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Perturbation theory (PT) has been used to interpret the observed nonlinear large-scale structure
statistics at the quasi-linear regime. To facilitate the PT-based analysis, we have presented the
GridSPT algorithm, a grid-based method to compute the nonlinear density and velocity fields in
standard perturbation theory (SPT) from a given linear power spectrum. Here, we further put
forward the approach by taking the redshift-space distortions into account. With the new imple-
mentation, we have, for the first time, generated the redshift-space density field to the fifth order
and computed the next-to-next-to-leading order (2 loop) power spectrum and the next-to-leading
order (1 loop) bispectrum of matter clustering in redshift space. By comparing the result with corre-
sponding analytical SPT calculation and N -body simulations, we find that the SPT calculation (A)
suffers much more from the UV sensitivity due to the higher-derivative operators and (B) deviates
from the N -body results from the Fourier wavenumber smaller than real space kmax. Finally, we
have shown that while Padé approximation removes spurious features in morphology, it does not
improve the modeling of power spectrum and bispectrum.

I. INTRODUCTION

Galaxy redshift surveys [1] provide a wealth of cosmo-
logical information which enables us to probe the late-
time cosmic expansion history as well as the growth of
large-scale structure. They also offer a clue to probe the
primordial fluctuations, from which one can address the
fundamental physics questions of the early universe. In
addition to several ongoing ground-based surveys such
as HETDEX [2], PFS [3] and DESI [4], there are space-
based missions planned to probe galaxies out to higher
redshifts over a large sky area, such as Euclid1 [5], Nancy
Grace Roman Space Telescope2 [6], and SPHEREx 3 [7].
Those gigantic surveys aim to dramatically improve our
understanding of the universe to the next level, and to
resolve puzzles such as the nature of dark matter and
dark energy, and the physics of cosmic inflation.

Surveying a larger volume with higher galaxy number
density means that these surveys measure the summary
statistics, such as the power spectrum and correlation
function, with unprecedented precision and this can offer
a tight constraint on cosmological parameters, helping
us to clarify the nature of cosmic acceleration as well
as to test the gravity on cosmological scales [8]. In do-
ing so, it is indispensable to take an accurate theoret-
ical description of the large-scale structure along with

1 https://sci.esa.int/web/euclid
2 https://roman.gsfc.nasa.gov/
3 https://spherex.caltech.edu/

the observational systematics. In galaxy surveys, major
systematics to be under control are the nonlinearities in
gravitational evolution, galaxy bias, and redshift-space
distortions. There have been tremendous efforts to de-
scribe these effects both from analytical treatments and
numerical simulations, and it is indeed one of the major
subjects in observational cosmology (e.g., [1, 9–24]).

Among various techniques and methods, cosmological
N -body simulations and perturbation theory calculations
have established as the standard theoretical tools to ac-
curately predict the observed large-scale structure. In
particular, N -body simulations are powerful in describ-
ing quantitatively the clustering of dark matter and halos
at nonlinear regime. Providing a real-space realization of
halos, N -body also makes it possible to account for di-
rectly the observational systematics such as the survey
window function and masks. On the other hand, per-
turbation theory (PT) treatment [25] provides a faster
way to predict statistical quantities at weakly nonlin-
ear regime, and is used for a theoretical template of the
measured power spectrum or correlation function. These
two approaches are complementary, and a combination
of them may give a more efficient theoretical tool with
versatile applications (e.g., Ref. [23]).

To facilitate the PT-based approach, we have devel-
oped a grid-based algorithm to simulate the nonlinear
density and velocity fields of large-scale structure, based
on the standard perturbation theory (SPT) [26] (see
Refs. [27, 28] for earlier works). Taking advantage of the
fast Fourier Transform (FFT), its C++ implementation,
called GridSPT, enables us to quickly generate the non-
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linearly evolved density and velocity field at each order
in SPT. Then, we can apply all analysis tools developed
for the statistical analysis of the density and velocity
fields on configuration-space grids, for example, for N -
body simulations or for analysis of survey data. Further-
more, the observational systematics such as the survey
window function and masks can be easily incorporated
into the grid density fields. As an explicit demonstration,
in Ref. [29], we have estimated the covariance matrix of
the matter power spectrum with various shapes of survey
window functions, including the higher-order corrections
from the next-to-leading order (one-loop) trispectrum.

In this paper, extending the previous grid-based al-
gorithm to include the redshift-space distortions (RSD)
[30, 31], we present an explicit implementation of the
RSD effects on the GridSPT. Previous studies, for exam-
ple in Refs. [14, 18] and Ref. [32], have shown that the
naive SPT calculation of the matter power spectrum in
redshift space does not provide as good model as that in
real space, and there have been numerous works to im-
prove the SPT predictions (e.g., [14, 18, 33–41]). Making
use of the grid-based treatment, we shall see how the
naive SPT treatment leads to an inaccurate prediction
particularly at the field level, even after including the
nonlinear corrections up to the fifth order. Also, apply-
ing the Padé approximations to the SPT density fields,
we shall seek for the possibility of using a re-summed
treatment for more accurate modeling. It is, however,
to be stressed that the implementation of the RSD ef-
fect in GridSPT is not our final goal. In our successive
work, we plan to implement the effect of galaxy bias as
well as the effective-field-theory treatment (e.g., [20, 42–
44]), the latter of which can mitigate the UV-sensitive
behaviors of the SPT calculation, and we thus expect
that the method has a potential to improve upon the
SPT predictions. Note that the GridSPT algorithm has
been applied to a precise calibration of the effective-field-
theory counter terms for the bispectrum and trispectrum
at next-to-leading order [45, 46].

In principle, one can implement the RSD effect from
the GridSPT output by mapping the real-space density
field to the redshift-space using the line-of-sight com-
ponent of the peculiar velocity field. However, a naive
implementation of the mapping formula in grid space
needs an interpolation, for which an accurate computa-
tion needs a non-perturbative calculation. For the per-
turbative treatment, we have presented a novel expres-
sion that relates the redshift-space density field in terms
of the real-space density and velocity fields. We have
then evaluated the expression at the redshift-space posi-
tion. In this way, no interpolation technique is necessary,
and one can directly reconstruct the SPT density field in
redshift space from the real-space GridSPT calculations.
With an explicit implementation of the RSD effects, we
investigate the statistical and morphological properties
of the redshift-space SPT density fields.

The organization of this paper is as follows. In Sec. II,
we begin by briefly reviewing the grid-based SPT cal-

culation of large-scale structure, and comment on the
aliasing effect that appears in a practical implementa-
tion. Then, in Sec. III, we consider the RSD, and derive
the expression for redshift-space density field written in
terms of real-space quantities. Based on this, we present
a perturbative framework to compute density fields with
GridSPT. Sec. IV presents explicit demonstration of the
GridSPT calculations taking the RSD effect into account,
for which we also make a detailed comparison with N -
body simulations and analytical SPT calculations. To
this end, we present for the first time the two-loop SPT
power spectrum in redshift space. Sec. V discusses the
application of Padé approximations to the GridSPT, and
discusses a possibility to improve the SPT calculations in
redshift space at field level. Finally, Sec. VI is devoted to
the conclusion and discussions on the future prospects.

Throughout the paper, we use the following Fourier
convention:

f(k) =

∫
d3x e−ik·xf(x) (1)

f(x) =

∫
d3k

(2π)3
eik·xf(k) ≡

∫
k

eik·xf(k) . (2)

II. GRID-BASED PERTURBATION THEORY

In this section, we present a concise review on the
grid-based calculation for perturbation theory of large-
scale structure named GridSPT, described in Ref. [26].
In essence, GridSPT enables us to perform SPT calcu-
lations at the field-level; to generate the numerical re-
alizations of higher-order density and velocity fields at
each grid point. The heart of the algorithm is the real-
space recursion relation in Eq. (6), on which the GridSPT
implementation is based.

Standard perturbation theory models the gravita-
tional evolution of matter distribution by integrating the
Vlasov-Poisson equations under the assumption of the
single-stream matter flow [25]. In this framework, the
large-scale matter distribution is described by the pres-
sureless fluid equations coupled with the Poisson equa-
tion. When further combined with the irrotational flow
assumption, which is also valid on large scales, the system
of equations describing the nonlinear evolution of density
and velocity fields is further reduced to

d

dη

 δ

θ

+ Ωab

 δ

θ

 =

 ∇ · [δu]

∇ · [(u · ∇)u]

 , (3)

where we introduce the time variable η defined by η ≡
lnD+(t) with D+ being the linear growth factor. We
denote the comoving coordinate as x. The quantities
δ = δ(x, η) and θ = θ(x, η) are the mass density and
the velocity-divergence fields, respectively. The velocity-
divergence field is related to the velocity field v through
θ ≡ −∇v/(f aH) ≡ ∇ ·u with f being the linear growth
rate, defined by f ≡ d ln D+/d ln a. The field u is the
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reduced velocity field given by u = ∇[∇−2θ] for an irro-
tational matter flow. The matrix Ωab = Ωab(η) gener-
ally depends on cosmology and time, but replacing that
with the time-independent constant matrix ΩEdS

ab for the
Einstein-de Sitter Universe:

ΩEdS
ab =

 0 −1

−3

2

1

2

 , (4)

provides a good approximation in a wide class of cosmol-
ogy models close to the ΛCDM (e.g., Refs. [47–49]).

We obtain the perturbative solutions for Eq. (3) by ex-
panding the density and velocity fields. For the dominant
growing-mode contributions, we have

δ(x, η) =
∑
n

δn(x, η), θ(x, η) =
∑
n

θn(x, η) (5)

with the time dependence at each order scaled as
δn, θn ∝ en η. Hereafter, we suppress arguments of η
for the perturbed quantities and simply write δn(x) and
θn(x). Substituting Eq. (5) into Eq. (3) and using Ωab
in Eq. (4), the order-by-order calculation leads to the
following recursion relation [26]: δn(x)

θn(x)

 =
2

(2n+ 3)(n− 1)


n+

1

2
1

3

2
n



×
n−1∑
m=1

 (∇δm) · un−m + δmθn−m

1

2
∇2(um · un−m)

 , (6)

for n ≥ 2. Here, we have used the identity∇·[(u · ∇)u] =
1
2∇

2 (u · u) for an irrotational (curl-free) velocity field u.
Unlike the equivalent expression given in Ref. [26], Eq. (6)
involves no tensor-field calculation, which is helpful for
reducing the memory requirement in the numerical im-
plementation. We complete the recursion relation by us-
ing the linear-order (n = 1) growing-mode solution δ1(x)

θ1(x)

 = eη

 1

1

 δ0(x), (7)

where δ0(x) is the linear density field given at an initial
time.

For a given linear density field δ0(x) on grids, we use
them as an initial condition for the recursion (Eq. 7) to
calculate the nonlinear source terms given at the right-
hand side of Eq. (6). The fast Fourier transform (FFT)
facilitates the calculation of the derivative operators ∇j ,
which simply becomes a multiplication of ikj in Fourier
space. We have presented details of the algorithm and
implementation in Ref. [26] (see their Sec. II-C)4. In

4 With the real-space recursion relation at Eq. (6), one important

Ref. [26], we have generated nonlinear density fields up
to fifth order and studied both their morphological and
statistical properties in a face-to-face comparison withN -
body simulations that begins from exactly the same ran-
dom realizations. One of the advantages of this method
is that grid-based codes for the statistical analysis of N -
body simulation results can be reused for the outcomes of
GridSPT, and that once the density fields are generated,
the predictions can be scaled to any redshift analytically
by using the fact that the time dependence of the n-th
order fields is simply described as δn, θn ∝ en η.

It is worthy noting that the operations for the
GridSPT implementation, particularly calculating the
right-hand-side of Eq. (6), can generate the aliasing
effect, which arises when fast-Fourier-transforming the
nonlinear terms evaluated in configuration space (see Ap-
pendix A 1). The aliasing effect produces spurious high-
wavenumber Fourier modes that affect the small-scale be-
haviors of the resulting nonlinear fields. Mitigating such
an effect is thus critical for a practical SPT calculation
at the field level.

A simple but widely used technique to mitigate the
aliasing effect is to discard the high-frequency modes.
In our previous papers [26, 29], we have adopted the
so-called 2/3 rule to set Fourier modes in the high fre-
quency range of k > (2/3)kNyq to zero at each step of
the GridSPT calculation. Here, the wavenumber kNyq is
the Nyquist frequency defined by kNyq ≡ π/Lp, where

Lp ≡ (Lbox/N
1/3
grid) is the grid separation, Lbox and Ngrid

are respectively the side length and the total number of
grids for the comoving cubic box inside which the fields
δn and θn are defined. Strictly speaking, however, the
2/3 rule is valid only for the aliasing effect arising from
the quadratic operations of the fields. For the nonlinear
terms with the N -th power of the fields, instead, the 2/3
rule has to be generalized to the 2/(N + 1)-rule. That is,
the modes with wavenumber k > 2/(N+1) kNyq are to be
discarded before the calculation of nonlinear terms. Ap-
plying the 2/(N+1) rule has been essential in computing
the redshift-space density field with GridSPT, since the
redshift-space density field is constructed perturbatively
with higher powers of the density and velocity fields. In
Appendix A, we discuss this point in greater detail and
present a comparison among results of the GridSPT cal-
culations with various de-aliasing treatments.

Finally, a cautionary remark is in order; the single-
stream PT treatment ceases to be adequate in the nonlin-
ear regime where the multi-stream flow is generated, and
recent studies show that the multi-stream effect on the
matter distribution is manifest even on large scales and
becomes more significant at higher order (e.g., [23, 50–
52]). The effective-field-theory treatment can remedy the
situation by introducing counter terms that absorb the

difference from the algorithm in Ref. [26] is that we do not need to
compute the tensor fields, ∂iuj , at every step of PT calculations.
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UV sensitivity. We shall leave a grid-based implementa-
tion of the effective-field-theory treatment for our future
work, and focus on modeling RSD in the GridSPT frame-
work.

III. IMPLEMENTING REDSHIFT-SPACE
DISTORTIONS ON GRIDSPT

In this section, based on the standard PT treatment,
we present an algorithm to compute perturbatively the
redshift-space density fields on grids.

First, recall that the observed position of a galaxy in
redshift space, s, is related to the real-space position x
through

s = x− f uz(x) ẑ, (8)

where uz is the line-of-sight component of the field u,
defined earlier u ≡ −v/(f aH), with v being the pecu-
liar velocity. Throughout the paper, we work with the
distant-observer limit and take the z-axis as the line-of-
sight direction. With the mapping relation in Eq. (8),
one finds an expression for the density field in redshift
space, denoted by δ(S), in terms of the real-space quan-
tities as (e.g., Refs. [1, 32], see also Refs. [53–55] for the
expression without taking the distant-observer limit)

δ(S)(s) =
∣∣∣ ∂s
∂x

∣∣∣−1 {
1 + δ(x)

}
− 1

=
δ(x) + f ∇zuz(x)

1− f ∇zuz(x)
, (9)

where the operator ∇z stands for the line-of-sight deriva-
tive, ẑ ·∇x. The above expression is exact in the distant-

observer limit, and using GridSPT, the quantities on the
right-hand side can be computed up to an arbitrary or-
der without expanding the denominator. Note, however,
that the right hand side of Eq. (9) is still to be evaluated
at the real-space position. In order to obtain the den-
sity field in redshift space, therefore, we have to trans-
form the quantities at the real space position x to the
redshift-space position s through Eq. (8). Although such
a transformation can be implemented rigorously up to an
arbitrary order in PT calculations, the resultant redshift-
space density fields no longer reside at the original grids.
To obtain a regularly-spaced density field, we have to
interpolate among the resultant density fields. Such an
operation obscures the counting of PT order, so it is in-
compatible with a PT calculation in a strict sense. We
shall leave this implementation as a future work.

To circumvent the situation, we derive an alternative
expression for the redshift-space density field. To do so,
consider the Fourier transform of the redshift-space den-
sity field:

δ(S)(k) =

∫
d3s e−ik·s δ(S)(s)

=

∫
d3s e−ik·s

[∣∣∣ ∂s
∂x

∣∣∣−1 {
1 + δ(x)

}
− 1

]

=

∫
d3x e−ik·(x−f uz(x)ẑ)

{
δ(x) + f ∇z uz(x)

}
.

(10)

In the last line, we changed the variable of integral from
s to x, using Eq. (8) and the Jacobian |∂s/∂x| = 1 −
f ∇zuz(x). Taylor-expanding the velocity field in the
exponent and substituting the Fourier transform of the
quantities δ and uz, we have obtained

δ(S)(k) =

∫
d3x e−ik·x

∑
n=0

in

n!
(fkz)

n
{
δ(x) + f ∇z uz(x)

}
{uz(x)}n

=
∑
n=0

(fkz)
n

n!

∫
d3xe−ik·x

∫
p

eip·x
∫
q1

eiq1·x · · ·
∫
qn

eiqn·x
{
δ(p) + f

p2
z

p2
θ(p)

}q1,z

q2
1

θ(q1) · · · qn,z
q2
n

θ(qn). (11)

Here, we consider the irrotational velocity flow5, and used
the velocity-divergence field θ [see Eq. (3) above], with

which uz(k) = (−i kz/k2)θ(k).
Going back to the configuration space, the inverse

Fourier transform of Eq. (11) gives

5 To be precise, in deriving Eq. (13), we do not necessarily assume the irrotationality.
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δ(S)(s) =

∫
d3k

(2π)3
eik·sδ(S)(k)

=
∑
n=0

∫
p

∫
q1

· · ·
∫
qn

ei(p+q1+···+qn)·s f
n(pz +

∑n
i=1 qi,z)

n

n!

{
δ(p) + f

p2
z

p2
θ(p)

}q1,z

q2
1

θ(q1) · · · qn,z
q2
n

θ(qn). (12)

Finally, the above expression can be recast as

δ(S)(s) =
∑
n=0

fn

n!
∇̃nz
[{
δ(s) + f∇̃zuz(s)

}
{uz(s)}n

]
(13)

with the operator ∇̃z defined by ∇̃z ≡ ẑ · ∇s. Note that
the ẑ direction is well-defined both in the real space and
the redshift space.

Eq. (13) is the key equation to perform a grid-based
PT calculation in redshift space. In contrast to Eq. (9),
the right hand side is now expressed as function of the
redshift-space position s. Hence, we use Eq. (13) as a
basis to directly compute the redshift-space density field
from the real-space quantities without any interpolation.
To be explicit, let us apply the SPT expansion given in
Eq. (5), and substitute these expansions in real space
into Eq. (13). Computing perturbatively the redshift-
space density field, the order-by-order calculation leads
to

δ(S) =
∑
n=1

δ(S)
n (14)

with the explicit expression of δ
(S)
n given below up to the

fifth order:

δ
(S)
1 = D1 (15)

δ
(S)
2 = D2 + f∇̃z

(
D1uz,1

)
, (16)

δ
(S)
3 = D3 + f∇̃z

(
D1uz,2 +D2uz,1

)
+
f2

2!
∇̃2
z

(
D1u

2
z,1

)
,

(17)

δ
(S)
4 = D4 + f∇̃z

(
D1uz,3 +D2uz,2 +D3uz,1

)
+
f2

2!
∇̃2
z

(
2D1uz,1uz,2 +D2u

2
z,1

)
+
f3

3!
∇̃3
z

(
D1u

3
z,1

)
,

(18)

δ
(S)
5 = D5 + f∇̃z

(
D1uz,4 +D2uz,3 +D3uz,2 +D4uz,1

)
+
f2

2!
∇̃2
z

{
D1(2uz,1uz,3 + u2

z,2) + 2D2uz,1uz,2 +D3u
2
z,1

)
+
f3

3!
∇̃3
z

(
3D1u

2
z,1uz,2 +D2u

3
z,1

)
+
f4

4!
∇̃4
z

(
D1u

4
z,1

)
,

(19)

where we introduce the perturbed quantity Dn defined
by

Dn ≡ δn + f∇̃zuz,n. (20)

Now, the recipe to compute δ(S) with GridSPT is to first
evaluate the real-space density and velocity fields, δ and
uz, up to an arbitrary order, and then to plug them into
the above expressions. All the calculation is done in the
same grid space as we obtain the real-space quantities.
Note that as a matter of course, the Fourier transform of

the density field at each order, δ
(S)
n (k), yields the expres-

sion identical to the one with the redshift-space kernel
Zn in literature [see Eq. (B1)].

IV. RESULTS

Using the prescription in Sec. III, we are in position
to present the results of GridSPT calculations in redshift
space, and to compare them with the results from N -
body simulations. Here, for the sake of comprehensive
study parallel to our previous works, we adopt the same
cosmological parameters as used in Ref. [26], assuming
the flat-ΛCDM model: Ωm = 0.279 for matter density,
ΩΛ = 0.721 for dark energy with equation-of-state pa-
rameter w = −1, Ωb/Ωm = 0.165 for baryon fraction,
h = 0.701 for Hubble parameter, ns = 0.96 for scalar
spectral index, and finally, σ8 = 0.8159 for the normaliza-
tion of the fluctuation amplitude at 8h−1Mpc. We have
then used the results of the cosmological N -body simu-
lation done in Ref. [26]. The simulation has been carried
out by a publicly available code, GADGET-2 [56], with
Nparticle = 1, 0243 particles in comoving periodic cubes
of Lbox = 1, 000h−1Mpc, with the initial density field
calculated from the 2LPT code [57]. Specifically, we use
the output data at z = 0 and 1 to create the redshift-
space density field as well as to measure the statistical
quantities. With the same initial seed and cubic box,
we perform the GridSPT calculations up to the fifth or-
der. Unless otherwise stated, the number of grids is set
to Ngrid = 1, 2003 as a default setup. To mitigate the
aliasing effect, based on the discussion earlier and in Ap-
pendix A, we adopt the 2/(1 + 5) = 1/3 rule (instead of
the 2/3 rule that we have adopted in Ref. [26]) with an
isotropic sharp-k filter, which is applied only once to the
initial density field.

A. Properties of SPT density fields

Let us begin by looking at the generated density fields
in real and redshift space.
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FIG. 1. 2D density field at z = 0 smoothed with a Gaussian filter of R = 10h−1Mpc. A slice of xy plane is taken, and the
density field averaged over 10h−1Mpc depth is shown. Left and right panel represent the results in real and redshift space,
respectively. In each panel, the results generated with GridSPT code are shown (from top left to bottom middle). Here, the

color scale represents the amplitude of the density field, δSPT =
∑n

j=1 δj or δ
(S)
SPT =

∑n
j=1 δ

(S)
j with the number n indicated in

each panel. For comparison, the bottom right panel shows the density field from N -body simulation, evolved with the same
initial condition as used in GridSPT calculations.
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FIG. 2. Same as Fig. 1, but the results for a slice of 10h−1 Mpc depth in x-z plane is shown.

Figs. 1 and 2 present the 2D slices of the real- (left)
and redshift-space (right) density fields at z = 0 ob-
tained from GridSPT and N -body results, taking the
z-axis to be the line-of-sight direction. Applying the
Gaussian filter of radius R = 10h−1 Mpc, a slice of xy-
(Fig. 1) and xz-plane (Fig. 2) is taken, and is averaged
over 10h−1 Mpc depth on each plane. In Figs. 1 and
2, the density fields over the entire box are shown. On
the other hand, Figs. 3 and 4 plot a zoom-in view over
the 200×200h−1 Mpc-sized region, which are taken from
Figs. 1 and 2 enclosed by the dashed line in the bot-
tom right panel. In all figures, the amplitudes of density
fields, plotted in linear scale, are indicated by the same
color scale.

In each panel, five successive sub-panels from top left
to bottom middle are the GridSPT results summing up
higher-order corrections one by one, i.e.,

∑n
j=1 δj or

∑n
j=1 δ

(S)
j , with the number n indicated in each sub-

panel. These are compared with the N -body results
shown in the bottom right sub-panel. Note that the real-
space results in the left panels of Figs. 1 and 3 are exactly
the same as Figs. 1 and 2 of Ref. [26], but with a differ-
ent color scheme. Adding higher-order PT corrections,
the real-space density fields obtained from GridSPT get
closer to the N -body result, and at the fifth order, the
PT density field smoothed over 10h−1 Mpc agrees well
with the N -body result.

Similarly, the xy-plane density fields (Figs. 1 and 3)
in redshift space show a good agreement between the
5-th order PT result and the N -body result. A closer
look at the amplitude reveals that the contrast between
under- and over-dense regions becomes more pronounced
in the redshift-space than in the real-space. This would
be partly ascribed to the Kaiser effect [53, 58], but the
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FIG. 3. Same as Fig. 1, but enlarged plot of the 2D density field over 200× 200h−1 Mpc size is shown for the region enclosed
by the dashed line in the bottom right panel of Fig. 1.
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FIG. 4. Same as Fig. 2, but enlarged plot of the 2D density field over 200× 200h−1 Mpc size is shown for the region enclosed
by the dashed line in the bottom right panel of Fig. 2.

fact that the effect looks more significant in higher-order
GridSPT and N -body density fields implies that there is
a certain amount of nonlinear contribution, boosting the
linear-order enhancement.

On the other hand, in the xz-plane (Figs. 2 and 3),
the GridSPT density fields exhibit wobbly structures with
successive under- and over-dense regions, which appear
most significant along the line-of-sight direction (e.g., see
the region around (x, z) = (850, 350)h−1 Mpc in right
panels of Fig. 2 or 4). We have found that those struc-
tures are typically found around the underdense regions
in the N -body results. We ascribe the feature to the
higher-derivative terms in the higher-order SPT den-
sity field [see Eqs. (17)-(19)], based upon the fact that
such a structure is not seen in the real-space results,
and that the feature becomes more prominent as we in-
crease the PT order in redshift space. In particular, the
GridSPT implementation requires evaluating the higher-
order derivative operator ∇nz , and we have calculated
them in Fourier space by multiplying the factor (i kz)

n,

which might enhance the aliasing effect beyond the level
remedied by 2/(N + 1)-rule. We have also checked that
even implementing the higher-order differential scheme
(e.g., see Appendix C of Ref. [59]), results are hardly
changed. Thus, fake wobbly structures in the xz-plane
are a direct outcome inherent in our implementation of
SPT involving higher-order derivatives. As a result, the
overall agreement between GridSPT and N -body simula-
tion in redshift space is not as good as that in real space
even at the fifth order, indicating a slower convergence
of the SPT expansion in redshift space. We shall discuss
this point in more detail from the statistical point of view
in the next subsection.

B. Power spectrum and bispectrum

Inspecting the density fields on grids, we next con-
sider the statistical quantities, focusing particularly on
the power spectrum and the bispectrum of matter field.
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FIG. 5. Power spectrum in real (left) and redshift space (from second left to right) at z = 1. Solid lines are the results from
the GridSPT calculation with the number of grids Ngrid = 12003. The analytical SPT results are also shown for reference,
depicted as dotted lines. Note that the cutoff scale of kcut = 1.4hMpc−1 is introduced in the analytical SPT calculations. In
both cases, the green and blue curves respectively indicate the results at one- and two-loop order. On the other hand, the red
symbols represent the measured result from N -body simulation with the same initial seed as used in GridSPT. Note that the
errorbars shown in N -body result are the sampling noise estimated from the number of Fourier modes.
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FIG. 6. Bispectrum in real (left) and redshift (middle and right) space at z = 1, with the number of grids N = 12003 in GridSPT

calculations. The GridSPT results are shown in thick solid lines. The analytical SPT results are also plotted for reference in
dotted lines. In both cases, tree-level and one-loop results are depicted as green and blue curves, respectively. The red filled
circles are the measured results of the bispectrum obtained from N -body simulations.

In both GridSPT and N -body simulations, we measure
them with the same grid-based codes using FFT6. In
redshift space, the statistical isotropy is known to be
manifestly broken, and measured results of the power
spectrum and bispectrum, which we respectively denote
by P (S) and B(S), exhibit anisotropies along the line-of-
sight direction (z-axis in our case). To characterize their
anisotropic nature, we apply the multipole expansion and
define the multipole moments as follows:

P
(S)
` (k) ≡ 2`+ 1

2

∫ 1

−1

dµP (S)(k)P`(µ) (21)

6 To be precise, in the case of N -body simulations, we first assign
N -body particles on grids to generate the density fields. We here
adopt the cloud-in-cell (CIC) interpolation to do this. The inter-
lacing de-aliasing correction is made based on Ref. [60] before we
divide by the CIC window function to obtain our final estimate
of the density field on grids.

for the power spectrum. The function P` is the Legendre
polynomials, and the quantity µ is the directional cosine

given by µ ≡ k̂ · ẑ, or equivalently, kz/k in our setup. For
the bispectrum, we adopt the definition used in Ref. [61]:

B
(S)
` (k1, k2, k3)

≡ 2`+ 1

2

∫ 1

−1

dµ

∫ 2π

0

dφ

2π
B(S)(k1,k2,k3)P`(µ), (22)

where the directional cosine µ is defined with the orien-
tation angle between the line-of-sight direction and the
vector normal to the triangle formed with three wave vec-
tors. The angle φ represents the azimuthal angle charac-
terizing the rotation of the triangle on the plane. To be
specific, we set

µ = cosω =
(k̂1 × k̂2) · ẑ

sin θ12
, (23)

cosφ =
{ẑ × (k̂1 × k̂2)} · k̂1

sinω
. (24)
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Note that the bispectrum multipoles B(S) defined above
differ from those used in the literature (e.g., Refs. [62–
65], see also Ref. [66] for a comparison between different
coordinate choices), but a nice property of this definition
is that they are symmetric under the permutation of the
order of k1, k2 and k3.

Figs. 5 and 6 show the results for the matter power
spectrum and the matter bispectrum from a single-
realization at z = 1. Here, the bispectrum is measured in
the equilateral configuration, taking the three wavenum-
bers to be the same (k1 = k2 = k3 ≡ k), and is plotted
as function of k. The GridSPT results depicted as solid
lines, are respectively constructed up to the two-loop and
one-loop order, through

P (S)(k) = P
(S)
lin (k) + P

(S)
1-loop(k) + P

(S)
2-loop(k); (25)

P
(S)
lin (k) = P

(S)
11 (k), (26)

P
(S)
1-loop(k) = 2P

(S)
13 (k) + P

(S)
22 (k), (27)

P
(S)
2-loop(k) = 2P

(S)
15 (k) + 2P

(S)
24 (k) + P

(S)
33 (k) (28)

for the power spectrum, and

B(S)(k1, k2, k3)

= B
(S)
tree(k1, k2, k3) +B

(S)
1-loop(k1, k2, k3); (29)

B
(S)
tree(k1, k2, k3) = B

(S)
112(k1, k2, k3)

+ 2 perms (k1 ↔ k2 ↔ k3), (30)

B
(S)
1-loop(k1, k2, k3) =

{
B

(S)
123(k1, k2, k3)

+ 5 perms (k1 ↔ k2 ↔ k3)
}

+
{
B

(S)
114(k1, k2, k3)

+ 2 perms (k1 ↔ k2 ↔ k3)
}

+B
(S)
222(k1, k2, k3)

(31)

for the bispectrum. In the above, building blocks of the
power spectrum and bispectrum, Pab and Babc, are de-
fined respectively by

〈δ(S)
a (k)δ

(S)
b (k′)〉 = (2π)3δD(k + k′)P

(S)
ab (k), (32)

〈δ(S)
a (k1)δ

(S)
b (k2)δ(S)

c (k3)〉

= (2π)3δD(k1 + k2 + k3)B
(S)
abc(k1, k2, k3). (33)

Applying the multipole expansion to each term, the mul-
tipole moments of the redshift-space power spectrum and
bispectrum are respectively evaluated up to ` = 4 and
` = 2, together with the real-space power spectrum and
bispectrum7.

In Figs. 5 and 6, we plot the measurements from the
N -body simulation in red symbols. The errorbars partic-
ularly shown for the power spectra indicate the sampling

7 In practice, measurements from the density fields on grids are
made with discrete Fourier modes, and we use the FFT-based
algorithm to directly evaluate the power spectrum and bispec-
trum multipoles (e.g., Ref. [63, 67, 68]).

noise estimated from the number of Fourier modes in each
bin. In addition, we plot the analytical SPT predictions,
which we obtain by directly performing the relevant loop
integrals numerically, at both next-to-leading (one-loop)
and next-to-next-to-leading (two-loop) orders, depicted
as dotted lines. In Appendix B, for the sake of complete-
ness, we present the analytical expressions for the SPT
power spectrum and bispectrum in redshift space. Note
that in both GridSPT and analytical SPT calculations,
the two-loop redshift-space power spectra are the results
presented for the first time in this paper.

Overall, the GridSPT power spectra consistently re-
produce the analytical SPT calculations. Note here that
for analytical SPT calculations, we introduce the cutoff
scales in the linear power spectrum so as to accommodate
with GridSPT calculations8. Compared to the real-space
results, adding the two-loop corrections to the one-loop
spectra largely suppresses the amplitude of the power
spectra. As a result, the predictions at z = 1 get closer
to the N -body results at k . 0.2hMpc−1, above which
the GridSPT results become slightly noisier.

On the other hand, adding the one-loop order, the SPT
predictions of the bispectrum positively (negatively) in-
crease its amplitude for the monopole (quadrupole) mo-
ment. While the one-loop prediction seems to reason-
ably match the real-space results in N -body simulations,
a quick look at the redshift-space results indicates that
rather than the one-loop SPT, the tree-level predictions
better explain the N -body results. Although these are
qualitatively similar to what have been found in previous
works (e.g., Ref. [61]), the bispectrum measured from the
GridSPT fields are rather noisy, difficult to judge whether
it is quantitatively consistent or not.

For a more quantitative assessment of the statistical
predictions, we increase the number of realizations in
GridSPT calculations up to 200, and in Figs. 7 and 8,
the average over the realizations are shown, with the er-
ror bars of the GridSPT results indicating the standard
error of the mean over 200 realizations. To speed up
the calculations, we here adopt a smaller number of grid
points, Ngrid = 6003. It is now clear that the GridSPT
results agree well with analytical SPT predictions not
only for the power spectrum but also for the bispectrum.
Note that the cutoff scales of the analytical SPT calcu-
lations were adjusted again close to the one introduced
in the GridSPT calculations9. Then, in redshift space,
the one-loop bispectra are shown to largely deviate from
N -body simulations, and the tree-level bispectra rather

8 To be precise, we introduce the low-k cutoff kmin set to the
fundamental mode determined by the box size (i.e., kmin =
2π/L). Further, the high-k cutoff is introduced, setting kmax

to 1.4hMpc−1, which is close to the de-aliasing filter scale in
GridSPT, kcrit = kNyq/3 ' 1.26hMpc−1.

9 In this case, while the low-k cutoff is kept fixed to the one
used in Figs. 5 and 6, the high-k cutoff is changed to kmax =
0.8hMpc−1. Note that adopting Ngrid = 6003, the de-aliasing
filter scale of the GridSPT calculations is kcrit ' 0.62hMpc−1.
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FIG. 7. Same as Fig. 5, but the GridSPT results at one- and two-loop order, respectively shown in green and blue symbols,
are averaged over 200 realizations, adopting the number of grids Ngrid = 6003. The analytical SPT results (dotted lines) are
computed with the cutoff scale kcut = 0.8 hMpc−1. The errorbars on the GridSPT results indicate the standard error of the
mean over the 200 realizations. The N -body results, depicted by the symbols in red, are identical to those shown in Fig. 5,
and their errorbars indicate the sampling error estimated from the number of Fourier modes for a single realization data. Note
that the analytical SPT results shown here (dotted) adopt a different cutoff wavenumber (see footnote), and thus differs from
those in Fig. 5.
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FIG. 8. Same as Fig. 6, but the GridSPT results of tree-level and one-loop calculations, respectively depicted as green and
blue symbols, are averaged over 200 realizations, adopting the number of grids Ngrid = 6003. The errorbars for the GridSPT

results represent the standard error of the mean over the 200 realizations.

match the N -body results (Fig. 8), in marked contrast
to the real-space bispectrum. These are fully consistent
with previous results.

Finally, going back to the results of the power spectra
in Fig. 7, we find that the agreement between the SPT
predictions and N -body simulations gets worse, com-
pared to the single-realization results in Fig. 5. The dis-
crepancy is particularly manifest and significant at small
scales for the monopole and quadrupole moments. The
major reason of this comes from the resolution of the
GridSPT calculations, originating from the UV sensitiv-
ity inherent in the SPT. Indeed, as discussed in detail in
Appendix C, the SPT predictions of redshift-space power
spectra sensitively depend on the small-scale cutoff. Re-
ducing the high-k cutoff significantly enhances the power
spectrum amplitude on small scales.

C. Cross correlation

So far, comparisons between the GridSPT calculations
and N -body simulations have been made by presenting
their respective predictions. In this subsection, we evalu-
ate the cross correlation between their density fields, and
investigate statistically the (dis)similarity of the fields
evolved by these different techniques starting from the
same initial seed.

Consider first the density field at each PT order of
GridSPT and compute its cross-correlation with the den-
sity field obtained from the N -body simulation. Follow-
ing Ref. [26], we define the cross-correlation coefficient,

r
(n)
corr, given by

r(n)
corr(k) ≡

P
(S)
0,n×N-body(k)√

P
(S)
0,nn(k)P

(S)
0,N-body(k)

. (34)

Here, the quantity in the numerator, P
(S)
0,n×N-body, repre-

sents the monopole moment of the cross power spectrum
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corr, defined in Eq. (34). Results at z = 1 (left)

and 0 (right) are shown. The solid and dotted lines are the results in redshift and real space, respectively.
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FIG. 10. Cross-correlation coefficient for GridSPT and N -body density fields, R
(n)
corr, defined in Eq. (36). The results at z = 1

(left) and 0 (right) are shown in the case of real (dotted) and redshift (solid) space.

between the n-th order SPT density field and the mea-
surement from the N -body simulation, defined by

〈δ(S)
n (k)δ

(S)
N-body(k′)〉 = (2π3)δD(k + k′)P

(S)
n×N-body(k).

(35)

In the presence of the RSD effect, the above spectrum ex-
hibits anisotropies, for which we take only the monopole
moment to evaluate Eq. (34), i.e., averaged over the
wavevectors in spherical bins. In Fig. 10, the results in
redshift and real space, depicted respectively as solid and
dotted lines, are shown up to the fifth order (n = 5) at
redshifts z = 1 (left) and 0 (right). Note that the real-
space results are identical to those obtained in Ref. [26].
While the low-k behaviors exhibit a non-monotonic scale
dependence having a positive or negative value depend-
ing on the perturbative order, all the cross-correlation
coefficients asymptotically go to zero at high k. In real
space, it has been suggested by Ref. [26] that the asymp-
totic convergence at high k comes from the randomness
of the linear displacement field, and this is quantitatively
predicted by the analytical treatment with re-summed
PT calculations [69]. Qualitatively, the results in red-
shift space show similar trends, but a closer look at
small scales reveals that the asymptotic convergence to

zero seems faster than that in real space, implying that
the convergence of SPT expansion gets worse in redshift
space, as we expected.

To elucidate this point more clearly, we next compute
the cross-correlation coefficient summing up each PT cor-

rection up to n-th order, R
(n)
corr, defined by

R(n)
corr(k) =

∑n
a=1 P

(S)
0,a×N-body(k)√{∑n

a,b=1 P
(S)
0,ab(k)

}
P

(S)
0,N-body(k)

(36)

Here, the summation in the denominator is taken only
for even numbers of a+ b for which the expectation val-

ues are non-vanishing. The measured results of R
(n)
corr are

plotted up to n = 5 in Fig. 10, adopting the same color
scheme and line types as in Fig. 9. As anticipated, the
correlation coefficient in redshift space starts to be sup-
pressed at larger scales, and the suppression gets rather
faster, compared to the results in real space. These fea-
tures are more prominent at z = 0. It is also to be
noted that adding higher-order SPT corrections does not
always improve the cross correlation. At n > 3, the
correlation with N -body simulation is rather worsen at
k & 0.2hMpc−1. Although this is also seen in real space,
and would be ascribed to the UV-sensitive features of
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higher-order SPT expansion, a more prominent feature
seen in the redshift-space results suggests that the per-
turbative description of the redshift-space density field
in Eq. (13) further worsens the convergence of PT ex-
pansion. Physically, in redshift space, the velocity fields
around and inside virialized objects are known to give
a significant impact on the density fields even at large
scales, referred to as the Fingers-of-God effect [70, 71].
This is partly deduced from the exact expressions given in
Eq. (9) or (13), where the terms involving the line-of-sight
velocity field makes the density field non-perturbative.
Since the SPT treatment naively Taylor expands all the
contributions, it would be difficult for calculations at fi-
nite order to capture the Fingers-of-God effect, and any
improvement on the PT prediction would need a non-
perturbative treatment or phenomenological description
(e.g., Refs. [14, 18, 33, 72]). In the next section, we shall
examine one such approach, and discuss its usability by
looking at the morphological and statistical properties of
redshift-space density fields.

V. PADÉ APPROXIMATION

In this section, as one of the non-perturbative re-
summation methods, we consider the Padé approxima-
tion, and compute the re-summed density field using the
GridSPT results up to the fifth order. The Padé approx-
imation re-organizes the original power-series expansion
by considering its rational form. Padé approximations
are known to be superior to Taylor series when functions
contain poles. There have been several works on the ap-
plication of Padé approximations in the context of the
perturbation theory of large-scale structure [50, 73, 74]
(see also Ref. [75] for the application of Shanks trans-
formation). Here, we particularly focus on the redshift-
space density field, and apply the Padé approximations
specifically to the GridSPT calculations.

Provided the PT expansion up to the (M+N)-th order,
Padé approximations provide a way to construct a ratio-
nal expansion form involving the series expansion up to
the M -th and N -th orders in the numerator and denom-
inator, respectively, which we denote by Padé (M,N):

δ
(S)
SPT =

M+N∑
n=1

cn −→ δ
(S)
Pade(k) =

∑M
m=1 am

1 +
∑N
n=1 bn

, (37)

where the coefficient cn is given by cn = δ
(S)
n , with the

quantity δ
(S)
n being the Fourier-space density field com-

puted from GridSPT based on Eqs. (15)-(19). Given the
positive integers M and N , the coefficients an and bn are
expressed in terms of {cn}. In general, M = N is the
best choice (e.g., Ref. [76]). Here, we consider the Padé
(2, 1), (2, 2) and (3, 2), which are respectively computed
with the SPT density fields up to third, forth and fifth
order. In Appendix D, we summarize the explicit form
of the coefficients an and bn for each case.

In Fig. 11, the projected density fields in redshift
space smoothed with the Gaussian filter of the radius
R = 10h−1 Mpc, as similarly shown in Figs. 1 and 2, are
plotted. Also, in Fig. 12, we have enlarged the plot of
the redshift-space density fields, taken from the regions
enclosed by the dashed lines in Fig. 11. These should be
compared with the GridSPT results for n = 3, 4, and 5 in
Figs. 1-4. We then find that the fake wobbly structures
seen in the xz plane, which exhibit successive low- and
high-density regions along the line of sight, fade in the
re-summed results with Padé approximations. As a re-
sult, the morphology and structure of density fields from
the Padé (2, 2) and (3, 2) get much closer to the N -body
results, visually regarded as an improvement.

The improvement, however, does not hold true for
the statistical measures. Fig. 13 shows the redshift-
space power spectra at z = 1 measured from the den-
sity fields constructed with the Padé approximation for
a single realization data. The resulting monopole and
quadrupole spectra exhibit a rather large enhancement
on small scales. This is presumably due to the UV-
sensitive behaviors inherent in the SPT calculation. Un-
like in the naive PT treatment that evaluates the power
spectrum perturbatively from several loop corrections
[see Eqs. (25)-(28)], no cancellation of the higher-order
corrections is expected in the Padé approximation. Ac-
cordingly, the measured power spectra significantly devi-
ate from those obtained from the N -body simulations.

In Fig. 14, the cross-correlation coefficient, Rcorr, is
computed for the Padé approximation, and the results at
z = 1 (left) and 0 (right) are compared with those ob-
tained in Sec. IV C especially for n = 3, 4 and 5, depicted
as dotted lines. Note again that these are obtained from
the same single realization data as used in Figs. 11-13.
We then find that the correlation coefficients from the
Padé approximations are prone to be more suppressed
than those of the naive SPT calculations. A closer look
at the results of Padé (3, 2) reveals that the suppres-
sion at intermediate scales around k ∼ 0.3− 0.4hMpc−1

becomes milder compared to the SPT results at n = 5,
but the improvement of the cross-correlation coefficient is
moderate. In all cases, the results of the Padé approxima-
tions show a rather noisy behavior, accompanying spikes
and dips, which are also seen in the power spectra at
small scales, k & 0.2hMpc−1. Note that applying the
Padé approximation to the real-space density fields, we
have also seen similar noisy behaviors. They are pos-
sibly caused by artificial singularities coming from the
rational function at Eq. (37)10. Although those singular
behaviors can be apparently eliminated by applying the
smoothing function and hence we do not see such a spiky
structure in Figs. 11 and 12, these could severely affect
the statistical quantities measured from the un-filtered

10 In evaluating Eq. (37) numerically, we added a small positive
number to the denominator to prevent the divergence.
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FIG. 11. 2D density field at z = 0 smoothed with a Gaussian filter of R = 10h−1Mpc. The redshift-space density fields
obtained from Padé approximations are plotted, together with the N -body results. Similar to Figs. 1 and 2, a slice of xy-
(upper) and xz- (lower) planes is taken, and the density fields averaged over 10h−1Mpc depth are shown.
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by the dashed line in the right panels of Fig. 11.
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FIG. 13. Redshift-space power spectrum at z = 1, obtained from the Padé approximations of GridSPT calculations.
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show the GridSPT results at 3, 4 and 5-th order, which are the same as the solid lines in Fig. 10.

density fields. Since the singular points eventually ap-
pear at the regions where the higher-order density fields
receive a large correction, the application of the Padé ap-
proximation may not be generally suited to improve the
convergence of SPT expansion at field level. We conclude
that re-writing simply the SPT expansion in a rational
form does not improve the predictions in redshift space.
Rather, mitigating the UV sensitivity in the SPT calcula-
tions would be essential, and implementing a regulariza-
tion scheme including the effective-field-theory treatment
would be thus important.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have extended our previous works on
a grid-based SPT algorithm, called GridSPT, to imple-
ment the redshift-space distortions (RSD) on grids. The
key expression is given in Eq. (13), in which the redshift-
space density field is expressed in terms of the real-space
quantities (density and velocity fields) given at a redshift-
space position. This expression, thus, allows us to apply
the real-space results of GridSPT calculations directly for

a perturbative evaluation of the redshift-space density
field on grids. With this new implementation, we have
demonstrated the GridSPT calculations in redshift space
up to the fifth order, and investigated the morphologi-
cal and statistical properties of the SPT density fields,
which we have also compared with cosmological N -body
simulations.

We found that the redshift-space power spectrum
and bispectrum obtained from the GridSPT calculations
agree well with analytical SPT results up to the two-loop
and one-loop order, respectively. Note that the two-loop
SPT power spectra are numerically evaluated and pre-
sented for the first time in this paper. In redshift space,
adding the higher-loop corrections is shown to give a sig-
nificant change in the amplitudes of both the power spec-
trum and bispectrum. In particular, we found that the
power spectrum sensitively depends on the small-scale
cutoff. This implies that the convergence of SPT ex-
pansion [Eq. (13)] in redshift space is rather worse than
that in real space due to the higher-derivative operators
∇̃nz . In fact, comparing the generated density fields from
the GridSPT calculations with those obtained from the
N -body simulations, we see rather prominently that the
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SPT is prone to produce fake structures in redshift space,
and even at large scales, un-physical wobbly structures
appear manifest along the line of sight. Accordingly, the
statistical correlation of the GridSPT density field with
N -body results is rather poor, and as we go to higher k,
the resultant cross correlation becomes suppressed more
rapidly than that in real space.

To remedy the poor convergence of the SPT expansion
in redshift space, we have considered the Padé approxi-
mation, and applied it to the Fourier-space density fields.
Rewriting the SPT expansion with a rational expansion
form, the morphological properties of the smoothed den-
sity fields get visually better, and the wobbly structures
mostly disappear. However, the resultant power spectra
exhibit a large enhancement at small scales, accompa-
nying spikes and dips, which are also seen in the cross-
correlation coefficients. These are presumably originated
from the UV-sensitive behaviors inherent in the SPT cal-
culation, and higher-order density fields get a rather large
correction at small scales. With the re-organized expan-
sion in a rational form, no cancellation occurs unlike in
the SPT calculation and the singularities eventually hap-
pen. We thus conclude that simply re-organizing the SPT
expansion does not improve the predictions, and mitigat-
ing the UV-sensitivity would be rather crucial.

Finally, as we mentioned in Sec. I, the implementa-
tion of the RSD effect in GridSPT is not our final goal,
but rather an important and necessary step toward a
practical application of the method to observations. In
Ref. [29], we have demonstrated that the grid-based algo-
rithm for SPT calculations allows us to easily incorporate
the observational systematics such as the survey window
function and masks. In addition, it is rather straightfor-
ward to implement a general expansion scheme to deal
with the galaxy bias that has been actually exploited on
the basis of SPT (e.g., Refs. [21, 22, 77–80], see Ref. [1] for
review). With an effective-field-theory treatment at the
field level, we anticipate that the UV-sensitive behaviors
can be mitigated, and an efficient and stable PT predic-
tion would become possible in redshift space. Consis-
tently incorporating all observational effects to the theo-
retical calculations with GridSPT, the grid-based method
may provide an efficient framework to maximize the cos-
mological information obtained from the galaxy survey
data (e.g., Refs. [81–83]). An investigation along this di-
rection is interesting and important toward a practical
application, and we will continue to work on these.
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Appendix A: On the aliasing correction in GridSPT

calculations

In this Appendix, we discuss the de-aliasing treatment
to mitigate the spurious high-frequency modes arising
from the nonlinear calculations of fields on grids. After
describing de-aliasing methods in Appendix A 1, we com-
pare the results of GridSPT calculations between several
de-aliasing treatments in Appendix A 2.

1. Aliasing corrections

Let us first recall how the aliasing effect affects the
GridSPT calculations. For simplicity, we consider the one-
dimensional grid space with a side length of L, and com-
pute the product of the two fields A1(x) and A2(x), where
the position x is defined over the range 0 ≤ x ≤ L. For
a grid number N , the discrete Fourier transform of the
fields Ak is described by

Ak(xj) =

N/2−1∑
n=−N/2

Ak(kn) ei kn xj , (k = 1, 2), (A1)

where the discrete Fourier mode kn is given by kn =
2nπ/L, and the position in grid space, xj , is discretised
as xj = (j/N)L for j = 0, · · · , N − 1. In GridSPT, the
product of two fields, A1 and A2, is computed in con-
figuration space, and then the derivative operations are
applied in Fourier space. Using Eq. (A1), the Fourier
coefficient of the product A1(x)A2(x) for the mode kn
becomes
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FIG. 15. Impacts of the de-aliasing treatments on the real- and redshift-space power spectra at two-loop order in GridSPT

calculations, depicted as solid lines. The results at z = 1 are shown. The upper and lower panels respectively represent the
GridSPT results adopting the number of grids Ngrid = 1, 2003 and 6003. For reference, N -body results are also shown in each
panel, depicted as red crosses, with errorbars indicating the sampling noise estimated from the number of Fourier modes in
each bin.
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FIG. 16. Same as Fig. 15, but shown for the GridSPT results of the one-loop bispectrum in equilateral configuration. The
upper and lower panels plot the GridSPT results adopting the number of grids Ngrid = 1, 2003 and 6003, together with the
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1

N

N/2−1∑
j=−N/2

A1(xj)A2(xj) e
−i knxj =

N/2−1∑
`,m=−N/2

δK
`+m,nA1(k`)A2(km) +

N/2−1∑
`,m=−N/2

δK
`+m,n±NA1(k`)A2(km), (A2)

where we used the fact that

1

N

N−1∑
j=0

ei p xj =


1 (p =

2π

L
N m, m = 0,±1,±2, · · · )

0 otherwise

.

(A3)

In Eq. (A2), the first term on the right hand side repre-
sents the contribution that we want to calculate. On the
other hand, the second term is the aliasing contribution
originating from the discreteness of the grid space. To
eliminate this spurious contributions, a simple way is to
discard the high-frequency modes that can produce the
aliasing effect. To be precise, if we set the fields A1(kn)
and A2(kn) to zero for |n| > N/3, the non-vanishing
modes in Eq. (A2) are restricted to |`+m−n| < N , and
thus the aliasing contribution does not appear. Since
the mode kn at |n| = N/3 corresponds to 2/3 times the
Nyquist frequency, this zero-padding method is called the
2/3 rule [84]. Note that the prescription given here can
be generalized to the case for the higher-order products.
That is, in order to avoid the aliasing effect for a product
of the M fields, ΠM

k=1Ak(xj), modes of the fields Ak(kn)
for |n| > N/(M +1) should be set to zero, corresponding
to the modes larger than 2/(M + 1) times the Nyquist
frequency.

Generalizing further the discussion above to the three-
dimensional grid space, Refs. [26, 29] adopted the
isotropic low-pass filter (called sharp-k) with the criti-
cal wavenumber kcrit = (2/3)kNyq, by which the Fourier
modes in |k| > kcrit are set to zero. The filter was applied
at each step when we proceed to higher-order GridSPT
calculations. Then, the generated PT fields up to the
fifth order reproduce the desired properties known in the
analytical calculations. However, the procedure used in
previous works is not a unique choice. Instead of using
isotropic filter, we may introduce the anisotropic filter,
in which the zero-padding is applied to the modes having
|kx,y,z| > kcrit. This also eliminates the spurious alias-
ing contributions. Furthermore, recalling that the n-th
order PT fields are expressed as the n-th order product
of the linear density fields, an alternative way of aliasing
correction for the GridSPT calculation at n-th order is to
adopt the 2/(n+ 1)-rule only once. That is, the low-pass
filter with kcrit = 2/(n + 1) kNyq is applied only to the
(initial) linear density field, and the subsequent higher-
order PT calculations are performed up to n-th order,
without taking any filter.

2. Comparison of de-aliasing treatments

Let us quantitatively study the possible impact of the
de-aliasing treatment on the GridSPT calculations, focus-
ing on the statistical quantities obtained from the density
fields up to the 5th order in real and redshift space.

Based on the discussions in Appendix A 1, de-aliasing
prescriptions one can think of are summarized as follows:

2/3-rule (iso): an isotropic sharp-k filter with kcrit =
(2/3)kNyq is applied to the PT fields at every order
of PT calculations.

2/3-rule (aniso): an anisotropic sharp-k filter with
kcrit = (2/3)kNyq, by which the modes having
|kx,y,z| > kcrit are set to zero, is applied to the
PT fields at every order of PT calculations.

1/3-rule (iso): an isotropic sharp-k filter with kcrit =
(1/3)kNyq is applied only to the initial density fields
before PT calculations.

1/3-rule (aniso): an anisotropic sharp-k filter with
kcrit = (1/3)kNyq, by which the modes having
|kx,y,z| > kcrit are set to zero, is applied only to
the initial density fields before PT calculations.

In Figs. 15 and 16, using the above de-aliasing treat-
ments, GridSPT results of the power spectra and bispec-
tra are respectively shown at z = 1, adopting respectively
the number of grids Ngrid = 1, 2003 and 600 in the upper
and lower panels. Here, the power spectra computed with
GridSPT are at two-loop order, while the bispectra are at
one-loop order. Both results are obtained from the same
initial seed as used in the N -body simulation, whose re-
sults are also depicted as filled circles for reference. With
a single realization data, the number of available Fourier
modes is limited at large scales, and the measured re-
sults from the N -body simulation suffer from the effect
of finite-mode sampling, which is known to be significant
at low k modes [85]. Hence, to make a fair compari-
son, we added corrections due to the finite-mode sam-
pling to the GridSPT results. That is, the contributions
having the odd powers of the (Gaussian) linear density
field, (P12, P23, P14) and (B111, B113, B122), are added
to the power spectrum and bispectrum, respectively [see
Eqs. (32) and (33) for definitions of Pab and Babc]. Al-
though the odd-power contributions usually vanish in the
limit of the infinite number of Fourier modes, these con-
tributions do exist in the N -body realization. Indeed,
taking them into account in the GridSPT calculations
makes the agreement with N -body results better espe-
cially at k . 0.1hMpc−1.
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In Fig. 15, apart from a bumpy scale-dependent feature
at k & 0.2hMpc−1, a prominent difference arising from
the de-aliasing treatments appears manifest if we adopt a
smaller number of grids, Ngrid = 600 (lower). Typically,
the impact gets large for the redshift-space monopole and
quadruple spectra, and adopting the anisotropic sharp-
k filter tends to suppress the power spectrum ampli-
tude compared to the isotropic counterpart. The 1/3
rule applied only to the initial condition also suppresses
the power, compared to the 2/3 rule at every PT or-
der. These behaviors are originated from the change of
the mode transfer due to different cutoff strategies and
the cutoff scales imposed, leading to a visible change in
the power spectrum amplitude. The effect would be-
come more significant as decreasing redshifts. On the
other hand, looking at the one-loop bispectrum shown in
Fig. 16, we hardly see a clear difference.

Based on the discussion and the results in Figs. 15 and
16, in the main text, we adopt the 1/3 rule for the de-
aliasing treatment, since it seems less affecting the mode-
coupling structure. Using a simple isotropic sharp-k fil-
ter, the GridSPT calculation is performed mainly with
Ngrid = 1, 2003, and the results are presented in Sec. IV.

Appendix B: Analytical expressions for SPT power
spectrum and bispectrum in redshift space

In this Appendix, we present the analytical expressions
of the SPT power spectrum and bispectrum in redshift
space.

Let us first recall that in the SPT treatment, the
redshift-space density field, δ(S), is expanded in powers
of the linear density field δ1 [see Eq. (7)], and in Fourier
space, we have

δ(S)(k) =
∑
n=1

∫
d3p1 · · · d3pn

(2π)3n
δD(k − p1···n)

× Zn(p1, · · · , pn)δ1(p1) · · · δ1(pn) (B1)

with the wavevector p1···n defined by p1···n ≡ p1 + · · ·+
pn. Here, the kernels Zn characterize the mode cou-
pling in redshift space between Fourier modes, and they
are symmetric with respect to the exchange of their ar-
guments. These kernels are analytically constructed,
and are expressed in terms of the real-space PT ker-
nels, Fn and Gn, for the n-th order density and velocity-
divergence fields, given by

δn(k) =

∫
d3p · · · d3p1

(2π)3n
δD(k − p1···n)

× Fn(p1, · · · , pn)δ1(p1) · · · δ1(pn), (B2)

θn(k) =
∑
n=1

∫
d3p · · · d3p1

(2π)3n
δD(k − p1···n)

×Gn(p1, · · · , pn)δ1(p1) · · · δ1(pn), (B3)

with F1 = 1 = G1. The explicit forms of these ker-
nels are constructed through the recurrence relation (see

e.g., Refs. [25, 86, 87]), which corresponds to the Fourier
transform of the formula given by Eq. (6). Using the
expressions in Eqs. (B2) and (B3), the expansion form
of δ(S), given in Eq. (11), is re-organized with respect to
the powers of δ1, leading to the form given by Eq. (B1),
from which we can read off the analytical expressions for
the kernel Zn recursively. At the last step, the kernel Zn
has to be symmetrized by summing up the expressions
with all possible permutations of their arguments. The
explicit forms of Zn can be found in the literature, e.g.,
in Refs.[61, 88] up to third and fourth order, respectively.
Note that the kernel Zn includes the terms having an ex-
plicit dependence on the linear growth factor f , and by
setting f to zero, it is reduced to the real-space PT kernel
Fn.

Provided the kernel Zn, the analytical expressions for
the redshift-space power spectrum and bispectrum are
derived based on the definitions in Sec. IV B. The SPT
power spectrum at two-loop order, given in Eq. (25), con-
sists of the six contributions, summarized in Eqs. (26)–
(28). With a help of the Wick theorem, their analytical
expressions are obtained from Eq. (32):

P
(S)
11 (k) =

{
Z1(k)

}2
PL(k), (B4)

P
(S)
13 (k) = 3Z1(k)PL

∫
d3p

(2π)3
Z3(p, −p, k)PL(p),

(B5)

P
(S)
22 (k) = 2

∫
d3p

(2π)3

{
Z2(p, k − p)

}2
PL(p)P11(|k − p|),

(B6)

P
(S)
15 (k) = 15Z1(k)PL(k)

×
∫
d3pd3q

(2π)6

{
Z5(p, q, −p, −q, k

}
PL(p)PL(q),

(B7)

P
(S)
24 (k) = 12

∫
d3pd3q

(2π)6
Z2(p, k − p)

× Z4(p, q, −q, k − p)PL(p)PL(q)PL(|k − p|)
(B8)

P
(S)
33 (k) = 9Z1(k)PL(k)

{∫ d3p

(2π)3
Z3(p, −p, k)PL(p)

}2

+ 6

∫
d3pd3q

(2π)6

{
Z3(p, q, k − p− q)

}2

× PL(p)PL(q)PL(|k − p− q|), (B9)

where the function PL is the linear power spectrum in
real space, i.e., PL = P11. On the other hand, the SPT
bispectrum at one-loop order has four terms as given in
Eqs. (30) and (31). From Eq. (33), these are analytically



19

expressed as follows:

B
(S)
112(k1, k2, k3) = 2Z2(k1, k2)Z1(k1)Z1(k2)

× PL(k1)PL(k2), (B10)

B
(S)
123(k1, k2, k3) = 6Z1(k1)PL(k1)

∫
d3p

(2π)3
Z2(p, k2 − p)

× Z3(−k1, −p, −k2 + p)

× PL(p)PL(|k2 − p|)
+ 6Z1(k1)Z2(k1, k2)PL(k1)PL(k2)

×
∫

d3p

(2π)3
Z3(k2, p, −p)PL(p), (B11)

B
(S)
114(k1, k2, k3) = 12Z1(k1)Z1(k2)PL(k1)PL(k2)

×
∫

d3p

(2π)3
Z4(−k1, −k2, p, −p)PL(p),

(B12)

B
(S)
222(k1, k2, k3) = 8

∫
d3p

(2π)3
Z2(k1 − p, p)

× Z2(k2 + p, −p)Z2(−k2 − p, −k1 + p)

× P11(|k1 − p|)PL(p)PL(|k2 + p).
(B13)

Finally, we note that the analytical SPT results pre-
sented in this paper are the multipole moments of the
power spectrum and bispectrum. Thus, on top of the
loop integrals as shown above, one has to also eval-
uate the integrals over the angles [see Eqs. (21) and
(22)]. As a result, the six- and five-dimensional inte-
grals have to be evaluated at the highest for the power
spectrum and bispectrum, respectively11. In order to
deal with these multi-dimensional integrals, we adopt the
Monte Carlo integration technique, and use specifically
the quasi-random sampling in the CUBA library [89] to
directly compute them.

Appendix C: UV sensitivity of SPT calculations in
redshift-space

In this Appendix, we discuss the UV sensitivity of the
SPT calculations, and examine the cutoff dependence of
the predicted power spectra and bispectra.

In SPT, higher-order PT corrections generally involve
multi-dimensional loop integrals, and the support of their
integrands gets wider for higher-loop integrals (e.g., [50,
51]). That is, as we go to higher order, the result of the
loop corrections becomes more sensitive to the cutoff of
the integral. While the Galilean invariance of the SPT
calculations ensures a cancellation of the IR-divergence
and hence the IR sensitivity can become ignorable for a

11 In the power spectrum case, one can use the rotational symmetry
with respect to the line-of-sight direction to partly reduce the
loop integrals.

sufficiently small cutoff wavenumber, such a cancellation
does not occur for the UV-sensitive behaviors, and a care
must be taken for the choice of the UV cutoff (e.g., see
Ref. [69, 90] for an explicit demonstration).

In Figs. 17 and 18, we respectively plot the SPT pre-
dictions of two-loop power spectra and one-loop bispec-
tra at z = 1. In each case, the upper panels show the
GridSPT results varying the number of grids Ngrid, fix-
ing the box size to Lbox = 1, 000h−1 Mpc. On the other
hand, the lower panels plot the analytical SPT predic-
tions varying the high-k cutoff in the linear power spec-
trum. In all analytical SPT results, the low-k cutoff
of kmin = 2π/Lbox ' 6.28 × 10−3 hMpc−1 is adopted.
The high-k cutoff scales in the analytical SPT results are
taken to be slightly larger than the de-aliasing filter scales
(kcrit = kNyq/3) for the GridSPT calculations12, but we
find a reasonable agreement between the two predictions.

In Fig. 17, we see that decreasing the high-k cutoff
or the number of grids enhances the power spectrum at
small scales. While these trends have been known in
real space (e.g., Ref. [69, 90]), a notable point is that
the redshift-space power spectra exhibit a strong scale-
dependent enhancement, not only in GridSPT but also in
analytical SPT calculations. In real space, as increasing
the cutoff scale or number of grids, the predicted ampli-
tude of the power spectrum tends to converge. In redshift
space, however, we still see a sizable change in the am-
plitude, especially at k & 0.3hMpc−1, indicating that
the UV sensitivity is more serious in redshift space. This
is perhaps due to the increasing number of PT correc-
tions at higher order, arising from the line-of-sight veloc-
ity contributions [see Eq. (13)]. Thus, in redshift space,
a careful choice of high-k cutoff is necessary for the two-
loop SPT predictions of power spectrum.

On the other hand, the one-loop predictions of the bis-
pectrum, shown in Fig. 18, do not have a strong UV
sensitivity in both real and redshift space, and the an-
alytical SPT and GridSPT results with different high-k
cutoff or number of grids Ngrid almost coincide with each
other. These trends are qualitatively similar to those in
the one-loop power spectrum, for which we checked to be
rather insensitive to the high-k cutoff.

To sum up, the cutoff dependence of the SPT predic-
tion is significant in the power spectrum calculation at
two-loop order, and in redshift space, even with a large
UV cutoff, the convergence of the power spectrum re-
sult seems to be slow. Thus, the GridSPT prediction in
redshift space suffers from a rather strong UV sensitiv-
ity. However, this is indeed consistent with the analytical
SPT calculations, and as long as we consider the PT cal-
culations at fifth order, it is only the case for the power
spectrum.

12 For reference, the de-aliasing filter scales shown in the upper pan-
els are estimated as follows: kcrit = 1.26hMpc−1 (black, Ngrid =
1, 2003), 0.94hMpc−1 (blueNgrid = 9003), 0.63hMpc−1 (green,
Ngrid = 6003), and 0.31hMpc−1 (red, Ngrid = 3003).
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FIG. 17. Sensitivity of the power spectrum predictions to the high−k cutoff in real and redshift space. The results at z = 1 are
plotted. In the upper panels, varying the number of grids Ngrid, the GridSPT results of the two-loop power spectra at z = 1 are
shown (solid). In all cases, the box size of the GridSPT calculations is held fixed to Lbox = 1, 000h−1 Mpc. On the other hand,
lower panels plot the analytical SPT predictions varying the high-k cutoff in the linear power spectrum. Again, in all cases,
the low-k cutoff in the linear spectrum is set to kmin = 2π/Lbox ' 6.28× 10−3 hMpc−1. For reference, the N -body results are
also shown in each panel, depicted as red crosses.
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FIG. 18. Same as Fig. 17, but the results of the one-loop bispectra spectra at z = 1 are shown.
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Appendix D: Coefficients of Padé approximations

In this Appendix, we present the explicit form of the

coefficients an and bn for the density fields δ
(S)
Pade given

in Eq. (37), which are expressed in terms of the redshift-

space SPT density fields, δ
(S)
n .

To derive the explicit expressions, we first introduce a
book-keeping parameter ε, and rewrite the coefficients as
an → εn an, bn → εn bn and cn → εn ac. We then equate
the SPT density field up to (M + N)-th order to the

rational form of Padé (M, N), δ
(S)
Pade, given in Eq. (37).

We have{
1 +

N∑
n=1

εn bn

}M+N∑
n=1

εn cn =

M∑
m=1

εm am (D1)

Sorting the above expression with the power of expan-
sion parameter ε, the order-by-order comparison between
both sides yields the equations for an and bn, involv-
ing also the coefficient cn. Solving these equations for a
given set of numbers (M, N), the coefficients an and bn
are determined uniquely, and are expressed in terms of

cn. Recalling that cn is written as cn = δ
(S)
n , we obtain

the explicit expressions for the coefficients an and bn as

follows:

Padé (2, 1)

a1 = δ
(S)
1 , (D2)

a2 =
{δ(S)

2 }2 − δ
(S)
1 δ

(S)
3

δ
(S)
2

, (D3)

b1 = −δ
(S)
3

δ
(S)
2

. (D4)

Padé (2, 2)

a1 = δ
(S)
1 , (D5)

a2 =
{δ(S)

2 }3 − 2 δ
(S)
1 δ

(S)
2 δ

(S)
3 + {δ(S)

1 }2δ
(S)
4

{δ(S)
2 }2 − δ

(S)
1 δ

(S)
3

, (D6)

b1 =
δ

(S)
1 δ

(S)
4 − δ(S)

2 δ
(S)
3

{δ(S)
2 }2 − δ

(S)
1 δ

(S)
3

, (D7)

b2 =
{δ(S)

3 }2 − δ
(S)
2 δ

(S)
4

{δ(S)
2 }2 − δ

(S)
1 δ

(S)
3

. (D8)

Padé (3, 2)

a1 = δ
(S)
1 , (D9)

a2 =
δ

(S)
2

[
{δ(S)

3 }2 − δ
(S)
2 δ

(S)
4

]
− δ(S)

1

{
δ

(S)
3 δ

(S)
4 − δ(S)

2 δ
(5)
5

}
{δ(S)

3 }2 − δ
(S)
2 δ

(S)
4

, (D10)

a3 =
δ

(S)
3

[
{δ(S)

3 }2 − 2δ
(S)
2 δ

(S)
4 − δ(S)

1 δ
(S)
5

]
+ δ

(S)
1 {δ

(S)
4 }2 + {δ(S)

2 }2δ
(S)
5

{δ(S)
3 }2 − δ

(S)
2 δ

(S)
4

, (D11)

b1 =
δ

(S)
2 δ

(S)
5 − δ(S)

3 δ
(S)
4

{δ(S)
3 }2 − δ

(S)
2 δ

(S)
4

, (D12)

b2 =
{δ(S)

4 }2 − δ
(S)
3 δ

(S)
5

{δ(S)
3 }2 − δ

(S)
2 δ

(S)
4

. (D13)
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