited by the maximum
power absorption of the freezer, roughly 68 W.
We recall from Section 2 that the compressor
can be only on-off controlled. Therefore, we
use the following procedure to turn the real
scalar power consumption set-points of (40)
into a sequence of on/off pulses of period d:

τon,k =
Pk
Pmax

d, k = i, · · · , i+N (44)

where τon is the duration in second of the on
phase. In other words, Eq. (44) performs a
pulse width modulation (PWM) to translate
the MPC power set-point into an on-off sig-
nal that, over the period d, delivers an equal
amount of electricity. The ratio τon,k/d is
called duty cycle. This formulation is conve-
nient because it does not require to formulate
the optimization problem as a mixed integer
programming problem.
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The sequence ci, . . . , cN in (40) is a virtual elec-
tricity price that must be known in advance for
the whole length of the optimization period. In
this case, it is chosen as a step signal to allow
for evaluating the amount of freezer consumption
that the MPC can shift in view of an increase in
the electricity price. The constant coefficient N in
(40) determines the length of the look-ahead hori-
zon. The electricity that can be virtually stored
in the freezer is given by the amount of consump-
tion that is shifted while respecting the temperature
constraints. Therefore, N should be chosen larger
than the time that the freezer temperature takes to
go from the upper to the lower bound or, in other
words, larger than the time required to saturate the
storage capacity. As highlighted in [27, p. 36], it is
worth noting that the formulation (40)-(43) does
not react to stepwise decreases of the price signal.
In the case such a functionality is of interest, one
should considered to implement a quadratic cost
function to penalize deviation from a given temper-
ature set-point.

i = 0, Initialize model

Read the virtual electricity price

Read freezer temperature and up-
date model state with KF/EKF

Solve the optimization problem
in the horizon i to i + N

Actuate the first decision of the
MPC control law using PWM

Wait for d second

i = i + 1

Figure 11: Flow chart of the MPC experiment illustrating
the receding horizon policy.

7.3. On the actuation of the MPC law

As is usually the case, the MPC action is ac-
tuated in a receding horizon way, meaning that, at
each time interval, the state vector of the prediction
model is updated using the last available measure-
ments from the freezer, the optimization problem is
solved and the first portion of the MPC control law

is applied. A diagram summarizing the complete se-
quence of events performed during the experiments
is shown in Fig. 11. At the initial stage, the pre-
diction model is initialized with the latest freezer
temperature measurement (steady state conditions
are assumed). Then, at each iteration of the reced-
ing horizon cycle, the virtual electricity price for the
next N periods is acquired, as well as the current
temperature measurement. The latter information
is used to update the state of the prediction model
by a using a Kalman filter (KF). The prediction
stage of the KF consists in determining the model
state and covariance matrix evolution as:

x̂k|k−1 = Adx̂k−1|k−1 +Bduk−1 (45)

Pk|k−1 = AdPk−1|k−1A
T
d +WWT , (46)

where Ad, Bd are the linear discrete state space
model matrices (derived in Appendix B), C is the
output vector and W is the noise process matrix
determined in the parameters estimation process.
The Kalman gain is

K = Pk|k−1C
T
(
CPk|k−1C

T + v2
)−1

, (47)

where v is the measurement noise (also known from
the parameters estimation). Once the new mea-
surement yk is available, the state prediction is up-
dated as:

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (48)

Pk|k =
(
P−1
k|k−1 + CT v−1C

)−1

. (49)

Instead, in the case of Model E, the extended
Kalman filter is used. The state prediction is per-
formed as:

x̂k|k−1 = f(x̂k|k, Pi, Tr,i) (50)

using the discretized version of the nonlinear model
in (32)-(37). The state covariance matrix, KF gain
and update steps are performed using the equations
(46)-(49) as in the previous case, but Ad is now as:

Ad =
∂f

∂x

∣∣∣∣
xk−1|k−1,uk−1

, (51)

namely the first order Taylor expansion of the
model with respect to the state vector. Finally from
Fig. 11, once the model is updated, the optimiza-
tion problem is solved in order to determine the
optimal control law P o

i . Then, the decision P oi for
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the current instant of time is extracted and actu-
ated in the PWM sense (Eq. (44)) by regulating the
on-off timing of the controllable freezer power plug.
A further consideration concerns the implementa-
tion of temperature soft constraints in the optimiza-
tion problem. In fact, in the formulation (40)-(43),
the freezer temperature is strictly allowed only in
a well determined range. If the temperature hard
constraint (42) is not satisfied (for example at the
time instant i + 1 because unmodelled system dy-
namics, noise or consumer behavior), the optimiza-
tion problem is unfeasible, causing a failure of the
control system. It is therefore convenient to add
to (40)-(43) a sequence of positive slack variables
s ∈ RN+1 to relax the constraints:

{P o
i , s

o
i } = arg min

{P i,si}∈Ω

(
N∑
k=i

Pk · ck + bk · sk

)
(52)

subject to:

T k+1 = f(Ti, Pk, Tr,k), k = i, . . . , i+N (53)

T k+1 ≤ Tmax + sk, k = i, . . . , i+N (54)

T k+1 ≥ Tmin − sk k = i, . . . , i+N (55)

sk ≥ 0 k = i, . . . , i+N (56)

0 ≤ Pk ≤ Pmax, k = i, . . . , i+N, (57)

where bk for k = i + 1, . . . , i + N are coefficients
that should be chosen much larger than ck. In this
way, deviations from the optimal temperature range
are allowed but not convenient because they are
strongly penalized in the cost function. A final as-
pect regards the actuation of the PWM signal and
the on/off transitions of the freezer, which are of
concern as can affect the lifetime of the compressor
relay. Although no explicit policy for limiting the
number of transitions was formulated in the MPC,
we put in place the following two mechanisms to
reduce it:

• each second cycle of the PWM control signal
is horizontally flipped, as depicted in Fig. 12.
This allows to reduce from 2 to 1 the number
of transitions per cycle;

• on or off PWM pulses with duration shorter
than 10 second are ignored. For example, if
a given PWM period has a duty cycle shorter
than 10 s, the cycle is considered as it was fully
off, and vice-versa.

Since the PWM and transformations described
above, the control trajectory that is finally actu-
ated is an approximation of the original MPC law.

This might lead to violate the temperature con-
straints during the actuation period that, however,
can be chosen small enough to make them negligi-
ble. Eventual prediction and actuation errors are
absorbed by the receding horizon formulation and
are taken into account in the following actuation
period. Another source of error that impacts the
optimality of the actuated control law is the non
null computation time required to solve the opti-
mization problem. In fact, while the solver is com-
puting the freezer state is left unaltered with re-
spect to the previous receding horizon cycle; as the
length of the receding horizon cycle (d, 120 s) must
be hardly met, the correct timing of the PWM cycle
is compromised, especially if the computation time
extends for too long. For example, considering the
freezer on from the previous cycle, a computation
time of 20 s and τon,k = 0 s, the finally actuated
duty cycle would be 0.16 instead of 0.

0 1d 2d 0 1d 2d

Figure 12: The PWM signal before (left) and after (right)
flipping horizontally the second cycle of the period. This
allows to halve the total number of on/off transitions.

7.4. MPC experimental results

This section presents the results of a consumption
shifting experiment using a MPC-controlled domes-
tic freezer. The objective of the experiment is to
assess in practice the performance of the power-to-
temperature freezer prediction models, thereby ad-
dressing the model selection process also from the
application perspective. We compare the perfor-
mance of three different predictions models, namely
Model B, Model C and Model E. The three resulting
MPC setups are respectively referred to as MPC-B,
MPC-C and MPC-E. The sample time d is 120 s,
and N is 270, that corresponds to an optimization
horizon length of 5 hour. Each MPC experiment
lasts for 6 hours. As for the identification exper-
iments, consumer behavior is not considered, i.e.
the freezer content stays unchanged and the door
is closed. To assure equal conditions during the ex-
periments, the room temperature was regulated to
23 ◦C.

The virtual electricity price (implemented in
the MPC cost function by the sequence ck, k =
i, . . . , i + N ) is shown in Fig. 13. Considering the
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Figure 13: The virtual electricity price.

MPC formulation (i.e. penalty function linear in
the consumption and freezer temperature allowed
in a given range), the expected behavior is that the
freezer will reach the lowest allowed temperature
before the larger value of ck in order to decrease
as much as possible the consumption of expensive
electricity. Fig. 14 compares the receding horizon
power consumption trajectory as determined by the
MPC and the actuated freezer power consumption
averaged on a 120 second interval. The difference
between the two profiles is due to the fact that the
freezer consumption is, as mentioned in Section 7.2,
modelled as a constant term, while in the real case
it depends on the absorption of the induction mo-
tor. Fig. 15 shows the freezer power consumption
measurements (at 10 s resolution) and the respec-
tive average calculated on a 120 second time inter-
val. In the former profile, the effect of the PWM is
evident. Fig. 16 shows the freezer temperature as
measured during the experiments. As can be seen
from Fig. ??, MPC-C is close to reach the lowest
temperature (−26.53 ◦C while the limit is −27 ◦C)
just before the release of the large virtual electricity
price. This evidence indicates that the controller is
able to exploit nearly all the storage capacity al-
lowed by the MPC setup.

In order to formally compare the performance of
the different MPC setups, we use the following three
metrics:

m0: the value of the MPC cost function (52) evalu-
ated, for each experiment, considering the ac-
tuated consumption profile and measured tem-
perature.

m1: amount of electricity shifted (or virtual stor-
age capacity), evaluated as the nominal power
of the freezer times the duration between the
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Figure 14: The MPC-C power consumption control law and
the actuated freezer power consumption averaged on a 2
minute interval.
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Figure 15: The real-time freezer power consumption (sam-
pled at 10 s) and the average on a 2 minute interval during
a portion of the MPC-C experiment.
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instant of time when the larger value of the vir-
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tual electricity price is triggered until when the
freezer temperature reaches the upper thresh-
old;

m2: distance from the upper temperature limit
when the upper bound constraint is violated
on the duration of the experiments in number
of discrete time steps L. Formally it is as:

m2 =
∑ 1

L
vk (58)

where

vk =

{
0, Tk <= Tmax

Tk − Tmax, Tk > Tmax

, (59)

for k = 0, . . . , L− 1;

m3: maximum violation of the temperature upper
bound constraint (Tmax).

The metrics calculated for the MPC experiments
are summarized in Table 4. The metrics m0 and
m1 are in favor of MPC-C, meaning that it achieves
the lowest cost of operation and largest shift of con-
sumption. As far as the temperature comfort met-
rics are concerned, the MPC-B achieves the small-
est violation of the upper temperature bound con-
straint (m3), although MPC-C has the lowest av-
erage violation (m2). Nonlinear Model E, that had
the best prediction performance in the previous sec-
tion, does not perform well in the respective MPC
setup. This is to ascribe to the fact that the ac-
tuated control law is strongly suboptimal. Even if
nonconvex optimization algorithm for global opti-
mum search are available (like PSO or genetic algo-
rithms), they have been not considered because the
associated computational burden is relevant. More-
over, considering the experimental results, it can
be said that implementing complex nonconvex al-
gorithm is not justified by the performance of the
MPC-C that, as discussed while describing Fig. 16,
is already able to exploit nearly all the flexibility of
the freezer while showing overall a good capability
of satisfying freezer constraints. Another solution,
that however has not been attempted in the pro-
posed experiments for the same reason explained
above, could consists in formulating a convex opti-
mization problem by linearizing nonlinear Model E
as similarly done for the state estimation in the ex-
tended Kalman filter.

In addition to the proposed metrics, Table 5 re-
ports the average computation time required to de-
termine the MPC solution (single thread process

Table 4: Summary of MPC Performance metrics.

Implemented
Model

m0

(cost)
m1

(Wh)
m2

(◦C)
m3

(◦C)

MPC-B 1.7 × 105 52.1 0.06 0.43

MPC-C 1.5 × 105 74.8 0.04 0.68

MPC-E 2.0 × 105 38.5 0.39 1.29

on an Intel i7 2.10 GHz) and the round trip stor-
age efficiency, calculated as the ratio between the
amount of electricity invested to reach the freezer
lower temperature and the one that is harvested.
As expected, the computation time for linear mod-
els is lower than for the nonlinear case, that requires
to solve a nonconvex optimization problem. The
round trip efficiency of MPC-C is the lowest be-
cause, by achieving a lower temperature, thermal
losses are increased.

Table 5: Additional performance metrics.

Implemented
Model

Computation
time (s)

Round trip
efficiency

MPC-B 4.5 82%

MPC-C 5.7 51%

MPC-E 21.6 54%

8. Conclusions and perspectives

We described the application of grey-box mod-
eling to identify suitable power consumption-to-
temperature models of a domestic refrigeration us-
ing experimental measurements from an instru-
mented 333 liter freezer. Consumer behavior was
not considered at this stage. Models were formu-
lated using stochastic differential equations (SDEs)
and identified used maximum likelihood estimation
(MLE). The proposed models were validated by
checking the model residuals correlation, and model
extensions were cross-validated to detect model
over-fitting. Among the presented linear models,
it has been shown that a third order model is able
to capture nearly all the dynamics contained in the
measurements. While the extension to a fourth or-
der linear model was not justified by statistical ev-
idence, it was shown that implementing a nonlin-
ear description of the reverse Carnot cycle leads to
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a marginal improvement of the model prediction
performance. As the modeling effort was framed
within the context of intelligent energy strategies
for demand side management, the second part of
the paper is devoted to assessing the models per-
formance in a demand response experiment. It
consisted in quantifying the virtual storage action
that a freezer can achieve using model predictive
control (MPC) and the prediction models previ-
ously identified. From the experiments, it emerged
that the third order linear model was able to har-
vest nearly all the flexibility inherent the freezer
operation. Also, it was seen that the mathemat-
ical formulation plays in favor of linear models
because they result in convex optimization prob-
lems that are tractable and efficient to solve. In
the best performing experiment, a virtual storage
capacity equivalent to 75 Wh of electrical energy
with a round trip efficiency of 51% was measured.
Although consumer behavior was not considered
in the experiments, these figures already give an
overview on the amount of storage capacity that is
possible to harvest from the freezer operation in
an ideal condition. Considering the low specific
energy density, further studies should be devoted
to asses the cost-benefit of the potential deploy-
ment of freezer-based demand response programs,
therefore with an economic assessment of the cost
for the hardware necessary to achieve flexible op-
eration. Phase change materials (PCMs), which
have been proven to enhance storage capacity [28],
should be indeed considered in future identification
and MPC experiments. Another challenging aspect
regards the identification of consumer behavior (in
terms of both additional food load, that might con-
tribute to increase storage performance, and door
opening that could cause a quick drop of achieved
storage level), that is relevant for estimating the
freezer flexibility in a real operating scenario. In
this context, the proposed grey-box freezer models
could be used as a backbone where to plug models
of the consumer behavior. The latter kind of mod-
els might rely on completely different modeling ap-
proaches (e.g. pattern recognition techniques) and
can use the former as an interface for the physi-
cal heat transfer principles. Overall, this strategy
would result in a model-based approach and could
be compared with model-free techniques (such as in
[29]).

Appendix A. Identified Model Parameters

Tables A.6-A.10 shows the identified model pa-
rameters.

Table A.6: Model A identification summary.
Parameter Unit Value σ

Ca J K−1 2.99× 103 5.00× 104

Rw K W−1 5.69× 10−1 7.50× 10−1

α – −4.54 7.0× 10−3

COP – 3.01× 10−1 6.07× 10−3

log-likelihood value 19833.1 -

Table A.7: Model B identification summary.
Parameter Unit Value σ

Ca J K−1 9.74× 103 2.12× 103

Ce J K−1 2.28× 103 1.67× 102

Re K W−1 9.74× 10−2 7.03× 10−3

Rw K W−1 9.93× 10−1 1.80× 10−1

α0 – −1.36× 101 2.76

α1 – −2.59 1.45× 10−1

COP – 1.04 1.87× 10−1

log-likelihood value 25165.4 –

Table A.8: Model C identification summary.
Parameter Unit Value σ

Ca J K−1 4.76× 103 2.45× 103

Ce J K−1 1.05× 103 8.37× 102

Cw J K−1 8.11× 103 4.60× 103

Ra K W−1 4.97× 10−1 2.82× 10−1

Re K W−1 1.12× 10−1 8.14× 10−2

Rw K W−1 1.28 7.20× 10−1

α0 – −8.31 1.7× 10−2

α1 – −6.83 3.8× 10−2

α2 – −3.15 2.6× 10−1

COP – 7.68× 10−1 1.65× 10−1

log-likelihood value 25168.9 –

Table A.9: Model D identification summary.
Parameter Unit Value σ

Ca J K−1 1.25× 104 2.02× 103

Ce J K−1 1.22× 103 2.63× 103

Cw J K−1 5.23× 103 1.63× 103

Cf J K−1 3.94× 103 8.60× 104

Ra K W−1 4.81× 10−1 1.17× 10−5

Re K W−1 1.12× 10−1 1.90× 10−1

Rw K W−1 6.25× 10−1 9.34× 10−2

Rf K W−1 1.08 1.92× 10−1

η – 5.38× 10−1 2.97× 10−1

α0 – -7.20 1.1× 10−1

α1 – -3.66 3.4× 10−2

α2 – −1.1× 101 2.2× 10−2

log-likelihood value 25169.9 –
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Table A.10: Model E identification summary.
Parameter Unit Value σ

Ca J K−1 1.25× 104 3.80× 10−1

Ce J K−1 1.22× 103 1.03× 102

Cw J K−1 8.30× 103 1.59× 102

Ra K W−1 1.61× 10−1 8.66× 10−5

Re K W−1 1.47× 10−1 8.49× 10−4

Rw K W−1 6.32× 10−1 3.53× 10−3

η – 5.67× 10−1 2.97× 10−1

α0 – -7.20 1.1× 10−1

α1 – -3.66 3.4× 10−2

α2 – −1.1× 101 2.2× 10−2

log-likelihood value 25187.6 –

Appendix B. Formulation of the MPC op-
timization problem

Freezer linear models

The discretized version of the linear continuous
time stochastic state space model (1) can be ex-
pressed as:

xi+1 = Adxi +Bdui +Wωi, (B.1)

with

Ad = Ad+ In×n (B.2)

Bd = Bd (B.3)

where d is the sampling time and the other symbols
are as defined in Section 3.3. The observation equa-
tion is as in (2). For the moment, we shall assume
that u = P and B ∈ Rn. We will extend to the
multi-input case later. The expected value of the
vector state for i = 0 is as:

x1 = Adx0 +BdP0. (B.4)

Therefore, the evolution for i = 2 is as:

T 2 = C
(
Adx1 +BdP1

)
. (B.5)

Replacing the second last expression in the last
yields to:

T 2 =CAd
(
Adx0 +BdP0

)
+ CBdP1. (B.6)

Iterating until the time instant N finally gives:

TN =CANd x0 + CAN−1
d BdP0 + · · ·+ CBdPN−1.

(B.7)

Denoting the sequences [T 1, . . . , TN ]T ,
[P0, . . . , PN−1]T with T and P respectively,
the expression above can be reformulated using the
matrix product notation as:

T = Φx0 + Θ(B)P , (B.8)

where

Φ =
[
CAd · · · CANd

]T
(B.9)

Θ(B) =


CAdBd 0 · · · 0

...
...

. . .
...

CANd Bd CAN−1
d Bd · · · CBd

 .
(B.10)

In the multiple input case, for example as in the
case with freezer where Bd ∈ Rn×2 = [Bd,0, Bd,1]
and uT = [P, Tr], the expected value of the state
vector is as:

xi+1 = Adxi +Bd,0Pi +Bd,1Tr,i (B.11)

and the system output can be therefore expressed
as:

T = Φx0 + Θ(B)P + Θ(E)v, (B.12)

i.e. adding the input and the respective transition
matrix Θ(E). Eq. (B.12) can be used to express
the inequality constraints in (42). Finally, the op-
timization problem (52)-(57) can be expressed in a
standard convex form as:

{P o, so} = arg min
{P ,s}∈Ω

(
P T c+ sT c

)
(B.13)

subject to:

Φx0 + Θ(B)P + Θ(E)v ≤ Tmax (B.14)

−Φx0 −Θ(B)P −Θ(E)v ≤ −Tmin (B.15)

P ≤ Pmax (B.16)

−P ≤ 0 (B.17)

−s ≤ 0 (B.18)

that can be solved for example using the linprog
function in Matlab.

Freezer nonlinear model

The discretized version of the nonlinear model is
obtained in the same way as for the linear models.
However, in this case the coefficient Bd will depend
on the state variable. When iterating the time ex-
pansion as previously done to determine (B.8), the
temperature evolution is not a linear function of
the decision vector P anymore. This leads to a
nonconvex optimization problem. The final prob-
lem is formulated as in (52)-(57) and solved using
the Matlab function fmincon.
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