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Grid-Based Environment Estimation Using

Evidential Mapping and Particle Tracking
Sascha Steyer, Georg Tanzmeister, and Dirk Wollherr

Abstract—Modeling and estimating the current local environ-
ment by processing sensor measurement data is essential for in-
telligent vehicles. Static obstacles, dynamic objects, and free space
have to be appropriately represented, classified, and filtered. Oc-
cupancy grids, known for mapping static environments, provide
a common low-level representation using occupancy probabilities
with an implicit data association through the discrete grid
structure. Extending this idea toward dynamic environments
with moving objects requires a static/dynamic classification of
measured occupancy and a tracking of the dynamic state of grid
cells. In this work, we propose a new dynamic grid mapping ap-
proach. An evidential representation using the Dempster-Shafer
framework is used to model hypotheses for static occupancy,
dynamic occupancy, free space, and their combined hypotheses.
These hypotheses are consistently estimated and accumulated in
a dynamic grid map by an adapted evidential filtering, allowing
one to distinguish static and dynamic occupancy. The evidential
grid mapping is combined with a low-level particle filter tracking
that is used to estimate cell velocity distributions and predict
dynamic occupancy of the grid map. Static occupancy is directly
modeled in the grid map without requiring particles, increasing
efficiency and improving the static/dynamic classification due to
the persistent map accumulation. Experimental results with real
sensor data show the effectiveness of the proposed approach in
challenging scenarios with occlusions and dense traffic.

Index Terms—Autonomous vehicles, dynamic occupancy grids,
environment perception, mapping, object detection, tracking.

I. INTRODUCTION

ENVIRONMENT perception enables robots to interpret

the current state of their surroundings and interact

with them. Estimating the local dynamic environment of

autonomous vehicles is a major challenge due to the high

scenario complexity, sensor limitations, and high demands on

accuracy and robustness. A consistent model is required that

represents static obstacles, moving objects, and free space.

This model has to be estimated by processing the measurement

data of different sensors, requiring data fusion, temporal

filtering, and classification regarding the modeled states.

A common approach for estimating objects is a sensor-

individual data processing in which objects are extracted by

specific features, temporally filtered, and eventually fused on

that high-level representation with the object tracks of other

sensors [1]–[3]. Occupancy grids [4], [5], in contrast, provide

a robust low-level representation using occupancy probabilities

of grid cells to model both the occupancy of static obstacles
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and the free space. The discrete grid structure implicitly

performs the association for both the fusion of different sensor

data and the mapping as a temporal accumulation without re-

quiring object assumptions. Within the last few years, the idea

of occupancy grid mapping has been extended toward dynamic

environments with moving objects by additionally estimating

the dynamic state of the grid. Recent approaches use particle

filters to estimate cell velocities and distinguish between static

obstacles and dynamic objects. That resulting dynamic grid

representation can also be used as input to a high-level object

tracking, taking advantage of the low-level grid cell fusion,

static/dynamic classification, and velocity estimation.

In our previous work [6], we presented such a grid-based

object tracking approach. As input, we used the dynamic occu-

pancy grid estimation by Tanzmeister and Wollherr [7]. They

proposed a grid-based particle tracking for estimating the

dynamic state of the occupied environment. Each particle cor-

responds to a hypothesis of occupancy at a particular position

with a particular velocity. Hence, the particle population repre-

sents a filtered estimation of occupancy and velocity distribu-

tions, but it is a short-term estimation since particles are only

distributed in areas of currently measured occupancy. The par-

ticles are used to classify measured occupancy into static and

dynamic, which are modeled as individual hypotheses using a

Dempster-Shafer evidential representation. This output of clas-

sified measurement data is additionally accumulated in a grid

map, resulting in a persistent estimation of the static environ-

ment. That tracking and mapping approach shows promising

results, however, a major drawback is that no information of

the accumulated map is used for the particle tracking. Thus,

particle destruction due to temporary occlusion leads to infor-

mation loss. This partly results in incorrect dynamic classifi-

cation of previously correctly accumulated static occupancy,

which in turn increases falsely extracted objects.

This work focuses on improving the dynamic estimation and

classification on the grid cell-level, also motivated to enhance

the robustness of the object tracking approach based on it. As

a main difference to [7], we use a modified combination of the

particle filter tracking and the evidential grid mapping. Input

to the particle tracking is the classified and filtered evidential

grid map rather than the measurement data directly. Hence, the

persistent static occupancy estimation of the map is used as

input to the short-term particle tracking to avoid an incorrect

initialization of dynamic particles in grid cells with previously

accumulated static occupancy.

This new architecture also fundamentally changes the filter-

ing process. The evidential dynamic grid map forms the main

component where the predicted state is updated by the mea-
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surement data. Static occupancy is directly filtered by this map

without requiring static particles, i. e., particles solely represent

dynamic occupancy, which significantly reduces the number

of required particles. Dynamic occupancy is also equally up-

dated by the map instead of using individual particle survival

probabilities. The main task of the particle tracking is thus

to estimate cell velocity distributions, which in turn are used

to predict dynamic occupancy evidence of the map.

The evidential dynamic grid map represents hypotheses of

static occupancy, dynamic occupancy, and free space, as well

as the hypotheses supersets of unclassified occupancy, passable

area that may be temporarily occupied, and an unknown

state. In extension to the evidential representation of [7], the

hypothesis of passable area is introduced to model the relation

between measured free space and dynamic occupancy. This

allows for a consistent prediction, an implicit classification of

dynamic occupancy, and a differentiation between previously

measured free space that may be temporarily occupied and

currently measured free space.

Overall, we propose a new grid-based estimation of dynamic

environments that combines the benefits of a multi-hypotheses

evidential representation, a short-term particle tracking of the

dynamic state, a persistent grid mapping of the static envi-

ronment, and a consistent filtering of all modeled hypotheses.

Regarding the application in autonomous vehicles, this ulti-

mately improves the collision avoidance with static obstacles

and, especially by decreasing falsely extracted moving objects,

the dynamic maneuver planning with surrounding traffic par-

ticipants, while at the same time the computational effort of

the real-time system is significantly reduced.

The paper is structured as follows: Sec. II presents related

work and Sec. III introduces the evidential dynamic grid map

and particle representation. The prediction and update of the

dynamic grid map and particle population are discussed in

Sec. IV. Experimental results with real sensor data including

a comparison to the original approach are shown in Sec. V.

II. RELATED WORK

The idea of occupancy grids as described in the introduction

is widely used in various mapping applications. Dynamic envi-

ronments with moving objects require an additional estimation

of the dynamic state to detect and predict movements as part

of the temporal filtering. Various approaches exist for the

dynamic estimation on the grid cell-level, typically referred

to as dynamic occupancy grids.

A simple approach to distinguish static and dynamic grid

cells is to determine inconsistencies between the accumulated

map and new measurements [8], [9]. For example, a cell

that has accumulated a high free space probability in the

map but has a high occupancy probability in the current

measurement has to be the result of a moving object, i. e.,

a dynamic cell. Equivalently, conflict masses are analyzed in

[10], [11] using the Dempster-Shafer evidential framework,

which is further extended in [12] using prior map knowledge,

and a modified evidential combination and accumulation. In

addition, object hypotheses can be extracted and tracked using

distance-based clustering of those detected moving parts, e. g.

[11], [13]–[16]. However, a static/dynamic classification based

solely on analyzing inconsistencies or conflicts is error-prone

to measurement inaccuracies of ranging or odometry sensors.

Even though results of an object tracking can be used to

improve this classification, no robust cell-individual velocity

estimation is achieved this way.

In [17], [18] the Bayesian occupancy filter (BOF) is in-

troduced, an approach that recursively estimates the dynamic

state of an occupancy grid through discrete cell velocities

modeled as neighborhood cell transition histograms. But an

accurate and wide range cell velocity estimation using these

transition histograms of each cell requires enormous comput-

ing/memory consumptions and the discretization also leads to

aliasing problems. However, this approach has been extended

in various interesting approaches – a detailed review of the

BOF including multiple extensions is given in [19].

Most promising approaches use particle filters to estimate

the dynamic state of the occupancy grid, partly referred to as

Sequential Monte Carlo BOF (SMC-BOF). Originally pro-

posed by Danescu et al. [20], [21], each particle represents a

point mass of occupancy with continuous position and velocity

that moves freely in the entire grid structure. The number

of particles in a cell is adapted proportionally to the cell

occupancy value. The sampling, weighting, and resampling of

the particles results in a robust filtering of both the occupancy

probabilities and the multimodal velocity distribution for each

grid cell. A cell is classified as either static or dynamic by

evaluating the velocity variance of all particles in that cell.

The grid-based particle filtering idea of [20] has been

adapted by Tanzmeister et al. [7], [22] toward an evidential

representation using the Dempster-Shafer theory and an addi-

tional mapping, referred to as evidential grid-based tracking

and mapping (GTAM) [7]. In addition to the division of occu-

pancy probabilities into separate evidence for occupancy and

free space, as in [10], the occupancy hypothesis is subdivided

into the two hypotheses of static and dynamic occupancy,

which are then estimated continuously as opposed to the

discrete classification of [20]. In addition to an initial uniform

velocity distribution of new particles, pure static particles

with zero velocity are sampled that improve convergence of

static occupancy. The number of particles and the occupancy

evidence in a cell are defined by the measured occupancy

belief, while additional particle survival probabilities enable

short persistence in occluded areas. Moreover, the output of the

particle filtering is temporally accumulated, allowing for full

persistence of the static environment in a grid map representa-

tion without keeping all particles. However, information of the

accumulated map is not considered in the particle filtering and

dynamic evidence masses are not accumulated, i. e., multiple

measurements do not increase the dynamic masses.

Nègre et al. introduced the idea of hybrid sampling BOF

(HSBOF) [23] as an adaptation of [18] and [20] toward a

decomposition of static and dynamic occupancy. Static occu-

pancy is represented in a typical occupancy grid, whereas dy-

namic occupancy is modeled by particles. This means that the

particle population only represents the dynamic environment

rather than all occupied areas, which significantly reduces the

number of required particles. The same authors improved this
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idea in [24] by introducing formal states of static occupancy,

dynamic occupancy, free space, and unknown areas in the

filtering process, resulting in a more accurate velocity estima-

tion and compact algorithm definition. However, in contrast

to the evidential representation of [7], no dependencies of the

individual hypotheses and their supersets are modeled by these

states. Furthermore, the temporal filtering and the combination

of the states are not described in detail.

Nuss et al. [25] also presented an SMC-BOF variant based

on [20]–[23]. They focused on fusing laser and radar data,

and improving the particle velocity estimation using radar

Doppler velocity measurements, as similarly described in [7].

An extension and reformulation of Nuss et al. [26] models the

grid-based dynamic estimation as a random finite set (RFS)

problem using a combination of a Bernoulli filter and a PHD

filter. Since that approach is not really real-time capable, they

also proposed an approximation using Dempster-Shafer evi-

dence masses that is similar to [7], restricting particles to areas

of currently visible occupancy. However, static and dynamic

occupancy are not individually estimated. Since occupancy is

only filtered by the particles without an additional grid map

accumulation, occlusion also leads to particle destruction and

information loss of static occupancy.

In conclusion, the different variants of the particle-based dy-

namic occupancy grids already show promising results. Never-

theless, these approaches do not fully combine the benefits of

a multi-hypotheses evidential representation, a persistent grid

mapping accumulation of the static environment together with

a consistent filtering of all evidence masses, and an efficient

particle tracking that is restricted to areas of dynamic occu-

pancy. Furthermore, none of these particle-based approaches

models a relation between dynamic occupancy and free space.

For example, no information of previously measured free space

is used as an indication that the newly measured occupancy

of that same grid cell is more likely of a dynamic object

than a static obstacle. In the following, these different aspects

are addressed to achieve a more robust and efficient dynamic

grid mapping approach that, combined with grid-based object

tracking [6], improves the collision avoidance and maneuver

planning of autonomous driving applications.

III. EVIDENTIAL MAP AND PARTICLE REPRESENTATION

In this section, the selected evidential map representation

including the set of possible hypotheses, the basic combination

principle of belief masses, and the low-level dynamic state

estimation using a particle filter are presented.

A. Map Representation with Evidential Frame of Discernment

The occupancy grid map of the local environment is esti-

mated using the Dempster-Shafer theory of evidence (DST)

[27], [28], which can be seen as a generalization of the

Bayesian theory [29]. The frame of discernment

Θ = {F, S,D} ,

2Θ = { {F}, {S}, {D}, {S,D}, {F,D},Θ, ∅, {S, F} }
(1)

with the individual hypotheses

{F} passable area, currently free

{S} not passable area, statically occupied

{D} passable area, currently dynamically occupied

{S,D} currently occupied (temporarily or permanently)

{F,D} passable area (free or dynamically occupied)

{Θ} unknown state, i. e., either free or occupied

is used similarly as proposed in [7]. The set {S, F} is also not

used in this work as it is conflicting by definition. But, as a

difference, we consider the set {F,D} of passable area. This

hypothesis is always conflicting for a single measurement, but

is a reasonable hypothesis in the temporal filtering since {F}
and {D} are interchangeable over time. For example, a cell

that has been observed as free space {F} may be occupied

one time step later by a moving object, modeled as dynamic

occupancy {D}, which moves across that cell. In sum, the

superset {S,D} primarily models measured occupancy at a

single time that cannot directly be classified as {S} or {D},
whereas {F,D} models the uncertain state of measured free

space predicted to a different time.

In the DST framework, a basic belief mass m(·) ∈ (0, 1)
is assigned to each hypothesis of the power set 2Θ such that

the sum of all basic belief masses equals 1. The sum of all

subsets θ̃ ⊆ θ of a hypothesis θ ⊆ Θ is denoted as a belief

bel(θ) =
∑

θ̃⊆θ

m(θ̃) ≤ p(θ) (2)

and is a lower bound of the probability p(θ). Using the frame

of discernment as defined in (1), the occupancy belief

bel(O) = bel(SD) = m(S) +m(D) +m(SD) (3)

is subdivided into the three possible basic belief masses

of static occupancy m(S), dynamic occupancy m(D), and

unclassified occupancy m(SD). In this work, the argument

of the belief mass, i. e., the corresponding hypothesis set, is

abbreviated without brackets or comma for better readability.

The basic belief mass of the unknown state

m(Θ) = 1−
∑

θ⊂Θ

m(θ) (4)

can always be calculated as the remaining mass and is not

explicitly stated in the following.

In sum, the accumulated evidential dynamic occupancy grid

map at time t is described by

Mt =
[
m(St), m(Dt), m(SDt), m(Ft), m(FDt)

]T
. (5)

These evidence masses are defined for all cells c ∈ G of the

grid structure G, where the cell index c is omitted for better

readability when irrelevant. A visualization of the dynamic

grid map is shown in Fig. 1a. The evidence color coding is

selected as

RGB =

(
1−

∑

θ∩{S}=∅

m(θ), 1−
∑

θ∩{F}=∅

m(θ), 1−
∑

θ∩{D}=∅

m(θ)

)
(6)

for all hypotheses θ ⊂ Θ. This means that static occupancy

results in red (R), free space in green (G), dynamic occupancy

in blue (B), unclassified occupancy in pink (R+B), passable

area in cyan (G+B), and an unknown state in white.
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(a) (b) (c)

Fig. 1. Grid and particle visualization. (a) Evidential dynamic occupancy grid map using (6). (b) Velocity orientation grid using (12). (c) Particle population.

B. Basic Combination Principle of Belief Masses

Belief masses of different grids Mi, all representing the

same time t, are combined in the DST framework by consider-

ing the intersections of the hypotheses sets Θi = {Fi, Si, Di}
between the grids Mi. Various rules of combination exist.

The conjunctive rule of combination that forms the basic

intersection is calculated as

m(θ |M1 ⊕cM2) =
∑

α1∩β2=θ

m(α1)m(β2) (7)

with θ ⊆ Θ, α1 ⊆ Θ1, β2 ⊆ Θ2, Θ1 ∩Θ2 = Θ. The evidence

of the sum of intersections resulting in the empty set ∅ is

represented by the conflict mass

ζ(M1,M2) =
∑

α1∩β2=∅

m(α1)m(β2) . (8)

This conflict can be assigned in different ways. Most com-

monly, Dempster’s rule of combination [28]

m(θ |M1 ⊕dM2) =
m(θ |M1 ⊕cM2)

1− ζ(M1,M2)
, ζ < 1 (9)

is used, which normalizes (7) by an inverse of the conflict

mass, meaning that the conflict mass is assigned proportionally

to the belief masses of the intersections. The conflict can, for

example, also be assigned to the unknown set m(Θ), the empty

set m(∅) if Θ is not exhaustive, the union set α1 ∪ β2, or

distributed individually based on expert knowledge [30]. The

latter will be used in this work to solve the prediction and

measurement update with specific behavior.

C. Particle Population

The dynamic state of the map is estimated using a particle

filter as proposed in different approaches [7], [20]–[26]. The

individual particles χ ∈ Xt of the particle population Xt at

time t represent points of occupancy. Each particle is described

by a position xχ ∈ R
2, a velocity vχ ∈ R

2, and an occupancy

evidence amount oχ ∈ [0, 1). The particle population X c
t de-

scribes all particles χ associated to a grid cell c ∈ G regarding

the current particle position xχ. The sum of all particle

occupancy values in a cell c
∑

χ∈X c
t

oχ = m(Dc
t ) (10)

is selected to be equal to the dynamic evidence mass m(Dc
t )

of that cell.

The main task of the particle filtering is a robust low-level

velocity estimation and a prediction of the dynamic evidence

masses by the individual particles. A cell velocity

vc,t =
1

m(Dc
t )

∑

χ∈X c
t

oχvχ ∈ R
2 (11)

is calculated as the mean particle velocity of all particles in a

cell, weighted by their occupancy values that sum up to the

dynamic occupancy mass. The static occupancy mass is not

considered in (11) to obtain a bimodal velocity distribution,

i. e., a mean velocity vc,t of the dynamic hypothesis and a

zero velocity hypothesis represented by the static occupancy

evidence. An illustration of the estimated velocity orientation

is shown in Fig. 1b using a hue/saturation/value (HSV) color

coding as proposed in [22]:

HSV =
(
arctan

(
v
y
c,t

vx
c,t

)
, m(Dc

t ), 1−m(Sc
t )

)
. (12)

The corresponding particle population Xt is depicted in

Fig. 1c. Particles represent only hypotheses of dynamic oc-

cupancy, similarly proposed in [23]. Particles are therefore

only drawn in cells with dynamic occupancy m(D) or, to

initialize new dynamic evidence, in cells with unclassified

occupancy m(SD). Static occupancy m(S), however, is solely

estimated by the map Mt. Thus, in contrast to [7], no static

particles are sampled, which significantly reduces the number

of required particles. Furthermore, the dynamic mass of the

particle population is consistently filtered by the map and not

by particle survival probabilities.

IV. PREDICTION AND UPDATE OF DYNAMIC GRID MAP

To update the dynamic occupancy grid map with a new

measurement, i. e., the temporal filtering, the map Mt−1 has

to be predicted to the time t of the incoming measurement.

As explained in the previous section, the particle population

is linked to the dynamic mass and primarily performs the

velocity estimation and thus the prediction part. The incoming

measurement is called a scan grid Mz,t, an evidential grid

representation of unaccumulated measurements resulting from

the fusion of multiple sensors or a single sensor. An overview
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of the proposed prediction and measurement update of the

dynamic grid map and the particle population is schematically

shown in Fig. 2 and exemplarily depicted in Fig. 3. These

different steps are discussed in more detail in this section.

A. Prediction of Dynamic Grid Map

The predicted dynamic grid map at time t is estimated in

three steps. First, the dynamic evidence is predicted using the

particle population resulting in a particle grid M̂t. Secondly,

the previous mapMt−1 is adapted to a mapM′
t that does not

contain dynamic evidence and handles the prediction of free

space evidence. Finally, both grids are combined, resulting in

the predicted dynamic grid map

Mt = (1− ε) (M̂t ⊕M
′
t) . (13)

The temporal uncertainty of the prediction is modeled by a

reduction factor ε, which, however, is omitted in the following

discussion for better readability.

1) Prediction of Particle Population: The previous particle

population Xt−1 is predicted to time t using a constant

velocity motion model and additive Gaussian noise, resulting

in a predicted population X̂ t. A predicted particle dynamic

evidence mass

m(D̂c
t) = min

(
1− εo,

∑

χ∈X̂
c

t

oχ

)
, εo ∈ (0, 1) (14)

of each grid cell c ∈ G is derived by computing the sum of

the occupancy values of all particles predicted to that cell

regarding the particle positions xχ. The maximum value has

to be limited to 1 − εo to obtain valid evidence masses and

avoid saturation. The predicted particle grid M̂t consists only

of the predicted dynamic evidence mass m(D̂t), i. e., no other

evidence is derived.

2) Prediction of Previous Map Without Dynamic Evidence:

The previous map without the dynamic evidence is predicted

to a map M′
t with

m(S′
t) = m(St−1) ,

m(SD′
t) = m(SDt−1) ,

m(D′
t) = 0 ,

m(F ′
t ) = 0 ,

m(FD′
t) =

m(FDt−1) +m(Ft−1)

1−m(Dt−1)
.

(15)

Free space evidence is transferred in the prediction to the

superset {F,D} of passable area since the state {F} is time-

dependent and may have changed to dynamically occupied.

Dynamic evidence that has been predicted to a cell de-

creases the evidence of previously accumulated passable area

in that cell, as {D} is a subset of {F,D}. However, this

accumulated passable area evidence should remain after a

dynamic object leaves this cell, especially when the dynamic

mass predicted to that cell has not been confirmed by any

measurement. This normalization is performed by the denom-

inator in (15), which represents the reciprocal of the reduction

by a dynamic mass. Note that m(Dt−1) is not transferred to

m(FD′
t), as, in contrast to the measured free space m(Ft−1),

scan grid

Mz,t

⊕predicted map

Mt

updated map

Mt

⊕
free space transfer

m(Ft−1)→m(FD′

t)

particle resampling

X̂ t ⇒ Xt

particle prediction

Xt−1 ⇒ X̂ t

evidence derivation

X̂ t ⇒ M̂t

dynamic grid mapmeasurement

m(Dt)

M′

t

m(D̂t)

M̂t

particle tracking

mapping

t→t+1

Fig. 2. Overview of the proposed mapping and particle tracking approach.

(a) Mt−1 (b) M̂t (c) M′

t

(d) Mt (e) Mz,t (f) Mt

Fig. 3. Illustration of map prediction using the particle population and
update with the new measurement. (a) Old dynamic grid map and particle
population. (b) Predicted particle population and derived dynamic evidence
masses. (c) Prediction without dynamic evidence. (d) Combined predicted
map. (e) Scan grid of new measurement. (f) New updated dynamic grid map.

the dynamic mass is not directly measured and is derived

by a prediction. Hence, that implication would be critical for

wrongly predicted dynamic masses.

3) Resulting Predicted Dynamic Grid Map: The combi-

nation (13) of the predicted particle grid with the adapted

previous map causes one conflict

ζ(M̂t,M
′
t) = m(S′

t)m(D̂t) ≡ ζ , (16)

as defined in (8). This static/dynamic conflict mass is assigned

to the predicted static mass

m(St) = m(S | M̂t ⊕cM
′
t) + ζ = m(St−1) , (17)

meaning that the accumulated static evidence dominates the

predicted particle dynamic evidence in the case of a conflict,

i. e., m(S) remains unchanged in the prediction. All remaining

predicted hypotheses are combined using (7) without addi-

tional conflict assignment:

m(θt) = m(θ | M̂t ⊕cM
′
t), θ ⊂ Θ \ {S} . (18)
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B. Update of Predicted Dynamic Grid Map with Scan Grid

The predicted map Mt is updated with the two measured

hypotheses of unclassified occupancy m(SDz,t) and free

space m(Fz,t) that form the scan gridMz,t. The combination

of Mt and Mz,t results in the updated map

Mt =Mt ⊕Mz,t , (19)

which is discussed in more detail in the following.

1) Conflict Assignment: The update of the map as defined

in (19) causes three conflicts

ζ(Mt,Mz,t) =m(St)m(Fz,t)︸ ︷︷ ︸
ζ1

+m(Dt)m(Fz,t)︸ ︷︷ ︸
ζ2

+

m(SDt)m(Fz,t)︸ ︷︷ ︸
ζ3

(20)

between predicted occupancy masses and measured free space,

which are individually assigned. The static/free conflict ζ1 is

equally transferred to {S} and {F} since both hypotheses

are possible and have been measured at the current time

or accumulated previously. The dynamic/free conflict ζ2 is

assigned to {F}, as m(Fz,t) describes the latest measurement,

whereas m(Dt) is only an uncertain prediction. Likewise, the

occupancy/free conflict ζ3 is also transferred to the more recent

free space measurement since unclassified occupancy {S,D}
of a previous time, in contrast to {S}, is also an uncertain

state and could be caused by a dynamic object. Hence, all

conflicts are assigned to the updated evidence masses of static

occupancy or free space:

m(St)←
1

2
ζ1 ,

m(Ft)←
1

2
ζ1 + ζ2 + ζ3 .

(21)

2) Occupancy Derivation: The scan gridMz,t does not di-

rectly measure static or dynamic occupancy; only the superset

of unclassified occupancy is measured. This means that the

static and dynamic evidence masses

m(S |Mt ⊕cMz,t) ≤ m(St) ,

m(D |Mt ⊕cMz,t) ≤ m(Dt) , if m(FDt) = 0
(22)

are not directly increased even if an occupancy measurement

m(SDz,t) > 0 occurs. Since static or dynamic occupancy are

also not derived from {S,D} in the prediction, static evidence

would never appear in the updated map and dynamic evidence

would only be deduced if measured occupancy is combined

with accumulated free space of the previous map.

The update of the unclassified occupancy mass

m(SD |Mt ⊕cMz,t) = m(SDt)m(Θz,t)︸ ︷︷ ︸
λ1

+

m(SDt)m(SDz,t)︸ ︷︷ ︸
λ2

+ m(Θt)m(SDz,t)︸ ︷︷ ︸
λ3

(23)

using the conjunctive rule of combination (7) has to be mod-

ified to derive also static and dynamic occupancy from mea-

sured unclassified occupancy. For this purpose, the summands

λ1, λ2, λ3 in (23) are interpreted differently and individually

assigned to {S}, {D}, or {S,D}.

The first term λ1 depicts the combination of the predicted

occupancy mass m(SDt) with the remaining unknown mass

of the measurement m(Θz,t), which is defined as

m(Θz,t) = 1−m(SDz,t)−m(Fz,t) (24)

since only {S,D} and {F} are modeled in the scan gridMz,t.

This means that λ1 equals m(SDt) if no measurement occurs.

In such a case, the predicted mapMt should not change, i. e.,

m(Θz,t) = 1⇒Mt =Mt . (25)

Hence, the summand λ1 remains assigned to {S,D}:

m(SDt)← λ1 . (26)

The second term λ2 represents the mutual support of

the occupancy masses of Mt and Mz,t. An occupied cell

should converge toward static occupancy {S} when multiple

occupancy measurements for that same cell are accumulated.

Thus, the static occupancy mass is increased by λ2:

m(St)← λ2 . (27)

The sum of the first two terms

λ1 + λ2 = m(SDt)
(
1−m(Fz,t)

)
≤ m(SDt) (28)

corresponds at most to the predicted occupancy mass m(SDt),
i. e., it models the decrease of the predicted occupancy mass

by a conflicting free space measurement m(Fz,t). Only the

third term λ3 models the increase of the occupancy mass.

Dynamic occupancy has to be initialized and increased dif-

ferently than the convergence of static occupancy derived from

accumulated occupancy at the same cell. Instead, dynamic

occupancy is primarily characterized by newly occurring oc-

cupancy. Hence, an amount fD ∈ [0, 1] of the newly increased

occupancy mass λ3 is assigned to {D}:

m(Dt)← fD λ3 ,

m(SDt)←
(
1− fD

)
λ3 .

(29)

The amount (1− fD) remains in {S,D}, whereby fD < 1
results in slow convergence toward static occupancy with sev-

eral occupancy measurements of that same cell, cf. (27). The

variable fD is modeled as a function of the ratio between the

number of predicted particles |X̂
c

t | in that cell and the defined

maximum number of particles nmax in a cell. To achieve fast

convergence of dynamic occupancy, fD is modeled

fD ≡

√
|X̂

c

t |

nmax

, |X̂
c

t | ≤ nmax (30)

as the square root of this ratio. Dynamic evidence is initialized

by spreading particles in cells with unclassified occupancy as

discussed in the following Sec. IV-C. These particles initially

have no individual dynamic occupancy value, i. e., oχ = 0,

hence, no predicted dynamic occupancy mass is derived,

cf. (14). New dynamic occupancy in (29) is thus only derived

when predicted particles are confirmed by an occupancy

measurement in that cell.

Moreover, dynamic occupancy is also implicitly increased

by the selected set of hypotheses 2Θ together with the modeled

prediction. Previously measured free space is transferred to
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0 0.5 1

Mt

⊕c

Mz,t

Mt

fD

(a)

0 0.5 1

(b)

0 0.5 1

(c)

0 0.5 1

(d)

0 0.5 1

(e)

fD

m(S)

m(D)

m(SD)

Fig. 4. Exemplary illustration of occupancy derivation. Rows from top to bottom in all examples: factor fD depending on the number of predicted particles,
predicted map Mt, measured scan grid Mz,t, conjunctive combination ⊕c of Mt and Mz,t, and proposed combination of Mt and Mz,t as defined in (33).

(a)-(e) show different examples of varied predicted values of fD and Mt, whereas m(SDz,t) = 0.4 is equal in all examples.

m(FD) in the prediction as explained in (15). In such a case,

a new measured occupancy m(SDz,t) results in an increased

m(Dt), since the intersection of {F,D} and {S,D} is {D}:

m(D |Mt ⊕cMz,t) = m(Dt)
(
1−m(Fz,t)

)
+

m(FDt)m(SDz,t)︸ ︷︷ ︸
λ4

. (31)

This corresponds to the desired behavior that observed pass-

able area that is currently occupied has to be of a dynamic

obstacle. However, completely resolving this toward {D} is

error-prone to measurement and odometry errors as discussed

in Sec. II. Thus, in this work, measured occupancy is partly

assigned to m(SD) even though free space was accumulated

before. A design parameter γ ∈ [0, 1] regulates the modeled

uncertainty of the assignment of λ4

m(Dt)←
(
1− γ

)
λ4 + fDγλ4 ,

m(SDt)←
(
1− fD

)
γ λ4 ,

(32)

while γ = 0 corresponds to a total assignment of λ4 to m(Dt)
without any modeled uncertainty as in (31). The remaining

amount γ λ4 that is not implicitly derived as {D} represents

an increased unclassified occupancy evidence like the term λ3.

As in (29), a part fD of that is still assigned to {D}, which,

however, depends on the number of predicted particles and not

the accumulated evidence mass of passable area m(FDt).

3) Resulting Evidence Masses: The modified mass assign-

ments of the conflicts ζ1, ζ2, ζ3 in (21) and the terms λ1.λ2, λ3
of the combined occupancy mass in (23) as well as λ4 of the

combined dynamic occupancy mass in (31) finally result in

m(St) =m(S |Mt ⊕cMz,t) +
1

2
ζ1 + λ2 ,

m(Dt) =m(D |Mt ⊕cMz,t)−
(
1− fD

)
γ λ4

+ fD λ3 ,

m(SDt) =m(SD |Mt ⊕cMz,t)− λ2 − fD λ3

+
(
1− fD

)
γ λ4 ,

m(Ft) =m(F |Mt ⊕cMz,t) +
1

2
ζ1 + ζ2 + ζ3 ,

m(FDt) =m(FD |Mt ⊕cMz,t) .

(33)

Fig. 4 illustrates the modified occupancy derivation in com-

parison to the conjunctive combination for different examples.

4) Additional Radar Doppler Measurements: The sensor

setup used in this work also includes radar sensors. The occu-

pancy measurement of a grid cell can thus additionally have

a radial velocity measurement vz,r, which is used to classify

dynamic occupancy of unclassified occupancy measurements.

Hence, if a radial velocity measurement exists for a cell, the

amount fD of newly increased occupancy that is assigned

to {D} as defined in (30) is adapted to

fvD = max
(
fD, 1− exp

(
−v2

z,r

2σ2
vz,r

))
. (34)

The radial velocity measurement does not decrease the belief

that a cell is dynamic since a moving object can still have a

radial velocity of zero. However, the dynamic belief increases

with an increased radial velocity magnitude |vz,r|, which is

modeled by the inverse of an unnormalized zero-mean Gaus-

sian distribution of the measurement vz,r with variance σ2
vz,r

.

C. Computation of New Particle Population

The new map Mt including the dynamic mass m(Dt) has

been updated with the measurement as described above. The

particle population is linked to the map and used to predict the

dynamic evidence mass as discussed in (14). Consequently, a

new particle population Xt has to be computed with respect to

the new dynamic mass m(Dt) of the map and the previously

predicted particles X̂ t to retain a consistent dynamic mass

representation of the map and the particle population.

The new number of particles in a grid cell c is adapted

proportionally to the cell density

ρc = m(Dc
t ) + (1− fD)(λ3 + γλ4) (35)

relative to the maximum number of particles in a cell nmax.

The density ρc corresponds to the updated evidence mass of

dynamic occupancy and, in addition, the increased unclassified

occupancy mass as defined in (33). This means that parti-

cles are also initialized with unclassified occupancy, which

is required to derive new dynamic occupancy as discussed

in (29). The number of the predicted particle population |X̂
c

t |
is at most decreased by a factor κp ∈ (0, 1) to prevent an

abrupt reduction of the number of particles and hence increase

robustness against missing or wrong measurements. In sum,

the new number of particles is set to

|X c
t | =

⌊
max

(
ρc nmax, κp|X̂

c

t |
)⌋

. (36)

In the resampling step of the grid-based particle filter, |X c
t |

new particles are drawn from the predicted particle popula-

tion X̂
c

t , weighted by radial velocity measurements vz,r if

available, with an additional small amount of random particles

to reduce particle deprivation as presented in [7]. The new

particle occupancy values in a cell are uniformly set to

oχ =
m(Dc

t )

|X c
t |

, χ ∈ X c
t , |X

c
t | > 0 (37)

such that their sum corresponds to the new dynamic

mass m(Dc
t ) of the updated map Mt as defined in (10).
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In conclusion, particle hypotheses are spread in areas with

dynamic occupancy or unclassified occupancy that may be

caused by dynamic objects. The actual dynamic mass linked to

all particles, however, is defined by the dynamic mass m(Dt)
of the map and is consistently filtered.

D. Occupancy Classification of Scan Grid

The dynamic grid map Mt represents an accumulated

estimation and classification of all hypotheses θ ⊆ Θ. This

filtered estimation is additionally used to distinguish static

and dynamic occupancy of the measured occupancy belief

bel(Oz,t) = m(SDz,t) of the scan gridMz,t. The occupancy

belief remains as measured, only the subdivision between {S},
{D}, and {S,D} is adapted by the filtered map. This results in

a pseudo measurement z̃ with the occupancy evidence masses

m(Sz̃,t) = m(St) m(SDz,t) ,

m(Dz̃,t) = m(Dt) m(SDz,t) ,

m(SDz̃,t) = m(SDz,t)−m(Sz̃,t)−m(Dz̃,t) ,

(38)

compliant with bel(Oz̃,t) = bel(Oz,t), i. e.,

m(Sz̃,t) +m(Dz̃,t) +m(SDz̃,t) = m(SDz,t) . (39)

This classified scan grid representation is used as input to the

grid-based object tracking [6]. Since that object tracking ap-

proach performs a temporal filtering on the object-level, an un-

correlated and currently measured occupancy belief is required

as input to avoid multiple filtering of occupied grid cells.

V. EXPERIMENTAL RESULTS

The proposed approach has been tested with real sensor

data of autonomous driving test vehicles in various urban and

highway scenarios. The sensor setup consists of four laser

scanners, positioned at the front, front left, front right, and the

rear, and four short-range radar sensors installed in the corners.

In addition, high-precision inertial measurement units (IMU)

are used for odometry estimation. The implementation is

based on fast GPU computing parallelized over grid cells and

particles. This allows for a real-time application of the overall

system that processes measurement data with an input rate

of about 25Hz. All results are generated with a grid size of

680× 680 cells, a cell resolution of 0.2m× 0.2m, and a

maximum of nmax = 100 particles per cell. In the following,

the successful application of the proposed approach is demon-

strated qualitatively for various challenging traffic scenarios.

In addition, effects of the modeled uncertainty γ as used in

the implicit derivation of dynamic occupancy are discussed.

Finally, our approach is compared with the approach of [7]

including a quantitative evaluation.

A. Qualitative Results

First, the different processing steps of the overall grid-based

environment estimation approach are illustrated and briefly

explained to better understand the context of this work. Fig. 5

depicts these steps for a challenging traffic scenario with

multiple surrounding vehicles, cyclists, and pedestrians.

Measurement data of lidar and radar sensors, visualized in

Fig. 5a, form the input data and enable the environment per-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Processing steps of overall grid-based environment estimation
approach. (a) Sensor measurement data, lidar detections are shown as black
(obstacles) and gray (ground points) squares, radar detections are shown
as cyan points. (b) Fused scan grid Mz,t. (c) Dynamic grid map Mt.
(d) Velocity orientation grid. (e) Classified scan grid. (f) Grid-based object
tracking as proposed in [6]. (g) Front camera image. (h) Rear camera image.

ception. Sensor-individual scan grids with a uniform evidential

representation are generated from the detections of each sen-

sor. Since measurements of the used radars have significantly

more noise than those of the laser scanners, occupancy of

the radar scan grids is modeled with higher uncertainty. All

eight sensor scan grids are combined using (9), resulting in

a fused scan grid Mz,t, shown in Fig. 5b, that forms the

input grid of this work. The accumulated odometry, estimated

by the integrated IMU, is used as a reference frame of

all grids. No rotations and only integer translations (regarding

the cell resolution) are performed between different grids to

achieve an exact overlap of cells. Hence, the pose of the ego

vehicle inside the grid varies over time, e. g., [31], [32].
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Traffic scenarios at a junction (first row) and a roundabout (sec-
ond row). (a)+(c) Dynamic grid map of first and second scenario, respectively.
(b)+(d) Corresponding velocity orientation grids. (d)+(e) Camera images of
scenarios of first row (left) and second row (right).

The proposed dynamic grid mapping is presented in Fig. 5c.

It represents the filtered and classified estimation of the

modeled evidential hypotheses. Static and dynamic occupancy

are robustly distinguished without requiring specific object

assumptions. The low-level particle tracking estimates cell

velocity distributions and initializes and predicts the dynamic

occupancy masses. Fig. 5d highlights the estimated cell veloc-

ity orientation of the differently moving objects.

The accumulated dynamic grid mapMt is additionally used

to distinguish static and dynamic occupancy of the measured

occupancy belief m(SDz,t), cf. (38). The resulting classified

scan grid, shown in Fig. 5e, is used to update our grid-based

object tracking approach [6]. The resulting tracks using a box-

model representation are shown in Fig. 5f. In that scenario, all

visible 17 moving objects are successfully detected and tracked

on both abstraction levels, i. e., the low-level particle tracking

and the subsequent high-level object tracking.

Two other challenging scenarios are shown in Fig. 6. The

first row shows an intersection with crossing traffic. All

detected vehicles and pedestrians are correctly tracked and

classified as dynamic occupancy. The second row shows a

scenario with four vehicles driving in a roundabout. Again,

all objects are classified as dynamic and the moving directions

of the turning vehicles are correctly estimated. However, also

slight occupancy artifacts behind some objects occur in that

scenario. The filter is designed to ensure slow convergence

toward static occupancy when a grid cell is measured as

unclassified occupied for multiple times. This is also the

(a) γ = 0. (b) γ = 0.5. (c) γ = 1.

(d) Camera images of scenarios of each row (images from left to right).

Fig. 7. Variation of uncertainty parameter γ as used in (32). Input data are
exclusively from lidar measurements. Scenario in the first row shows a long
dynamic object moving across previously correctly measured free space. The
second row shows a static road boundary with previously wrongly measured
free space. The third row shows pedestrians moving at different speeds across
previously correctly measured free space.

case for cells on the long side of slow-moving objects. The

regulation of the convergence between static and dynamic

occupancy is discussed in the next section.

B. Parameter Evaluation and Discussion

The selected frame of discernment Θ, especially the hy-

pothesis {F,D} of passable area, allows for the implicit

resolution of measured unclassified occupancy m(SDz,t) to-

ward {D} when the map has accumulated m(FDt) of pre-

viously measured free space m(Fz,t). This approach helps to

detect moving objects faster, however, it is also error-prone

to wrongly derived free space or odometry inaccuracies.

Therefore, an uncertainty parameter γ has been introduced in

(32) to partly transfer an amount of newly increased occupancy

toward m(SDt).
Fig. 7 demonstrates the effects of the modeled uncertainty γ.

The upper row shows an example with a long dynamic

object, a tram, moving across previously correctly measured

free space. Since m(FDt) is correct in that case, the result
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(a) (b) (c) (d) (e)

(f) (g)

(h)

Fig. 8. Comparison of static/dynamic classification in a scenario with guardrails temporarily occluded by vehicles. The ego vehicle and three vehicles on
its left, right, and front left are moving north. Input data are exclusively from lidar measurements. (a) Scan grid. (b) Dynamic map. (c) Classified scan grid.
(d) Particle map of [7], not limited to scan grid evidence here to visualize particle destruction. The dotted areas highlight the critical destruction of static
particles due to occlusion. (e) DST map of [7]. (f) Particle population of proposed approach. (g) Particle population of [7]. (h) Camera image of scene.

without modeled uncertainty, γ = 0, shows a correct dynamic

classification without convergence toward static occupancy.

Using γ = 1, no information of previously measured free

space is used to derive {D}, resulting in a fast convergence

toward {S}. Hence, in that scenario, the back part of the tram

is wrongly classified as static.

In contrast, the previously measured free space of the

second scenario is wrong, resulting in a permanent dynamic

classification of the road boundary when no uncertainty is

modeled. The introduced uncertainty γ > 0, however, guar-

antees convergence toward static occupancy even with such

wrongly accumulated passable area evidence. The third row

shows a scenario with multiple pedestrians moving at different

speeds. Here, the measured free space evidence enables a faster

convergence toward the dynamic occupancy of a slow-moving

pedestrian on the right sidewalk.

In sum, 0 < γ < 1 represents a tradeoff between a better

estimation of dynamic occupancy and an ensured convergence

toward static occupancy. In this work, we used γ = 0.6 for all

scenarios, i. e., no scenario-specific convergence optimization

was performed. This filter design leads to the correct conver-

gence of static obstacles, but also causes a slow convergence

of large and slow-moving objects toward static occupancy

when no additional information is used. However, those slow

cell velocities cannot be completely resolved on the grid

cell-level for several consecutive occupancy measurements on

that same grid cell, caused by different parts of an object,

without measured radial velocities. In such a case, additional

information of the high-level object tracking is required to

robustly detect the movement of the overall object and sup-

press convergence of the corresponding cells toward static

occupancy. This combination will be addressed in future work.

C. Comparison with Original Approach

The proposed approach is an advancement of the GTAM

approach [7]. In the following, both approaches are compared

in a scenario with multiple fast-moving vehicles that temporar-

ily occlude parts of the static environment. This scenario is

evaluated without radar Doppler velocity measurements, i. e.,

only occupancy measurements of lidar sensors are used as

input data to highlight more clearly the different occupancy

filtering and classification of both approaches.

Fig. 8 shows the qualitative results of the resulting evidential

grids at a fixed time. The scan grid is visualized in Fig. 8a.

Both on the left and the right side of the ego-vehicle is

a similarly moving vehicle that temporarily occludes parts

of the road boundaries. The evidential dynamic map of the

proposed approach is shown in Fig. 8b. Static and dynamic

occupancy are robustly filtered and correctly distinguished.

The occluded area of the road boundary persistently remains

statically occupied. Accordingly, the corresponding classified

scan grid shows correct results, cf. Fig. 8c.

In contrast, the GTAM particle map in Fig. 8d that repre-

sents the classification of the particle population fails in such

a scenario and points out a significant systematic drawback of

that approach. Although particles at the road boundaries show

a slow but correct convergence behavior from wrong dynamic

occupancy to static occupancy, the edges of the temporarily

occluded road boundaries are classified as incorrect. The

correctly filtered static information is lost when static particles

are destructed due to occlusion, which then results in a wrong

dynamic classification again when the area is not occluded

anymore. Although the output of the particle map including

static occupancy is accumulated in the DST map in Fig. 8e,

which remains when particles are destructed, it is not used as

a feedback to the particle filtering.

This behavior has also been observed in urban scenarios

where the sensor field of view can change quickly due to the

ego motion and obstacles passing closely to the sensors. For

example, similar results occur at house walls with densely

parked vehicles in front, where gaps between those near
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obstacles cause a fast-changing sensor field of view and thus

fast changing occlusions of the areas behind.

Another decisive advantage of the proposed approach is the

significantly reduced number of used particles, as the static

environment is directly modeled in the map without requiring

static particles in contrast to [7], cf. Fig. 8f and 8g. In that

exemplary scene, the population of the entire grid consists of

48, 787 particles, whereas the GTAM approach uses 158, 719
particles, i. e., more than three times as many particles.

A further advantage of the proposed dynamic map in

comparison to the DST map representation is the introduced

hypothesis of {F,D}. Hence, passable area {F,D} that may

be temporarily occupied and actual current free space {F} are

modeled separately, which can be used to analyze the current

occlusion of a traffic scenario.

Fig. 9 shows the evidential filtering of the scenario of

Fig. 8 over time for one fixed cell of the right road boundary.

This illustrates in detail the different consequences of the

temporary occlusion, here at t ∈ [70, 91], of a static cell caused

by the right vehicle as described above. Note that in this

work the impact of the measured evidence of a scan grid in

the measurement update of the accumulated map is limited

to the interval [0, ηz] with ηz ≤ 1 regulating the maximum

amplitude of a measurement. However, the grid visualization

of the scan grid, and correspondingly the classified scan grid

and the particle map, is referred to the maximum amplitude

without considering the actual impact.

The scenario of Fig. 8 is also evaluated quantitatively in

terms of the static/dynamic classification and the number of

particles. A binary classification

Λ =

{
{S}, if m(St) ≥ ψΛ

{D}, else
(40)

is performed for all relevant occupied cells of the scan

grid, i. e., m(SDz,t) ≥ m(SDΛ,min). This classification, with

a variation of the threshold ψΛ ∈ [0, 1], is evaluated with

labeled ground truth data, resulting in a receiver operating

characteristic (ROC) curve. Fig. 10a shows the results of the

proposed approach in comparison to [7] for a sequence of

250 frames of the scenario of Fig. 8. This evaluation confirms

the qualitatively shown results. Especially for scenarios with

temporary occlusion of road boundaries, the false dynamic

classification is significantly reduced by the proposed archi-

tecture in comparison to [7].

The number of required particles |Xt| of the evaluated se-

quence is shown in Fig. 10b. At initialization, both approaches

create new particles proportional to the sum of measured

occupancy, indicated by the pink dotted line. Our approach

uses the filtered occupancy evidence of the map, thus the

impact of one measurement is limited to the interval [0, ηz];
here ηz = 0.4 is used, as described above. The approach of [7],

in contrast, directly initializes particles proportional to the non-

limited measured occupancy evidence. After the initialization

phase, the proposed approach significantly reduces the number

of particles, as the static environment converges toward {S},
which is modeled without particles. Since the ego vehicle is

moving forward in that scenario, new cells of unclassified oc-

cupancy are detected every step. Around t ≈ 100, the detected

(a)
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(b)
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0

1
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(d)
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(e)
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Fig. 9. Temporal filtering of evidence masses at a static cell on the right
guardrail of the scenario of Fig. 8. Occupancy masses are visualized as
unstacked stems using pink =̂ m(SD), red =̂ m(S), and blue =̂ m(D). The
scan grid impact is ηz = 0.4. (a) Scan grid. (b) Dynamic map. (c) Classified
scan grid. (d) Particle map of [7]. (e) DST map of [7], blue shows non-limited
dynamic evidence of particle map without normalization here.
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Fig. 10. Quantitative comparison of proposed approach and GTAM [7].
(a) Receiver operating characteristic with a variation of the classification
threshold ψΛ. Positive denotes the binary classification of dynamic here.
(b) Number of total particles |Xt| with nmax = 100 particles per cell.
Pink dotted line indicates nmax

∑
m(SDz,t) without ηz , blue dashed line

indicates number of ground truth dynamic cells of scan grid times nmax.

occupied area enlarges significantly, and new dynamic objects

occur in the sensor field of view, indicated by the dashed blue

line that corresponds to nmax times the number of ground truth

dynamic grid cells of the scan grid. Hence, the number of

particles increases. The number of particles of [7] remains

proportional to the measured occupancy evidence with a large

amount of required static particles.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TIV.2018.2843130

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

VI. CONCLUSIONS

This paper has presented a new grid-based estimation

approach for dynamic environments in the context of au-

tonomous vehicles. The proposed evidential dynamic grid map

represents the fused and accumulated estimation of the local

environment, distinguishing between static occupancy, dy-

namic occupancy, free space, and their combined hypotheses

using the Dempster-Shafer framework. Cell velocity distribu-

tions are estimated by a low-level particle tracking, enabling

the prediction of dynamic evidence masses of the grid map. An

adapted evidential filtering has been proposed to combine the

map with predicted particles and to update that predicted map

with measurement data, including deriving static and dynamic

occupancy from measured unclassified occupancy.

Results with real sensor data have shown that the proposed

approach robustly distinguishes static obstacles and dynamic

objects and correctly estimates cell velocities in various chal-

lenging urban and highway scenarios. Compared to a previous

approach, especially in scenarios with temporarily occluded ar-

eas, false dynamic classification has been significantly reduced

by considering the persistent static occupancy accumulation

of the grid map. This improved dynamic estimation of grid

cells also directly increases the robustness of the subsequent

grid-based object tracking by decreasing the number of falsely

extracted objects. Furthermore, the computational effort has

been significantly reduced since the static environment is

directly estimated by the map without requiring static particles.

Moreover, it has been shown that using information of previ-

ously accumulated measured free space improves the dynamic

classification of moving objects, which is implicitly modeled

by the combined hypothesis of passable area.

Future work will focus on using object information of the

grid-based object tracking within the dynamic grid mapping

and the particle tracking to further improve the static/dynamic

cell classification, especially to avoid static convergence of

cells at long slow-moving objects.
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