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ABSTRACT In this paper, a new grey wolf optimizer (GWO) variant based on a novel weighted dis-

tance (WD) called the GWO-WD algorithm is presented to solve global optimization problems. First, a

modified position-updating equation formulated using the proposed strategy is employed to obtain additional

information and improved global solutions. Then, several of the worst individuals are eliminated and

repositioned using an elimination and repositioning strategy to improve the capability of the algorithm

and avoid falling into local optima. The performance of the algorithm is verified by utilizing 23 widely

used benchmark test functions, the IEEE CEC2014 test suite and three well-known engineering design

problems. The simulation results of the proposed algorithm are compared with those of the standard GWO

algorithm, three GWO variants and several existing methods, and the proposed algorithm is revealed to be

very competitive and, in many cases, superior.

INDEX TERMS Grey wolf optimizer, global optimization, weight distance strategy, elimination and

repositioning strategy, engineering design problem.

I. INTRODUCTION

Global optimization (GO), defined as the process of finding

the best solution from all feasible solutions [1], is necessary,

challenging and inevitable in most optimization problems [2].

Complex multimodal optimization problems are common

in science and engineering, and most classic deterministic

methods (or gradient-based methods) generally fail or pro-

duce infeasible solutions [3]. Among the most successful

and competitive GO methods are swarm intelligence (SI)

algorithms [2], which were developed by mimicking the sur-

vival behaviors of bird swarms, fish schools, insect colonies,

bacterial growth and other animal herds and are used to solve

complex problems.

With its strong optimization performance, SI has attracted

considerable interest from researchers in recent years.

Several well-known SI algorithms, such as particle swarm
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optimization (PSO) [4], artificial bee colony (ABC) opti-

mization [5], ant colony optimization (ACO) [6], the cuckoo

search (CS) method [7], the firefly algorithm (FA) [8],

the multiverse optimizer (MVO) [9], the dragonfly algorithm

(DA) [10], the ant lion optimizer (ALO) [11], the whale

optimization algorithm (WOA) [12], moth-flame optimiza-

tion (MFO) [13], the bat algorithm (BA) [14], the squirrel

search algorithm (SSA) [15], the naked mole-rat (NMR)

algorithm [16], the grey wolf optimizer (GWO) [17]– [19],

the binary spotted hyena optimizer [20] and the sine cosine

algorithm [21], [22], have been developed in the past few

decades to solve GO problems. Among the current SI algo-

rithms, GWO is a representative algorithm that has been

widely employed for GO purposes. The GWO algorithm,

which is inspired by the hunting behavior and leadership hier-

archy of grey wolves, was first developed by Mirjalilili et. al.

in 2014 [17]. According to the hunting process of wolves,

four main steps are implemented in the GWO algorithm:

hunting, searching, encircling, and attacking. In addition,
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based on the leadership hierarchy of grey wolf packs, pack

members in GWO are divided into four groups based on

their hunting ability, namely, alpha (α), beta (β), delta (δ),

and omega (ω) groups, where the alpha wolf has the best

hunting ability (denoted by the fitness value), the beta wolf

has the second-best hunting ability, and the delta wolf has

the third-best hunting ability. In GWO, the best three wolves

(i.e., α, β and δ wolves) are responsible for guiding the

ω wolves and hunting for prey; i.e., the position-updating

equation ofωwolves is decided by theα, β and δ wolves. This

mechanism of location updating creates a simple algorithm

framework for GWO, is easy to implement on a computer,

and requires few parameters to be adjusted. Therefore, this

method has been successfully utilized in the fields of eco-

nomic load dispatch (ELD) problems [23], [24], automatic

control [25], image processing [26], strategic bidding in

the energy market [27], machine learning [28], and aerial

vehicle path planning in unmanned combat [29], among

others.

However, similar to other SI algorithms, the GWO

algorithm suffers from several drawbacks, such as a low

solution accuracy, slow convergence speed and tendency to

converge to local optima. These drawbacks are especially

obvious when solving high-dimensional, complex optimiza-

tion problems. To alleviate these shortcomings, researchers

have developed several modified GWO algorithms, which

can be divided into four categories [30], including meth-

ods that modify the updating mechanism, operators, encod-

ing scheme for individuals, and population structure and

hierarchy.

The methods that modify the updating mechanism follow

two different approaches. One approach is to dynamically

change the GWO control parameters, while the other involves

proposing a new position-updating equation for GWO.

To enhance the global exploration of GWO, Mittal et al. [31]

designed a new control parameter a by using an exponential

decay function. Xu et al. [32] proposed a nonlinear control

parameter a to achieve a balance between exploration and

exploitation and to accelerate the GWO convergence speed.

In [33], two control parameters were redesigned, namely,

a and C , whose values were dynamically and iteratively

modified. In addition, to prevent the GWO algorithm from

converging to local optima, researchers have also modified

the updating equation. Jaiswal et al. [34] introduced random

weight coefficients into the GWO algorithm to modify the

position-updating equation and avoid local optima. In [1], [2],

the authors adopted weighted distance coefficients to update

the positions of individuals instead of using a simple aver-

age of the first three best individuals. These two modified

position-updating equation techniques are particularly effec-

tive for solving complex multimodal problems. To increase

the diversity of potential individuals in GWO, it is efficient

to adopt new operators. In [35], the authors developed a

modified GWO variant based on a simple crossover operator

generated by randomly selecting two different individuals.

In another work, Saremi et al. [36] employed evolutionary

population dynamics (EPD) in GWO to eliminate the worst

individuals and reposition them around the three best wolves.

Furthermore, modifying the encoding scheme of individu-

als can enhance the information capacity of individuals and

increase the diversity of the population. In [37], a novel

complex-valued encoding GWO algorithm (CGWO) was

developed. In CGWO, the real-valued encoding method is

replaced with a complex-valued method, which consists of

two main parts: an imaginary part and a real part. As men-

tioned above, the original GWO algorithm was proposed

based on a unique hierarchical population structure described

in [17], [30]. Therefore, an interesting research direction is to

modify the population structure and hierarchy. In a notable

work, Yang et al. [38] proposed a GWO variant based on dif-

ferent leadership hierarchies. In this GWO variant, the popu-

lation is divided into two independent groups: a cooperative

hunting group and a random scouting group: the cooperative

hunting group conducts deep exploitation, while the scouting

group performs extensive exploration.

Although the performance of most modified GWO algo-

rithms was improved after adding several additional opera-

tors or new mechanisms, two problems remained: premature

convergence and an imbalance between global exploration

and local exploitation. These phenomena can be explained

by four aspects [39]: a) lack of sufficient diversity among

individuals; b) a lack of experimental analysis and statistical

results to justify the applicability and validity of the findings

of previous studies; c) a lack of algorithm parameters, such

as the population size and dimension size, and a poor under-

standing of their impacts on the optimization performance;

and d) a poor balance between exploration and exploitation,

which should be considered in future works.

Inspired by these factors, this work proposes a novel mod-

ified GWO variant called the grey wolf optimizer based on

the weighted distance (GWO-WD). The main contributions

of this paper are listed as follows.

(1) A novel weighted distance is proposed for the GWO

algorithm considering both the fitness value of each leader

and the corresponding control parameter C .

(2) The position-updating equation for the GWO algorithm

is redesigned based on the proposed weighted distance to

effectively accelerate the convergence speed and enhance the

accuracy of the solution.

(3) A strategy for eliminating the worst individuals and

repositioning them in the search space by using the three

leader wolves is proposed; this approach can help the GWO

algorithm avoid local optima.

The remainder of this paper is arranged as follows.

Section 2 briefly explains the standard GWO algorithm.

In Section 3, the proposed GWO-WD algorithm is described

based on the novel weighted distance, the redesigned

position-updating equation and the strategy for eliminating

and repositioning the worst individuals. Section 4 describes

how the algorithm parameters used in the experiment were set

and presents the experimental results. Applications of the pro-

posed GWO-WD algorithm to three real-world engineering
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design problems are investigated in Section 5. Finally,

the conclusions are drawn in Section 6.

II. GREY WOLF OPTIMIZER AND WEIGHTED DISTANCE

A. STANDARD GREY WOLF OPTIMIZER

GWO, proposed by Mirjalili et al. [17], is a recently devel-

oped SI algorithm inspired by Canis -lupus. The GWO algo-

rithm mimics the special hunting strategy of grey wolves

in searching for and capturing prey with a strict division of

responsibilities and mutual cooperation. In the GWO algo-

rithm, the global best search agent in the population is called

the alpha (α) wolf. The global second- and third-best search

agents are named the beta (β) and delta (δ) wolves, respec-

tively. The other search agents in the population are consid-

ered omega (ω) wolves. The hunting strategy of grey wolf

packs involves three steps: encircling, hunting and attacking.

The grey wolves begin to encircle the prey after determin-

ing its location. To mathematically describe the encircling

process, Eq. (1) is established [16] as follows.

EX (t + 1) = EXp(t) − EA ·
∣

∣

∣

EC · EXp(t) − EX (t)
∣

∣

∣
(1)

where t is the current iteration, EX (t) is the current position

vector of a grey wolf, EX (t + 1) is the next position vector

of the wolf, EXp(t) is the current position vector of the prey,

and EA and EC are coefficient vectors. These coefficients can

be described as follows.

EA = 2Ea · Er1 − Ea (2)

EC = 2Er2 (3)

where Er1 and Er2 are random vectors in [0, 1] and Ea linearly

decreases from 2 to 0 with increasing number of iterations.

Ea = 2 − 2t

MaxIter
(4)

where t is the number of iterations and MaxIter is the total

number of iterations.

After the first step is completed, the predation process

begins. The other wolves update their positions under the

guidance of the α, β, and δ wolves as follows [16].



















EX1(t) = EXα(t) − EA1 ·
∣

∣

∣

EC1 · EXα(t) − EX (t)
∣

∣

∣

EX2(t) = EXβ (t) − EA2 ·
∣

∣

∣

EC2 · EXβ (t) − EX (t)
∣

∣

∣

EX3(t) = EXδ(t) − EA3 ·
∣

∣

∣

EC3 · EXδ(t) − EX (t)
∣

∣

∣

(5)

EX (t + 1) =
EX1(t) + EX2(t) + EX3(t)

3
(6)

The third step is to attack the prey. In the GWO algorithm,

the attack behavior of grey wolves is controlled by the coeffi-

cient vector EA, where EA ∈
[

−2Ea, 2Ea
]

. When

∣

∣

∣

EA
∣

∣

∣
≥ 1, the grey

wolves diverge from the prey and conduct a global search

to find better prey; when

∣

∣

∣

EA
∣

∣

∣
< 1, the grey wolves attack

the prey.

B. TWO DIFFERENT WEIGHTED DISTANCES

Jitkongchuen et al. presented a notable GWOvariant, namely,

the weighted distance GWO (WDGWO) [1]. In theWDGWO

algorithm, the ω wolves update their positions by using the

unique weight values of the three leaders, and these weight

values are determined by the fitness value of each leader. The

α wolf has the best weight value, and the β and δ wolves have

the second-best and third-best weight values, respectively.

These weight values are calculated as follows [1].

W1 = fα

fα + fβ + fδ
(7)

W2 = fβ

fα + fβ + fδ
(8)

W3 = fδ

fα + fβ + fδ
(9)

where fα , fβ and fδ are the fitness values of the α, β and δ

wolves, respectively.

Therefore, ω wolves will update their positions as

follows [1].

EX (t + 1) = W1
EX1(t) +W2

EX2(t) +W3
EX3(t)

3
(10)

where EX1, EX2 and EX3 are calculated from Eq. (5).

In another interesting study, Malik et al. proposed another

GWO variant, the weighted distance GWO (WdGWO),

which is used mainly to improve the performance of the

standard GWO algorithm in complex multimodal GO prob-

lems [2]. In the WdGWO algorithm, the weight values of

the three leaders are calculated by adopting the coefficient

vectors EAi and ECi, as in Eq. (2) and Eq. (3), respectively,

where i = 1, 2, 3.

w1 = EA1 · EC1 (11)

w2 = EA2 · EC2 (12)

w3 = EA3 · EC3 (13)

Therefore, the ω wolves update their positions as follows [2].

EX (t + 1) = w1
EX1(t) + w2

EX2(t) + w3
EX3(t)

w1 + w2 + w3
(14)

III. THE PROPOSED GWO-WD ALGORITHM

Although GWO has been improved by researchers from dif-

ferent institutions around the world, a better balance between

exploration and exploitation is required to improve the opti-

mization capability of the algorithm. To improve perfor-

mance, a new GWO variant named GWO-WD is proposed

and described in this section. The proposed GWO-WD algo-

rithm is based on the following three basic concepts:

• A novel weighted distance is proposed;

• Based on the proposed weighted distance, a modified

position-updating equation is established to improve the

exploitation of the GWO algorithm; and

• A new elimination and repositioning strategy is pro-

posed to enhance the exploration of the GWO algorithm.
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A. POSITION-UPDATING EQUATION BASED ON THE

NOVEL WEIGHTED DISTANCE

As described in Eq. (3), the global exploration capacity of

the GWO algorithm is controlled by the control parameter
EC [17], [19]. As shown in Eq. 5, the influence of EC on the

global exploration ability of the GWO algorithm is achieved

mainly by controlling the global best individual (the α wolf),

the global second-best individual (the β wolf) and the global

third-best individual (the δ wolf). The parameter EA controls

mainly the extent to which the ω wolves approximate the α,

β and δ wolves. Therefore, in Eqs. (11)-(13), EA is related to

the weights of EX1, EX2 and EX3, which introduces redundant

information and diminishes the GWO performance. How-

ever, the weights of EX1, EX2 and EX3 in the position-updating

equation of the GWO algorithm should be based only on

the relevant coefficients of the three leader wolves. Based

on this approach and the relevant works described in above

subsection, this paper proposes a novel weighted distance as

follows.

Eϕ1 = EC1
fα

fα + fβ + fδ
(15)

Eϕ2 = EC2
fβ

fα + fβ + fδ
(16)

Eϕ3 = EC3
fδ

fα + fβ + fδ
(17)

The position-updating equation based on the proposed

weighted distance is modeled as follows.

EX11(t + 1) = Eϕ1
EX1(t) + Eϕ2

EX2(t) + Eϕ3
EX3(t)

Eϕ1 + Eϕ2 + Eϕ3
(18)

where Eϕ1, Eϕ2 and Eϕ3 are weight parameters and reflect the

extents of influence of EX1, EX2 and EX3 on the position update,

respectively.

B. MODIFIED POSITION-UPDATING EQUATION

The position-updating equation of the GWO algorithm

is determined simply based on the average location of

the three leader wolves. Although this approach is effec-

tive for most normal problems, it has limited efficacy

in high-dimensional, complex multimodal problems [2].

A well-designed position-updating equation with different

weights in different iterations can better reflect the com-

plex search process of the GWO algorithm. Therefore, the

position-updating equation of the GWO algorithm should be

modified as follows by adding useful information and com-

bining the standard position-updating equation with weighted

distances.

EX22(t + 1) =
EX1(t) + EX2(t) + EX3(t)

3
(19)

EX (t + 1) = EX22 + c1µ1

(

ρ1 EX11 − (1 − ρ1) EX22
)

(20)

ρ1 = 1 − t

MaxIter
(21)

where c1 is a constant between 0 and 2 (its value is 1.49445

in this paper); µ1 is a random number in the range of (0, 1);

and ρ1 is a weight used to reflect the influences of EX11 and
EX22 at different iterations. In addition, the weight ρ1 indicates
that in the initial stage of the search, the roles of the three

fittest wolves are almost the same, while in the later stage,

the abilities of the three wolves vary.

C. ELIMINATION AND REPOSITIONING STRATEGY

The worst individuals in stochastic population-based algo-

rithms contribute little to the algorithm performance and may

even weaken the performance because of their limited search

capacity. This phenomenon also exists in the GWO algo-

rithm. To improve the optimization performance of the GWO

algorithm, an elimination and repositioning strategy, which

is employed to eliminate several of the worst search agents

and reinitialize them after a certain number of iterations,

is proposed in this work.

In the GWO algorithm, the worst search agents and the

elite search agents are obtained with the help of the three best

search agents. If continual repositioning is adopted, position-

ing the worst search agents around the positions of the three

best search agents may increase the probability of falling

into local optima. Therefore, the worst search agents can be

repositioned in promising parts of the search space far from

the positions of the three best search agents. The expression

used to reposition the worst candidates in promising areas is

modeled as follows.

EX (t + 1)= µ2 (ub−lb)−µ3ρ2
EXα(t) + EXβ (t) + EXδ(t)

3
(22)

ρ2 = 1 −
(

t

MaxIter

)2

(23)

where µ2 and µ3 are random numbers in the range of (0, 1),

ub is the upper bound of the solution space, and lb is the lower

bound of the solution space.

Note that in this work, we eliminated one-half of the worst

individuals every five iterations and reinitialized them with

Eqs. (22) -(23).

D. COMPUTATIONAL COMPLEXITY OF GWO-WD

The computational complexity of the GWO, WDGWO,

WdGWO, and GWO-WD algorithms is given as follows.

(1) In the initialization stage, GWO, WDGWO, WdGWO

and GWO-WD require O(N ×D) time, where N denotes the

population size and D represents the size (dimension) of the

problem.

(2) Calculating the control parameters of GWO,WDGWO,

WdGWO and GWO-WD requires O(N × D) time.

(3) Updating the individuals in GWO, WDGWO,

WdGWOandGWO-WDwith the position-updating equation

requires O(N × D) time.

(4) Evaluating the objective function fitness value of each

search agent requires O(N × D) time.

(5) In GWO-WD, the elimination and repositioning strat-

egy requires O(N/2×D) time.

Based on this analysis, for each cycle of calculations,

the total time (complexity) is O(N × D). After reaching the
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maximum number of iterations, the total time (complexity)

of GWO, WDGWO, WdGWO and GWO-WD is O(N ×D×
MaxIter), where MaxIter denotes the maximum number of

iterations.

IV. RESULTS AND COMPARISON

A. BENCHMARK TEST PROBLEMS AND

PARAMETER SETTINGS

Three test series from several references [4], [19] were

selected to evaluate the optimization performance of

GWO-WD in comparison with that of the other algorithms.

The first test series includes seven common unimodal func-

tions (f1-f7) that have one global optimum and no local

optima; therefore, this series is suitable for testing the

exploitation ability of the chosen algorithms. The information

for this series is listed in Table 1. The second test series

consists of six classic multimodal functions (f8-f13) that

have many local optima and are usually selected to verify

the exploration and local minima avoidance capabilities of

algorithms [32]. The information for this series is listed

in Table 2.

The third test series includes ten fixed-dimension multi-

modal benchmark functions (f14-f23) that have fewer local

optima than most multimodal problems and are thus useful

for benchmarking both the exploration and the exploitation

abilities of the algorithms. The information for this series is

listed in Table 3. Note that in Tables 1, 2 and 3, fmin indicates

the global minimum value of the function, D represents the

dimension of the function, and Range represents the bound-

aries of the solution space. To perform an experiment with

a fair comparison, the common parameters of the algorithms

are listed in Table 4, and the other parameters are detailed

in Table 5, where N represents the population size and R

indicates the number of independent runs. The experiment

was performed in MATLAB R2015a (MathWorks).

B. COMPARISON WITH THE STANDARD

GWO ALGORITHM

To investigate the optimization performance of the

GWO-WD algorithm on the three types of benchmark test

problems presented in Tables 1 through 3, the problems in

Tables 1 and 2 are tested for 30, 100 and 1000 dimensions.

The 30D case is used to investigate the performance of the

algorithm in solving low-dimensional problems, the 100D

case is adopted to test the performance of the algorithm

in solving medium-dimensional problems, and the 1000D

case is employed to verify the optimization performance of

the algorithm in solving challenging, large-scale problems.

We compared the best (Best), average (Mean), worst (Worst)

and standard deviation (St. dev.) results of the GWO-WD

algorithm and the standard GWO algorithm after executing

30 independent experiments. The experimental results for the

unimodal andmultimodal problems are shown inTable 6, and

those for the fixed-dimension multimodal problems are listed

in Table 7.

As shown in Table 6, the GWO-WD algorithm yielded

the best results in 6 out of 7 unimodal test problems from

the low -dimension to the large-scale problems. For the test

function f6, a low- to medium-dimension problem, the GWO

algorithm achieved the best results, but the GWO-WD algo-

rithm provided better results for the high-dimensional prob-

lems. Among the 6 multimodal test functions, the GWO-WD

algorithm provided better results than the standard GWO

algorithm for 5 functions (f8-f11 and f13). However, for test

problem f12, the standard GWO algorithm produced bet-

ter results than the GWO-WD algorithm only in the low-

dimensional case. From Table 7, the GWO-WD algorithm

achieved better results for 7 test functions (f14-f17 and f21-f23)

and similar results for one test function (f18). Moreover,

compared with the GWO-WD algorithm, GWO yielded bet-

ter results for two test functions (f19 and f20). From the

optimization results of the GWO-WD and standard GWO

algorithms for 13 low-, medium- and high-dimensional test

functions, the GWO-WD algorithm yielded better results

than the standard GWO algorithm in most cases. Overall,

the optimization results obtained by the GWO-WD algo-

rithm for low-, medium- and high-dimensional test functions

indicate that the GWO-WD performance deteriorates less as

the problem dimension increases drastically. In other words,

the GWO-WD algorithm displays excellent scalability con-

sidering the search dimension of complex problems.

To compare the performance of the GWO and GWO-WD

algorithms on the basis of the statistical results, Table 8

presents the results of a Wilcoxon rank -sum test with a sig-

nificance level of 0.05. According to Table 8, the GWO-WD

algorithm yielded the best results in 39 out of 49 cases,

equal results in 6 out of 49 cases, and worse results in 4

out of 49 cases, compared to the standard GWO algorithm.

These statistical results verify that the performance of the

standard GWO algorithm has been considered improved by

the GWO-WD algorithm for unimodal and multimodal test

problems and that the two algorithms achieved similar per-

formance for fixed-dimension test problems.

For an intuitive illustration, the convergence curves of

the standard GWO and GWO-WD algorithms for three

typical unimodal and three representative multimodal test

functions with D=30, 100 and 1000 and four classic

fixed-dimensionmultimodal benchmark functions are plotted

in Figure 1. As displayed in Figure 1, GWO-WD yielded

a faster convergence speed than the standard GWO algo-

rithm in all test problems regardless of dimension, including

for the fixed-dimension multimodal problems. In addition,

the GWO-WD algorithm provided relatively similar conver-

gence rates for the problems as the dimension changed. Fur-

thermore, for function f9, the GWO-WD algorithm exhibited

a faster convergence rate in the high-dimensional case than

in the low-dimensional case. This phenomenon indicates that

the GWO-WD algorithm is a robust algorithm.

In addition to investigating the solution quality and conver-

gence speed of the standard GWO andGWO-WD algorithms,

the computational times should also be compared [41].
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TABLE 1. Descriptions of the seven unimodal benchmark test functions.

TABLE 2. Descriptions of the six multimodal benchmark test functions.

Therefore, the CPU run times of GWO-WD and GWO were

compared on the same machine under the same conditions.

Table 9 lists the results (in seconds) of the GWO-WD and

GWO algorithms for 13 test functions with D=30, 100 and

1000 and for 14 fixed-dimension multimodal test functions.

As shown in this table, for functions f1, f14-f15, f18 and

f21-f23, the GWO-WD algorithm yielded shorter run times

than the GWO algorithm. For function f2, the GWO algo-

rithm had shorter run times than the GWO-WD algorithm for

medium- and high- dimension problems but longer run times

for low-dimension cases. For the remaining test problems,

the GWO-WD and GWO algorithms provided very similar

computational run times. In summary, the GWO-WD algo-

rithm improves the optimization performance of the GWO

algorithm but does not increase the CPU run time.

C. COMPARISON WITH THE GWO VARIANTS

To further investigate the excellent performance of

GWO-WD, we compared its optimization results with those

of three GWO variants (mGWO [31], WDGWO [1] and
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TABLE 3. Descriptions of the ten fixed-dimension multimodal benchmark test functions.

TABLE 4. Experimental parameter settings for GWO-WD and the other selected algorithms.

WdGWO [2]) on the 23 benchmark test problems described

in Tables 1-3. The parameters of mGWO, WDGWO and

WdGWO were set as shown in Tables 4 and 5.

Each algorithm was executed 30 times independently dur-

ing the experiments for each test problem. To evaluate the per-

formance, the mean (Mean) and standard deviation (St. dev)

of the fitness values were employed as criteria for exper-

imental validation. The experimental results are reported

in Tables 10-11.

From Table 10, for the 7 unimodal test functions,

WDGWO obtained the best results for 5 functions (f1-f4
and f7) with D=30, and GWO-WD yielded the second-best
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TABLE 5. Experimental parameter settings for GWO-WD and the other selected algorithms.

results for the same functions. In addition, GWO-WD

achieved the best result for function f5 with D=30, and

the third-best result for function f6 with D=30. For the

6 multimodal test functions with D=30, GWO-WD provided

the best results for all functions except f10, and GWO-WD

obtained the second-best Mean and St. dev results for this

function. WDGWO produced results similar to GWO-WD

for two functions, namely, f9 and f11. For the 13 unimodal and

multimodal test functions with D=100, WDGWO achieved

the best results for all functions except f5 and f6. GWO-WD

obtained the best results for two functions (f5 and f6) and the

second-best results for 5 functions (f1-f4 and f7). GWO-WD

provided the best results for 5 out of 6 multimodal test func-

tions, and the results were comparable to those of WDGWO

for function f10. For the 13 large-scale unimodal and mul-

timodal test problems with D=1000, WDGWO obtained

the best results for 5 functions (f1, f3-f4, f7 and f10), and

GWO-WD achieved the best and second-best results for

8 functions (f2, f5-f6, f8-f9 and f11-f13) and 6 functions

(f1, f3-f4, f7 and f10), respectively. The results presented above

indicate that the WDGWO algorithm performs better than

the GWO-WD algorithm for unimodal problems, but the

GWO-WD algorithm is superior on multimodal problems.

It should be noted that the WDGWO algorithm experienced a

dimensional disaster and failed for function f2 with D=1000;

this phenomenon indicates that the WDGWO algorithm may

suffer from the same issue as the dimension of unimodal

problems continues to increase. Therefore, the GWO-WD

algorithm can obtain results that are better than or very similar

to those of the WDGWO algorithm for large-scale complex

unimodal problems.

Table 11 presents the results for the 10 fixed-dimension

multimodal benchmark functions. As shown in this table, the

GWO-WD algorithm obtained the best results for 5 functions

(f15, f17 and f21-f23) and similar results to the mGWO and

WdGWO algorithms for two functions: f16 and f18. The

mGWO algorithm achieved the best results for functions

f19 and f20, and the GWO-WD algorithm provided the

third-best results for the same two functions. In addition,

the WDGWO algorithm achieved the worst results for all

10 fixed-dimension multimodal benchmark functions.

Figures 2 to 5 plot the convergence curves of mGWO,

WdGWO, WDGWO and GWO-WD. Figures 2 through 4

demonstrate that the WDGWO algorithm displayed the

fastest convergence speed for 6 functions (f1, f3-f4, f7, f9
and f11), while the GWO-WD algorithm exhibited a sim-

ilar convergence speed among the same 6 test functions

and was faster than mGWO and WdGWO. GWO-WD dis-

played the fastest convergence speed among the remain-

ing 4 functions (f5, f8 and f12-f13). As shown in Figure 5,

GWO-WD exhibited the fastest convergence speed for 9 out

of 10 fixed-dimension multimodal benchmark functions

and the third-fastest convergence speed for function f20.

The above analysis, confirms that the GWO-WD algorithm

yielded good convergence speeds for 23 classic benchmark

test functions.

To compare the performance between GWO-WD and the

threeGWOvariants from the statistical results,Table 12 sum-

marizes the Wilcoxon rank -sum test results with a signifi-

cance level of 0.05. The GWO-WD algorithm provided better

results in 42 out of 49, 28 out of 49, and 41 out of 49 cases

compared to the mGWO, WDGWO, and WdGWO algo-

rithms, respectively.

The GWO-WI algorithm, which was presented by

Jitkongchuen et al. [1], is another GWO variant. To com-

pare the performance of the GWO-WD algorithm with

the GWO-WI and GWO algorithms, nine functions were

selected from the literature [1] as the benchmark set; detailed

120180 VOLUME 8, 2020



F. Yan et al.: GWO With a Novel WD for Global Optimization

TABLE 6. Comparisons between GWO-WD and GWO based on the 13 unimodal and multimodal benchmark test functions.

TABLE 7. Comparisons between GWO-WD and GWO based on the 10 fixed-dimension multimodal benchmark test functions.

descriptions of these functions can be found in Ref. [1]. The

population size and maximum number of iterations for each

test function were set as in Ref. [1], and each experiment

was run independently 10 times. The experimental results are

shown in Table 13, where the GWO-WI results were obtained

directly from the results reported in [1].

The experimental results reveal that both the proposed

GWO-WD algorithm and the GWO-WI algorithm achieved a
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FIGURE 1. Convergence curves of GWO and GWO-WD based on several typical functions.
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TABLE 8. Summarized Wilcoxon rank -sum test results between GWO and
GWO-WD.

minimum of zero for functions F1-F4 and F9. For function F6,

GWO-WI obtained the best value, whereas GWO-WD

achieved the second best value. GWO-WI and GWO-WD

acquired almost the same result on function F7. In addition,

GWO-WD obtained the best results on functions F5 and F8.

From the above optimization results, the optimization perfor-

mance of the proposed GWO-WD algorithm is better than

that of GWO-WI and GWO.

D. COMPARISON WITH OTHER STATE-OF-THE-ART

ALGORITHMS

In this subsection, we compared the GWO-WD algorithm

to several state-of-the-art algorithms, such as the PSO algo-

rithm [4], the comprehensive learning particle swarm opti-

mizer (CLPSO) [42], theWOA [12], the MFO algorithm [13]

and the gravitational search algorithm (GSA) [43]. All of the

common parameters of PSO, CLPSO,WOA,MFO, GSA and

GWO-WDwere set as in Tables 4 and 5. The other algorithm

parameter values in the five state-of-the-art algorithms were

taken directly from the original papers in which they were

presented. The common parameters were set as follows: the

population size was 30, the maximum number of iterations

was 500, and the dimension of each problem was 30. Each

algorithm was independently run 30 times for each bench-

mark test problem. The experimental results are summarized

in Table 14, where ‘‘Mean’’ and ‘‘St. dev.’’ indicate the mean

and standard deviation of the fitness values, respectively.

As shown in Table 14, for the seven unimodal problems,

the GWO-WD algorithm achieved the best results for all

test functions except f6. For function f6, the GSA algorithm

obtained the best results the WOA obtained the second-best

results, and the GWO-WD algorithm provided the third-best

results, outperforming the CLPSO, MFO and PSO algo-

rithms. For the six multimodal problems, GWO-WD pro-

vided the best results for four functions (f7-f9 and f11). For

function f10, the WOA obtained the best results, and the

GWO-WD algorithm ranked second and very close to the

WOA. For functions f12 and f13, the WOA achieved the

best results, with PSO ranking second and GWO-WD rank-

ing third. In addition, the results of GWO-WD were very

similar to those of WOA and PSO for the same two func-

tions. For the ten fixed-dimension multimodal problems,

the GWO-WD algorithm achieved the best results for five

functions (f15, f17 and f21-f23). For two functions, namely,

f16 and f18, GWO-WD obtained ‘‘Mean’’ results similar to

those of the other five algorithms and the worst ‘‘St.dev.’’.

For function f14, the CLPSO algorithm provided the best

results, and GWO-WD obtained the second-best results. For

function f19, the CLPSO algorithm, GSA and PSO algorithm

produced the best results, and the GWO-WD algorithm per-

formed better than the WOA. The GSA achieved the best

results for function f20, and the GWO-WD algorithm pro-

vided the worst results for these functions. From the opti-

mization results presented above, we can deduce that the

comprehensive optimization performance of the GWO-WD

algorithm is the best among the algorithms compared.

The Wilcoxon rank -sum test results with a significance

level of 0.05 are listed in Table 15. This table indicates that

the GWO-WDalgorithm yielded better results in 17 out of 23,

19 out of 23, 20 out of 23, 17 out of 23, and 13 out of 23 cases

compared to the CLPSO algorithm, GSA, MFO algorithm,

PSO algorithm, and WOA, respectively.

The convergence curves of the mean fitness values derived

fromGWO-WD and the other five comparison algorithms are

plotted in Figure 6 for 10 typical test functions with a dimen-

sion of 30. As shown in Figure 6, the GWO-WD algorithm

has a faster convergence rate than the other algorithms for all

test functions except function f9.

To further investigate the performance of GWO-WD,

the IEEE CEC2014 benchmark series, which includes 30 test

functions that are more challenging than the 23 clas-

sic test functions recorded in Tables 1through 3, was

adopted to execute several independent experiments. The

CEC2014 benchmark functions can be divided into four cate-

gories: a) unimodal test functions (F1-F3); b) multimodal test

functions (F4-F16); c) hybrid test functions (F17-F22); and

composite test functions (F23-F30). Detailed information on

this benchmark data can be found in [44]. The search range

of these 30 test functions is [−100,100], and the dimension

was set to 30. We compared the GWO-WD algorithm to

the improved PSO with time-varying accelerator coefficients

(IPSO) [45], the modified PSO with adaptive acceleration

coefficients (TACPSO) [46], the dynamically dimensioned

search grey wolf optimizer (DGWO) [47], the GWO algo-

rithm [17] and the differential evolution (DE) algorithm [48].

The population size was set to 30, and the maximum number

of iterations was set to 5000. Each test function was executed

independently 30 times. The mean (Mean) and standard devi-

ation (St. dev) of the function values are recorded inTable 16.

Note that the experimental results of IPSO, TACPSO, DGWO

andGWO for the CEC2014 benchmark data are taken directly

from the literature [47].

As shown in Table 16, the comprehensive performance of

GWO-WD is very competitive with that of DGWO. Com-

paredwith IPSO,GWO-WDobtained better results for 16 test

functions and similar results for 3 test functions (F5 and

F12-F13). Compared with TACPSO, GWO-WD achieved

better results for 20 test functions and similar and worse

results for 2 functions (F13 and F16) and 8 test functions

(F5-F6, F8-F11, F17 and F21), respectively. With respect

to DGWO, GWO-WD produced better and similar results

for 8 test functions (F2, F15, F20 and F25-F29) and 6 test
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TABLE 9. Mean CPU run time comparison between GWO-WD and GWO based on the 23 functions.

functions (F5, F12-F14, F16 and F24), respectively, and for

the remaining functions, GWO-WD provided results that

were very similar to those obtained by DGWO. Compared

with the GWO algorithm, GWO-WD achieved better and

similar results for 14 and 5 test functions (F12-F14, F16, and

F24), respectively. When compared with the DE algorithm,

GWO-WD obtained better results for 14 functions, worse

results for 13 functions and equal results for 3 functions.

The Wilcoxon rank -sum test results with a significance

level of 0.05 are recorded in Table 17. From this table,

the GWO-WD algorithm obtained better results in 13 out

of 30, 20 out of 30, 11 out of 30, 17 out of 30, and 14 out

of 30 cases compared to the IPSO, TACPSO, DGWO, GWO,

and DE algorithms, respectively.

E. PERFORMANCE INVESTIGATION FOR THE TWO

COMPONENTS IN GWO-WD

As noted above, the GWO-WD algorithm consists of two

main components: the modified position-updating equation

based on the novel weighted distance and the elimination and

repositioning strategy. The objective of this subsection is to

analyze the effects of these two components to improve the

performance of the GWO-WD algorithm. In this experiment,

two additional experiments were performed for 7 unimodal

and 6 multimodal benchmark test functions with a dimension

of 30 and 10 fixed-dimension multimodal benchmark test

functions. In the first experiment, GWO is changed only

by using the modified position-updating equation based on

the novel weighted distance (i.e., Eq. (20)), and the elim-

ination and repositioning strategy is ignored (referred to

as GWO-WD1). In another experiment, GWO-WD adopts

only the elimination and repositioning strategy (i.e., Eq. (22)),

and the modified position-updating equation based on

the novel weighted distance is not used (referred to as

GWO-WD2). In the two experiments, 30 independent runs

were conducted for each test function, and the maximum

number of objective function evaluations was set to 15000

(i.e., the population size and the maximum number of itera-

tions were set to 30 and 500, respectively). The experimental

results of GWO-WD1, GWO-WD2, and GWO-WD are sum-

marized in Table 18, in which the Wilcoxon rank-sum test

results with a significance level of 0.05 are also recorded.

As shown in Table 18, for the 7 unimodal test functions,

GWO-WD1 produced equal results in 5 cases compared with

the proposed algorithm; additionally, GWO-WD2 provided

worse results in 5 cases, better results in 1 case and equal

results in 1 case. For the 16 multimodal and fixed-dimension

multimodal test functions, GWO-WD1 yielded equal results

in 8 cases and worse results in 8 cases, and GWO-WD2 pro-

vided better results in 4 cases, equal results in 8 cases,

and worse results in 4 cases. From this analysis, we can

conclude that GWO-WD1 has a better exploitation perfor-

mance than GWO-WD2, and the exploitation performance

is similar to that of GWO-WD. However, GWO-WD2 has

a better exploration ability than GWO-WD1 and a simi-

lar ability to GWO-WD. Therefore, the modified position-

updating equation based on a novel weighted distance is

effective for improving the exploitation ability of the GWO

algorithm, and the elimination and repositioning strategy

is useful for enhancing the exploration performance of the
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TABLE 10. Comparisons between GWO-WD and three GWO variants based on 13 benchmark test functions with D=30, 100 and 1000.

TABLE 11. Comparisons between GWO-WD and three GWO variants based on 10 fixed-dimension multimodal benchmark functions.

GWO algorithm. In total, these two strategies simultaneously

enhance and balance the exploration and exploitation capabil-

ities of the GWO algorithm.

From the Wilcoxon signed-rank test results, the perfor-

mance of the GWO-WD1 algorithm is better than that of the

GWO-WD2 algorithm and worse than that of the GWO-WD
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FIGURE 2. Convergence curves of GWO-WD and three GWO variants based on several typical functions with D=30.
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FIGURE 3. Convergence curves of GWO-WD and three GWO variants based on several typical functions with D=100.
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FIGURE 4. Convergence curves of GWO-WD and three GWO variants based on several typical functions with D=1000.
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FIGURE 5. Convergence curves of GWO-WD and three GWO variants based on several typical fixed-dimension multimodal
benchmark functions.
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TABLE 12. Summarized Wilcoxon rank -sum test results between GWO-WD and three GWO variants.

TABLE 13. Experimental results of GWO-WD, GWO and GWO-WI.

TABLE 14. Comparisons between GWO-WD and the CLPSO algorithm, GSA, MFO algorithm, PSO algorithm, and WOA based on 23 test functions.

TABLE 15. Statistical results of the CLPSO algorithm, GSA, MFO algorithm, PSO algorithm, and WOA based on 23 test functions.

algorithm. Therefore, the combination of the GWO-WD1 and

the GWO-WD2 algorithms improves the performance.

Specifically, GWO-WD1 improves the exploitation per-

formance of GWO-WD2, and GWO-WD2 enhances the
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FIGURE 6. Convergence curves of GWO-WD and other selected algorithms based on ten representative benchmark test functions.
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TABLE 16. Comparisons of the IPSO, TACPSO, DGWO, GWO, and DE algorithms on the IEEE CEC 2014 benchmark test suite.

TABLE 17. Statistical results of the IPSO, TACPSO, DGWO, GWO, and DE algorithms on 23 test functions.

exploration performance of GWO-WD1. This analysis con-

firms that both themodified position-updating equation based

on the novel weighted distance and the elimination and repo-

sitioning strategy are effective.

F. ADVANTAGES AND LIMITATIONS

As shown from the above experimental results, the GWO-

WD algorithm yields better performance for the unimodal

and multimodal benchmark test functions compared to the

original GWO algorithm and the other selected algorithms.

This advantage is mainly due to the proposed modified

position-updating equation based on the novel weighted

distance, and the elimination and repositioning strategy is

effective for improving and balancing the exploration and

exploitation capabilities of the original GWO algorithm.

However, the proposed GWO-WD algorithm yields unsatis-

factory results for fixed-dimensionmultimodal test functions,

indicating a limitation. Therefore, more research is needed in

this context.

V. APPLICATION TO REAL-WORLD ENGINEERING

PROBLEMS

To investigate the effectiveness of GWO-WD in real-world

engineering applications, we tested the proposed algorithm

on three classic engineering design problems, namely, pres-

sure vessel design, welded beam design, and gear train design

problems. The parameter values of GWO-WD were set as

follows: the population size is 30, and the number of objective

function evaluations is 2000. In addition, we adopted the

parameter-free penalty function [49] to address constraints as

follows.

f (Y ) =











f (Y ) ; if Y ∈ S

fw (Y ) +
q
∑

j=1

gj(Y ); if Y /∈ S

where S denotes the feasible search space, fw repre-

sents the worst feasible solution and q is the number of

constraints.
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TABLE 18. Statistical results of GWO-WD1, GWO-WD2, and GWO-WD on 23 test functions.

A. PRESSURE VESSEL DESIGN PROBLEM

The pressure vessel design problem, which was introduced by

Kannan and Kramer [3], has been widely employed to verify

the optimization performance of algorithms for real-world

problems. A basic description of the pressure vessel design

problem is given in Figure 7. For this problem, the objective

is to minimize the overall cost, which consists of material,

forming, and welding costs.

As shown in Figure 7, this problem includes four decision

variables, namely, Ts (y1, the thickness of the shell), Th
(y2, the thickness of the head), R (y3, the inner radius), and

L (y4, the length of the cylindrical section of the vessel). The

model of this problem is given as follows [3].

Minimize f (Y ) = 0.6224y1y3y4 + 1.7781y2y
2
3

+ 3.1661y21y4 + 19.84y21y3

s.t. g1(Y ) = −y1 + 0.0193y3 ≤ 0

g2(Y ) = −y2 + 0.00954y3 ≤ 0

g3(Y ) = −πy23y4 − 4

3
πy33 + 1296000 ≤ 0

g4(Y ) = y4 − 240 ≤ 0

0.0625 ≤ y1, y2 ≤ 99 × 0.0625; 10 ≤ y3, y4 ≤ 200

Table 19 shows the best results computed by the proposed

GWO-WD algorithm and by various authors [3], [50]–[56].

The experimental statistical results were recorded after

30 independent runs, as shown inTable 20.Table 19indicates

FIGURE 7. Structure of the welded beam design problem.

that the performance of GWO-WD is better than that of

existing methods, with the proposed method obtaining the

smallest overall cost for the pressure vessel design problem.

From Table 20, the GWO-WD algorithm achieves better

‘‘Best’’ and ‘‘Mean’’ results than the other approaches and

the second-best ‘‘St. dev.’’ result.

B. WELDED BEAM DESIGN PROBLEM

The welded beam design problem, which was proposed by

Coelho [51], is a well-known engineering design problem that

has been commonly utilized as a test problem. The structure

of this problem is illustrated in Figure 8.
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TABLE 19. Comparisons of the best results for the pressure vessel design problem obtained by different algorithms.

TABLE 20. Statistical results for the pressure vessel design problem after 30 independent runs.

FIGURE 8. Structure of the gear design problem.

In this problem, the objective is to find the minimum cost

by considering the shear stress (τ ), bending stress in the

beam (σ ), buckling load on the bar (Pb), end deflection of

the beam (δ), and side constraints. Four design variables are

present in this problem: h(y1) (the thickness of theweld), l(y2)

(the length of the welded joint), t(y3) (the width of the beam)

and b(y4) (the thickness of the beam). This optimization

problem is constructed as follows.

Minimize f (Y ) = 1.10471y21y2 + 0.04811y3y4 (14 + y2)

s.t. g1(Y ) = τ (Y ) − τmax ≤ 0

g2(Y ) = σ (Y ) − σmax ≤ 0

g2(Y ) = y1 − y4 ≤ 0

g4(Y ) = 0.125 − y1 ≤ 0

g5(Y ) = δ (Y ) − 0.25 ≤ 0

g6(Y ) = P− Pc (Y ) ≤ 0

g7(Y ) = 0.10471y21 + 0.04811y3y4 (14 + y2) − 5 ≤ 0

where τmax = 13600psi is the maximum shear stress of the

weld, σmax = 30000psi is the maximum bending stress, and

P = 6000 lb is the load. The shear stress τ is modeled as

follows.

τ =
√

τ 21 + 2τ1τ2

( y2

2R

)

+ τ 22 ; τ1 = P√
2y1y2

; τ3 = MR

J

where

M = P
(

L + y2

2

)

; J = 2

{

√
2y1y2

[

y22
4

+
(

y1 + y3

2

)2
]}

σ = 6PL

y4y
2
3

; Pc =
4.013E

√

y23y
6
4

36

L2

(

1 − y3

2L

√

E

4G

)

δ = 6PL3

Ey33y4
; R =

√

y22
4

+
(

y1 + y3

2

)2

The GWO-WD algorithm and the methods presented in the

literature [50], [52], [53], [55], [57]– [60] were used to solve

this problem, and the best results are listed in Table 21. The

statistical results after 30 independent executions are sum-

marized in Table 22. As shown in Table 21, the GWO-WD

algorithm yielded much better results than the other methods.

Furthermore, the statistical results presented in Table 22

reveal that the GWO-WD algorithm provided the best ‘‘Best’’

and ‘‘Worst’’ results and the second-best ‘‘Mean’’ and

‘‘St. dev.’’ results.

C. GEAR TRAIN DESIGN PROBLEM

The gear train design problem was first proposed by Kaveh

and Talatahari [61], and the objective is to find the most
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TABLE 21. Comparisons of the best results for the welded beam design problem obtained by different approaches.

TABLE 22. Statistical results for the welded beam design problem after 30 independent runs.

TABLE 23. Comparisons of the best results for the gear train design problem obtained by different methods.

FIGURE 9. Structure of the pressure vessel design problem.

suitable number of teeth for a gearwheel between integer

intervals of 12 and−60 to minimize the gear cost. The simple

structure of this problem is plotted in Figure 9.

The mathematical model with decision variables Y =
(

Td ,Tb,Ta,Tf
)

= (y1, y2, y3, y4) is constructed as follows.

Minimize f (Y ) =
(

1

6.931
− y1y2

y3y4

)2

s.t. 12 ≤ y1, y2, y3, y4 ≤ 60; yi ∈ Z+

where the gear ratio is
y1y2
y3y4

.

The experimental results of the GWO-WD algorithm and

those of the methods in the literature [47], [53], [61], [62] are

reported in Table 23, and the statistical results are presented

in Table 24. As shown in Table 23, the GWO-WD algorithm

yielded the best objective function value, and Table 24indi-

cates that the GWO-WD algorithm produced better ‘‘Mean’’,

‘‘Worst’’ and ‘‘St. dev.’’ results than the other methods.

Therefore, the results achieved by the GWO-WD algorithm

are significantly better than those found by the researchers

in [45], [49], [52], [58].
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TABLE 24. Statistical results for the gear train design problem after 30 independent runs.

VI. CONCLUSION

In this paper, a new GWO variant named the GWO-WD algo-

rithm is presented to solve GO problems. In this approach,

a novel weighted distance based on the advantages of two

different weighted distance strategies is proposed to mod-

ify the position-updating equation of the GWO algorithm,

and a new strategy is introduced to eliminate and reposi-

tion some of the worst search agents. First, the proposed

weight distance is applied to modify the position-updating

equation of the standard GWO algorithm because this weight

distance can provide useful information for solving complex

multimodal problems. Then, the elimination and reposition-

ing strategy is employed to remove and reposition several

of the worst search agents and increase the probability of

avoiding local optima. The performance of the GWO-WD

algorithm is next benchmarked based on several GO prob-

lems, including 23 well-known benchmark test functions,

the IEEE CEC-2014 test suite, and three classic real-world

engineering design problems. The simulation results are com-

pared with those of the standard GWO algorithm, three

GWO variants and other approaches reported in the literature.

The results indicate that the proposed algorithm is effective,

robust and scalable when solving low- and high-dimensional,

complex unimodal and multimodal problems but has room

for improvement in applications involving fixed-dimensional

multimodal problems. Convergence curves are also plotted

for several classic test functions, and those curves illustrate

that the GWO-WD algorithms exhibits a rapid convergence

speed. In addition, the application of theGWO-WDalgorithm

to three classic engineering design problems validates its

efficacy at solving practical problems and superiority over

other methods. In future research, we will extend the pro-

posed algorithm to solve multiobjective problems, and ELD

problems and to train neural networks.
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