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Abstract

Visual cryptography, first introduced by Naor and Shamir, allows a secret (black

and white) image to be encoded and distributed to a set of participants such that

certain predefined sets of participants may reconstruct the image without any com-

putation. In 2000, Blundo, De Santis, and Naor introduced a model for grey-level

visual cryptography which is a generalization of visual cryptography for general

access structures. Grey-level visual cryptography extends this model to include

grey-scale images. Decoding is done by the human visual system.

In this thesis we survey known results of grey-level visual cryptography and

visual cryptography for general access structures. We extend several visual cryp-

tography constructions to grey-level visual cryptography, and derive new results on

the minimum possible pixel expansion for all possible access structures on at most

four participants.
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Chapter 1

Introduction

Visual cryptography is a method of sharing a secret image among a group of par-

ticipants, where certain groups of participants are defined as qualified and may

combine their shares of the image to obtain the original, and certain other groups

are defined as forbidden and even if they combine knowledge about their parts,

cannot obtain any information on the secret image. The image is composed of

black and white pixels. To encrypt, each pixel is divided into m subpixels, and for

each pixel in the secret image, each participant is given m subpixels, some of which

are black and some of which are white. These subpixels are so small that the eye

averages them to some shade of grey. Each participant’s share of the image can

be thought of as a transparency with a mixture of black and white subpixels. To

combine shares, participants simply stack their transparencies.

Visual cryptography is interesting because decryption requires no computation,

but instead is done by the human visual system. The image reconstructed by

combining shares of a qualified group of participants is not identical to the secret
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image. The pixels of the secret image that were white are a lighter shade of grey

than the pixels of the image that were black, and the difference in the darkness

of the black and white pixels is a parameter called contrast. Ideally, we want the

contrast to be high so that it is easy to differentiate the black and white areas.

Originally, visual cryptography was restricted to black and white images. While

black and white images are sufficient for data such as scanned text documents,

black and white pictures are typically represented in grey scale. To represent these

images, it is necessary to generalize the visual cryptography schemes (VCS) for

black and white images to grey levels (GVCS, or grey level visual cryptography

schemes). In grey level visual cryptography, there are a specified number of grey

levels g. Each pixel is again divided into m subpixels which are either black or

white. As in visual cryptography, these are so small that the human eye averages

them to some shade of grey. The reconstructed image is not identical to the secret

image. Each grey level, 0 ≤ i < g, corresponds to some range of shades of grey,

with the lowest grey levels being the lightest and the highest grey levels the darkest.

As in visual cryptography, there is a concept of contrast, but in grey level visual

cryptography there is a set of contrast parameters corresponding to each adjacent

pair of grey levels. Again, we want the contrast to be as large as possible, to make

it easier to differentiate between two adjacent grey levels.

An access structure on a set of participants P is a pair of sets, one consisting

of all qualified sets of participants and the other consisting of all forbidden sets of

participants. The most common and significant type of access structure is what is

known as a threshold access structure. Assuming that the total number of partic-
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ipants is n, a threshold structure is an access structure where any group of k or

more participants is qualified and may reconstruct the secret, and any group of less

than k participants is forbidden and has no information on the secret. These access

structures are denoted as (k, n)-VCS ((k, n)-GVCS respectively). In this thesis, we

will adapt a known technique for constructing an optimal (t, t)-VCS to construct an

optimal (t, t)-GVCS. We will also extend a technique for constructing (k, n)-VCS

(using an optimal (t, t)-VCS) to construct (k, n)-GVCS (Theorem 3.4).

While not as significant as threshold access structures, general access structures

are also interesting. We will present two constructions for general access structures,

both based on constructions for VCS. The first is called the cumulative array con-

struction (Theorem 3.2), which utilizes a cumulative mapping and a (t, t)-threshold

GVCS to construct the GVCS for the general access structure. The second is called

the decomposition construction (Theorem 3.3). This construction breaks down the

access structure into smaller access structures for which a GVCS is known, and

combines the schemes to obtain a GVCS for the original access structure.

Finally, we will extend the results of Atienese, Blundo, De Santis, and Stin-

son [1], which give the optimal pixel expansion for access structures on four partic-

ipants, to the GVCS model. In order to accomplish this, we will obtain a variety

of theoretical results. We begin by showing that we do not need to consider access

structures which are not connected (Theorem 4.4), that is, which can be considered

as two separate access structures. We also do not need to consider access structures

which contain isolated participants (Lemma 4.1), i.e., participants which can obtain

the secret alone. We then prove some important results regarding unavoidable pat-
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terns, which are submatrices that must be present in the matrices of a GVCS for a

given access structure. We use these to prove results about access structures which

are based on graphs. The most significant result is one which gives the optimal pixel

expansion for access structures arising from complete multipartite graphs (Theo-

rem 4.16). We also use unavoidable patterns to give a lower bound on the pixel

expansion for threshold access structures (Theorem 4.13). Finally, we give some

special results on certain access structures (Theorem 4.17 and Theorem 4.18), and

an upper bound for any GVCS for which a basis matrices construction is known

for the corresponding VCS (Theorem 4.19).
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Chapter 2

Background

2.1 Threshold VCS

Visual cryptography was first introduced by Naor and Shamir [6] in 1994. In their

paper, they address the idea of visual cryptography for threshold structures. They

assume that the image is composed of black and white pixels, and each pixel is

encrypted separately. Each pixel of the image appears in the n shares distributed

to the participants. It is divided into m subpixels, either black or white, which are

sufficiently small and close that the eye averages them to some shade of grey. We

can represent this with an n × m matrix: S[i, j] = 1 if and only if the jth subpixel

in the ith share is black. When the shares are combined, the perceived grey level is

proportional to the number of ones in the boolean OR of the m-vectors representing

the shares of each participant.

The black and white areas of the image are determined by a rule of contrast

based on three variables: a threshold value, a relative difference, and the number
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of subpixels (referred to as the pixel expansion). We use:

• t to denote the threshold value;

• α to denote the relative difference;

• m to denote the pixel expansion.

The threshold value is a numeric value for the point at which black areas are distinct

from white. The value α · m is the contrast, which we want to be as large as

possible. We require that α · m ≥ 1 to ensure that the black and white areas will

be distinguishable.

We give the following definition of a threshold VCS, by Naor and Shamir [6].

The phrasing is taken directly from Atienese, Blundo, De Santis, and Stinson [1].

We use OR V to denote the boolean operation OR of a set of vectors with result

V . The Hamming weight w(V ) is the sum of the elements in a boolean vector V

(alternatively, the number of 1’s in V ).

Definition 2.1 A (k, n)-VCS consists of two collections of n×m matrices C0 and

C1. To share a white (respectively black) pixel, the dealer randomly chooses one

of the matrices in C0 (C1). The chosen matrix defines the color of the m subpixels

in each of the n transparencies. The collections C0 and C1 must have the following

properties:

1. For any S ∈ C0, the OR V of any k of the n rows satisfies w(V ) ≤ t − α · m.

Similarly, for any S ∈ C1, the OR V of any k of the n rows satisfies w(V ) ≥ t.
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2. For any subset {i1, i2, . . . , iq} of {1, 2, . . . , n} with q < k, the two collections

of q×m matrices Dt for t ∈ {0, 1} obtained by restricting each n×m matrix

in Ct to rows i1, i2, . . . , iq are indistinguishable in the sense that they contain

the same matrices with the same frequencies.

The first property of Definition 2.1 refers to the contrast of the scheme. The

second refers to the security of the scheme, guaranteeing that if there are less than

k parties, they will not be able to obtain any information on the secret image.

Naor and Shamir [6] also give a construction for a (k, k)-VCS which is optimal

with respect to the pixel expansion m and prove its optimality. They construct the

VCS as follows:

Consider a ground set W = {e1, . . . , ek} of k elements and let π1, . . . , π2k−1 be

a list of all the subsets of W with even cardinality and let σ1, . . . , σ2k−1 be a list of

all the subsets of W with odd cardinality. Each list defines the following k × 2k−1

matrices S0 and S1: For 1 ≤ i ≤ k and 1 ≤ j ≤ 2k−1, let S0[i][j] = 1 iff ei ∈ πj and

S1[i][j] = 1 iff ei ∈ σj.

The collections C0 and C1 are obtained by permuting the columns of S0 and S1

in all possible ways. This scheme has α = 1/2k−1 and m = 2k−1. Naor and Shamir

go on to show that these values are optimal with respect to the pixel expansion for

a (k, k)-VCS.

There is a simpler way to describe this construction. We can consider S0 to

consist of the boolean k-bit vectors with even Hamming weight and S1 to consist

of those with odd Hamming weight. Again, the collections C0 and C1 are obtained

by permuting the columns of these matrices in all possible ways.
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As in the above construction, it is frequently possible to use a single matrix

to represent each collection, where the collection is generated by permuting the

columns of the corresponding matrix in all possible ways. Such a matrix is called a

basis matrix, and all the visual cryptography schemes we will be using in this thesis

are represented using basis matrices. Basis matrices are advantageous because

they are both easier to construct and provide a more concise representation of the

scheme. In the optimal (k, k)-VCS construction above, S0 and S1 are the basis

matrices. When discussing this construction we will generally refer to the basis

matrices S0 and S1 instead of the collections C0 and C1.

2.2 VCS for General Access Structures

Research in visual cryptography has been largely focused on threshold access struc-

tures. However, general access structures are also interesting, and require a new

definition of the model. We use the definition given by Atienese, Blundo, De Santis,

and Stinson [1].

2.2.1 The model

Let P = {1, . . . , n} be a set of n participants. Let ΓQual ⊆ 2P be the set of qualified

sets of participants, and ΓForb ⊆ 2P be the set of forbidden sets of participants.

Clearly we want ΓQual ∩ ΓForb = ∅, as the same set of participants cannot be both

qualified and forbidden. The pair (ΓQual, ΓForb) is called an access structure for P.

For A ⊆ 2P , we say that A is monotone increasing if for any B ∈ A and any C ⊆ P
such that B ∩C = ∅, we have B ∪C ∈ A. We say that A is monotone decreasing if
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for any B ∈ A and any C ⊆ B we have that B \ C ∈ A. In the case where ΓQual is

monotone increasing, ΓForb is monotone decreasing, and ΓQual ∪ ΓForb = 2P , we say

the access structure is strong. We define Γ0 = {A ∈ ΓQual : A′ /∈ ΓQual ∀A′ ⊂ A}.
We say that Γ0 is a basis. In a strong access structure, ΓQual is the closure of Γ0.

We also need to define essential and non-essential participants. A participant i

is essential if there exists a set X ⊆ P such that X /∈ ΓQual but X ∪ {i} ∈ ΓQual.

We also say that i is strongly essential if X ∈ ΓForb and X ∪ {i} ∈ ΓQual. A

participant i is non-essential if there does not exist a set X such that X /∈ ΓQual

but X ∪ {i} ∈ ΓQual.

We first define VCS in terms of collections of matrices. This definition is taken

nearly verbatim from Atienese, Blundo, De Santis, and Stinson [1].

Definition 2.2 Let (ΓQual, ΓForb) be an access structure on n participants. The

collections of n×m Boolean matrices C0 and C1 are a visual cryptography scheme

with pixel expansion m if there exists values α(m) and sets {X, tX}X∈ΓQual
satisfy-

ing:

1. Any X = {j1, . . . , jp} ∈ ΓQual can recover the shared image by combining

their shares. Formally, for any M ∈ C0, the OR V of rows j1, . . . , jp satisfies

w(V ) ≤ tX − α(m) · m; whereas for any M ∈ C1 we have that w(V ) ≥ tX .

2. Any X = {j1, . . . , jp} ∈ ΓForb has no information on the shared image. For-

mally, the collections of p × m matrices D0 and D1 obtained by restricting

each n×m matrix in C0 and C1 to rows j1, . . . , jp are indistinguishable in the

sense that they contain the same matrices with the same frequencies.
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As in Definition 2.1 the first property ensures that the participants will be able

to distinguish the black and white pixels, and the second property ensures the

security of the scheme.

Note that the threshold t in Definition 2.1 is the same for any choice of k

participants. In Definition 2.2, we allow the threshold to vary with the choice of

participants X and denote it by tX .

Since all the constructions we will be working with use basis matrices, we will

rewrite our definition in terms of basis matrices. When proving that a construction

works, this is the definition we will refer to. This definition is also taken nearly

verbatim from Atienese, Blundo, De Santis, and Stinson [1].

Definition 2.3 Let (ΓQual, ΓForb) be an access structure on n participants. The

Boolean matrices S0, S1 are a visual cryptography scheme with pixel expansion m

if there exists values α(m) and sets {X, tX}X∈ΓQual
satisfying:

1. If X = {j1, . . . , jp} ∈ ΓQual then the OR V of rows j1, . . . , jp of S0 satisfies

w(V ) ≤ tX − α(m) · m; whereas for S1 we have that w(V ) ≥ tX .

2. If X = {j1, . . . , jp} ∈ ΓForb then the p × m matrices obtained by restricting

S0, S1 to rows j1, . . . , jp are equal up to a column permutation.

We obtain the collections C0, C1 by permuting the columns of S0, S1 in all

possible ways.
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2.2.2 Constructions

Using this definition, Atienese, Blundo, De Santis, and Stinson [1] provide various

constructions. Of particular interest are the cumulative arrays, decomposition, and

starting matrices constructions.

A Cumulative Arrays Construction

Let (ΓQual, ΓForb) be a strong access structure on P = {1, . . . , n}, and let ZM =

{B ∈ ΓForb : B ∪ {i} ∈ ΓQual ∀i ∈ P \ B} be the set of all maximal forbidden sets.

Let ZM = {F0, . . . , Ft−1}. The cumulative array is a |P| × |ZM | boolean matrix

such that CA[i, j] = 1 if and only if i /∈ Fj.

Let Ŝ0 and Ŝ1 be the basis matrices of a (t, t)-VCS. We use the cumulative

array CA to construct the basis matrices S0, S1 from Ŝ0 and Ŝ1. For any fixed

i let ji,1, . . . , ji,gi
be the integers j such that CA[i, j] = 1. The ith row of S0 (S1

respectively) consists of the OR of rows ji,1, . . . , ji,gi
of Ŝ0 (Ŝ1 respectively).

A Decomposition Construction

The decomposition construction uses smaller access structures as building blocks

for larger schemes. Let (Γ′
Qual, Γ

′
Forb) and (Γ′′

Qual, Γ
′′
Forb) be two access structures on

a set of n participants P. If a participant i ∈ P is non-essential for (Γ′
Qual, Γ

′
Forb), we

assume that i ∈ Γ′
Forb and that i does not receive nothing as a share, and similarly

for (Γ′′
Qual, Γ

′′
Forb).

Suppose there exist a (Γ′
Qual, Γ

′
Forb)-VCS and a (Γ′′

Qual, Γ
′′
Forb)-VCS with basis

matrices S ′
0, S ′

1 and S ′′
0 , S ′′

1 respectively. We construct the VCS for the access
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structure (ΓQual, ΓForb) = (Γ′
Qual ∪ Γ′′

Qual, Γ
′
Forb ∩ Γ′′

Forb) as follows.

We create matrices Ŝ ′
0, Ŝ ′

1, Ŝ ′′
0 , Ŝ ′′

1 from S ′
0, S ′

1, S ′′
0 , S ′′

1 respectively. We will

show how to construct Ŝ ′
0. For 1 < i < n, the ith row of Ŝ ′

0 has all zero entries if

participant i is not an essential participant, otherwise it is the same as the row of

S ′
0 corresponding to participant i. We construct Ŝ ′

1, Ŝ ′′
0 , Ŝ ′′

1 similarly. Finally, we

have S0 = Ŝ ′
0 ◦ Ŝ ′′

0 and S1 = Ŝ ′
1 ◦ Ŝ ′′

1 , where ◦ is the concatenation of matrices.

It is important to note that this construction can only be used if the smaller

access structures are realized using basis matrices.

A Starting Matrices Threshold Construction

Definition 2.4 A starting matrix SM(n, l, k) is an n × l matrix whose entries

are elements of a ground set {a1, . . . , ak} with the property that for any subset of

k rows, there exists at least one column such that the entries in the k given rows

are all distinct.

We use a starting matrix SM(n, l, k) and an optimal (k, k)-VCS to construct

n × (l · 2k−1) basis matrices S0 and S1 for a (k, n)-threshold access structure by

replacing the symbols {a1, . . . , ak} with the corresponding rows of the (k, k)-VCS.

2.2.3 Theory

Atienese, Blundo, De Santis, and Stinson [1] give optimal values for the pixel ex-

pansion for all access structures on four participants. In order to do this, they

prove certain results regarding the structure of a VCS. Most of these results fall

into one of two categories: unavoidable patterns and graph-based access structures.
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We will first begin with some miscellaneous results on isolated participants and

non-connected graphs.

Isolated Participants and Non-Connected Access Structures

First, Atienese, Blundo, De Santis, and Stinson [1] show that we need only consider

access structures where |X| ≥ 2 for all X ∈ ΓQual, that is, access structures with

no isolated participants. To prove this, let P ′ = P \ {x} and consider the induced

access structure (Γ′
Qual, Γ

′
Forb) = (ΓQual[P ′], ΓForb[P ′]). We can construct a VCS for

(ΓQual, ΓForb) from a VCS for (Γ′
Qual, Γ

′
Forb) as follows: for each matrix M ∈ C ′

0,

adjoin a row corresponding to x consisting of zeros. For each matrix M ∈ C1,

adjoin a row corresponding to x consisting of ones. Clearly Properties 1 and 2 of

Definition 2.2 are satisfied, and the resulting sets of matrices constitute a VCS. In

addition, if there are multiple isolated participants, this construction can be applied

for each isolated participant.

Atienese, Blundo, De Santis, and Stinson [1] also show how to construct a VCS

for an access structure with a participant x such that {x} ∪ X ∈ ΓQual for all

X ⊆ P \ {x}. In other words, x and any other group of participants are qualified.

Let (ΓQual, ΓForb) be an access structure on a set of participants P where x /∈ P,

and let Γ′
Qual = ΓQual ∪ {X ∪ {x} : X ⊆ P}. Given collections of matrices C0, C1

representing a VCS with pixel expansion m on (ΓQual, ΓForb), they show how to

construct collections of matrices C ′
0, C

′
1 representing a VCS for (Γ′

Qual, ΓForb). For

each M ∈ C0, adjoin a new row corresponding to participant x consisting of zeros,

and a column of zeros. For each M ∈ C1 adjoin a row corresponding to participant

x consisting of ones, and a column consisting of zeros, except that the entry in row
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x, column m + 1 is equal to one. Clearly Properties 1 and 2 of Definition 2.2 are

satisfied, so the new collections constitute a VCS. This construction can be applied

repeatedly if there is more than one such x.

Given an access structure (ΓQual, ΓForb) on a set of participants P, we say that

it is connected if it is not possible to partition P into P ′ and P ′′ such that ΓQual ⊆
2P

′ ∪ 2P
′′
. If such a partitioning can be found, we say the access structure is

non-connected. We define the sum of two access structures (Γ′
Qual, Γ

′
Forb) on P ′

and (Γ′′
Qual, Γ

′′
Forb) on P ′′ to be P = P ′ ∪ P ′′ with (ΓQual, ΓForb) such that ΓQual =

Γ′
Qual ∪ Γ′′

Qual and ΓForb = {X ∪ Y : X ∈ Γ′
Forb, Y ∈ Γ′′

Forb}. Atienese, Blundo, De

Santis, and Stinson [1] prove the following theorem.

Theorem 2.1 Let (Γ′
Qual, Γ

′
Forb) and (Γ′′

Qual, Γ
′′
Forb) be access structures on disjoint

sets of participants P ′ and P ′′ respectively, and let (ΓQual, ΓForb) be their sum. If

there exist a (Γ′
Qual, Γ

′
Forb,m

′)-VCS and (Γ′′
Qual, Γ

′′
Forb.m

′′)-VCS, then there exists a

(ΓQual, ΓForb,m)-VCS where m = max{m′,m′′}.

Thus, we do not need to consider non-connected access structures, since their

minimum pixel expansion can be determined from their connected parts.

Unavoidable Patterns

Unavoidable patterns are submatrices which must be present in the matrices which

make up each collection. These submatrices are defined by the access structures.

We denote by M [X] the matrix M restricted to the rows corresponding to X,

where M ∈ C0 ∪ C1 and X ⊆ P. Atienese, Blundo, De Santis, and Stinson [1]
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proved several results, which we will state here without proof. In all these results,

(ΓQual, ΓForb) is an access structure on a set of participants P.

Lemma 2.2 Given X,Y ⊆ P such that X ∩ Y = ∅ and X ∈ ΓForb, if there exists

(ΓQual, ΓForb,m)-VCS then any matrix M ∈ C1 has the property that

w(M [X ∪ Y ]) − w(M [X]) ≥ α(m) · m.

We apply this theorem by choosing some X ∈ ΓForb and i ∈ P such that

X ∪ {i} ∈ ΓQual. We get that

w(M [X ∪ {i}]) − w(M [X]) ≥ α(m) · m.

Therefore there must be α(m) · m columns with a 1 in row i and 0 in the rows of

X.

The following corollaries are immediate.

Corollary 2.3 Given a strongly essential participant i such that {i} ∈ ΓForb, if

there exists a (ΓQual, ΓForb,m)-VCS then for any M ∈ C0 ∪ C1 the inequality

w(M [{i}]) ≥ α(m) · m holds.

Corollary 2.4 Given X ∈ ΓQual such that X \ {i} ∈ ΓForb for all i ∈ X, then in

any (ΓQual, ΓForb,m)-VCS, we have tX ≥ |X| · α(m) · m.

The first corollary tells us that for any strongly essential participant, there must

be at least α(m)·m ones in the row corresponding to that participant for any matrix
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in either collection. The second corollary tells us that the threshold value tX must

be greater than the number of participants in X multiplied by α(m) · m.

Finally, Atienese, Blundo, De Santis, and Stinson [1] give a result showing that

for any qualified set of participants X and any matrix in C0, M [X] must contain

at least α(m) · m columns consisting of all zeros. We quote their result here for

convenience.

Lemma 2.5 Suppose X ∈ ΓQual. Then, in any (ΓQual, ΓForb,m)-VCS for any M ∈
C0, the matrix M [X] has at least α(m) · m columns with entries all equal to zero.

Atienese, Blundo, De Santis, and Stinson [1] use these unavoidable patterns to

prove results for complete bipartite graphs and (3, 3)-threshold access structures.

We quote their theorems here.

Theorem 2.6 Let (ΓQual, ΓForb) be a strong access structure on the set of partici-

pants P containing no isolated participants. If there exists a (ΓQual, ΓForb, 2)-VCS,

then the basis Γ0 is the edge-set of a complete bipartite graph.

Theorem 2.7 Let (ΓQual, ΓForb) be the access structure of a (3, 3)-threshold VCS

on the set of participants P = {1, 2, 3}. In any (ΓQual, ΓForb, 4)-VCS all matrices

have a unique form up to a column permutation. That is, any matrix M ∈ C1 and

any matrix M ′ ∈ C0 is equal, up to a column permutation, (respectively) to

M =




1 0 0 1

0 1 0 1

0 0 1 1


 M ′ =




0 1 1 0

0 1 0 1

0 0 1 1
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Blundo, De Santis, and Stinson [3] later proved a more general version of this

result stating that any (k, k)-threshold VCS with a specified pixel expansion must

have basis matrices of a specified form. We quote their result for convenience. An

even column refers to a column with an even number of ones, and an odd column

refers to a column with an odd number of ones.

Theorem 2.8 Let S0 and S1 be two n × m matrices such that the same column

does not appear in both. Then the matrices S0 and S1 are basis matrices of a (k, k)-

threshold VCS with pixel expansion m and relative difference α(m) = h/2k−1 if and

only if all the even columns appear in S0 with multiplicity h = m/2k−1 and all the

odd columns appear in S1 with the same multiplicity h. Consequently, h ≥ α(m)·m,

α(m) ≤ 1/2k−1, and m ≥ 2k−1.

2.2.4 Threshold schemes

Atienese, Blundo, De Santis, and Stinson [1] show that for (k, n)-threshold VCS,

each of the matrices in C1 represent a (k−1)-cover-free family. A (k−1)-cover-free

family consists of a ground set of elements G and family of sets A = {A1, . . . , An}
such that the union of any k − 1 of them does not cover any of the remaining sets,

that is, Aj1 �⊆ Aj2 ∪ . . .∪Ajk
for any distinct j1, . . . , jk ∈ {1, . . . , n}. Thus we have

the following result for the minimum pixel expansion of a (k, n)-threshold VCS.

Theorem 2.9 The minimum pixel expansion for a (k, n)-threshold VCS is m∗ ≥
ψ(n, k), where ψ(n, k) is the size of the smallest ground set G for which a (k − 1)-

cover-free family exists.
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They also give a result on the size of such a cover-free family, leading to the

following corollary.

Corollary 2.10 For any (k, n)-threshold VCS with pixel expansion we have

(
n

k − 1

)
≤

(
m

m
2
�
)

and m = Ω(k log n).

2.2.5 Graph Access Structures

Atienese, Blundo, De Santis, and Stinson [1] proved several results for access struc-

tures based on graphs. The most significant is their theorem giving a value for

the minimum pixel expansion for access structures based on complete multipartite

graphs. They begin by finding the value of the minimum pixel expansion for com-

plete graphs. Next, they use this result along with Lemma 4.8 to give a value for

the minimum pixel expansion for graphs by using the maximum size clique. Fi-

nally, they use these theorems to prove the minimum pixel expansion for complete

multipartite graphs and give a construction.

We start with proof of an upper bound for access structures based on Kn,

which offers a construction based on Sperner families. A Sperner family consists of

a ground set G and a set SF = {A1, A2, . . . , An} of subsets of G such that Ai �⊆ Aj

for i �= j.

Theorem 2.11 Given a Sperner family A = {A1, . . . , An} on a ground set G =

{g1, . . . , gm}, we have that m∗(Kn) ≤ m.
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We can construct the basis matrices from the Sperner family as follows. For

1 ≤ i ≤ n and 1 ≤ j ≤ m, define

S0(i, j) =




1 if 1 ≤ j ≤ |Bi|;
0 if |Bi| + 1 ≤ j ≤ m.

S1(i, j) =




1 if gj ∈ Bi;

0 if gj �∈ Bi.

Atienese, Blundo, De Santis, and Stinson [1] then apply a well-known result

about Sperner families to obtain the following theorem.

Theorem 2.12 The minimum pixel expansion for an access structure represented

by a complete graph Kn is the smallest value m such that n ≤ (
m

�m
2
�
)
.

Let ω(G) represent the maximum size clique in a graph G. Recall that a clique

is a complete subgraph of G. The following holds.

Theorem 2.13 For any graph G, there exists a (Γ(G),m)-VCS only if ω(G) ≤(
m

�m
2
�
)
.

Finally, we give the minimum pixel expansion for access structures based on

complete multipartite graphs. We also give the construction that is used to prove

the result.

Theorem 2.14 There exists a Γ(Ka1,...,an ,m)-VCS if and only if n ≤ (
m

�m
2
�
)
.

Given basis matrices S0, S1 representing a VCS for the access structure based

on the graph Kn, we construct Ŝ0, Ŝ1 by replicating row q of S0, S1 aq times.
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2.3 Grey Level VCS

2.3.1 The model

Blundo, De Santis, and Naor [2] extend the VCS model for general access structures

to accommodate a specified number of grey levels, g. This definition for GVCS is

taken nearly verbatim from their paper.

Definition 2.5 Let (ΓQual, ΓForb) be an access structure on n participants and

let g ≥ 2 be an integer. The g collections of n × m Boolean matrices C0, . . . , Cg−1

form a visual cryptography scheme with g grey levels and pixel expansion m if there

exist values α0, . . . , αg−2 and sets {X, ti,X}X∈ΓQual
for 0 ≤ i ≤ g − 2 satisfying:

1. Any X = {j1, . . . , jp} ∈ ΓQual can recover the shared image by combining

their shares. Formally, for i = 0, . . . , g− 2 for any M ∈ Ci, the OR V of rows

j1, . . . , jp satisfies w(V ) ≤ ti,X − αi · m; whereas for any M ∈ Ci+1 we have

that w(V ) ≥ ti,X .

2. Any X = {j1, . . . , jp} ∈ ΓForb has no information on the shared image. For-

mally, the g collections of p × m matrices Di, 0 ≤ i ≤ g − 1, obtained by

restricting each n×m matrix in Ci to rows j1, . . . , jp are indistinguishable in

the sense that they contain the same matrices with the same frequencies.

Note that the set of thresholds {tX} and relative difference α must now vary

according to the grey level. We therefore have thresholds {ti,X} and relative differ-

ences {αi} where 0 ≤ i ≤ g − 2.
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The first property ensures that the participants will be able to distinguish the g

grey levels. The quantity αi ·m is known as the contrast for grey level i. We require

that αi · m ≥ 1, 0 ≤ i ≤ g − 2 to ensure that the participants can distinguish all

the grey levels.

The second property ensures the security of the scheme. Even by inspecting all

their shares, a set of forbidden participants will not be able to gain any information

on the secret image.

Once again, we rewrite the definition in terms of basis matrices, taken nearly

verbatim from Blundo, De Santis, and Naor [2].

Definition 2.6 Let (ΓQual, ΓForb) be an access structure on n participants and let

g ≥ 2 be an integer. The g Boolean matrices G0, . . . , Gg−1 are a visual cryptography

scheme with g grey levels and pixel expansion m if there exist values α0, . . . , αg−2

and sets {X, ti,X}X∈ΓQual
for 0 ≤ i ≤ g − 2 satisfying:

1. If X = {j1, . . . , jp} ∈ ΓQual then for 0 ≤ i ≤ g−2, the OR V of rows j1, . . . , jp

of Gi satisfies w(V ) ≤ ti,X−αi ·m; whereas for Gi+1 we have that w(V ) ≥ ti,X .

2. If X = {j1, . . . , jp} ∈ ΓForb then the g p × m matrices G0, . . . , Gg−1 obtained

by restricting them to rows j1, . . . , jp are equal up to a column permutation.

The collections of matrices Ci in Definition 2.5 may be obtained by generating

all permutations of the basis matrices Gi.

Blundo, De Santis, and Naor [2] also prove the following result giving the optimal

pixel expansion for (k, k) threshold access structures.
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Lemma 2.15 In any (k, k,m, g)-GVCS with relative differences α0, . . . , αg−2, we

have

min{α0, . . . , αg−2} ≤ 1/(g − 1)2k−1

and

m ≥ (g − 1)2k−1.

2.3.2 A construction

Given basis matrices for a (ΓQual, ΓForb) VCS with relative difference α∗ and pixel

expansion m̄, Blundo et al. [2] show how to construct a GVCS with relative dif-

ferences α0, . . . , αg−2 such that
∑g−2

i=0 αi ≤ α∗. Let αi = ai/bi, 0 ≤ i ≤ g − 2 and

α∗ = a/b such that ai, bi, a, b are positive integers. Compute

m = lcm{b0, . . . , bg−2} · a · m̄, (2.1)

ri =
ai · b · m
bi · a · m̄, and (2.2)

d = m −
g−2∑
i=0

ri · m̄. (2.3)

We need to show that d = m − ∑g−2
i=0 ri · m̄ ≥ 0. To achieve this, note that (2.2)

can be rewritten as

ri =
αi · m
α∗ · m̄. (2.4)
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We now have

d ≥ 0 ⇔ m −
g−2∑
i=0

ri · m̄ ≥ 0

⇔ m −
g−2∑
i=0

αi · m
α∗ · m̄ · m̄ ≥ 0

⇔ m −
g−2∑
i=0

αi · m
α∗ ≥ 0

⇔ m − m ·
g−2∑
i=0

αi

α∗ ≥ 0

⇔ m

(
1 −

g−2∑
i=0

αi

α∗

)
≥ 0

⇔ 1 −
g−2∑
i=0

αi

α∗ ≥ 0

⇔ 1

α∗

g−2∑
i=0

αi ≤ 1

⇔
g−2∑
i=0

αi ≤ α∗.

Since
∑g−2

i=0 αi ≤ α∗ by hypothesis, we have d ≥ 0.

Let D be the zero matrix of size n × d. For 0 ≤ i ≤ g − 1, define

Gi = S0 ◦ . . . ◦ S0︸ ︷︷ ︸∑g−2
j=i rj

◦S1 ◦ . . . ◦ S1︸ ︷︷ ︸∑i−1
j=0 rj

◦D.

Finally, we let ti−1,X = w(Gi[X]). For the remaining details of the proof, see [2].
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Chapter 3

GVCS Constructions

3.1 An optimal (t, t) threshold construction

The (t, t)-GVCS construction that is obtained from using the technique proposed

by Blundo, De Santis, and Naor [2] has a less than optimal pixel expansion. They

have shown that the optimal pixel expansion for a (t, t)-GVCS is m ≥ (g − 1)2t−1.

We can use the optimal (t, t)-VCS from Naor and Shamir [6] to create a GVCS with

pixel expansion m = (g− 1)2t−1. Since we will be using a (t, t)-GVCS construction

in more general constructions, it is important to have a “base” construction with

an optimal pixel expansion. Assuming that the total number of grey levels is g, for

each grey level k we can assume that a pixel with grey level k is a union of k black

subpixels and g − k − 1 white subpixels. We begin with an optimal (t, t)−VCS,

which has basis matrices S0, S1 and pixel expansion m = 2t−1. The basis matrices
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Gi are simply the concatenation of g − i − 1 copies of S0 and i copies of S1.

Gi = S0 ◦ . . . ◦ S0︸ ︷︷ ︸
g−i−1

◦S1 ◦ . . . ◦ S1︸ ︷︷ ︸
i

.

The set of threshold values {ti,X} are ti,X = m−g+i+2 and the relative differences

are αi = 1/m. Since we are concatenating g − 1 matrices, we have pixel expansion

m = (g − 1)2t−1, which is optimal.

Example 3.1 We will now show how to construct a (3, 3)-GVCS with 4 grey

levels. In order to generate the basis matrices for a (3, 3)-GVCS with this construc-

tion, we need the basis matrices for an optimal (3, 3)-VCS. Using the construction

provided by Naor and Shamir [6], we get:

S0 =




0 0 1 1

0 1 0 1

0 1 1 0


 S1 =




0 0 1 1

0 1 0 1

1 0 0 1




Using these in our construction, we get:

G0 =




0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0


 ;

G1 =




0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 1 0 0 1


 ;
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G2 =




0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1


 ;

G3 =




0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 1 1 0 0 1


 .

We have m = 12, t0 = 10, t1 = 11, t2 = 12, and α0 = α1 = α2 = 1/12.

Theorem 3.1 There exists a (k, k, g,m)-GVCS with m = 2k−1, set of threshold

values ti,X = m − g + i + 2 and relative difference αi = 1/m.

Proof. Note that in Gg−1 there are no columns with all zero entries. In Gg−2 there

is 1 such column, and in G0 there are g−1 such columns. In general, for matrix Gi,

there are g − i − 1 columns with all zero entries. Consequently, when we compute

the OR V of all k rows on matrix Gi, we get

w(V ) = m − (g − i − 1) = m − g + i + 1.

Let ti,X = m − g + i + 2. We have that

ti,X − αi(m) · m = (m − g + i + 2) − (1/m · m) = m − g + i + 1.
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Therefore we have w(V ) ≤ ti,X − αi(m) · m as required. If we compute the OR V

of all k rows on matrix Gi+1, we have

w(V ) = m − (g − (i + 1) − 1) = m − g + i + 2.

Therefore w(V ) ≥ ti,X , and Property 1 is satisfied.

To prove Property 2, we consider each adjacent pair of basis matrices Gi, Gi+1

for 1 ≤ i ≤ g − 2. Let X ⊂ P, where |X| < t. Then Gi contains g − i − 1 copies

of S0 and i copies of S1, and Gi+1 contains g − i − 2 copies of S0 and i + 1 copies

of S1. Since each contains g − i − 2 copies of S0 and i copies of S1, these columns

are clearly equal for any choice of participants X. The remaining columns of Gi

are equal to S0 and the remaining columns of Gi+1 are equal to S1. From Naor

and Shamir [6], and Atienese, Blundo, De Santis, and Stinson [1] we have that

S0[X] = S1[X] up to a column permutation, and therefore Gi[X] = Gi+1[X] up to

a column permutation. Since this is true for any 0 ≤ i ≤ g − 2, we have that all

Gi[X] equal up to a column permutation for 0 ≤ i ≤ g − 1. Thus we have proven

Property 2, and this construction is a valid GVCS. �

3.2 A cumulative arrays construction

Using the (t, t)-GVCS construction, we can derive a construction for a general access

structure (ΓQual, ΓForb) based on the cumulative arrays construction for VCS given

by Atienese, Blundo, De Santis, and Stinson [1].

To construct the cumulative array CA, we use the set of maximal forbidden sets
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ZM = {F0, . . . , Ft−1}. Here CA is a |P| × t boolean matrix where CA[i, j] = 1 if

and only if i /∈ Fj.

Let Ĝ0, . . . , Ĝg−1 be the basis matrices of a (t, t) threshold GVCS with g grey

levels. We construct the basis matrices G0, . . . , Gg−1 as follows. For any fixed i, let

ji,1, . . . , ji,gi
be the integers j such that CA[i, j] = 1. For each 0 ≤ k ≤ g − 1, the

ith row of Gk is the OR of rows ji,1, . . . , ji,gi
of Ĝk. This construction yields a pixel

expansion of (g − 1)2t−1, where t is the size of the set of maximal forbidden sets

of P, the relative difference is αi = 1/m, and the threshold values are the same as

those of the (t, t)−GVCS used in the construction.

Example 3.2

Let P = {P1, P2, P3, P4, P5}. Let Γ0 = {{P1, P5}, {P2, P4}, {P3, P4, P5}} be the

set of minimal qualified subsets. The set of maximal forbidden subsets is ZM =

{{P1, P2, P3}, {{P1, P4}, {P2, P5}}. Since we have |ZM | = 3, we will use the basis

matrices for the (3, 3) threshold GVCS already computed in Example 3.1. We will

call these basis matrices Ĝ0, Ĝ1, Ĝ2, Ĝ3. We compute the cumulative array as given

to obtain:

CA =




0 0 1

0 1 0

0 1 1

1 0 1

1 1 0




From this, we see that the first row of Gi is the third row of Ĝi, the second row

of Gi is the second row of Ĝi, the third row of Ĝi is the OR of rows 2 and 3 of Ĝi,

28



and so on. We therefore have the following basis matrices realizing the given access

structure.

G0 =




0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 1 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1

0 1 1 1 0 1 1 1 0 1 1 1




;

G1 =




0 1 1 0 0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 1 0 1 1 1 1 1 0 1

0 1 1 1 0 1 1 1 1 0 1 1

0 1 1 1 0 1 1 1 0 1 1 1




;

G2 =




0 1 1 0 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 1 1 1 0 1 1 1 0 1

0 1 1 1 1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1 0 1 1 1




;
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G3 =




1 0 0 1 1 0 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1 0 1 1 1




.

Theorem 3.2 Given a strong access structure (ΓQual, ΓForb) such that ZM is the

family of maximal forbidden subsets in ΓForb (where |ZM | = t), there exists a

(ΓQual, ΓForb,m, g)-GVCS with m = (g − 1)2t−1, {ti,X} = {t′i,X}, and αi = 1
m

,

where {t′i,X} are the threshold values of an optimal (t, t)-GVCS.

Proof. Each adjacent pair of matrices can be considered as a regular VCS. To prove

that the previous construction works, we show that each grey level i, 1 ≤ i ≤ g−2,

is distinguishable from the grey level immediately before and after.

Consider the case where i = 1. We construct G0, G1 from Ĝ0, Ĝ1 using the

previous construction, with set of thresholds {t0,X} and relative difference α0. Next

we construct G1, G2 from Ĝ1, Ĝ2 as before, with thresholds {t1,X} and relative

difference α1. Note that G1 will be the same as before by the construction technique.

Additionally, if X is a qualified set, then we have G1 ≥ t0,X from the first and

G1 ≤ t1,X − α1m. This means that grey level 1 will be distinguishable from both

levels 0 and 2. If X is not a qualified set, then G0[X] = G1[X] and G1[X] = G2[X],

so they are all equal up to a column permutation.

We continue similarly until i = g − 2. Clearly each grey level 1 ≤ i ≤ g − 2 is

distinguishable from grey levels i− 1 and i + 1 if X is a valid set, and all Gi[X] are
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equal up to a column permutation if X is a forbidden set. Therefore G0, . . . , Gg−1

are the basis matrices of a GVCS realizing the general access structure (ΓQual, ΓForb)

with set of thresholds {ti,X} and relative differences αi where 0 ≤ i ≤ g − 1. �

3.3 A decomposition construction

Another method of construction for general access structures is the decomposition

construction, which uses smaller access structures as building blocks for larger ones.

Let (Γ′
Qual, Γ

′
Forb) and (Γ′′

Qual, Γ
′′
Forb) be two access structures on a set of n partic-

ipants P. If a participant i ∈ P is non-essential for (Γ′
Qual, Γ

′
Forb), we assume that

i ∈ Γ′
Forb and that i does not receive nothing as a share. Similarly for (Γ′′

Qual, Γ
′′
Forb).

Suppose there exist a (Γ′
Qual, Γ

′
Forb)−GVCS and a (Γ′′

Qual, Γ
′′
Forb)−GVCS with

basis matrices G′
0, . . . , G

′
g−1 and G′′

0, . . . , G
′′
g−1 respectively. We will show how to

construct a GVCS for the access structure (ΓQual, ΓForb) = (Γ′
Qual ∪ Γ′′

Qual, Γ
′
Forb ∩

Γ′′
Forb).

From the matrices G′
0, . . . , G

′
g−1 and G′′

0, . . . , G
′′
g−1, we will construct new ma-

trices Ĝ′
0, . . . , Ĝ

′
g−1 and Ĝ′′

0, . . . , Ĝ
′′
g−1, each consisting of n rows, as follows. For

1 ≤ i ≤ n, the ith row of Ĝ′
j is all zero if i is not an essential participant of

(Γ′
Qual, Γ

′
Forb), otherwise it is the row of G′

j corresponding to participant i. Similarly

for Ĝ′′
j . Finally, the basis matrices G0, . . . , Gg−1 will be realized by concatenating

the corresponding matrices, that is Gj = Ĝ′
j ◦ Ĝ′′

j .

Theorem 3.3 Given a (Γ′
Qual, Γ

′
Forb, g,m′)-GVCS with basis matrices G′

0, . . . , G
′
g−1

and a (Γ′′
Qual, Γ

′′
Forb, g,m′′)-GVCS with basis matrices G′′

0, . . . , G
′′
g−1, there exists a
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(ΓQual, ΓForb, g,m)-GVCS with basis matrices G0, . . . , Gg−1 where ΓQual = Γ′
Qual ∪

Γ′′
Qual, ΓForb = Γ′

Forb ∩ Γ′′
Forb, and m = m′ + m′′.

Proof. We will show that the decomposition construction works by giving values

for m and αi(m) and proving that the construction works for four cases:

1. X is in Γ′
Qual and Γ′′

Qual;

2. X is in Γ′
Qual but not in Γ′′

Qual;

3. X is in Γ′′
Qual but not in Γ′

Qual;

4. X is in Γ′
Forb and Γ′′

Forb.

In the first three cases, X is in ΓQual, and we show that for any i, Gi[X] ≤
ti,X − αi(m) · m and Gi+1[X] ≥ ti,X . In the last case, X is in ΓForb, and we show

that G0[X] = G1[X] = . . . = Gg−1[X].

Let m′ and m′′ be the pixel expansions for the basis matrices corresponding to

(Γ′
Qual, Γ

′
Forb) and (Γ′′

Qual, Γ
′′
Forb). Let {X, t′i,X} X∈Γ′

Qual

i∈{0,...,g−1}
and {X, t′′i,X} X∈Γ′′

Qual

i∈{0,...,g−1}
be

the set of thresholds, and α′
i(m

′) and α′′
i (m

′′) be the relative differences. Define

m = m′ + m′′ and

αi(m) =
min{α′

i(m
′) · m′, α′′

i (m
′′) · m′′}

m
.

Let X be a set of participants.
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Case 1: X ∈ Γ′
Qual ∩ Γ′′

Qual. Let ti,X = t′i,X + t′′i,X .

w(Gi[X]) = w(Ĝ′
i[X] ◦ Ĝ′′

i [X])

= w(Ĝ′
i[X]) + w(Ĝ′′

i [X])

= w(G′
i[X]) + w(G′′

i [X])

≤ (t′i,X − α′
i(m

′) · m′) + (t′′i,X − α′′
i (m

′′) · m′′)

≤ t′i,X + t′′i,X − (α′
i(m

′) · m′ + α′′
i (m

′′) · m′′)

≤ ti,X − αi(m) · m

since α′
i(m

′) · m′ + α′′
i (m

′′) · m′′ ≥ min{α′
i(m

′) · m′, α′′
i (m

′′) · m′′} = αi(m) · m.

Also

w(Gi+1[X]) = w(Ĝ′
i+1[X] ◦ Ĝ′′

i+1[X])

= w(Ĝ′
i+1[X]) + w(Ĝ′′

i+1[X])

= w(G′
i+1[X]) + w(G′′

i+1[X])

≥ t′i,X + t′′i,X

≥ ti,X .
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Case 2: X ∈ Γ′
Qual \ Γ′′

Qual. Let ti,X = t′i,X + w(Ĝi[X]).

w(Gi[X]) = w(Ĝ′
i[X] ◦ Ĝ′′

i [X])

= w(Ĝ′
i[X]) + w(Ĝ′′

i [X])

= w(G′
i[X]) + w(G′′

i [X])

≤ (t′i,X − α′
i(m

′) · m′) + w(G′′
i [X])

≤ t′i,X + w(G′′
i [X]) − α′

i(m
′) · m′

≤ ti,X − αi(m) · m

since α′
i(m

′) · m′ ≥ min{α′
i(m

′) · m′, α′′
i (m

′′) · m′′} = αi(m) · m.

w(Gi+1[X]) = w(Ĝ′
i+1[X] ◦ Ĝ′′

i+1[X])

= w(Ĝ′
i+1[X]) + w(Ĝ′′

i+1[X])

= w(G′
i+1[X]) + w(Ĝ′′

i+1[X])

≥ t′i,X + w(Ĝ′′
i+1[X])

≥ ti,X .

Case 3: X ∈ Γ′′
Qual \ Γ′

Qual. Similar to case 2.
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Case 4: X ∈ Γ′
Forb ∩ Γ′′

Forb. We have

Gi[X] = Ĝi[X]′ ◦ Ĝi[X]′′

= Ĝi+1[X]′ ◦ Ĝi+1[X]′′

= Gi+1[X]

up to a column permutation. �

3.4 A (k, n) threshold construction

Atienese, Blundo, De Santis, and Stinson [1] use starting matrices to construct

(k, n) threshold schemes using a (k, k) threshold scheme, for which we have an

optimal construction. See Definition 2.4 for an explanation of starting matrices.

We will use a similar technique to provide a construction for (k, n)-GVCS.

Given a matrix SM(n, l, k), we can construct a (k, n) threshold GVCS as follows:

the n × (l · (g − 1) · 2k−1) basis matrices G0, . . . , Gg−1 are constructed by replacing

the symbols a1, . . . , ak with the 1st, . . . , kth rows of the corresponding basis matrix

of the optimal (k, k)-GVCS, respectively.

Theorem 3.4 Given a starting matrix SM(n, l, k), there exist basis matrices for

a (k, n, g,m)-threshold GVCS with pixel expansion m = l · (g − 1) · 2k−1.

Proof. Let Gk
0, . . . , G

k
g−1 be the basis matrices of an optimal (k, k)-GVCS and

let SM(n, l, k) be a starting matrix whose entries are elements of a ground set

35



{a1, . . . , ak}. Let G0, . . . , Gg−1 be n × (l · (g − 1) · 2k−1) matrices constructed by

replacing the symbols {a1, . . . , ak} with the 1st, . . . , kth rows of Gk
0, . . . , G

k
g−1 respec-

tively.

The basic block Bi,j is the n × ((g − 1) · 2k−1) matrix obtained by expanding

column j of the starting matrix using Gk
i .

Choose any adjacent pair of basic blocks Bi,j, Bi+1,j (from adjacent matrices

Gi, Gi+1). Fix any d ≥ k rows of these basic blocks. Either these rows comprise

all the rows of Gk
i (Gk

i+1 respectively) where any row can appear more than once,

and thus their OR has weight ti − 1 (ti respectively); or they contain at most k− 1

distinct rows and have the same weight in both basic blocks. We know that the

first situation will be true for at least one j for any choice of d ≥ k rows, so we

have Property 1.

To prove Property 2, we need to show that for any X ⊆ {1, . . . , n} with |X| < k,

we have that G0[X] = . . . = Gg−1[X] up to a column permutation. This is true

since B0,j = . . . = Bg−1,j up to a column permutation for all 1 ≤ j ≤ l. �

Note that in this construction, the thresholds will vary by choice of X.
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Chapter 4

GVCS on Four Participants

In this chapter, we will develop the theories necessary to obtain values (or at least

ranges of values) for the minimum pixel expansion for all strong, connected access

structures with no isolated participants on four participants. We will also give

some results for access structures which are not connected or which have isolated

participants.

In the first section, we will begin with access structures that have isolated partic-

ipants and access structures such that the graph representing them is not connected.

In the next section, we will discuss unavoidable patterns. Unavoidable patterns are

submatrices which must be present in the matrices which make up each collection.

These submatrices are defined by the access structures.

In the next section, we will discuss access structures based on graphs. We will

utilize the results in the prior section on unavoidable patterns to give values (or

at least ranges of values) for the minimum pixel expansion for grey-level visual

cryptography schemes for access structures based on graphs. The main result of
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the section is a value for the minimum pixel expansion for access structures based on

complete multipartite graphs. Although not a graph-based access structure (except

for the case k = 2), we will give a lower bound on the pixel expansion for (k, n)

threshold access structures.

Finally, we will also show lower bounds on certain access structures which are

not covered by any of the other results of this section. All results will be summarized

in a table which shows the minimum pixel expansion for access structures when four

grey levels are used.

4.1 General Theory

4.1.1 Isolated Participants and Non-Connected Graphs

This lemma shows how we can construct a GVCS for access structures with one

isolated participant. This lemma can be applied iteratively for additional isolated

participants.

Lemma 4.1 Given an access structure (ΓQual, ΓForb) on Pand a participant x /∈ P,

if a (ΓQual, ΓForb, g,m)-GVCS exists, then there exists a (ΓQual ∪{{x}}, ΓForb, g,m)-

GVCS.

Proof. We construct the (ΓQual ∪ {{x}}, ΓForb, g,m)-GVCS as follows. For any

M ∈ Ci where 1 ≤ i ≤ g − 1, we add a new row corresponding to x, consisting of∑i−1
j=0 αj(m) ·m 1’s and m−∑i−1

j=0 αj(m) ·m 0’s. For any M ∈ C0 we add a new row

corresponding to x, consisting of 0’s. We set ti,{x} =
∑i

j=0 αj(m) · m. Clearly this

new construction satisfies Properties 1 and 2 of Definition 2.5 by its construction.�
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The next lemma shows how to construct a GVCS for an access structure such

that there exists a participant x such that x with any other participant in P is

qualified. As in the above lemma, we must first have a GVCS for the access structure

without participant x. As with the previous lemma, this result can be applied

iteratively.

Lemma 4.2 Given an access structure (ΓQual, ΓForb) on P and a participant x /∈ P,

if a (ΓQual, ΓForb, g,m)-GVCS exists, then there also exists a (Γ′
Qual, ΓForb, g,m+1)-

GVCS where Γ′
Qual = ΓQual ∪ {X ∪ {x} : X ⊆ P}.

Proof. For any M ∈ Ci where 1 ≤ i ≤ g − 1, we add a row corresponding to

participant x consisting of
∑i−1

j=0 αj(m) · m 1s and m − ∑i−1
j=0 αj(m) · m 0s, and a

column of 0s, except that the entry in row x, column m+1 is a 1. For any M ∈ C0

we add a row corresponding to participant x consisting of 0s, and a column of 0s.

We set the values ti,X∪{x} = (
∑i−1

j=0 αj(m) ·m)+1. Clearly this construction satisfies

Properties 1 and 2 of Definition 2.5. �

The next lemma will be useful for proving a theorem on non-connected graphs.

It allows us to concatenate any n × p matrix D to each matrix in the collections

Ci. If the original GVCS represented by these collections had pixel expansion m,

the resulting set of collections will be a GVCS on the same access structure with

pixel expansion m + p.

Lemma 4.3 Given a (ΓQual, ΓForb, g,m)-GVCS with collections of matrices Ci and

D any n × p boolean matrix, the collections of matrices C ′
i = {M ◦ D : M ∈ Ci}

form a (ΓQual, ΓForb, g,m + p)-GVCS.
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Proof. Clearly Properties 1 and 2 of Definition 2.5 remain satisfied. We now

have a set of thresholds t′i,X = ti,X + w(D[X]) and relative differences α′
i(m + p) =

(αi(m) · m)/(m + p). �

We will now use this lemma to show a construction for access structures based

on non-connected graphs given collections of matrices realizing a GVCS for the

non-connected parts.

Theorem 4.4 Let (ΓQual, ΓForb) be an access structure on a set of participants P
such that the graph which represents it has two non-connected parts. Let P ′ and

P ′′ represent these parts, with P ′ ∪ P ′′ = P. Let (Γ′
Qual, Γ

′
Forb) and (Γ′′

Qual, Γ
′′
Forb)

represent the corresponding access structures such that ΓQual = Γ′
Qual ∪ Γ′′

Qual and

ΓForb = {X ∪ Y : X ∈ Γ′
Forb, Y ∈ Γ′′

Forb}. Given a (Γ′
Qual, Γ

′
Forb, g,m′)-GVCS

and a (Γ′′
Qual, Γ

′′
Forb, g,m′′)-GVCS, we can construct a (ΓQual, ΓForb, g,m)-GVCS with

m = max(m′,m′′).

Proof. Let C ′
i (C ′′

i respectively) denote the collections of matrices representing

the GVCS for (Γ′
Qual, Γ

′
Forb) ((Γ′′

Qual, Γ
′′
Forb)). Let |C ′

i| = r′ and |C ′′
i | = r′′. Without

loss of generality assume m′ > m′′. Applying Lemma 4.3 we can construct a

(Γ′′
Qual, Γ

′′
Forb, g,m′)-GVCS with collection of matrices C ′′′

i . We can now construct

the matrices Ci as follows:

Ci = {M : M [P ′] ∈ C ′
i,M [P ′′] ∈ C ′′′

i }.

For any matrix in C ′
i, we have r′′ matrices in Ci. Thus |Ci| = r′ · r′′.
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It is easy to see that Property 1 holds. To verify Property 2, let X ∈ Γ′
Forb

(X ∈ Γ′′
Forb respectively) and M ∈ ∪g−1

i=0 C ′
i (M ∈ ∪g−1

i=0 C ′′′
i ). Let ηi

X (µi
X) be the

number of times the matrix M [X] appears in the collection {A[X] : A ∈ C ′
i}

({A[X] : A ∈ C ′′′
i }). Property 2, applied to the original access structures, tells us

that η0
X = · · · = ηg−1

X and µ0
X = · · · = µg−1

X .

For any matrix M ∈ ∪g−1
i=0 Ci we let γi

X denote the number of times the matrix

M [X] appears in A[X] : A ∈ Ci. We need to prove γ0
X = · · · = γg−1

X for any

X ∈ ΓForb. If X ⊆ P ′ then the following equalities hold:

η0
X = η1

X = · · · = ηg−2
X = ηg−1

X

η0
Xr′′ = η1

Xr′′ = · · · = ηg−2
X r′′ = ηg−1

X r′′

γ0
X = γ1

X = · · · = γg−2
X = γg−1

X

since γi
X = ηi

Xr′′, and similarly if X ⊆ P ′′.

If X = Y ∪ Z, Y ∈ Γ′
Forb and Z ∈ Γ′′

Forb then

η0
Y µ0

Z = η1
Y µ1

Z = · · · = ηg−2
Y µg−2

Z = ηg−1
Y µg−1

Z

γ0
X = γ1

X = · · · = γg−2
X = γg−1

X

since γi
X = ηi

Y µi
Z . �
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4.1.2 Unavoidable Patterns

We now examine the unavoidable patterns in the collections of matrices for grey

level visual cryptography schemes. We will use these results later to help character-

ize the access structures on four participants. Throughout this section, we assume

that (ΓQual, ΓForb) is an access structure on a set of participants P.

Lemma 4.5 Given X,Y ⊆ P such that X �= ∅, Y �= ∅, X ∩ Y = ∅, X ∈ ΓForb,

X ∪Y ∈ ΓQual, and any (ΓQual, ΓForb, g,m)-GVCS, for any matrix M ∈ Ci, 1 ≤ i ≤
g − 1, we have

w(M [X ∪ Y ]) − w(M [X]) ≥
i−1∑
j=0

αj(m) · m.

Proof. Let M ∈ Ci. We know from Property 1 of Definition 2.5 that w(M [X ∪
Y ]) ≥ ti−1,X∪Y . Property 2 tells us that there exists a matrix M ′ ∈ C0 such that

M [X] = M ′[X], since X ∈ ΓForb. Combining these, we get

w(M [X]) = w(M ′[X])

≤ w(M ′[X ∪ Y ])

≤ t0,X∪Y − α0(m) · m

≤ t1,X∪Y − α1(m) · m − α0(m) · m
...

≤ ti−1,X∪Y −
i−1∑
j=0

αj(m) · m

≤ w(M [X ∪ Y ]) −
i−1∑
j=0

αj(m) · m.
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We rearrange this to obtain w(M [X ∪ Y ]) − w(M [X]) ≥ ∑i−1
j=0 αj(m) · m. �

We can use this lemma to show that a matrix M ∈ ∪g−1
i=1 Ci contains unavoidable

patterns. To do this, let X ∈ ΓQual and i ∈ P such that Y = X \ i ∈ ΓForb and

M ∈ Cj. We then have

w(M [Y ∪ {i}]) − w(M [Y ]) ≥
j−1∑
k=0

αk(m) · m.

We must therefore have
∑j−1

k=0 αk(m) · m columns in the matrix M [Y ∪ {i}] such

that there is a 1 in row i and 0 in all the other rows.

Corollary 4.6 Let i be a strongly essential participant in a (ΓQual, ΓForb, g,m)-

GVCS with i ∈ ΓForb. For any matrix M ∈ ∪g−1
j=0Cj, we have that

w(M [{i}]) ≥
g−1∑
j=0

αj(m) · m.

Proof. Choose X ⊆ P such that X ∪{i} ∈ ΓQual and X ∈ ΓForb. From Lemma 4.5

we have that for any matrix M ∈ Cg−1, the matrix M [X ∪ {i}] has at least∑g−1
j=0 αj(m) · m columns with a 1 in row i and 0 in the other rows. Therefore

w(M [{i}]) ≥ ∑g−1
j=0 αj(m)·m. Additionally, since i ∈ ΓForb and X ∈ ΓForb, Property

2 of Definition 2.5 means that this result also holds for M ′ ∈ Ci for 0 ≤ i ≤ g−2.�

The next lemma shows that matrices in each collection must have a certain num-

ber of columns consisting entirely of zeros. This property is necessary to distinguish

the different grey levels.
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Lemma 4.7 Given X ∈ ΓQual in a (ΓQual, ΓForb, g,m)-GVCS. For any M ∈ Ci,

the matrix M [X] has at least
∑g−2

j=i αj(m) · m columns with all entries equal to 0.

Proof. From Property 1 of Definition 2.5, we have

w(M [X]) ≤ ti,X − αi(m) · m

≤ ti+1,X − αi+1(m) · m − αi(m) · m
...

≤ tg−2,X −
g−2∑
j=i

αj(m) · m

≤ m −
g−2∑
j=i

αj(m) · m

since tg−2,X ≤ m. Clearly there must be at least
∑g−2

j=i αj(m) · m columns with

entries all 0. �

For an access structure (ΓQual, ΓForb) on a set of participants P, given P ′ ⊆ P
we say that (Γ′

Qual, Γ
′
Forb) is the induced access structure on P ′ to be Γ′

Qual = {X ∈
ΓQual : X ⊆ P ′} and Γ′

Forb = {X ∈ ΓForb : X ⊆ P ′}. We have the following lemma

from Atienese, Blundo, De Santis, and Stinson [1].

Lemma 4.8 Let (ΓQual, ΓForb) be an access structure on P, and let (Γ′
Qual, Γ

′
Forb) be

the induced access structure on P ′ ⊆ P. Then m∗(Γ′
Qual, Γ

′
Forb) ≤ m∗(ΓQual, ΓForb).

This is useful to help determine the minimum pixel expansion for certain access

structures where m∗ is difficult to compute, but which contain an induced access

structure for which m∗ is easy to compute.
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The following corollary follows from Lemma 2.15 and Lemma 4.8.

Corollary 4.9 Let Γ0 be a basis for ΓQual, and let X ∈ Γ0. Then m∗(ΓQual, ΓForb) ≥
(g − 1)2|X|−1.

Proof. Let P ′ = X. Then (Γ′
Qual, Γ

′
Forb) is a (k, k)-GVCS with k = |X|. We

know from Lemma 2.15 that the optimal pixel expansion is (g−1)2|X|−1. Applying

Lemma 4.8, we obtain m∗(ΓQual, ΓForb) ≥ (g − 1)2|X|−1. �

We can now use these unavoidable patterns to show that access structures arising

from complete bipartite graphs have minimum pixel expansion 2(g − 1).

Theorem 4.10 Let (ΓQual, ΓForb) be an access structure with no isolated partici-

pants, and let Γ0 be a basis for ΓQual. If there exists a GVCS with pixel expansion

2(g − 1), then Γ0 is the edge set of a complete bipartite graph.

Proof. Since there are no isolated participants, we must have |X| ≥ 2 for any

X ∈ Γ0. By Corollary 4.9 we have that |X| ≤ 2 since otherwise m ≥ 4(g−1). Thus

|X| = 2 for all X ∈ Γ0, and Γ0 represents the edge set of a graph G.

To show that G is connected, we will assume it is not and use a proof by

contradiction. If G is not connected, then there exists a partition of P into P ′ and

P ′′ with P ′ �= ∅, P ′′ �= ∅, and Γ0 ⊆ 2P
′ ∪ 2P

′′
. Let {i, j} ∈ ΓQual ∩ 2P

′
and l ∈ P ′′.

Using previous results on unavoidable patterns, we can show that for any matrix

M ∈ Cg−1 the matrix M [{i, j, l}] is equal, up to a column permutation, to one of

the following two matrices:
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M ′ =




1 . . . 1

0 . . . 0

0 . . . 0︸ ︷︷ ︸
g−1

0 . . . 0

1 . . . 1

1 . . . 1︸ ︷︷ ︸
g−1


 ,

where the first two rows are obtained using Corollary 4.6 and the third row is

obtained from Lemma 4.5 setting X = {j, l} and Y = {i}, or

M ′′ =




1 . . . 1

0 . . . 0

1 . . . 1︸ ︷︷ ︸
g−1

0 . . . 0

1 . . . 1

0 . . . 0︸ ︷︷ ︸
g−1


 ,

where the first two rows are obtained using Corollary 4.6 and the third row is

obtained from Lemma 4.5 setting X = {i, l} and Y = {j}.
Similarly M̂ ∈ Cg−2 is equal, up to a column permutation, to one of the following

two matrices:

M̂ ′ =




1 . . . 1

0 . . . 0

0 . . . 0︸ ︷︷ ︸
g−2

0 . . . 0

1 . . . 1

1 . . . 1︸ ︷︷ ︸
g−2

0 ∗
0 ∗
0 ∗


 , or
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M̂ ′′ =




1 . . . 1

0 . . . 0

1 . . . 1︸ ︷︷ ︸
g−2

0 . . . 0

1 . . . 1

0 . . . 0︸ ︷︷ ︸
g−2

0 ∗
0 ∗
0 ∗


 .

We get the zero column from applying Lemma 4.7. The symbol ∗ represents an

unknown value.

Thus we have

w(M ′[{i, l}]) > w(M̂ ′[{i, l}]);

w(M ′[{i, l}]) > w(M̂ ′′[{i, l}]);

w(M ′′[{j, l}]) > w(M̂ ′[{j, l}]);

w(M ′′[{j, l}]) > w(M̂ ′′[{j, l}]).

Since {i, l} ∈ ΓForb and {j, l} ∈ ΓForb the Hamming weights must be equal in order

to satisfy Property 2. Since they are not, our assumption that G is not connected

must be false and Γ0 must be the edge-set of a connected graph.

We now prove that G is a complete multipartite graph by contradiction. We

assume that G is not a complete multipartite graph. Blundo, De Santis, Stinson,

and Vaccaro [4] proved that any such graph must contain as an induced subgraph

which is isomorphic to H or P3, where V (H) = V (P3) = {1, 2, 3, 4}, E(H) =

{{1, 2}, {2, 3}, {3, 4}, {2, 4}}, and E(P3) = {{1, 2}, {2, 3}, {3, 4}}.
First we will show that if G contains an induced subgraph which is isomorphic

to H, we have a contradiction. K3 is an induced subgraph of H, and represents
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a (2, 3) threshold access structure. Using unavoidable patterns we can show that

there does not exist a GVCS for K3 with pixel expansion m = 2(g−1). Any matrix

in C0 must be equal, up to a column permutation, to

M =




0 . . . 0

0 . . . 0

0 . . . 0︸ ︷︷ ︸
g−1

∗ . . . ∗
∗∗ . . . ∗
∗∗ . . . ∗︸ ︷︷ ︸

g−1


 .

Any matrix in Cg−1 must be equal, up to a column permutation, to

M ′ =




1 . . . 1

0 . . . 0

1 . . . 1︸ ︷︷ ︸
g−1

1 . . . 1

1 . . . 1

0 . . . 0︸ ︷︷ ︸
g−1


 .

According to Property 2, we should have M [{1}] = M ′[{1}] since {1} ∈ ΓForb.

Therefore there does not exist a scheme for K3 with pixel expansion 2(g − 1).

Applying Lemma 4.8, we see that H cannot be an induced subgraph of G.

Now we show that if G contains an induced subgraph which is isomorphic to P3

we have a contradiction. Using unavoidable patterns (Lemma 4.6), we show that
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any matrix in Cg−1 must be equal, up to a column permutation, to

M =




1 . . . 1

0 . . . 0

1 . . . 1

0 . . . 0︸ ︷︷ ︸
g−1

0 . . . 0

1 . . . 1

0 . . . 0

1 . . . 1︸ ︷︷ ︸
g−1




.

Any matrix in Cg−2 must be equal, up to a column permutation, to

M ′ =




1 . . . 1

0 . . . 0

1 . . . 1

0 . . . 0︸ ︷︷ ︸
g−2

0 . . . 0

1 . . . 1

0 . . . 0

1 . . . 1︸ ︷︷ ︸
g−2

0 ∗
0 ∗
0 ∗
0 ∗




.

The zero column is obtained by applying Lemma 4.7.

Clearly M [{1, 4}] �= M ′[{1, 4}], violating Property 2 since {1, 4} ∈ ΓForb. Thus

the access structure represented by P3 must have m > 2(g − 1). By applying

Lemma 4.8, the access structure represented by G must have m > 2(g− 1). There-

fore G does not have P3 as an induced subgraph, and G is a complete multipartite

graph.

Finally, assume that G has more than 2 parts. Then G contains K3 as an induced

subgraph, and must therefore have pixel expansion m > 2(g − 1). Therefore G has

2 parts, and Γ0 is the edge-set of a complete bipartite graph. �
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We can also use unavoidable patterns to show that the basis matrices of a (3, 3)

threshold GVCS must be of a certain form.

Theorem 4.11 In any (3, 3, 4(g−1), g)-threshold GVCS, any matrix M ∈ Ci must

contain the following patterns:




1 0 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
i

0 1 1 0

0 1 0 1

0 1 1 1︸ ︷︷ ︸
g−i−1


 .

Proof. We use induction on the number of grey levels g. The base case is where

g = 2, which is a regular VCS. The base case clearly holds by Theorem 5.13 [1].

Assuming that it holds for k grey levels, we will show that it holds for k + 1 grey

levels.

Both M0, . . . ,Mk−1 and M1, . . . ,Mk constitute a GVCS on k grey levels. Com-

bining the unavoidable patterns for these, we get the following set of matrices.

M0 =




0 1 1 0

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 ;

M1 =




1 0 0 1

0 1 0 1

0 0 1 1

0 1 1 0

0 1 0 1

0 1 1 1︸ ︷︷ ︸
k−1


 ;
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...

Mk−1 =




1 0 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1

0 1 1 0

0 1 0 1

0 1 1 1


 ;

Mk =




1 0 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 .

We can fill in some of the missing values for Mk using unavoidable patterns:

Mk =




1 0 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗


 .

Since Mk[{x, y}] = Mk−1[{x, y}], the remaining row must consist of all 1’s.

Therefore we have

Mk =




1 0 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1




.
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Similarly for M0, by unavoidable patterns we have

M0 =




0 1 1 0

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1

0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


 .

Since M0[{x, y}] = M1[{x, y}], we get

M0 =




0 1 1 0

0 1 0 1

0 0 1 1︸ ︷︷ ︸
k−1




.

Therefore the theorem holds for k + 1 and by induction, holds for all g. Since

the minimum pixel expansion for a (3, 3)-threshold GVCS is 4(g− 1), we have that

any matrix M ∈ Ci is equal, up to a column permutation, to the matrix Mi given

above. �

4.2 Graph-based Access Structures

This section gives results for access structures which are based on graphs, par-

ticularly complete graphs and complete multipartite graphs. In addition, since

complete graphs are (k, n) threshold access structures with k = 2, we give a result

for all (k, n) threshold access structures which uses generalized cover-free families.
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4.2.1 A construction

It is easy to show that the rows of any matrix M ∈ ∪g−1
i=1 Ci form a Sperner family.

By Lemma 4.6, any two rows of M contain the vectors
[

1
0

]
and

[
0
1

]
. Let G =

{g1, . . . , gm} and let Ai = {gq : M(i, q) = 1}. Because of the unavoidable patterns,

we have a Sperner family with n subsets over a ground set of size m. We can also

use Sperner families to construct access structures based on the graph Kn, which

represent (2, n) threshold access structures.

Theorem 4.12 Given a Sperner family SF = {A1, . . . , An} over a ground set

G = {g1, . . . , gm}, we have that m∗(Kn) ≤ m(g − 1).

Proof. Atienese, Blundo, De Santis, and Stinson [1] prove a similar result for

regular VCS by offering a construction with pixel expansion m. They give the

basis matrices

S0 =




1 if 1 ≤ j ≤ |Bi|;
0 if |Bi| ≤ j ≤ m.

S1 =




1 if gj ∈ Bi;

0 if gj /∈ Bi.

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

We will extend this to GVCS. For basis matrix Gi, simply concatenate g− i− 1

copies of S0 and i copies of S1. Since S0[{i}] = S1[{i}] up to a column permutation

(from Property 2 for VCS, since any single participant is forbidden), we must have

that Gj[{i}] = Gk[{i}] for any 0 ≤ j, k ≤ g − 1. Thus Property 2 holds. To prove

Property 1, note that we have S1[{i, j}]−S0[{i, j}] = d where d must be at least 1.
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Thus if we set ti,X = w(Gi+1[X]), Property 1 is satisfied with αi(m) · m = d. The

pixel expansion is therefore m(g − 1), so m∗(Kn) ≤ m(g − 1). �

4.2.2 (k, n)-threshold access structures

Access structures based on complete graphs represent (2, n)-threshold access struc-

tures. For this reason, we will give a more general result on (k, n)-threshold access

structures, which we will use later for complete graphs. We first define generalized

cover-free families. This definition is taken verbatim from Stinson and Wei [7].

First, we give some notation. A set system is a pair (X,F), where X is a set of

points and F is a set of subsets (called blocks) of X. We denote |X| by N and |F|
by T .

Definition 4.1 A set system (X,F) is called a (w, r; d)-cover-free family (or

(w, r; d)-CFF) provided that, for any w blocks B1, . . . , Bw ∈ F and any other r

blocks A1, . . . , Ar ∈ F , we have

∣∣∣∣∣
(

w⋂
i=1

Bi

)
\

(
r⋃

j=1

Aj

)∣∣∣∣∣ > d,

where d is a non-negative integer.

We let N((w, r; d), T ) denote the minimum number of points for the cover-free

family represented by (w, r; d) and T . We have the following theorem about the

relationship between (k, n)-threshold access structures and cover-free families.

Theorem 4.13 In any (k, n)-threshold GVCS, the pixel expansion m is at least

N((1, k − 1; g − 2), T ).
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Proof. Let C0, . . . , Cg−1 be a set of collections of matrices constituting a (k, n)-

threshold GVCS with pixel expansion m and let M ∈ Cg−1 be any matrix. From

the unavoidable patterns, for any set of k rows {i1, . . . , ik}, in row ij there are

g − 1 columns such that there is a 1 in that row and 0 in the other rows. Let

X = {x1, . . . , xm} be a set of points. We can consider each row of M to be a

subset of F where a 1 in column i indicates that point xi is in the subset. By

the unavoidable patterns, for any k rows of M , the union of any k − 1 of the

corresponding subsets does not cover (g-1) elements of the remaining subset. Thus

the matrix M represents a (1, k − 1; g − 2)-CFF with N = m and T = n, and

the minimum pixel expansion is the same as the minimum number of points in the

corresponding cover-free family. �

Stinson and Wei [7] proved the following bound for (1, r; d)-CFF where r ≥ 2:

N((1, r; d), T ) ≥ c

(
r2

log r
log T + dr

)
,

where c is approximately 1
2
.

For the case of (2, n) threshold structures, we have r = 1 which is a special case.

We use a result about the relationship between the quantities N and T for a given

d from Balding and Torney [5]. They proved:

T ≤ 1

Cd

(
N

N
2
�
)

55



where

Cd =




1 if d = 0;∑d/2
s=0

(�N
2
�

s

)(�N
2
�

s

)
if d is even;

Cd−1 + 1
k

( �N
2
�

(d+1)/2

)( �N
2
�

(d+1)/2

)
if d is odd.

and where k = 2�N/2�
d+1

�.
Thus the minimum pixel expansion is the smallest value of N satisfying T ≤

1
Cd

(
N

�N
2
�
)
.

Example 4.1 For the case where there are 4 grey levels, we can simplify the

formula and give values for m∗.

T ≤ 1

C2

(
N

N
2
�
)

;

C2 = 1 + N

2
��N

2
�.

Thus for n = 2, m∗ = 6, for n = 3, 4, m∗ = 8, for n = 5, m∗ = 9, and for

n = 6, 7, 8, 9, m∗ = 10.

The following theorem holds:

Theorem 4.14 Given a complete graph on n participants, m∗(Kn) is the smallest

value m such that n ≤ 1
Cg−2

(
m

�m
2
�
)
.

Proof. The complete graph Kn represents a (2, n) threshold access structure. We

can therefore use the bound given by Balding and Torney [5], and we have m∗(Kn)

the smallest value m such that n ≤ 1
Cg−2

(
m

�m
2
�
)
. �
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Let ω(G) denote the maximum size of a clique in G. Then the following lemma

follows from Theorem 4.14.

Lemma 4.15 Given a graph G, there exists a (Γ(G), g,m)-GVCS only if ω(G) ≤
1

Cg−2

(
m

�m
2
�
)
.

Proof. Let Gk be the maximum size clique in G. From Theorem 4.14 we have that

m∗(Gk) = m. Applying Lemma 4.8, the result follows. �

We can now give the optimal pixel expansion, with a construction, for complete

multipartite graphs.

Theorem 4.16 Let Ka1,...,an be a complete multipartite graph with n parts, and let

(ΓQual, ΓForb) be the access structure it represents. There exists a (ΓQual, ΓForb, g,m)-

GVCS if and only if n ≤ 1
Cg−2

(
m

�m
2
�
)
.

Proof. First, given a (ΓQual, ΓForb, g,m)-GVCS we show that n ≤ 1
Cg−2

(
m

�m
2
�
)
.

Clearly ω(Ka1,...,an) = n. Thus, from Lemma 4.15 we have n ≤ 1
Cg−2

(
m

�m
2
�
)
. �

Given n ≤ 1
Cg−2

(
m

�m
2
�
)
, we now give a construction for a (ΓQual, ΓForb, g,m)-

GVCS. Let G0, . . . , Gg−1 be the basis matrices of a (Γ(Kn), g,m)-GVCS. For each

row q in each matrix Gi replicate row q aq times. We now have a (ΓQual, ΓForb, g,m)-

GVCS.

4.2.3 Other results

These two theorems use unavoidable patterns to prove lower bounds on the pixel

expansion for specific access structures.
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Theorem 4.17 Let (ΓQual, ΓForb) be a strong access structure on four participants

such that {1, 2, 4}, {1, 3, 4} ∈ Γ0. If there exists a (ΓQual, ΓForb, 4(g − 1), g)-GVCS,

then there is no X ∈ Γ0 such that {2, 3} ∈ Γ0 and {2, 3} ∈ X.

Proof. Applying Lemma 4.8, we have induced access structures {{1, 2, 4}} and

{{1, 3, 4}}. Applying Theorem 4.11, we have that any matrix Mi ∈ Ci is equal, up

to a column permutation, to




1 0 0 1

0 1 0 1

0 1 0 1

0 0 1 1︸ ︷︷ ︸
i

0 1 1 0

0 1 0 1

0 1 0 1

0 1 1 1︸ ︷︷ ︸
g−i−1




.

If {2, 3} ⊆ X ∈ Γ0, then the matrix Mi[{2, 3}] must contain at least one column[
1
0

]
and at least one column

[
0
1

]
for all i ≥ 1, which clearly is not true. Therefore

the theorem holds. �

Theorem 4.18 Given (ΓQual, ΓForb), a strong access structure on four participants

with basis Γ0 = {{1, 2, 3}, {1, 4}, {3, 4}}, any (ΓQual, ΓForb, g,m)-GVCS must have

m > 4(g − 1).

Proof. Since {1, 2, 3} ∈ Γ0, by Lemma 4.8 we must have m ≥ 4(g − 1). Suppose

there exists a GVCS with m = 4(g − 1). Then we must have any M0 ∈ C0 equal,
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up to a column permutation, to the following matrix.




0 1 1 0

0 1 0 1

0 0 1 1

0 ∗ ∗ ∗︸ ︷︷ ︸
g−1




We have w(M0[{1, 2, 3}]) = w(M0[{2, 3, 4}]) = 3(g − 1).

In addition, we must have any M1 ∈ C1 equal, up to a column permutation, to

the following matrix:




1 0 0 1

0 1 0 1

0 1 0 1

∗ ∗ ∗ ∗

0 1 1 0

0 1 0 1

0 1 0 1

0 ∗ ∗ ∗︸ ︷︷ ︸
g−2




.

We must have w(M1[{1, 2, 3}]) = w(M1[{2, 3, 4}]) = 3(g − 1) + 1, and so we

must have M1 equal, up to a column permutation, to the following matrix:




1 0 0 1

0 1 0 1

0 1 0 1

1 ∗ 1 ∗

0 1 1 0

0 1 0 1

0 1 0 1

0 ∗ ∗ ∗︸ ︷︷ ︸
g−2




.
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Then there are two possibilities depending on the value of the unknowns in

each matrix. If w(M1[{2, 4}]) = 2(g − 2) + 4, then w(M0[{2, 4}]) = 2(g − 1). If

w(M1[{2, 4}]) = 3(g − 2) + 4, then w(M0[{2, 4}]) = 3(g − 1). Since {2, 4} ∈ ΓForb,

we need w(M1[{2, 4}]) = w(M0[{2, 4}]). We have a contradiction, therefore m �=
4(g − 1), and the theorem holds. �

Finally, we show that if there exists basis matrices for a (ΓQual, ΓForb)-VCS with

pixel expansion m, then the minimum pixel expansion of a (ΓQual, ΓForb)-GVCS is

at most (g − 1)m.

Theorem 4.19 If there exist basis matrices S0, S1 for a (ΓQual, ΓForb,m)-VCS,

then the minimum pixel expansion of a (ΓQual, ΓForb)-GVCS with g grey levels is

m∗ ≤ (g − 1)m.

Proof. For 0 ≤ i ≤ g − 1 we define the basis matrices of the GVCS as follows:

Gi = S0 ◦ . . . ◦ S0︸ ︷︷ ︸
g−i−1

◦S1 ◦ . . . ◦ S1︸ ︷︷ ︸
i

.

Clearly we have pixel expansion m′ = (g − 1)m. For 0 ≤ i ≤ g − 2, let ti,X =

w(Gi+1[X]) and αi(m) = 1
(g−1)m

. Thus, for any X ∈ ΓQual we have w(Gi[X]) ≤
ti,X −αi(m) ·m and w(Gi+1[X]) ≥ ti,X . For any X ′ ∈ ΓForb, since S0[X] = S1[X] up

to a column permutation, we have G0[X] = G1[X] = . . . = Gg−1[X] up to a column

permutation. Since we have constructed a (ΓQual, ΓForb, (g − 1)m, g − 1)-GVCS, we

must have m∗ ≤ (g − 1)m. �
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4.3 GVCS on four grey levels

Access structures 2, 3, 6, 7, 9, and 10 are complete multipartite graphs and the

optimal pixel expansion is given by Theorem 4.16. Access structures 1, 4, 18

are (k, k)-threshold access structures and the optimal pixel expansion is given by

Lemma 2.15. Lower bounds for 5, 8 are determined by Theorem 4.10. Lower bounds

for 11, 13, 14 are from Corollary 4.9. Lower bounds for 15, 16, 17 are obtained

from Theorem 4.17. Upper bounds for 5, 8, 11, 13, 14, 15, 16, 17 are obtained from

Theorem 4.19 and the basis matrices given by Atienese, Blundo, De Santis, and

Stinson [1].
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access structure n basis subsets m∗ result used

1 2 12 6 Lemma 2.15
2 3 12,23 6 Theorem 4.16
3 3 12,13,23 8 Theorem 4.16
4 3 123 12 Lemma 2.15
5 4 12,23,34 7 ≤ m∗ ≤ 9 Theorems 4.10, 4.19
6 4 12,13,14 6 Theorem 4.16
7 4 12,14,23,34 6 Theorem 4.16
8 4 12,23,24,34 7 ≤ m∗ ≤ 9 Theorems 4.10, 4.19
9 4 12,13,14,23,24 8 Theorem 4.16
10 4 12,13,14,23,24,34 8 Theorem 4.16
11 4 123,14 12 Cor. 4.9, Thm. 4.19
12 4 123,14,34 13 ≤ m∗ ≤ 15 Theorems 4.18, 4.19
13 4 134,12,23,24 12 Cor. 4.9, Thm. 4.19
14 4 123,124 12 Cor. 4.9, Thm. 4.19
15 4 124,134,23 13 ≤ m∗ ≤ 15 Theorems 4.17, 4.19
16 4 123,124,134 13 ≤ m∗ ≤ 18 Theorems 4.17, 4.19
17 4 123,124,134,234 13 ≤ m∗ ≤ 18 Theorems 4.17, 4.19
18 4 1234 24 Lemma 2.15

Table 4.1: GVCS with four grey levels for strong access structures on up to four
participants
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Chapter 5

Conclusions and Open Problems

We have given three constructions for GVCS on general access structures, the cu-

mulative arrays construction, the decomposition construction, and the starting ma-

trices construction. Of these, the decomposition construction has the most promise

to result in significantly better values for the pixel expansion, assuming that the

smaller access structures have good values for the pixel expansion. However, a tech-

nique for finding such a GVCS for the smaller access structures remains an open

problem.

We have also given the necessary theory to give optimal values (or ranges of

values) for the pixel expansion of GVCS on strong, connected access structures on

at most four participants. We first showed that we need only consider connected

access structures by showing how to construct a GVCS for a non-connected access

structure given a GVCS for each of its connected parts. We then showed that a

strong, connected GVCS must contain unavoidable patterns which are dictated by

the access structure. We used these unavoidable patterns to show that for any
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GVCS with pixel expansion 2(g − 1), the access structure must be represented by

a complete bipartite graph, and also to show that any (3, 3, 4(g − 1), 4)-threshold

GVCS must have basis matrices of a particular form. We then use these results to

prove optimal values for threshold access structures and access structures based on

graphs. The most significant of the graph results gives the optimal pixel expansion

for access structures based on complete multipartite graphs. We also give two

theorems which give lower bounds on access structures containing certain sets of

qualified participants, and a theorem which gives an upper bound for the pixel

expansion of GVCS where there exists a corresponding VCS represented by basis

matrices. Finally, we apply these results to the case of four grey levels, giving

a table of values for the optimal pixel expansion of all strong, connected access

structures on at most four participants.
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