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Abstract

Large scale distributed systems like Grid gather several
characteristics making them difficult to study only from the-
oretical models and simulators. Most of Grid deployed at
large scale are production platforms making them inap-
propriate research tools because of their limited reconfig-
uration, control and monitoring capabilities. In this pa-
per, we present Grid’5000, a nation wide infrastructure
for research in Grid computing. The main design goal of
Grid’5000 was to make it a scientific tool like large-scale
instruments used by physicists, astronomers and biologists.
We describe the motivations, design considerations, archi-
tecture, control and monitoring infrastructure of this large-
scale instrument. We present configuration examples and
performance results about the reconfiguration subsystem.

1 Introduction
Grid is well established as a research domain and pro-

poses technologies that are enough mature to be used for
real life applications. Projects like eScience, TeraGrid,
DEISA and NAREGI, to cite a few, demonstrate that large
scale infrastructures can be deployed to provide scientists
fairly easy access to geographically distributed resources
belonging to different administration domains. Despite its
establishment as a viable computing infrastructure, there are
still many issues to be solved and mechanisms to optimize
in performance, fault tolerance, QoS, security and fairness.

As large scale distributed systems, Grid software and ar-
chitecture gather several characteristics making them diffi-
cult to study only following a theoretical approach. As a
matter of facts, most of the research conducted in Grids are
currently performed using simulators, emulators or produc-
tion platforms. As discussed in the next section, all these
tools present limitations making difficult the study of new
software and optimizations.

We believe that Grids are so complex and dynamic that
there is a need for a new category of tools: highly reconfig-
urable, controllable and monitorable real life experimental

Figure 1. Methodologies used in distributed
system studies.

platforms. Such a platform is not a Grid but a large scale
tool to study Grid issues in real life scale and conditions.

Such kind of tools already exist in other contexts. The
closer example is PlanetLab [1], which consists in a set of
PCs connected to the internet and forming an experimental
distributed system. PlanetLab is used for network study as
well as for distributed systems research.

In this paper we present the Grid’5000 project. We first
motivate the need for a real size, real life experimental plat-
forms, discussing the limitations of existing tools. In Sec-
tion 3, we present the principles of Grid’5000, based on
the results of Grid researcher interviews. The implemen-
tation of Grid’5000 is presented in Section 4. Section 5
present configuration examples, demonstrating the high re-
configurability of the experimental platform. In Section 6
we present performance results concerning one of the key
component of Grid’5000: the reconfiguration system.

2 Motivations and related work

Like other scientific domains, research in Grid comput-
ing is based on a variety of methodologies and tools. Fig-
ure 1 present the spectrum of methodologies used by re-
searchers to study research problem in distributed systems.

In large distributed systems, numerous parameters must
be considered and complex interactions between resources
makes analytical modelling impractical. Thus simulators,
emulators and real platforms are preferred.

Simulators provide a first methodology, focusing on a

1



specific behavior or mechanism of the distributed system
and abstracting the rest of the system. Their fundamen-
tal advantage is their independence to the execution plat-
form. Bricks [2] was proposed for studies and comparisons
of scheduling algorithms and frameworks, Bricks allows
scheduling researches for multi-client, multi-server Grid
scenarios. Users can specify network topologies, server ar-
chitectures, communication models and scheduling frame-
work components. Some Bricks components are replace-
able by real software, helping its validation. SimGrid [3, 4]
is used to study single-client multi-servers scheduling in the
context of complex, distributed, dynamic, heterogeneous
environments. SimGrid is based on event driven simula-
tion, providing a set of abstractions and functionalities to
build a simulator corresponding to the applications and in-
frastructures Resources latency and service rate may be set
as constants or evolve according to traces. The topology
is fully configurable. GridSim [5] is a higher-level simu-
lator, designed to investigate interactions and interferences
between scheduling decisions taken by distributed brokers.
It focuses on Grid economy research, where the scheduling
involves the notions of producers, consumers and brokers.
Until recently, GridSim did not consider any network topol-
ogy. GangSim [6] considers a context where hundreds of
institutions and thousands of individuals collectively con-
trol and use tens or hundreds thousands of computers and
associated storage systems. It models usage policies at the
levels of site and VO (Virtual Organization) and can com-
bine simulated components with instances of a VO Ganglia
Monitoring toolkit running on real resources. OptorSim [7]
focuses on data replication strategies for Data Grids appli-
cations processing very large data sets. Its design directly
derives from the DataGrid project architecture. OptorSim
simulates sites providing computational and/or data-storage
resources, resource broker scheduling jobs to computing re-
sources and routers. ChicSim [8] and HyperSim [9] are
other simulators close to the presented ones.

Surprisingly, only few results on simulator validation
have been presented. The validation of Bricks [2] was per-
formed by incorporating NWS in Bricks and comparing the
NWS results obtained on a real Grid with the ones obtained
by a Grid simulated by Bricks. SimGrid [3] validation con-
sisted in comparing the simulator results with the ones ob-
tained analytically on a mathematically tractable scheduling
problem.

In some situations, complex behaviors and interactions
of the distributed system nodes cannot be simulated, be-
cause of the difficulty to capture and extract the factors in-
fluencing the distributed systems. Emulators can address
this limitation by executing the actual software part of the
distributed system, in its whole complexity. Emulators are
generally run on rather ideal infrastructures (i. e. controlled
clusters). MicroGrid [10] allows researchers running Grid

applications on virtual Grid resources. Resource virtual-
ization is done by intercepting all direct use of resources.
The emulation coordination essentially controls the simula-
tion rate, which is determined by the virtualization ratio for
all resources. The emulation time base is controlled by a
virtualization library returning adjusted times to the system
routines. Accurate processor virtualization relies on spe-
cific schedulers and the network virtualization [11] uses the
MaSSF system for a scalable online network simulation.

Authors of MicroGrid have conducted a thorough val-
idation [10, 11, 12]. The internal timing of MicroGrid
was validated using the AutoPilot system. The capacity
of the emulator to enforce memory limitation and to main-
tain the processing model under CPU and I/O competition
was validated using microbenchmark. Emulations results
were compared to experimentation ones on real platforms
for the NAS benchmark, in order to validate the full emu-
lation engine. Validation with real applications compared
the execution times of CACTUS problem solving environ-
ment, Jacobi, Scalapack, Fish, Game of life and Fasta on
real platforms with the ones obtained by MicroGrid.

Because Emulators use the real software, they cannot
scale as well as simulators. Furthermore, there is still a dis-
tance between emulators and the reality: even traffic and
fault injection techniques, generally based on traces or syn-
thetic generators cannot capture all the dynamic, variety and
complexity of real life conditions. Real life experimental
platforms solve this problem by running the real software
on realistic hardware. DAS2 (http://www.cs.vu.nl/das2/) is
basically an idealized Grid, all sites being connected on
the Internet. Experiments are run on top of a Grid mid-
dleware. managing the classical security and runtime in-
terfaces issues related to Grid platforms. The nodes are
voluntarily homogeneous, providing a much simpler man-
agement and helping a better environment for performance
comparison (speed up of parallel applications) and under-
standing. PlanetLab [1] is another real life experimental
platform, connecting real machines by the Internet, at the
planet scale. Some production Grids (TeraGrid, eScience,
DataGrid) have also been used as experimental platforms,
before being opened to actual users or during some dedi-
cated time slots.

Two strong limitations of real life platforms as exper-
imentation tools are 1) their low software reconfiguration
capability and 2) the lack of deep control and monitoring
mechanisms for the users. Then next section will show how
Grid’5000 addresses these limitations.

3 Designing Grid’5000

The design of Grid’5000 derives from the combination
of 1) the limitations observed in simulators, emulators and
real platforms and 2) an investigation about the research
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topics that the Grid community is conducting. These two
elements lead to propose a large scale experimental tool,
with deep reconfiguration capability, a controlled level of
heterogeneity and a strong control and monitoring infras-
tructure.

3.1 Experiment diversity

During the preparation of the project, in 2003, we asked
researchers in Grid computing the experiment they are will-
ing to conduct on a large scale real life experimental plat-
form. The members of 10 teams in France, involved in dif-
ferent aspects of Grid Computing and well connected to the
international Grid community, proposed a set of about 100
experiments. It was surprising to discover that almost all
teams require different infrastructure settings for their ex-
periments. The experiment diversity nearly covers all layers
of the software stack used in Grid computing: networking
protocols (improving point to point and multipoints proto-
cols in the Grid context, etc.), operating systems mecha-
nisms (virtual machines, single system image, etc.), Grid
middleware, application runtimes (object oriented, desktop
oriented, etc.), applications (in many disciplines: life sci-
ence, physics, engineering, etc.), problem solving environ-
ments. Research in these layers concerns scalability (up to
thousands of CPUs), performance, fault tolerance, QoS, se-
curity.

3.2 Deep reconfiguration

For researchers involved in protocols, OS and Grid mid-
dleware research, the software setting for their experiments
often requires specific OS. Some researchers need Linux,
while others are interested by Solaris10 or Windows. For
networking researches, FreeBSD is preferred because net-
work emulators like Dummynet and Modelnet run only
on FreeBSD. Some researches on virtual machine, process
checkpoint and migration need the installation of specific
OS versions or OS patches that may not be compatible be-
tween each others. Even for experiment over the OS lay-
ers, researchers have some preferences: for example some
prefer Linux kernel 2.4 or 2.6 because their scheduler dif-
ference. Researchers needs are quite different in Grid Mid-
dleware: some require Globus (in different versions: 3.2,
4, DataGrid version) while others need Unicore, Desktop
Grid pr P2P middleware. Some other researchers need to
make experiments without any Grid middleware and test ap-
plications and mechanisms in a multi-sites, multi-clusters
environment before evaluating the Middleware overhead.
According to this inquire on researchers needs, Grid’5000
should provide a deep reconfiguration mechanism allow-
ing researchers to deploy, install, boot and run their spe-
cific software images, possibly including all the layers of

the software stack. In a typical experiment sequence, a re-
searcher reserves a partition of Grid’5000, deploys its soft-
ware image, reboots all the machines of the partition, runs
the experiment, collects results and relieves the machines.
This reconfiguration capability allows all researchers to run
their experiments in the software environment exactly cor-
responding to their needs.

3.3 A two levels security approach

Because researchers will be able to boot and run their
specific software stack on Grid’5000 sites and machines, we
cannot make any assumption on the correct configuration
of the security mechanisms. As a consequence, we should
consider that Grid’5000 machines are not protected. Two
other constraint increases the security issue complexity: 1)
all the sites hosting the machines are connected by the Inter-
net, 2) basically inter-site communication should not suffer
any platform security restriction and overhead during ex-
periments. From this set of constraints, we decided to use
a two levels security design with the following rules: a)
Grid’5000 sites are not directly connected to the Internet
and b) all communication packets fly without limitation be-
tween Grid’5000 sites. The first rule ensures that Grid’5000
will resist to hacker attacks and will not be used as basis of
attacks (i. e. massive DoS or other more restricted attacks).

This design rules lead to build a large scale confined
cluster of clusters. Users connect to Grid’5000 from the lab
where the machines are hosted. Strong authentication and
authorization check is done first to enter the lab and then to
log in Grid’5000 nodes from the lab.

3.4 2/3 of homogeneous nodes

Performance evaluation in Grid is a complex issue.
Speedup evaluation is hard to evaluate with heterogeneous
hardware. In addition, the hardware diversity increases the
complexity of the deployment, reboot and control subsys-
tem. Moreover, multiplying the hardware configurations
directly leads to increase the every day management and
maintenance cost. Considering these 3 parameters, we de-
cided that 2/3 of the total machines should be homogeneous.
However Grid are heterogeneous by nature and this is an
important dimension in the experiment diversity That’s the
reason why we choose to keep 1/3 of heterogeneous ma-
chines.

3.5 Precise control and measurement

Grid’5000 will be used for Grid software evaluation and
fair comparisons of alternative algorithms, software, pro-
tocols, etc. This implies two elements: first, users should
be able to steer their experiments in a reproducible way
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Figure 2. Overview of Grid’5000.
and second, they should be able to access probes provid-
ing precise measurements during the experiments. The re-
producibility of experiment steering includes the capability
to 1) reserve the same set of nodes, 2) deploy and run the
same piece of software on the same nodes, 3) synchronize
the experiment execution on the all the involved machines,
4) if needed, repeat sequence of operations in a timely and
synchronous way, 5) inject the same experimental condi-
tions (synthetic or trace based: fault injection, packet loss,
latency increase, bandwidth reduction). As described in the
next section, Grid’5000 software set provides a reservation
tool (OAR [13]), a deployment tool (Kadeploy [?]) and a
several tools (FAIL [14], eWAN eWAN experimental con-
dition injectors. Precise and extensive measurement is a
fundamental aspect of experimental evaluation on real life
platforms. Grid’5000 provides users several sets of probes
for measuring network activity during experiments. A first
set of probes collects the packet header of all packets cross-
ing the access routers of all sites. These headers are stored
in a database during the experiment. A second set of net-
work probes measures the traffic in every tunnel connect-
ing the sites. Local observation of processor memory, disk
and network is difficult at the hardware level and since the
users may use their proper software configuration, there is
no way to provide a built-in and trustable monitoring system
for CPU, Memory and Disc. So it is the responsibility of the
users to proper install, configure and manage the software
observation tools they need for their experiments.

4 Grid’5000 Architecture

The Grid’5000 architecture implements the principles
described in the previous section. Based on the researchers
requirements, the scalability needs and the number of re-
searchers, we decided to build a platform of 5000 CPUs
distributed over 9 sites in France. Figure 2 presents an
overview of Grid’5000. Every site hosts a cluster and all
sites are connected by high speed network (all links will
provide 10Gbps by the end of 2005).

Numbers in the figure give the number of CPUs for every

cluster. 2/3 of the nodes are dual CPU 1U racks equipped
with 2 AMD Opteron running at 2 Ghz, 2 Go of mem-
ory and two 1Gpbs Ethernet Adapter. Clusters are also
equipped with high speed networks (Myrinet, Infiniband,
etc.). In the rest of this section we present the key architec-
tural elements of Grid’5000.

4.1 A confined system

As discussed earlier, the Grid’5000 architecture should
provide an isolated domain where communication fly with-
out restriction between sites and are not possible directly
with outside world. Mechanisms based on state-of-the-art
technology like public key infrastructures and X509 certifi-
cates, produced by the Grid community to secure all re-
source accessed are not suitable for the Grid’5000. The
GSI high level security approach imposes an heavy over-
head and impacts the performances, biasing the results of
study not directly related to security. Then a private dedi-
cated network (PN) or a virtual private network (VPN) are
the only solutions to compose a secure grid backbone and
to build such a confined infrastructure. In Grid’5000, we
choose to interconnect the sites with a combination of Diff-
Serv and MPLS technology provided by our NREN (ser-
vice provider). Many VPN implementation solutions are
available but they do not provide simultaneously security
and QoS guarantees. For security, network layer VPNs may
use tunneling or network layer encryption (layer 3 VPN),
while in link layer VPNs like MPLS, VPNs are directly pro-
vided by network service providers (layer 2-3 VPN). The
advantage of the MPLS VPN over IP VPN (Ipsec) is per-
formance. As Grid’5000 sites are connected to the same
NREN, the multi-domain issue of the MPLS technology is
avoided here. For performance guarantee, a combination of
DiffServ and MPLS will be configured for Grid’5000 links.
The Premium service will be used for delay and bandwidth
guarantees required for reproducible experimental condi-
tions and performance measurements. This MPLS based
Grid architecture allows creating a trust context that even
enables to experiment new security solutions for IP VPN-
based Grids. Figure 3 presents the resulting communication
architecture.

Using MPLS in Grid architecture is not an isolated
choice. Recently, a Grid VPN research group has born
within the GGF, attesting a real interest in developing and
using MPLS, G-MPLS or lower level optical switching
technologies for the Grid.

4.2 User view and data management

As previously mentioned, communications are done with
minimal authentication between Grid’5000 machines. The
logical consequence is that a user has a single account
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Figure 3. Communication architecture.
across the whole platform. However, each Grid’5000 site
manages its own user accounts. Reliability of the authenti-
cation system is also critical. A local network outage should
not break the authentication process on other sites. These
two requirements have been fulfilled by the installation of
an LDAP directory. Every site runs an LDAP server con-
taining the same tree : under a common root, a branch is
defined for each site. On a given site, the local administra-
tor has read-write access to the branch and can manage its
user accounts. The other branches are periodically synchro-
nized from remote servers and are read-only.

From the user point of view, this design is transparent,
once the account is created, the user can access any of the
Grid’5000 sites or services (monitoring tools, wiki, deploy-
ment, etc.). His data, however, are local to every site. They
are shared on any given cluster through NFS, but distribu-
tion to another remote site is done by the user through clas-
sical file transfer tools (rsync, scp, sftp, etc.). Data transfers
with the outside of Grid’5000 are restricted to secure tools
to prevent identity spoofing and public key authentication is
used to prevent brute-force attacks.

4.3 Experiment scheduling

Experiment scheduling and resource allocation is man-
aged by a resource management system called OAR [13]
at cluster level and by a simple broker at the grid level.
OAR architecture is built from a relational database en-
gine MySql. All large-scale operations like parallel tasks
launching, nodes probing or monitoring are performed us-
ing a specialized parallel launching tool named Taktuk
[15]. OAR provides most of the important features imple-
mented by other batch schedulers such as priority schedul-
ing by queues, advance reservations, backfilling and re-
source match making.

At grid level, a simple broker allows co-allocating set
of nodes on every selected cluster. The co-allocation pro-
cess works as following: 1) user submits an experiment

which needs several set of nodes on different clusters, 2) in
round-robin sequence, the broker submits a reservation to
each local batch scheduler. If one reservation is refused, all
previous accepted reservations are canceled. When all lo-
cal reservations are accepted, the user receives an identifier
from the broker, allowing the user to retrieve information of
allocated set of nodes.

In Grid’5000, resource management system is coupled
with node reconfiguration operation at different points.
First, a specific queue is defined where users can submit ex-
periments requesting node reconfiguration. Second, there
is a dynamic control of deployment rights in the prologue
script is executed before starting the experiment. This gives
user the capability to deploy system images on the allocated
node partition. Rights are revoked in the epilogue script
after the experiment. Third, after the completion of ex-
periments involving node reconfiguration, all nodes are re-
booted in a default environment. This default environment
provides libraries and middleware for experiments without
reconfiguration.

4.4 Node reconfiguration

Node reconfiguration operation is based on a deployment
tool called Kadeploy2. This tool allows users deploying
their own software environment on a disk partition of se-
lected nodes. It can be viewed as a variant of system image
installation tools, like SIS [?]. As previously mentioned,
software environment contains all software layers from OS
to application needed by users for theirs experiments.

Architecture of Kadeploy2 is also designed around a
database and a set of specialized operating components.
The database is used to manage different aspects of the
node configuration (disk partition schemes, environment
deployed on every partitions), user rights to deploy on
nodes, environment description (kernel, initrd, custom ker-
nel parameters, desired filesystem for environment, associ-
ated postinstallation) and logging of deployment operations.

Several deployment procedures are available, depend-
ing mainly on OS type and filesystem specificity. We only
sketch the usual deployment procedure. First, when user
initiates a deploy operation, he provides an environment
name allowing to retrieve asociated information from the
database. The user provides this information at environment
registration. Deployment begins by rebooting all nodes on a
minimal system through a network booting sequence. This
system prepares the targeted disk for deployment (disk par-
titionning, partition formatting and mounting). The next
step in the deployment is the environment broadcast which
uses a pipelined transfer between nodes with on the fly
image decompression (previous studies have demonstrated
that this topology outperforms tree based topologies for de-
ployment system in large clusters). At this point, some ad-
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justments must be done on the broadcasted environment in
order to be compliant with node and site policies (mount-
ing tables, keys for authentication, information for specific
services that cannot support auto-configuration). The last
deployment step consists in rebooting the nodes on the de-
ployed system from a network loaded bootloader.

5 Grid’5000 configuration examples

The main objective of Grid’5000 set of software is to
ease the deployment, execution and result collection of
large scale Grid experiments. In this section, we present 3
examples for Grid’5000 reconfiguration for experiments in
networking protocols, Grid middleware and GridRPC envi-
ronment.

5.1 Testing recent P2P protocols in Grid context

BitTorrent is a popular file distribution system outper-
forming FTP performance when delivering large and highly
demanded files. The key idea of BitTorrent is the coop-
eration of the downloaders of the same file by uploading
chunks of the file to each other. As such, BitTorrent is a
nice broadcast protocol for large files in data and computa-
tional Grids. BitTorent uses TCP as the transport protocol.

In this part, we describe how we can deploy, run and
collect experiment results, when performing simple BitTor-
rent performance evaluation for a variation of TPC protocol,
on homogeneous nodes of Grid’5000. The modification of
the TCP stack involves the compilation and deployment of a
specific OS kernel. The experiment requires 9 steps: Step 1)
: BitTorrent code is instrumented to log reception and emis-
sion events (type of communication, sender identifier, re-
ceiver identifier, time and chunk identifier). BitTorrent has
been instrumented to replay the logged sequence of events.
Step 2) the software image is prepared (installing specific
libraries and software - Python for BitTorrent), based on a
minimal image certified to work on the experimental nodes.
The kernel is patched and compiled with alternative TCP
versions. The local root file system is then archived and
registered on the deploying software database on all sites.
Step 3) nodes are reserved possibly from the same selection
file, using OAR. Step 4) the archived file system image is
deployed on a user specified partition of all nodes, using
Kadeploy. Step 5) Kadeploy reboots all the reserved nodes
and checks that the machine is responding to ping and ssh.
6) The BitTorrent file to be broadcasted, is stored on the user
home directory where the BitTorrent master node will run
(the seeder). The list of nodes provided by OAR is stored
on the BitTorrent master node. 7) Node clocks are synchro-
nized using NTPdate. 8) A distributed launcher program
controls the start of the experiment script on all the nodes.
The BitTorrent tracker is started first, then the Torrent file

created is registered in the tracker, then the seeder is started
on the master and finally, the client (leechers) are started
on all the other nodes. The BitTorrent events are recorded
locally on all the nodes. 9) all log files are collected and
stored in the user home directory of the user site gateway.
Reserved nodes are released.

5.2 Deploying a Globus Toolkit

Globus is an open source grid middleware toolkit used
for building grid systems and applications. This part de-
scribes how we can map a Globus virtual grid on Grid’5000,
then how to deploy Globus and run experiments. It focuses
on Globus Toolkit 2, the target Globus release used by our
experiments.

The topology we choose for our virtual Globus grid is
to have one Globus installation on each Grid’5000 site. We
consider each site to be a separate cluster that provides ser-
vices through the Globus Toolkit. Since we are emulat-
ing a grid, each cluster manages their own user accounts
(i.e. no grid wide user directory). Job execution on clus-
ters is managed by a batch job scheduler (e.g.: OAR, PBS).
Each cluster manages user accounts and job scheduling with
their software of choice, as we only need homogeneity in-
side clusters. Each site runs a certification authority (CA)
that delivers user certificates for their users, as well as host
certificates. We pick a front node on each site, and install
Globus services on this front node. These services accept
requests from other sites, authenticate and authorize them,
then perform an action (e.g.: submit a job) on behalf of the
client. Clients authenticate services with a host certificate
delivered by the site services run on. The Gatekeeper maps
user certificates to the user accounts of each cluster, and ex-
ecutes them with the local job scheduler. Front nodes also
run the MDS (Monitoring and Discovery System) service,
and GSIFTP (data transfer).

Globus toolkit is deployed by creating a system image
that contains a Globus installation tailored for the exper-
iment (since we deploy the whole system image, every-
thing can be customized up to the operating system ker-
nel). We create for each site an image for cluster compute
nodes with a batch scheduler, and an image for the front
node with the Globus Toolkit services (Gatekeeper, MDS,
GSIFTP, and certificates). The virtual Globus grid is de-
ployed on Grid’5000 machines using the Kadeploy tools,
thereby turning Grid’5000 into a virtual Globus grid as long
as the Kadeploy reservation lasts. While Globus users are
running their experiments, log files are saved to the local
drives of each node. As soon as the experiment is done,
Kadeploy reboots the nodes with their default system im-
age, and users can retrieve their log files and process them.
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5.3 A Corba based Grid running DIET and TLSE

The DIET [16] middleware follows the GridRPC
paradigm [17] for client-server computing over the Grid.
It is designed as a set of hierarchical components (Client,
Master and Local Agents, and Server Daemons). It finds an
appropriate server according to the information involved in
the client request (problem to be solved, size of the data
involved), the performance of the target platform (server
load, available memory, communication performance), and
the availability of data stored during previous computations.
The scheduler is distributed using several hierarchies con-
nected either statically (in a Corba fashion) or dynamically
(in a peer-to-peer fashion). The main goal of the Grid-TLSE
project [19] is to design an expert site that provides an easy
access to a number of sparse matrix solver packages allow-
ing their comparative analysis on user-submitted problems,
as well as on matrices from collections also available on
the site. The site provides user assistance in choosing the
right solver for its problems and appropriate values for the
solver parameters. A computational Grid managed by DIET
is used to deal with all the runs arising from user requests.
Our goal in the Grid5000 project is twofold. First we want
to validate the scalability of our distributed scheduling ar-
chitecture at a large scale (using thousands of servers and
clients) and then to test some deployments of the TLSE ar-
chitecture for future production use.

In the current availability of Grid’5000 platform, the de-
ployment of DIET with TLSE server works in three phases.
The first step consists in sending one OAR requests at each
site, to reserve a maximum of available nodes. The second
phase consists in receiving OAR information to know which
nodes are given by reservation. The third phase generates an
XML file with the dynamic information as well as names
of nodes at each site. This files will be used by GoDIET
to deploy DIET. Our main goal during this first experience
is to corroborate a theoretical study of the deployment with
the hardware capability of Grid’5000 platform (CPU perfor-
mance, bandwidth, etc.) to design a hierarchy that achieves
a good scalability and a good efficiency for DIET. From this
XML file, GoDIET deploys agents (or schedulers), servers
and services bound to DIET as Corba services (i.e. naming
service) and a distributed log tool designed for the visual-
ization tools (VizDIET).

6 Deployment system evaluation

In this section, we present the evaluation of the deploy-
ment and reboot system of Grid’5000. Evaluation of other
parts of Grid’5000 will be presented in future articles. The
deployment and reboot system is certainly the most impor-
tant mechanism of Grid’5000, enabling a rapid turnaround
of experiments on the platform. A typical deployment and
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Figure 4. Time (in seconds) to deploy and
boot a new OS on a cluster with Kadeploy,
according to the number of nodes.

reboot mechanism for cluster would require tens of min-
utes and even hours [?] for managing more than a thousand
nodes. Our objective is to provide a reconfiguration time
(boot to boot: B2B) lower than 10 minutes for the 5000
CPUs of the platform. This means: 1) deploying the soft-
ware image on all the nodes of every site (a site may con-
tain up to 500 nodes), 2) issuing the reboot order on all
Grid’5000 nodes and 3) the reboot of all nodes from the
deployed software image. As previously mentioned, Kade-
ploy uses more steps, booting a light kernel to prepare the
user partition to boot from for the experiment.

The B2B time depends not only on the performance of
Kadeploy but also on the OS to be booted (OS have different
configurations and run different set of services).

Figure 4 presents the BTB time according to the number
of nodes, in a single site, for a simple kernel without service,
on a cluster of 200 nodes.

The figure decomposes the B2T time in 4 steps: 1) the
time to boot the preparation OS launching a light kernel
(in red), 2) the time the prepare the disk partitions before
the installation of the user environment (in dash green), 3)
the time to transfer the user environment archive (in dash
blue) and 4) the time to boot the user OS (in dash pur-
ple). First, the figure shows that the boot time depends
on the number of nodes. This is because the boot time is
different for all machine and we consider only the slow-
est one. In contrary, the disk preparation and environ-
ment transfer times increase negligibly with the number of
nodes. The time to reboot the 2 OS largely dominates the
environment transfer time. Altogether, the figure clearly
shows a B2B time evolving linearly with the number of
nodes following an affine function that could be evaluated
as
���������	��
������������������� ���������

,
�

, being the number
of nodes.
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Figure 5. Time diagram for the deployment
and reboot of a user environment on 2 sites
of Grid’5000.
Figure 5 presents the time diagram of a deployment and

reboot phase involving 2 Grid’5000 sites for a total of 230
nodes (150 nodes at Orsay and 80 nodes at Sophia). The
vertical axis corresponds to the number of nodes in deploy-
ment and reboot state. On the leftmost time, all the nodes
are running an OS. At � � �"!�� , a deployment sequence is
issued. At � �$#%�%� , all nodes are rebooting the deployment
kernel. At � �&�'!��%� all nodes have rebooted and are prepar-
ing the user partition. The clusters start the second reboot at
� �(�'!��%� for Sophia and � �$!�!��%� for Orsay. Sophia nodes
are rebooted with the user OS at � �)�����*� . All nodes are re-
booted with the user OS (including Orsay) at � �+#%!��%� . At
� �-,%!�� a reboot order is issued making all nodes rebooting
on the deployment kernel. This figure demonstrates that the
current B2B time at the Grid level is only exceeding the 10
minutes mark by 10%. The deployment and reboot system
is in Alpha version. It is not yet tuned and that there are
many optimization opportunities.

7 Conclusion

Grid’5000 belongs to a novel category of research tools
for Grid research: a highly reconfigurable, controllable and
monitorable real life platform. We have presented the moti-
vations, design and architecture of this platform. The main
difference between Grid’5000 and previous real life exper-
imental platforms is its degree of reconfiguration, allowing
researchers to deploy and install the exact software envi-
ronment they need for every experiment. This capability
raises a security difficulty, solved in Grid’5000 by establish-
ing a virtual domain spanning over several sites connected
by the Internet, strongly controlling the communications at
the domain boundaries and relaxing restrictions for intra-
domain communications. The platform provides the users

many network probes capturing the network traffic during
experiments. We have describes some configuration exam-
ples, illustrating the variety of experiments that can be done
with Grid’5000. We also presented the performance of the
reconfiguration system allowing a ”boot to boot” time lower
than 10 minutes on the full platform.

Ongoing work concerns several points: 1) ease the soft-
ware image construction for the users, 2) automatic valida-
tion of software images, 3)
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