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José Maŕıa Mart́ı

Departamento de Astronomı́a y Astrof́ısica
Universidad de Valencia

46100 Burjassot (Valencia), Spain
and

Observatori Astronòmic
Universidad de Valencia

46980 Paterna (Valencia), Spain
email: jose-maria.marti@uv.es

Ewald Müller

Max-Planck-Institut für Astrophysik
Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

email: emueller@mpa-garching.mpg.de

Accepted: 1 December 2015
Published: 22 December 2015

Abstract

An overview of grid-based numerical methods used in relativistic hydrodynamics (RHD)
and magnetohydrodynamics (RMHD) is presented. Special emphasis is put on a comprehensive
review of the application of high-resolution shock-capturing methods. Results of a set of
demanding test bench simulations obtained with different numerical methods are compared
in an attempt to assess the present capabilities and limits of the various numerical strategies.
Applications to three astrophysical phenomena are briefly discussed to motivate the need for
and to demonstrate the success of RHD and RMHD simulations in their understanding. The
review further provides FORTRAN programs to compute the exact solution of the Riemann
problem in RMHD, and to simulate 1D RMHD flows in Cartesian coordinates.
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1 Introduction

Relativity is a necessary ingredient for describing astrophysical phenomena involving compact
objects and flows near the speed of light. Among these phenomena are core collapse supernovae,
X-ray binaries, pulsars, coalescing neutron stars, formation of black holes, active galactic nuclei
(AGN) and gamma-ray bursts (GRB). The relativistic jets and outflows found in, e.g., micro-
quasars, radio-loud AGN and GRB involve flows at relativistic speeds, too. Moreover, in most of
these scenarios dynamically important magnetic fields are encountered.

This review summarizes the progress in grid-based methods for numerical (special) relativistic
hydrodynamics (RHD) and magnetohydrodynamics (RMHD) and discusses their application to
astrophysical flow. Developments in numerical RHD prior to the year 2003 are reviewed in Mart́ı
and Müller (2003) and are summarized here for completeness.

1.1 Overview of the numerical methods

Wilson (1972, 1979) and collaborators (Centrella and Wilson, 1984; Hawley et al., 1984) made the
first attempt to solve the RHD equations in more than one spatial dimension using an Eulerian
explicit finite-difference code with monotonic transport. The code relied on artificial viscosity
techniques to handle shock waves and was widely used in numerical cosmology, studies of axisym-
metric relativistic stellar collapse, and accretion onto compact objects. Almost all numerical codes
developed for both special and general RHD in the 1980s (Piran, 1980; Stark and Piran, 1987;
Nakamura et al., 1980; Nakamura, 1981; Nakamura and Sato, 1982; Evans, 1986) were based on
Wilson’s approach. However, despite its popularity, it turned out that Wilson’s approach is unable
to accurately describe highly relativistic flows, i.e., with Lorentz factors larger than 2 (see, e.g.,
Centrella and Wilson, 1984).

In the mid-1980s, Norman and Winkler (1986) proposed a new formulation of the difference
equations of RHD with an artificial viscosity consistent with the relativistic dynamics of non-
perfect fluids. They obtained accurate results in the description of strong relativistic shocks with
large Lorentz factors in combination with adaptive mesh techniques. However, the strong coupling
introduced in the equations by the presence of the viscous terms in the definition of relativistic
momentum and total energy density required them to treat the difference equations implicitly,
which has prevented the development of any multidimensional version of their formulation.

Relying on the same type of techniques (finite differencing and artificial viscosity), Wilson
(1975, 1977) also pioneered the development of the first numerical code for RMHD that was used
to simulate stellar collapse and the accretion of magnetized matter onto black holes.

Attempts to integrate the RHD equations without the use of artificial viscosity started in the
early 1980s. Yokosawa et al. (1982) developed a 2D code based on the flux-corrected transport
method (FCT) of Boris and Book (1973) to study the early phases of the interaction of a hypersonic
relativistic beam with an ambient medium, in the context of extragalactic jets. The same kind
of techniques were applied in the 1990s to solve the RMHD equations (Dubal, 1991; Yokosawa,
1993). Following a completely different approach, Mann (1991) presented a multidimensional code
for general relativistic hydrodynamics (GRHD) based on the smoothed particle hydrodynamics
(SPH) technique (Monaghan, 1992), which he applied to relativistic spherical collapse (Mann,
1993). When tested against 1D relativistic shock tubes all these codes performed similarly well as
Wilson’s code.

A major break-through in the simulation of (ultra) relativistic flows was accomplished when
high-resolution shock-capturing (HRSC) methods, specifically designed to solve hyperbolic systems
of conservation laws were applied to integrate the RHD equations (Mart́ı et al., 1991; Marquina
et al., 1992; Eulderink, 1993; Eulderink and Mellema, 1995), and more recently the RMHD equa-
tions (Koide et al., 1996, 1999; Koide, 2003; Komissarov, 1999a; Balsara, 2001a).

Living Reviews in Computational Astrophysics
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1.2 Plan of the review

This review provides a comprehensive discussion of different grid-based methods used in RHD
and RMHD, with special attention to HRSC methods.1 Recent developments in finite-difference
methods based on artificial-viscosity techniques are also considered. We refer to the book of Wilson
and Mathews (2003) for a comprehensive review of these techniques. Despite the fact that spectral
methods are able to attain very high accuracy, they have recognized limitations in the treatment
of discontinuous solutions. Hence, we shall not consider them in this review and refer the reader to
a recent review of spectral methods for numerical relativity by Grandclément and Novak (2009).
We also do not discuss numerical methods here that are specific to general relativistic flow, but
we present the underlying methods in the special relativistic limit and assess their performance.
Numerical techniques for both GRHD and GRMHD are masterly reviewed by Font (2008).

In Section 2, we discuss three astrophysical phenomena (astrophysical jets, GRB, and pulsar
wind nebulae) whose study has largely benefited from the development of numerical RHD and
RMHD. In Section 3, we present the equations of ideal RMHD, which reduce to those of RHD in
the zero field limit, and discuss their mathematical properties.

In Section 4 and 5, we review the development of grid-based methods for RHD and RMHD. We
pay particular attention to HRSC methods and focus on those aspects more specific to RHD, i.e.,
discussing relativistic Riemann solvers and the computation of numerical fluxes. In Section 6, we
present the results of several one-dimensional and multidimensional test problems simulated with
different methods. In Section 7, we provide an assessment of various numerical methods together
with an outlook on future developments.

Finally, in Section 8, we provide some additional information about the exact solution of the
Riemann problem in both RHD and RMHD, and the corresponding spectral decompositions of
the flux Jacobians. We also summarize the basics of finite difference/finite volume methods for
hyperbolic systems of conservation laws in Section 8.3. In Section 8.4, we briefly discuss other
approaches recently extended to numerical RHD and RMHD although not widely used yet. In this
section we also summarize the method of van Putten, who first exploited the conservative nature
of the RMHD equations for their numerical integration. Lastly, in Section 9, we provide source
codes to compute the exact solution of the Riemann problem in RMHD and to solve numerically
the equations of RMHD in one spatial dimension and Cartesian coordinates.

We presume that the reader has a basic knowledge of classical and relativistic fluid dynamics
(Landau and Lifshitz, 1987; Courant and Friedrichs, 1976; Taub, 1978) and magnetohydrodynamics
(Jeffrey and Taniuti, 1964; Anile, 1989), as well as of finite difference/finite volume methods for
partial differential equations (Potter, 1977; Oran and Boris, 1987). A discussion of modern finite
volume methods for hyperbolic systems of conservation laws can be found, e.g., in LeVeque (1992);
Toro (1997); LeVeque (1998); Laney (1998). A unique monograph covering both theoretical and
numerical aspects of RHD is the book by Rezzolla and Zanotti (2013). Chapters on computational
MHD and RMHD can be found in the book by Goedbloed et al. (2010).

1 A review on SPH methods including special and general relativistic formulations of these methods can be found
in Rosswog (2015).
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2 Astrophysical Scenarios

We note here that the following discussion of astrophysical phenomena is not thought to be a
review of the respective phenomena, which would be well beyond the scope of this article on
numerical methods. Instead, we present a biased view of the phenomena and of the status of the
research to motivate the need for and to demonstrate the success of RHD and RMHD simulations
in understanding these astrophysical phenomena.

The simulations discussed in this section were performed with RHD and RMHD codes based
on the methods (mainly HRSC methods) that are reviewed in this work. The most important
properties of these codes are summarized in Tables 1 and 2, respectively.

2.1 Jets from AGN

2.1.1 Observations and theoretical models

The most compelling case for a special relativistic phenomenon are the ubiquitous jets in extra-
galactic radio sources associated with AGN and quasars. In the commonly accepted standard
model (Begelman et al., 1984), flow velocities as large as 99% (in some cases even beyond) of the
speed of light are required to explain the apparent superluminal motion observed at parsec scales
in many of these sources. Readers interested more deeply in the field of AGN jets may consult the
recent book edited by Böttcher et al. (2012).

Models proposed to explain the origin of relativistic jets involve accretion onto a compact
central object, such as a neutron star or a stellar mass black hole in the galactic microquasars
(radio emitting X-ray binaries, scaled-down versions of quasars), or a rotating supermassive black
hole in an AGN fed by interstellar gas and gas from tidally disrupted stars. There is a general
agreement that MHD processes are responsible for the formation, collimation and acceleration up
to relativistic speeds of the outflows. In the models of magnetically driven outflows (Blandford
and Payne, 1982; Li et al., 1992), poloidal magnetic fields anchored at the basis of the accretion
disk generate a toroidal field component and consequently a poloidal electromagnetic flux of energy
(Poynting flux) that accelerates the magnetospheric plasma along the poloidal magnetic field lines,
converting the Poynting flux into kinetic energy of bulk motion. Energy can also be extracted
from rotating black holes with similar efficiencies (Blandford and Znajek, 1977; Hirotani et al.,
1992). Several parameters are potentially important for powering the jets: the black hole mass
and spin, the accretion rate, the type of ccretion disk, the properties of the magnetic field, and the
nvironment of the source (Komissarov, 2012).

At parsec scales, extragalactic jets, observed via their synchrotron and inverse Compton emis-
sion at radio frequencies with VLBI imaging, appear to be highly collimated with a bright spot
(the core) at one end of the jet and a series of components which separate from the core, sometimes
at superluminal speeds (see, e.g., Lister et al., 2009). In the standard model of Blandford and
Königl (1979), these speeds are a consequence of relativistic bulk motion in jets propagating at
small angles to the line of sight with Lorentz factors up to 20 or more. Moving components in these
jets, usually appearing after outbursts in emission at radio wavelengths, are interpreted in terms
of traveling shock waves (Marscher and Gear, 1985). An ongoing, important debate is concerned
with the nature of the radio core. Whereas in the standard Blandford and Königl’s conical jet
model the core corresponds to the location near the black hole where the jet becomes optically
thin, recent multi-wavelength observations of several sources [e.g., 3C 120 (Marscher et al., 2002),
BL Lac (Marscher et al., 2008), and 3C 111 (Chatterjee et al., 2011)] suggest that the radio core
can be a physical feature in the jet (as, e.g., a recollimation shock; Marscher, 2012) placed proba-
bly parsecs (i.e., tens of thousands of gravitational radii of the central black hole) away from the
central engine.
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10 José Maŕıa Mart́ı and Ewald Müller

At kiloparsec scales, the morphology and dynamics of the jets are dominated by their interac-
tion with the surrounding extragalactic medium, the jet power being responsible for dichotomic
morphologies (Fanaroff–Riley I and II classes, FR I and FR II, respectively; Fanaroff and Riley,
1974; see Bridle’s homepage). Whereas current models (Laing and Bridle, 2002a,b) interpret FR I
morphologies as the result of a smooth deceleration from relativistic to non-relativistic, transonic
speeds on kpc scales, flux asymmetries between jets and counter-jets in the most powerful radio
galaxies (FR II) and quasars indicate that relativistic motion extends up to kpc scales in these
sources (Bridle et al., 1994).

Extragalactic jets also play a very important role in the evolution of galaxies and clusters of
galaxies as the most likely reheating agent to explain the low rates of cooling in the intracluster
medium (McNamara and Nulsen, 2007).

Theoretical models of AGN jets have been the subject of intensive and extensive testing by
relativistic numerical simulations during the past two decades. However, since jets are produced
on scales of a few gravitational radii of the central black hole (. 10−3 pc, for a 109M⊙ black
hole) but extend to hundreds of kpcs, simulations have traditionally divided the study of the jet
phenomenon into separate problems.

2.1.2 Simulations of kpc-scale jets

Although general relativistic (and MHD) effects seem to be crucial for a successful launch of the
jet, purely hydrodynamic special relativistic simulations are adequate to study the morphology and
dynamics of relativistic jets at distances sufficiently far from the central compact object (i.e., at
parsec scales and beyond). Leaving aside the pioneering work of Yokosawa et al. (1982), the numer-
ical simulation of relativistic jets at parsec and kiloparsec scales was triggered by the development
of RHD codes based on conservative techniques as those described in Section 4.

At kiloparsec scales, the implications of relativistic flow speeds and/or relativistic internal
energies for the morphology and dynamics of jets have been the subject of a number of 2D (van
Putten, 1993b; Mart́ı et al., 1994; Duncan and Hughes, 1994; Mart́ı et al., 1995, 1997; Komissarov
and Falle, 1998; Rosen et al., 1999; Mizuta et al., 2001; Scheck et al., 2002; Monceau-Baroux et al.,
2012; Walg et al., 2013, 2014) and 3D (Aloy et al., 1999a; Hughes et al., 2002; Choi et al., 2007;
Rossi et al., 2008) simulations. The aim of these simulations was to connect the prominence of
the main structural features of the jets (internal shocks, hot spots, lobes) and their dynamical
properties (hot spot advance speed and pressure, deceleration of the flow along the jet) with
the basic parameters characterizing jets. They supersede former non-relativistic simulations of
supersonic jets.

Recent developments concern themselves with the origin of the FR I/II dichotomy. One tries
to gauge the importance of different factors contributing to the dichotomy, like the jet composition
(Scheck et al., 2002), the jet propagation into an ambient medium of decreasing density (Perucho
and Mart́ı, 2007), the entrainment of ambient medium into the jet by Kelvin–Helmholtz (KH)
instabilities (Rossi et al., 2008; Perucho et al., 2010), the mass load from stellar winds (Perucho
et al., 2014), and the presence of density discontinuities in the jet environment (Meliani et al.,
2008). Porth and Komissarov (2015) pointed to the loss of causal connectivity across jets, because
of their rapid expansion in response to the fast decline of the ambient pressure with distance, as the
source of the remarkable stability of FR II jets. Finally, simulations have also focused on the effects
of feedback by relativistic jets on star formation in the host galaxy (Wagner and Bicknell, 2011;
Wagner et al., 2012) and the heating of the intracluster medium in clusters of galaxies (Perucho
et al., 2011).

As in the pure hydrodynamic case, the simulation of relativistic magnetized jets was one of the
first applications of the conservative RMHD methods described in Section 5. The first simulations
focused on the propagation of relativistic jets with aligned magnetic fields injected into an ambient
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medium with an aligned (Koide et al., 1996; Nishikawa et al., 1997) and oblique (Koide, 1997;
Nishikawa et al., 1998) magnetic field to study how the fields affect the bending properties of
relativistic jets. However, these early simulations covered the evolution only for a brief period
of time during which the jet propagated only ∼ 20 jet radii. In addition, the Lorentz factors of
the jets were small (' 4.56). Although these results had some impact on specific problems, like
e.g., understanding the misalignment of jets between pc and kpc scales, these simulations did not
address the effects of magnetic fields on the jet structure and the jet dynamics. One of these
first, exploratory simulations (van Putten, 1996) dealt with the formation of ‘knots’ (i.e., bright
localized features) in extragalactic jets possessing a toroidal magnetic field.

Later studies explored the dependence of morphological and dynamic properties of jets on the
magnetic field configuration, and on the ratio of magnetic energy density and thermal pressure, and
magnetic energy density and rest-mass energy density, respectively: Komissarov (1999b); Mignone
et al. (2005a); Leismann et al. (2005) simulated jets with toroidal magnetic fields, Leismann et al.
(2005) jets with poloidal magnetic fields, and Keppens et al. (2008) jets with helical magnetic fields.
Mignone et al. (2010) presented the first high-resolution 3D simulations of relativistic magnetized
jets (see Figure 1).

Figure 1: Volume renderings of the passive scalar distributions for a high-resolution 3D run (left panel)
and a 2D axisymmetric case (right panel) of a relativistic magnetized jet carrying a purely toroidal magnetic
field component. The picture on the right clearly shows the presence of a nose cone structure typical of
2D high Poynting flux jets, which was already noticed in Newtonian MHD simulations of e.g., Komissarov
(1999b); Leismann et al. (2005). It is caused by the amplification of the toroidal field component at
the terminal shock. The amplified field confines the jet matter and prevents it from freely flowing into
the cocoon. In three dimensions, however, the nose cone structure is unstable leading to a very different
asymmetric morphology. A poloidal magnetic field component is generated in the 3D case when the initially
imposed axisymmetry is destroyed. Image reproduced with permission from Figure 1 of Mignone et al.
(2010), copyright by the authors.
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2.1.3 Simulations of pc-scale jets

The development of multidimensional RHD codes facilitated the simulation of parsec scale jets and
of superluminal radio components (Gómez et al., 1997; Komissarov and Falle, 1997; Mioduszewski
et al., 1997; Aloy et al., 2000a; Agudo et al., 2001; Aloy et al., 2003; Perucho et al., 2008). The
presence of emitting flows at almost the speed of light enhances the importance of relativistic
effects (relativistic Doppler boosting, light aberration, time delays) for the appearance of these
sources (Gómez, 2002). This implies that one should use models which combine hydrodynamics
and synchrotron radiation transfer when comparing to observations.

In these models, moving radio components are modeled as perturbations in steady relativistic
jets. Reconfinement shocks are produced where pressure mismatches exist between the jet and
the surrounding medium. The energy density enhancement that arises downstream from these
shocks can give rise to stationary radio knots as observed in many VLBI sources (e.g., 3C 279;
Wehrle et al., 2001). Superluminal components are produced by triggering small perturbations
in these steady jets. The interaction between the induced traveling shocks and the underlying
steady jet can account for the complex behavior observed in many sources as, e.g., the dragging
of steady components in 3C 279 (Wehrle et al., 2001), the presence of trailing components in
3C 120 (Gómez et al., 1998; Gómez et al., 2001) and 3C 111 (Kadler et al., 2008), and the tangled
evolution of components in 3C 111 (Perucho et al., 2008). Mimica et al. (2009a) presented numerical
simulations of the spectral evolution and the emission of radio components in relativistic jets. They
incorporated the time evolution of a population of non-thermal electrons which is responsible for
the synchrotron emission, and included the respective radiative losses from the flow (see Figure 2).

Figure 2: Computed synchrotron total-intensity radio maps at 43 GHz of a steady, relativistic, overpres-
sured jet with and without radiative losses (bottom and top panels, respectively). In the model without
radiative losses, the distribution of the non-thermal electrons (responsible for the synchrotron emission)
only changes by adiabatic expansion and compression during the evolution. The jet including radiative
losses has brighter (darker in the figure!) standing features close to the nozzle and fades away faster than
the adiabatic jet. Image reproduced with permission from Figure 8 of Mimica et al. (2009a), copyright by
AAS.

The combination of hydrodynamic simulations and linear stability analysis provides a very
useful tool to comprehend relativistic jets in extragalactic sources. It is commonly accepted that
most of the features observed in jets (radio components, transversal structure, bends, etc.) admit
an interpretation in terms of the growth of KH normal modes, hence allowing to constrain the jet
properties. The main theoretical developments concerning the linear analysis of the relativistic KH
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instability are summarized in Section 6.7. This analysis has been successfully applied to probe the
physical conditions in the jets of several sources [e.g., S5 0836+710 (Lobanov et al., 1998; Perucho
and Lobanov, 2007; Perucho et al., 2012a,b), 3C273 (Lobanov and Zensus, 2001), 3C120 (Walker
et al., 2001; Hardee, 2003; Hardee et al., 2005); see also the review by Hardee (2006)]. Beyond
the linear regime, the analysis requires numerical (hydrodynamic or magnetohydrodynamic) sim-
ulations. Here, the main purpose is to assess the stability, collimation, and mass entrainment
properties of jets at large (temporal and spatial) scales. In a series of papers, Perucho et al.
studied the nonlinear phase of the KH instability in relativistic jets in two (Perucho et al., 2004b,
2005, 2007) and three spatial dimensions (Perucho et al., 2010). Motivated by the hydromagnetic
nature of most jet formation mechanisms, Mizuno et al. analyzed the stability of magnetized jets
under different conditions. In Mizuno et al. (2007), they focused on the stability of magnetized
relativistic precessing spine-sheath jets, while they studied the growth of the current-driven kink
instability in relativistic force-free jets in Mizuno et al. (2009, 2011a, 2012) (see Figure 3).

2.1.4 Simulations of jet formation

The advances in the numerical methods in RMHD were soon incorporated into GRMHD codes
(see, e.g., Font, 2008) allowing for the first time to explore the formation mechanism of relativistic
jets. Koide et al. considered the problem of jet formation from Schwarzschild (Koide et al., 1998,
1999; Nishikawa et al., 2005) and Kerr (Koide et al., 2000) black holes surrounded by accretion
disks. In the case of Schwarzschild black holes, jets are formed via Blandford–Payne’s mechanism
(Blandford and Payne, 1982) with a two-layered shell structure consisting of a fast gas pressure
driven jet in the inner part and a slow magnetically driven outflow in the outer part both being
collimated by the global poloidal magnetic field that penetrates the disk.

In the case of counter-rotating disks around Kerr black holes (Koide et al., 2000), a powerful
(although still subrelativistic, vjet < 0.5c) magnetically driven jet forms inside the gas pressure
driven jet. This jet is accelerated by the magnetic field anchored in the ergospheric disk. The
frame-dragging effect rapidly rotates the disk in the same direction as the black hole’s rotation,
increasing the azimuthal component of the magnetic field and the magnetic tension, which in
turn accelerates the plasma by the magnetic pressure and centrifugal force. This mechanism of
jet production is a kind of Penrose process (Hirotani et al., 1992) that uses the magnetic field
to extract rotational energy of the black hole and eject a collimated outflow from very near the
horizon.

The same authors (Koide et al., 2002) also explored this jet formation mechanism in the case
of a maximally rotating Kerr black hole surrounded by a uniform, magnetically dominated corona
with no disk. With a similar setup, Komissarov (2005) reported significant differences in the long-
term evolution of the system with respect to the short phase studied in Koide et al. (2002). The
topology of magnetic field lines within the ergosphere was similar to that of the split-monopole
model. It gave rise to a strong current sheet in the equatorial plane and no regions of negative
hydrodynamic energy at infinity (suggestive of the MHD Penrose process) inside the ergosphere.
In contrast, the rotational energy of the black hole was continuously extracted via the purely
electromagnetic Blandford–Znajek mechanism (Blandford and Znajek, 1977).

None of the previously discussed simulations was able to generate strong relativistic outflows
from the black hole within a few tens of gravitational radii from the central source. A couple
of studies (Koide, 2004; Komissarov, 2004a) focused on the influence of the initial magnetic field
configuration around the rotating black hole on the outflow characteristics considering monopole
magnetospheres as in the original Blandford–Znajek mechanism. Koide (2004) obtained outflows
with Lorentz factors of ∼ 2.0. In the longer simulation performed by Komissarov (2004a), the
numerical solution evolved towards a stable steady-state solution very close to the correspond-
ing force-free solution found by Blandford and Znajek. For the first time, numerical solutions
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Figure 3: Time evolution of the current-driven kink instability in a static column of non-constant den-
sity and force-free helical magnetic field with constant pitch. The panels show density isosurfaces with
transverse slices at the base of the column (left) and transverse slices at the column midplane at three
different times. Colors give the logarithm of the density, and the magnetic field configuration is visualized
by white lines. Displacement of the initial helical magnetic field leads to a helically twisted magnetic
filament around the density isosurface. At later times the radial displacement of the high-density region
(red, right panels) increases only slowly. Image reproduced with permission from Figure 4 of Mizuno et al.
(2009), copyright by AAS.
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Figure 4: Top panels: Poloidal cuts of the initial (left) and final (right) distribution of the rest mass
density (logarithmic scale) of a weakly magnetized torus around a Kerr black hole. The main regions of
the black hole magnetosphere are indicated in the final state. Bottom panels: Initial (left) and final (right)
distribution of the poloidal magnetic field. Magnetic field lines are shown in black, the field line density
indicating the poloidal field strength. In the initial state, field lines follow iso-density lines up to some
threshold density. Image adapted from Figures 1 and 3 of McKinney and Gammie (2004).
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showed the development of an ultrarelativistic particle wind (Lorentz factor ∼ 15) which remained
Poynting-dominated all the way up to the fast critical point. The wind was poorly collimated
along the equatorial plane as in the original Blandford–Znajek solution. We note here that direct
numerical simulations of the Blandford–Znajek mechanism were performed by Komissarov (2001,
2004b), who solved the time-dependent equations of (force-free, degenerate) electrodynamics in
a Kerr black hole magnetosphere. The equations are hyperbolic (Komissarov, 2002a) and were
solved by means of a Godunov-type method. Palenzuela et al. (2010a) studied numerically the
interaction of black holes with ambient magnetic fields proving the robustness of the Blandford–
Znajek mechanism, by which the black hole’s rotational energy is converted into Poynting flux.
In particular, they analyzed the dependence of the Poynting flux luminosity on the misalignement
angle between the black hole spin and the asymptotic magnetic field. Palenzuela et al. (2010a,b)
also considered the case of binary black holes and showed that the electromagnetic field extracts
energy from the orbit through a kind of Blandford–Znajek’s process before merging and settling
into the standard Blandford–Znajek scenario.

The first simulations of self-consistent jet production from accretion disks, i.e., without as-
suming a large-scale magnetic field right from the beginning, were performed by McKinney and
Gammie (2004), and by De Villiers et al. (2003); Hirose et al. (2004); De Villiers et al. (2005), who
performed, respectively, a series of 2D (axisymmetric) and 3D GRMHD simulations of Keplerian
accretion disks orbiting Kerr black holes. In all the models considered, the outflows (formed at the
edge of a funnel about 0.5 rad wide around the black hole’s rotation axis; see Figure 4) were sub-
relativistic. However, tuning the floor model used to refill the evacuated funnel, McKinney (2006a)
succeeded in generating long-lived, superfast magnetosonic, relativistic Poynting-flux dominated
jets.

Basing on 3D simulations, McKinney and Blandford (2009) explored both the stability of
the jet against the development of the non-axisymmetric helical kink (m = 1) mode that leads
to rapid disruption, and the stability of the jet formation process during accretion of dipolar
and quadrupolar fields. In their dipolar model, despite strong non-axisymmetric disk turbulence,
the jet reaches Lorentz factors of ∼ 10 with an opening half-angle ∼ 5∘ at 103 gravitational
radii without significant disruption (see Figure 5). Porth (2013) studied the stability of jets from
rotating magnetospheres performing high-resolution adaptive mesh refinement simulations in 3D.
His analysis showed that the m = 1– 5 modes saturate at a height of ∼ 20 inner disc radii.

The strength of the magnetic field on the event horizon of the central black hole can be estimated
to be of the order of thousands of gauss. How this magnetic field is built up from the disk magnetic
field is another subject of current research (Tchekhovskoy et al., 2011; McKinney et al., 2012).

Following a diferent approach, Vlahakis and Königl (2003) examined the production of rela-
tivistic, large-scale jets by means of self-similar solutions of magnetically driven outflows. This
semi-analytic approach was tested by Komissarov et al. (2007) using axisymmetric simulations.

2.2 Gamma-ray bursts

2.2.1 Observations and theoretical models

A phenomenon that also involves flows with velocities very close to the speed of light are gamma-ray
bursts (GRB). Although known observationally since several decades their nature still is a matter
of debate. They are detected with a rate of about one event per day, and come in two flavors:
short-duration and long-duration bursts the emission of gamma-rays varying from milliseconds to
hours. The duration of the shorter bursts and the temporal substructure of the longer bursts
implies a geometrically small source (less than ∼ c · 1 ms ∼ 100 km), which in turn points towards
compact objects, like neutron stars or black holes. The emitted gamma-rays have energies in the
range 30 keV to 2 MeV, the spectra being non-thermal, i.e., they do not allow a direct measurement
of the distance of the GRB ((for recent reviews, see the book edited by Kouveliotou et al., 2012).
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Figure 5: Snapshot of a 3D simulation of the formation of jets from a rotating accreting black hole of mass
M , at t = 4000M (geometrized units). Left panel: inner ±100M cubical region showing the black hole,
the accretion disk (pressure, yellow isosurface), the outer disk and the wind (log rest-mass density, low
green, high orange, volume rendering), the relativistic jet (Lorentz factor ∼ 4, low blue, high red, volume
rendering), and the magnetic field lines (green) threading the black hole. Right panel: the relativistic jet
(Lorentz factor ∼ 10, orange, volume rendering; only one side shown) collimated within half-angle ∼ 5∘ is
shown out to 103 M . Image adapted from Figures 1 and 2 of McKinney and Blandford (2009).

Observations by the BATSE detector on board the Compton Gamma-Ray Observatory (GRO)
proved that GRB are distributed isotropically over the sky (Meegan et al., 1992) indicating that
they are located at cosmological distances. The detection and the rapid availability of accurate
coordinates of the fading X-ray counterparts of GRB 970228 by the Italian-Dutch BeppoSAX
spacecraft (Costa et al., 1997; Piro et al., 1998) allowed for subsequent successful ground based
observations of faint GRB afterglows at optical, millimeter, and radio wavelength. Thereby the
distances of GRB could be directly determined, which confirmed their cosmological origin (for a
review see, e.g., Greiner, 2012). Updated information on GRB that have been localized to less
than 1 degree can be obtained from a website maintained by Greiner.

The pure cosmological origin of GRB was challenged by the detection of the broad-lined Type Ic
supernova SN 1998bw (Galama et al., 1998) at a redshift of z = 0.0085 (Tinney et al., 1998)
within the error box of GRB 980425 (Soffitta et al., 1998; Pian et al., 1999). The explosion
time of SN 1998bw is consistent with that of the GRB, and relativistic expansion velocities are
derived from radio observations (Kulkarni et al., 1998). Modeling of the optical spectra and
light curve of SN 1998bw implies an unusually energetic ((2 – 5) × 1052 erg) supernova explosion
(Galama et al., 1998; Iwamoto et al., 1998; Woosley et al., 1999). Thus, Iwamoto et al. (1998)
called SN1998bw a hypernova, a name which was originally proposed by Paczyński (1998) for
very luminous GRB/afterglow events. However, the term “hypernova” draws on a theoretical
classification pertaining to energetics, and it is entirely possible to have a core collapse supernova
with large expansion velocity yet typical kinetic energy (1051 erg) (Hjorth and Bloom, 2012). In
addition, others (Paczyński, 1998; MacFadyen and Woosley, 1999) use hypernova as a synonym
for a jet-induced supernova connected to a GRB as predicted by the collapsar model (see below).

Nowadays there exists growing observational evidence for an association between long-duration
GRB and radio-bright, broad-lined Type Ic core collapse supernovae resulting from the death
of a massive star with a circumburst medium which may be fed by the mass-loss wind of the
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progenitor (Hjorth, 2013). There still remain some open issues, however: less than ∼ 10% of
Type Ic supernovae are associated with a typical GRB, while current optical data suggest that all
GRB supernovae are broad-line (Soderberg et al., 2006). Hence, broad optical absorption lines do
not serve as a reliable proxy for relativistic ejecta, unless quite small beaming factors are assumed.
Moreover, for some long-duration bursts there is no observational evidence for an associated bright
supernova (for a review, see e.g., Hjorth and Bloom, 2012). The same holds for short-duration
bursts, which are thought to result from merger events (see, e.g., Paczyński, 1986; Eichler et al.,
1989; Narayan et al., 1992).

Long-duration GRB associated with a supernova seem to come in two types. In low-luminosity
(or sub-energetic) GRB observational evidence suggests that the radio and high-energy emission
results from the breakout of a relativistic shock from the circumstellar wind of the massive pro-
genitor, while in jet GRB (also known as normal, energetic, or cosmological GRB) the emission
is thought to be produced by a relativistic jet at large distance from the progenitor star (Hjorth,
2013). The rapid temporal decay of several (long-duration) GRB afterglows provides further evi-
dence for collimated relativistic outflows, because it is consistent with the evolution of a relativistic
conical flow or jet after it slows down and spreads laterally (for a review, see e.g., Piran et al.,
2012; Mészáros and Wijers, 2012). In addition, to find an astrophysical site isotropically releasing
up to ∼ 1054 erg of gamma-ray energy within less than a second, as implied by redshift measure-
ments, poses a severe problem unless the radiation is strongly beamed as suggested by observations
(Soderberg et al., 2006).

Another problem concerns the compact nature of the GRB source. The observed fluxes and the
cosmological distance taken together imply a very large photon density in the gamma-ray emitting
fireball, and hence a large optical depth for pair production. This is inconsistent with the optically
thin source indicated by the non-thermal gamma-ray spectrum, which extends well beyond the
pair production threshold at 500 keV. Assuming an ultrarelativistic expansion of the emitting
region eliminates the compactness constraint. The bulk Lorentz factors required are W > 100 (for
reviews, see, e.g., Mészáros and Wijers, 2012; Granot and Ramirez-Ruiz, 2012). The presence
of such large Lorentz factors is supported by observations of the prompt optical and gamma-ray
emission from the extraordinarily bright long-duration GRB080319B, where W ∼ 1000 can be
inferred from a suitable modeling of the spectral energy distribution of the event (Racusin et al.,
2008).

To explain the existence of highly relativistic outflow and the energies released in a GRB various
catastrophic collapse events have been proposed (Woosley, 1993; MacFadyen and Woosley, 1999).
These models all rely on a common engine, namely a stellar mass black hole which accretes several
solar masses of matter from a disk (formed during a merger or by a non-spherical core collapse)
at a rate of ∼ 0.01M⊙ s−1 to ∼ 10M⊙ s−1 (Woosley, 1993; Popham et al., 1999). A fraction of
the gravitational binding energy released by accretion is converted into neutrino and anti-neutrino
pairs, which in turn annihilate into electron-positron pairs. This creates a pair fireball, which will
also include baryons present in the environment surrounding the black hole. Provided the baryon
load of the fireball is not too large, the baryons are accelerated together with the e−/e+ pairs to
ultrarelativistic speeds with Lorentz factors > 102 (Cavallo and Rees, 1978; Piran et al., 1993).

Taken as a whole current observational facts and theoretical considerations suggest that GRB
involve three evolutionary stages (for reviews, see e.g., Kouveliotou et al., 2012): (i) a compact
source, which is opaque to gamma-rays and cannot be observed directly, produces a relativistic
energy flow; (ii) the energy is transferred by means of a highly irregular flow of relativistic particles
(or by Poynting flux) from the compact source to distances larger than ∼ 1013 cm where the
flow becomes optically thin; (iii) the relativistic flow is slowed down and its bulk kinetic energy
is converted into internal energy of accelerated non-thermal particles, which in turn emit the
observed gamma-rays via cyclotron radiation and/or inverse Compton processes. The dissipation
of kinetic energy either occurs through external shocks arising due to the interaction of the flow
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with circumburst matter, or through internal shocks arising when faster shells overtake slower ones
inside the irregular outflow (internal-external shock scenario).

2.2.2 Hydrodynamic simulations

Numerical studies of relativistic flows in GRB sources have been performed since the mid 1990s.
The first simulations were one-dimensional (Piran et al., 1993; Panaitescu et al., 1997; Wen et al.,
1997; Kobayashi et al., 1999; Daigne and Mochkovitch, 2000; Tan et al., 2001), i.e., restricted to
simulations of spherically symmetric relativistic fireballs, which are optically thick concentrations
of radiation energy with a high ratio of energy density to rest mass (for more details about these
studies, see Mart́ı and Müller, 2003). Although meanwhile superseded by 2D and 3D ones, 1D
simulations are still performed to investigate certain aspects of GRB (see e.g., Kobayashi and
Zhang, 2007; Mimica et al., 2009b; Mimica and Aloy, 2010; Mimica et al., 2010; Mimica and Aloy,
2012; Mimica and Giannios, 2011; Harrison and Kobayashi, 2013).

Guided by the Blandford and McKee (1976) self-similar relativistic spherical shock solution,
the propagation of ultrarelativistic blast waves was simulated using AMR techniques combined
with shock-capturing RHD methods. Models at high Lorentz factors (up to 75) followed the prop-
agation of the spherically symmetric blastwave through windshaped circumburst media (Meliani
and Keppens, 2007), and excluded the interpretation of optical afterglow rebrightening due to the
encounter with the stellar wind termination shock (van Eerten et al., 2009). Collisions between
consecutive ultrarelativistic shells were shown to produce both optical and radio variability in
Vlasis et al. (2011). Extensions to 2D (ultra-)relativistic blast wave evolutions were presented in
Meliani et al. (2007), while an extreme resolution AMR RHD simulation from Meliani and Keppens
(2010) predicts their liability to hydrodynamic instabilities that induce fragmentation during the
ultrarelativistic phase of blast wave propagation.

Multidimensional modeling of ultrarelativistic jets in the context of GRB was attempted for
the first time by Aloy et al. (2000b). Using a collapsar progenitor model (MacFadyen and Woosley,
1999) they simulated the propagation of an axisymmetric jet through the envelope of a collapsing
massive star that after loosing its hydrogen envelope had a mass of about 10M⊙. The jet was
instigated depositing thermal energy at rates of 1049 erg/s to 1051 erg/s within a 30 degree cone
around the rotation axis of the star. At break-out, when the jet reaches the surface of the star, the
maximum Lorentz factor of the jet flow is about 50, i.e., Newtonian simulations of this phenomenon
(MacFadyen and Woosley, 1999) are inadequate.

Zhang et al. (2003) performed a parameter study of the propagation of axisymmetric (2D)
relativistic jets through the stellar progenitor of a collapsar and beyond varying the initial Lorentz
factor, opening angle, power and internal energy of the jet as well as the radius where it is injected.
They find, in agreement with Aloy et al. (2000b), that relativistic jets are collimated by their
passage through the stellar mantle. When they emerge from the star the jets have a moderate
Lorentz factor and a very large internal energy. After the escape from the star conversion of its
internal energy into kinetic energy leads to a further acceleration of the jet boosting the Lorentz
factor to a terminal value of ∼ 150 for the initial conditions chosen. Zhang et al. (2004) extended
this study performing 2D and 3D simulations of relativistic jet propagation and break out in
massive Wolf–Rayet stars (see Figure 6 and attached movie – online version only –). Their 3D
simulations showed that if the jet changes angle by more than three degrees in several seconds, it
will dissipate, producing a broad beam with inadequate Lorentz factor to make a common GRB.

Similar 2D studies were performed by Mizuta et al. (2006), Mizuta and Aloy (2009), Mizuta
et al. (2011), and Mizuta and Ioka (2013) who investigated, in particular, the dependence of the
angular energy distribution of collapsar jets on the pre-supernova stellar model (Mizuta and Aloy,
2009), and the dependence of the opening angle of the jet on the initial Lorentz factor, W0 (Mizuta
and Ioka, 2013). The latter is given by Θj ∼ 1/5W0, which allows one to infer the initial Lorentz
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Figure 6: Still from a movie – Comparison of 2D (top left) and 3D simulations of GRB jets. The slices
show the density distribution along the polar axis at the time of break-out from the star. The 2D model
2T and the 3D model 3A have the same jet parameters and effective zoning. Even though 3A is 3D, it
retains the 2D symmetry imposed by the jet’s initial parameters. Models 3BS and 3BL are like model
3A, but with slightly asymmetric initial conditions. Image reproduced with permission from Figure 11 of
Zhang et al. (2004), copyright by AAS. Animation (online version only): 3BL jet breaking out of the star
(Weiqun Zhang’s webpage). Courtesy of W. Zhang. (To watch the movie, please go to the online version
of this review article at http://www.livingreviews.org/lrca-2015-3.)

factor of the jet at the central engine from observations. They also calculated light curves and
spectra of the photospheric thermal radiation of their simulated collapsar jets (Mizuta et al., 2011).

Tominaga et al. (2007); Tominaga (2009) simulated jet-induced axisymmetric explosions of
40M⊙ Population III stars with a 2D RHD code and computed the resulting nucleosynthesis.
The simulations can explain both long-duration GRB with and without a bright broad-lined Type
Ic core-collapse supernovae in a unified manner. Nagakura et al. (2011) performed axisymmetric
RHD simulations of a jet propagating through the envelope of a rapidly rotating collapsing massive
star, and of its break-out and subsequent expansion into a stellar wind environment. They also
computed the photospheric emission accompanying the event.

The first collapsar jet simulations using adaptive mesh refinement (AMR) were presented by
Morsony et al. (2007), who performed their axisymmetric (2D) simulations in cylindrical coor-
dinates with the RHD module of FLASH. In this and several related subsequent AMR studies
(Lazzati et al., 2009; Morsony et al., 2010; Lazzati et al., 2012; López-Cámara et al., 2013) the
authors were able to simulate the evolution of relativistic jets in collapsars after break out from
the star.

They singled out three evolutionary phases: a precursor phase during which relativistic matter
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turbulently shed from the head of the jet first emerges from the star, a shocked-jet phase when a
fully shocked jet is emerging, and an unshocked-jet phase where the jet consists of a free-streaming
unshocked core surrounded by a thin boundary layer of shocked-jet material. Whether these phases
can be observed depends on the angle under which one observes the GRB jet (Morsony et al., 2007).

The interaction of the relativistic matter with the progenitor star influences the outflow prop-
erties well beyond the stellar surface (Lazzati et al., 2009), and the variability imprinted by the
GRB engine is preserved even if the jet is heavily shocked inside the star (Morsony et al., 2010).
The latter result suggests that the broad pulses (∼ seconds) in a typical long-duration GRB are
due to interaction of the jet with the progenitor, while the short-timescale (∼msec) variability
must be caused at the base of the jet (Morsony et al., 2010).

The outcome of the explosion sensitively depends on the duration of the engine activity: Only
the longest-lasting engines result in successful GRB, while engines with intermediate duration
produce weak GRB and those with the shortest duration give rise to explosions that lack sizable
amounts of relativistic ejecta, and hence, if they exist in nature, are dynamically indistinguishable
from ordinary core-collapse supernovae (Lazzati et al., 2012).

López-Cámara et al. (2013) extended these 2D studies performing 3D AMR simulations of
collapsar jets, which expand inside a realistic stellar progenitor. They confirmed the result of
previous 2D simulations that initially relativistic jets can propagate and break out of the progenitor
while remaining relativistic. They also find that the jet’s propagation is slightly faster in 3D than
in 2D models (at the same grid resolution), because the jet head can wobble around the jet axis
and hence drill better when no axisymmetry is imposed. This property of 3D jets was already
noticed by Aloy et al. (1999a) in the case of extragalactic jets.

Wygoda et al. (2011) studied the deceleration and expansion of highly relativistic conical jets
propagating into a medium of uniform density. De Colle et al. (2012a,c,b) performed 2D AMR
simulations of GRB jets, studying the influence of both uniform and, for the first time, stratified
circumburst environments. Further AMR simulations in the context of GRB jets were performed
by Meliani et al. (2007) and Wang et al. (2008). The former investigated various evolutionary
phases in the interaction of jet-like relativistic fireballs with a surrounding interstellar medium
(ISM), while the latter performed a 3D simulation of a GRB jet.

2.2.3 Magnetodynamic and magnetohydrodynamic simulations

Electromagnetic extraction of black hole spin energy by the Blandford–Znajek mechanism (Bland-
ford and Znajek, 1977) is the most astrophysically plausible mechanism to generate a relativistic
jet. Alternatively, jets in GRB may originate from rapidly rotating magnetars, the outflow being
powered by the rotational energy of the strongly magnetized neutron star (for a review, see e.g.,
Woosley, 2012). Because the collapsar model of long-duration GRB (Woosley, 1993) relies on rapid
accretion onto a black hole that forms in the center of a collapsing massive star, several groups
have performed general relativistic simulations of the formation and propagation of GRB jets in-
cluding the effects of magnetic fields (McKinney and Gammie, 2004; McKinney, 2006a; Mizuno
et al., 2008; Tchekhovskoy et al., 2008; McKinney and Blandford, 2009; Tchekhovskoy et al., 2009;
Komissarov et al., 2009, 2010; Tchekhovskoy et al., 2010; Harrison and Kobayashi, 2013).

Extending previous work to larger radii and later times, McKinney and Gammie (2004) (see
also Section 2.1.4) and McKinney (2006a) studied self-consistently generated Poynting-dominated
axisymmetric jets. He considered a generic black hole accretion system because the GRMHD
equations scale arbitrarily with the mass of the black hole and the mass-accretion rate. He found
that, unlike in some hydrodynamic simulations, the environment plays a negligible role in jet
structure, acceleration, and collimation as long as the ambient pressure of the surrounding medium
is small compared to the magnetic pressure in the jet. In his simulations the jet becomes marginally
unstable to current-driven instabilities, beyond the Alfvén surface (located between 10 and 100
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gravitational radii). These instabilities induce jet substructure with 3 . W . 15, whereas the jet
moves at a lab-frame bulk Lorentz factor ofW ∼ 10 with a maximum terminal value ofW∞ . 103.

Using global axisymmetric stationary solutions of magnetically dominated ultrarelativistic jets
Tchekhovskoy et al. (2008) investigated whether the magnetic-driving paradigm can generate
Lorentz factors and opening angles as required by the collapsar scenario. The global solutions
were obtained via ideal magnetodynamic (i.e., force-free) simulations in spherical polar coordi-
nates based on a Godunov-type scheme (McKinney, 2006b) covering the jet propagation from the
central engine to beyond six orders of magnitude in radius. To ensure accuracy and to properly
resolve the jet, they used a numerical grid that approximately follows the magnetic field lines in
the jet solution (Narayan et al., 2007). Thereby they achieved an effective radial resolution of
about 100 000 with only 256 radial grid points.

The simulations showed that the size of the progenitor star and its pressure profile determine
the terminal Lorentz factor (100 .W . 5000) and the opening angle of the jet (0.1∘ . Θj . 10∘),
consistent with observations of long-duration GRB jets. In some of their solutions the Poynting
flux is concentrated in a hollow cone with Θ ∼ Θj , while the maximum Lorentz factor occurs at
Θ� Θj also in a hollow cone.

A similar study, but employing a MHD code, was performed by Komissarov et al. (2009) who
considered, however, only special relativistic jets arguing that general relativistic effects can be
neglected sufficiently far from the central engine, where most of the action takes place. They
investigated the magnetic acceleration of ultrarelativistic flows within channels of prescribed ge-
ometry corresponding to power-law distributions of the confining pressure that is expected in the
envelopes of GRB collapsar and magnetar progenitors.

Extending the simulations of Tchekhovskoy et al. (2008) to 3D and MHD, McKinney and Bland-
ford (2009) explored both the stability of the jet against the development of the non-axisymmetric
helical kink mode that leads to rapid disruption (see also Section 2.1.4). Tchekhovskoy et al.
(2009) performed time-dependent axisymmetric RMHD simulations to find steady-state solutions
for a wind from a compact object endowed with a split-monopole field geometry. For axisymmetric
rapidly rotating systems, a dipolar magnetosphere is the commonly expected field configuration,
which can be well modeled by a split-monopole at large radii beyond the Alfvén surface (i.e.,
light cylinder). Obtaining approximate analytical solutions Tchekhovskoy et al. could extend
their results to wind models with arbitrary magnetization. The simulations covered ten orders of
magnitude in distance from the compact object and demonstrated that the production of ultrarel-
ativistic jets is a quite robust process.

Tchekhovskoy et al. (2010) confirmed the work of Komissarov et al. (2009) by also exploring the
effect of a finite stellar envelope on the structure of axisymmetric collapsar jets. They treated the
jet-envelope interface as a collimating rigid wall, which opens up at the stellar surface to mimic loss
of collimation. The onset of deconfinement causes a burst of acceleration accompanied by a slight
increase in the opening angle. The results (W∞ ' 500, Θ∞j ' 2∘) are consistent with observations
of typical long-duration GRB and also explain the occurrence of jet breaks.

Axisymmetric RMHD simulations by Komissarov et al. (2010) support the finding of Tchekhovskoy
et al. (2010) that after break out but before entering the regime of ballistic expansion (during which
additional magnetic acceleration becomes ineffective), the jets experience a spurt of acceleration.
Komissarov et al. attributed this acceleration to a sideways expansion of the jet, associated with
a strong magnetosonic rarefaction wave that is driven into the jet when it loses pressure support.
Using the equations of RMHD they demonstrated that this mechanism, which they dubbed rar-
efaction acceleration, can only operate in a relativistic outflow, where the total energy can still be
dominated by the magnetic component even in the superfast-magnetosonic regime (Komissarov
et al., 2010). This jet boosting mechanism was previously found by Aloy and Mimica (2008).

The asymptotic evolution of strongly magnetized relativistic ejecta, i.e., after they have expe-
rienced a significant deceleration and a reverse shock has formed, resembles that of hydrodynamic
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ejecta in the Blandford-McKee self-similar regime (Mimica et al., 2009b). Thus, the magnetiza-
tion of GRB fireballs can only be determined from the early phases of the afterglow (Giannios
et al., 2008; Mimica et al., 2009b, 2010; Harrison and Kobayashi, 2013) or from the prompt GRB
broad spectral energy distribution (Mimica and Aloy, 2010). Giannios et al. (2008) derived the
conditions for the existence of a reverse shock in arbitrarily magnetized ejecta that decelerate and
interact with a circumburst medium. They concluded that the paucity of optical flashes, believed
to be a distinctive signature of a reverse shock, may be explained by the existence of dynamically
important magnetic fields in the ejecta.

Harrison and Kobayashi (2013) showed that with the current standard treatment, the fire-
ball magnetization is underestimated by up to two orders of magnitude, particularly in the sub-
relativistic reverse shock regime, where most optical GRB flashes are detected. For their numerical
study they employed a spherical relativistic Lagrangian hydrodynamic code based on Godunov’s
method with an exact Riemann solver assuming that the magnetization of the fireball is not too
large (ratio of magnetic to kinetic energy flux . 10%), i.e., the dynamics of the shocks is not
affected by magnetic fields.

2.3 Pulsar wind nebulae

2.3.1 Fiducial Kennel–Coroniti’s model

Pulsars lose their rotational energy predominantly by generating a highly magnetized ultrarela-
tivistic wind. The wind interacts with the ambient medium, either the supernova remnant (SNR)
or the ISM, and terminates at a strong reverse shock. The shocked plasma inflates a bubble of
non-thermal relativistic particles and magnetic field, known as Pulsar Wind Nebula (PWN). The
Crab Nebula is the best example of a PWN (for a recent review of the Crab pulsar and its nebula,
see Bühler and Blandford, 2014).

The first theoretical model of the structure and the dynamic properties of PWN was presented
by Rees and Gunn (1974), further developed by Kennel and Coroniti (1984a,b), and is based on
a RMHD description. In it simplest form the MHD model of PWN can be summarized as follows
(see Figure 7): the ultrarelativistic pulsar wind is confined inside the slowly expanding SNR, and
slowed down to non relativistic speeds in a strong termination shock. At the shock the plasma is
heated, the toroidal magnetic field of the wind is compressed, and particles are accelerated to high
energies. These high energy particles and magnetic field produce a post-shock flow which expands
at a non-relativistic speed toward the edge of the nebula.

Close to the pulsar, the energy is carried mostly by electromagnetic fields as Poynting flux,
however the simple 1D models of PWN (Rees and Gunn, 1974; Kennel and Coroniti, 1984a,b;
Begelman and Li, 1992) suggest that the magnetization parameter, here defined as the ratio of the
Poynting and the kinetic energy fluxes, needs to be as small as 0.001 to 0.01 just upstream of the
termination shock. If the ratio of magnetic pressure and gas pressure were larger, the amplification
of the magnetic field due to compression at the shock front would cause the outer nebula to be
strongly pinched and therefore highly elongated, in contradiction to observations (Rees and Gunn,
1974; Begelman and Li, 1992). This problem, known in the literature as the sigma-problem, is a
long-standing puzzle in pulsar wind theory.
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Figure 7: Schematic view of the structure of a pulsar wind nebula and its interaction with the SNR and
the ISM. In young nebulae (like, e.g., Crab) the crucial role is played by the terminal shock inside the
relativistic pulsar wind. In older nebulae, the evolution of the nebula is modified by the interaction with
the reverse shock in the SNR shell.
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Despite its simplicity and limitations the model of Kennel–Coroniti has been for a long time
the reference for the understanding of young PWN, with only minor theoretical developments. The
presence of an underluminous region centered at the location of the pulsar is interpreted as being
caused by the ultrarelativistic unshocked wind. Polarization measures – of the, e.g., Vela (Dodson
et al., 2003), Boomerang (Kothes et al., 2006), and Crab (Hester, 2008) nebulae – show that the
emission is highly polarized and the nebular magnetic field is mostly toroidal. Both properties
are expected from the compression of the pulsar wind, and they are consistent with the inferred
symmetry axis of the system. The MHD flow from the terminal shock to the edge of the nebula also
explains why PWN appear bigger at smaller frequencies: high energy X-rays emitting particles are
present only in the vicinity of the terminal shock. They have a shorter lifetime against synchrotron
losses than radio-emitting particles which fill the entire volume.

2.3.2 The new paradigm from high resolution imaging and the role of axisymmetric
numerical simulations

The high resolution optical and X-rays images from HST, Chandra, and XMM-Newton have revo-
lutionized the field of PWN showing that the properties of their emission at high energies cannot
be explained within a simplified 1D model. This refers not just to the geometrical features that
are observed, but in practice to all aspects of X-ray emission.

The new data show that the inner region of young PWN is characterized by a complex axisym-
metric structure, generally referred to as the jet-torus structure, first observed in the Crab Nebula
(Hester et al., 1995; Weisskopf et al., 2000) (see Figure 8). This structure is characterized by an
emission torus, in what is thought to be the equatorial plane of the pulsar rotation, and a series
of multiple arcs or rings, together with a central knot, almost coincident with the pulsar position,
and one or two opposite jets along the polar axis, which seem to originate close to the pulsar itself.

Figure 8: Still from a movie – A composite image of the inner region (1.6 arcmin) of the Crab Nebula
showing the X-ray (blue), and optical (red) images superimposed. (Credit: X-ray: NASA/CXC/ASU/J.
Hester et al.; Optical: NNASA/HST/ASU/J.Hester et al.). Animation (online version only): Crab time-
lapse movie made from seven still images of Chandra observations taken between November 2000 and April
2001. The movie shows dynamic rings, wisps and jets in the Crab nebula (Credit: NASA/CXC/ASU/J.
Hester et al.). See more Crab animations at Chandra web page. (To watch the movie, please go to the
online version of this review article at http://www.livingreviews.org/lrca-2015-3.)
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The keys in understanding the jet-torus structure are the magnetization and energy distribution
in the pulsar wind, both displaying a strong latitudinal dependence. As suggested by Bogovalov and
Khangoulian (2002) and Lyubarsky (2002), the consequence of such anisotropic energy injection
into the surrounding nebula would be a greatly enhanced emission in a belt around the rotational
equator – the “torus” appearing in X-ray and optical images.

In addition, Lyubarsky suggested that the outflow from the torus, since it is injected into the
non-relativistically expanding cavity formed by the supernova, would be deflected into a subsonic
backflow at higher latitudes, where magnetic hoop stress could act to focus plasma into a mag-
netically compressed, outflowing, subsonic plume along the pulsar rotation axis, thus creating the
appearance of a jet.

An understanding of the complexity of this scenario requires the use of efficient and robust
numerical schemes for RMHD (Komissarov, 1999a; Del Zanna et al., 2003; Mizuno et al., 2006).
Thanks to numerical simulations (Komissarov and Lyubarsky, 2003, 2004; Del Zanna and Buc-
ciantini, 2004; Bogovalov et al., 2005) the qualitative picture could be extended into a quantitative
model that has been successfully validated against observations (see Figure 9). The wind’s magne-
tization regulates the formation and the properties of the jet: for low values of the magnetization
(< 0.001), equipartition is not reached inside the nebula, and no jet is formed. At higher magneti-
zations equipartition is reached in the close vicinity of the terminal shock, and most of the plasma
ends in a jet. The simulations (Del Zanna and Bucciantini, 2004) also explain the kinematics of the
post-shock flow inside the torus that requires velocities of ∼ 0.5c (Hughes et al., 2002). They con-
tradict Kennel–Coroniti’s model which predicts significantly smaller speeds (Shibata et al., 2003)
and the production of X-ray nebulae with comparable size in radio.

One of the most recent achievements of the MHD nebular models has been the ability to
reproduce the observed time variability in young PWN. Close to the supposed location of the
termination shock, PWN show a short time variability mainly detected in optical and X-ray bands.
Variability of the wisps in the Crab Nebula has been known for a long time (Hester et al., 2002).
Recent observations have shown that the jet in Vela appears to be strongly variable (Pavlov et al.,
2003; Durant et al., 2013), together with the main rings (Kargaltsev and Pavlov, 2008). Variability
is also observed in MSH 15-52 (DeLaney et al., 2006), and has recently been detected in the jet of
Crab (Weisskopf, 2011). In the strongly toroidal field of these nebulae, the jet variability, which
usually has a time-scale of years, is likely due to a variety of MHD instabilities or pulsar spin
axis precession (DeLaney et al., 2006; Durant et al., 2013). On the other hand, the wisps show
variability on shorter time-scales of months having the form of an outgoing wave pattern with a
possible year-long duty cycle (see movie – online version only – Figure 8). The most recent MHD
simulations (Volpi et al., 2008; Camus et al., 2009; Porth et al., 2014b) are able to recover the
variability, the outgoing wave pattern, its typical speed, and the luminosity variations (see the
synthetic Hubble movies of the inner PWN in the online material of Porth et al., 2014b, which
show several wisps emanating from the termination shock).

Finally, employing axisymmetric, highly grid-adapted, long-term RMHD simulations, Porth
et al. (2014a) studied the development of Rayleigh–Taylor filaments at the decelerated contact dis-
continuity that separates the PWN from the SNR ejecta. These filaments resemble the filamentary
structures observed in the outer regions of the Crab Nebula.

2.3.3 Towards a solution of the sigma-problem: 3D simulations

Simple 1D models of PWN fit the observations only if pulsar winds are particle-dominated, i.e.,
the ratio of Poynting flux to kinetic energy flux σ must be very small (10−3 − 10−2). However,
theoretical models of pulsar magnetospheres and winds predict σ � 1. The striped wind oblique
rotator model of Coroniti (1990) offers a possible solution to this discrepancy: reconnection of
stripes of toroidal magnetic field of opposite polarity close of the equatorial plane of the wind
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Figure 9: Left panel: Color coded velocity map and flow direction represented by arrows in the central
part of the model presented in Komissarov and Lyubarsky (2003). Just above the equatorial outflow,
a layer of backflow can be seen converging towards the symmetry axis. This backflow provides plasma
for the two transonic jets propagating in the vertical direction. Right panel: Synchrotron X-ray image
for the same model. The nebula is tilted to the plane of the sky by an angle of 30 degrees, as in the
Crab nebula. The brightness distribution is shown in logarithmic scale. To create this image, synchrotron
electrons and positrons with a power law energy spectrum are injected at the termination shock, which
then suffer synchrotron energy losses at a constant rate determined by the typical value of magnetic field
in the numerical solution. Image adapted from Figures 3 and 4 of Komissarov and Lyubarsky (2003).

converts the initially dominant Poynting flux into thermal and kinetic energy of particles as the
wind flows radially outward. However, the dissipation length-scale still significantly exceeds the
radius of the wind termination shock for the Crab pulsar (Lyubarsky and Kirk, 2001).

Begelman (1998) proposed an alternative solution. Based on the axisymmetric model of Begel-
man and Li (1992), Begelman (1998) suggested that the sigma-problem can be alleviated if a
current-driven kink instability destroys the concentric field structure in the nebula. The current-
driven kink instability allows the loops to come apart and one expects that in three dimensions,
the mean field strength is not amplified much by the expansion of the flow, and the hoop stress
would not necessarily pinch the flow as much as would otherwise be supposed. In this case, the
ratio of Poynting flux and kinetic energy flux just upstream of the termination shock might not
need to be so unreasonably small as was found in axisymmetric models.

Begelman (1998) derived a dispersion relation valid for relativistic fluids in the ideal MHD
limit. The dominant instabilities are kink (m = 1) and pinch (m = 0) modes. The former generally
dominate, destroying the concentric field structure and driving the system toward a more chaotic
state in which the mean field strength is independent of radius.

Mizuno et al. (2011b) and more recently Porth et al. (2013) have tested Begelman’s suggestion
by means of 3D RMHD simulations. Mizuno et al. (2011b) investigated the relaxation of a hydro-
static hot plasma column containing toroidal magnetic field (the original cylindrical magnetostatic
configuration used in Begelman and Li, 1992) by the current-driven kink instability. In their sim-
ulations, the instability is excited by a small initial velocity perturbation, which develops into a
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turbulent tructure inside the hot plasma column. The authors demonstrate that, as envisioned by
Begelman, the hoop stress declines, the initial gas pressure excess near the axis decreases, and the
ratio of the Poynting and kinetic energy flux, declines from an initial value of 0.3 to about 0.01
when the current-driven kink instability saturates.

The most important ingredient missing in the simulations by Mizuno et al. is the continuous
injection of magnetic flux and energy in PWN by pulsar winds. As a result, there is no termination
shock whose size is an important parameter used to test theories of PWN against observational
data. Hence, the next natural step is to carry out 3D numerical simulations of PWN with setups
similar to those of the previous axisymmetric simulations.

Such a study was performed by Porth et al. (2013) who showed that the kink instability (and
the magnetic dissipation) inside these nebulae may be the key process allowing one to reconcile the
observations with the theory of pulsar winds. In agreement with the simulations of Mizuno et al.
(2011b) the highly organized coaxial configuration of the magnetic field, characteristic of previous
2D simulations of PWN, is largely destroyed in the 3D models. However, the azimuthal component
still dominates in the vicinity of the termination shock, i.e., in the region roughly corresponding
to Crab torus (see Figure 10), which is filled mainly with plasma that flows from the termination
shock towards the center of the nebula. The hoop stress of the azimuthal field is still capable of
producing a notable axial compression close to the termination shock and driving polar outflows,
which are required to explain the Crab jet, and the jets of other PWN. However, these outflows
are much more moderate than in the 2D models.

Figure 10: Left panel: 3D rendering of the magnetic field structure for a model having an initial Poynting
flux and kinetic energy flux ratio of 3 about 70 yr after the start of the simulation. Magnetic field lines are
integrated from sample points starting at r = 3×1017 cm. Colors indicate the dominating field component,
blue for toroidal and red for poloidal. Right panel: azimuthally averaged poloidal magnetic field energy
density over total magnetic field energy density. Image reproduced with permission from Figure 2 of Porth
et al. (2013), copyright by the authors.

Simulations of PWN beyond the free expansion phase (as in, e.g., Blondin et al., 2001; Buc-
ciantini et al., 2005; Vigelius et al., 2007) when the interaction with the SNR and the proper
motion of the pulsar become important, and the interpretation of the gamma-ray emission remain
two of the main challenges in the field (see, e.g., Bucciantini, 2011, 2012). Both problems are of
particular importance for the study of gamma-ray binaries for which there is compelling evidence
that they are driven by rotation-powered pulsars (Dubus, 2006, 2013).
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3 Special Relativistic Hydrodynamics and Magnetohydro-
dynamics

3.1 Equations

The simplest model to describe a relativistic medium is that of a relativistic non-dissipative (per-
fect) fluid. When the medium is magnetized and electrically highly conducting, the simplest
description is in terms of ideal MHD (the equations describing the evolution of a perfect magneto-
fluid in the limit of infinite conductivity). In this review we shall refer to the equations describing
such systems as the equations of relativistic hydrodynamics (RHD) and magnetohydrodynamics
(RMHD). A derivation of the equations of relativistic fluid dynamics based on the analogy with
Newtonian fluid dynamics with an appropriate identification of the relativistic counterparts cor-
responding to energy and momentum densities and fluxes can be found in Synge (1956); Landau
and Lifshitz (1987); Misner et al. (1973); Taub (1978). Anile (1989) provides a justification of
the RHD and RMHD equations based on the phenomenological theory of electromagnetically po-
larizable media. The reader is also addressed to the book of Dixon (1978). In this Section we
present without derivation the equations of both RHD and RMHD. Another presentation of these
equations, including a brief discussion, can also be found in Chapter 21 of Goedbloed et al. (2010).

Using the Einstein summation convention the equations describing the motion of a relativistic
fluid are given by the five conservation laws

(ρuµ);µ = 0 , (1)

Tµν
;ν = 0 , (2)

where µ, ν = 0, . . . , 3, and ;µ denotes the covariant derivative with respect to the coordinate
xµ. Furthermore, ρ is the proper rest–mass density of the fluid, uµ its 4-velocity, and Tµν is the
stress-energy tensor, which for a perfect fluid can be written as

Tµν = ρhuµuν + pgµν . (3)

Here, gµν is the metric tensor, p the fluid pressure, and h the specific enthalpy of the fluid defined
by

h = 1 + ε+ p/ρ , (4)

where ε is the specific internal energy. Finally, one requires an equation of state (EOS) that relates
the thermodynamic variables, e.g., p = p(ρ, ε).

For an ideal magneto-fluid, the stress energy tensor must include the contribution of the mag-
netic field,

Tµν = ρh*uµuν + gµνp* − bµbν , (5)

where h* = 1 + ε+ p/ρ+ b2/ρ is the specific enthalpy including the contribution of the magnetic
field (b2 stands for bµbµ), p

* = p + b2/2 is the total pressure, and bµ is the magnetic field in the
fluid rest frame which satisfies the condition uµbµ = 0. In this case, the equations expressing the
conservation of rest-mass, energy and momentum (1), (2) must be complemented with Maxwell’s
equations that govern the evolution of the magnetic field

*Fµν
;µ = 0 , (6)

where *Fµν is the Maxwell dual tensor,

*Fµν = uµbν − uνbµ. (7)
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In the preceding equations and throughout the review, besides using units in which the speed
of light is set to unity, we absorb a factor

√
4π in the definition of the magnetic field (see also

Section 6).
The equations of RMHD can be written as a system of conservation laws. In Minkowski

spacetime (gµν = ηµν = diag(−1, 1, 1, 1)) and Cartesian coordinates ({i, j, k} = {x, y, z}) this
system reads

∂U

∂t
+
∂Fi(U)

∂xi
= 0 , (8)

where the state vector, U, and the fluxes, Fi, are the following column vectors,

U =




D

Sj

τ

Bk



, (9)

and

Fi =




Dvi

Sjvi + p*δij − bjBi/W

τvi + p*vi − b0Bi/W

viBk − vkBi



. (10)

In these equations, D, Sj , and τ are the rest-mass density, the momentum density of the magnetized
fluid in j-direction, and the total energy density measured in the laboratory (i.e., Eulerian) frame,
i.e.,

D = ρW, (11)

Sj = ρh*W 2vj − b0bj , (12)

τ = ρh*W 2 − p* − (b0)2, (13)

where vi are the components of the fluid 3-velocity measured in the laboratory frame. They are
related to the components of the fluid 4-velocity by the expression uµ = W (1, vx, vy, vz) with the
flow Lorentz factor

W = 1/
√

(1− vivi). (14)

The following fundamental relations hold between the components of the magnetic field 4-vector
in the comoving frame and the three vector components Bi measured in the laboratory frame:

b0 =W B · v , (15)

bi =
Bi

W
+ b0vi , (16)

where v and B denote the 3-vectors (vx, vy, vz) and (Bx, By, Bz), respectively. The square of the
modulus of the magnetic field can be written as

b2 =
B2

W 2
+ (B · v)2 (17)

with B2 = BiBi.
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Subtracting the rest-mass energy D from the total energy τ , the energy equation can be written
in terms of the conserved variable τ ′ = τ −D. In the non-relativistic limit (i.e., v � 1, ε, p � 1,
and B2 � 1), the conserved variables D, Si and τ ′ tend to their Newtonian counterparts ρ, ρvi,
and ρε+ρv2/2+B2/2, and the classical MHD equations are recovered. Setting B = 0 in the MHD
or RMHD equations leads to the corresponding hydrodynamic limits.

The dynamic importance of a magnetic field can be quantified with the following two parame-
ters: (i) β = b2/(2p), the ratio of magnetic pressure to gas pressure, and (ii) κ = b2/(ρh), which is
related to the ratio of magnetic energy density to enthalpy density and coincides with the ratio of
Poynting flux to kinetic energy density for flows perpendicular to the magnetic field. In a medium
at rest β = B2/(2p) and κ = B2/(ρh). The parameter κ varies monotonically with the Alfvén

speed given by ca = B/
√
ρh+B2, i.e., κ = c2a/(1− c2a) and κ→ 0 (∞) for ca → 0 (1). Important

dynamic effects due to the presence of a magnetic field are expected when β and/or κ are large. We
note that our definitions of these parameters can differ from those of other authors (in particular,
our β parameter is defined as the inverse of the plasma β parameter).

3.2 Mathematical aspects

3.2.1 Hyperbolicity of the RHD equations

Lichnerowicz (1967) and Anile (1989) discussed the mathematical structure of the equations of
RHD and RMHD. An important property of the former set of non-linear partial differential equa-
tions is that it is hyperbolic for causal EOS (Anile, 1989). For hyperbolic systems of conservation
laws, the Jacobians of the fluxes ∂Fi(U)/∂U have real eigenvalues and a complete set of eigenvec-
tors (see Section 8.1 for the spectral decomposition of the flux Jacobians of the RHD equations).
Information about the solution propagates at finite velocities given by the eigenvalues of the Ja-
cobians, which are related to the propagation speeds of flow disturbances. In the case of a fluid,
these are entropy waves and sound waves.

If the solution is known in some spatial domain at some given time, the hyperbolicity of the
RHD equations can be used to advance the solution to some later time (initial value problem).
In general, it is not possible, however, to derive an exact solution. Instead one has to rely on
numerical methods which provide an approximate solution. Moreover, the numerical methods
must be able to handle solutions with discontinuities (i.e., shocks), which are inherent to non-
linear hyperbolic systems. Readers interested in the theory and numerical solution of hyperbolic
systems are addressed to the monographs by LeVeque (1992) and Toro (1997).

Associated with the hyperbolicity of the system are the concepts of characteristics (integral
curves of the eigenvalues of the flux Jacobians) and simple waves (solutions that are constant
along characteristics). Simple waves and shocks (limiting solutions of converging simple waves) are
the building blocks of the solution of Riemann problems (initial value problems with discontinuous
data). They are of paramount importance from a theoretical point of view and also for the
numerical solution of the hyperbolic system of equations. We present the solution of the Riemann
problem in RHD in Section 8.5, as derived in Mart́ı and Müller (1994); Pons et al. (2000). Several
theoretical developments related to the theory of simple waves and shocks in RHD are discussed
in Mart́ı and Müller (1994) (and references therein), including an analysis of the jump conditions
across shocks, of the shock adiabats, of self-similar solutions of relativistic blast waves, and of the
process of shock formation by the steepening of simple waves.

3.2.2 Hyperbolicity of the RMHD equations and degeneracies

The hyperbolicity of the RMHD equations including the derivation of eigenvalues and the corre-
sponding eigenvectors was studied by Anile and Pennisi (1987) and reviewed by Anile (1989). In
both classical and relativistic MHD, the eigenvalues are associated with the propagation of entropy
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waves, Alfvén waves, and slow and fast magnetosonic waves (Jeffrey and Taniuti, 1964). Moreover,
the MHD equations exhibit degeneracies in the sense that two or more eigenvalues may coincide,
i.e., the set of equations is not strictly hyperbolic.

The degeneracy conditions in RMHD have been analyzed by Komissarov (1999a), and more
recently by Antón et al. (2010). They coincide with those for Newtonian flows in the fluid rest
frame. Degeneracies are encountered in this frame for waves propagating perpendicular (Type I)
and along (Type II) the magnetic field direction. In case of the Type I degeneracy, the two Alfvén
waves, the entropic wave, and the two slow magnetosonic waves propagate at the same speed, while
for the Type II degeneracy, the speeds of an Alfvén wave and a magnetosonic wave (slow or fast)
are the same.

Some differences between classical and relativistic MHD exist in the laboratory frame. If one
encounters the Type II degeneracy in classical MHD, both Alfvén waves exhibit the degeneracy.
In RMHD, due to aberration, the condition for degeneracy can be fulfilled only for one of the
Alfvén waves. Only if the tangential component of the fluid velocity vanishes, one recovers the
classical behavior. The degeneracies can be visualized with the help of the characteristic wave
speed diagrams (Antón et al., 2010), equivalent to the phase speed diagrams for linear perturba-
tions (Keppens and Meliani, 2008). These diagrams show the normal speed of planar wave fronts
propagating in different directions, the speed given by the distance between the origin and the
normal speed surface along the corresponding direction. Figure 11 displays the degeneracies for a
selection of states.

The eigenvectors derived in Anile and Pennisi (1987) and Anile (1989) do not form a complete
basis for degenerate states since they become zero or linearly dependent in that case. Antón et al.
(2010) obtained a new set of eigenvectors that do form such a basis both for nondegenerate and
degenerate states. The new set of renormalized right eigenvectors in covariant variables as well as
a short discussion of the derivation of the left and right eigenvectors in conserved variables can be
found in Section 8.2.

We present the solution of the Riemann problem in RMHD in Section 8.6 as derived in Giaco-
mazzo and Rezzolla (2006). Some interesting analytical results involving simple waves in magne-
tized fluids can be found in Mathews (1971); Lyutikov (2010); Lyutikov and Hadden (2012).

3.2.3 Convexity

A hyperbolic system is said to be convex when all the characteristic fields are either genuinely
nonlinear or linearly degenerate (Lax, 1957; LeVeque, 1992). The solutions of a hyperbolic system
are qualitatively different depending on whether the system is convex or not. In a convex system,
genuinely nonlinear fields can give rise to a single shock or a single centered rarefaction wave,
whereas linearly degenerate fields are associated to contact discontinuities. If the system is non-
convex, the fields which have no definite character can give rise to an alternate series of shocks and
rarefactions (Godlewski and Raviart, 1996) (compound waves; see below).

In a purely fluid dynamical system, the convex or non-convex character is determined by the
EOS, and one speaks of convex or otherwise non-convex equations of state. An EOS is said
to be convex if the isentropes are convex in the p − V plane (where V ≡ 1/ρ is the specific
volume). Convexity of the isentropes is guaranteed by a positive value of the fundamental derivative
(Menikoff and Plohr, 1989); see Ibáñez et al. (2013) and Ibáñez et al. (2015) for a generalization
of this result to RHD and RMHD, respectively. However, whereas in unmagnetized fluids non-
convexity is associated to complex equations of state, the equations of MHD are of non-convex
nature because at degenerate states magnetosonic waves change from genuinely nonlinear to linearly
degenerate waves (see Brio and Wu, 1988, Antón et al., 2010, for classical and relativistic MHD,
respectively).

The fact that the MHD equations form a non-strictly hyperbolic, non-convex system makes
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Figure 11: Characteristic wavespeed surfaces of fast magnetosonic waves (blue), Alfvén waves (yellow),
slow magnetosonic waves (red), and entropy waves (black; only bottom right panel) for a homogeneous
magnetized ideal gas with γ = 4/3, ρ = 1.0, Bx = 5.0, By = 0.0, and Bz = 0.0. The gas is at rest except
in the bottom right panel, where it moves along the x-axis with a speed vx = 0.9. The specific internal
energy of the gas is ε = 1.0 (top left), ε = 50.0 (top right), and ε = 37.864 (bottom left), respectively.
When the gas is at rest, the surface of the entropy wave degenerates in a point located at the origin
and exhibits two symmetries: a rotational symmetry around the direction of the magnetic field (i.e., the
x-direction), and a mirror symmetry in the y − z plane orthogonal to the magnetic field. Both types of
degeneracies that may be encountered in classical and relativistic MHD can be recognized: Type I in the
plane orthogonal to and Type II along the direction of the magnetic field. Moreover three sub-cases of the
Type II degeneracy can be discerned: Alfvén waves propagating along the magnetic field at the same speed
as the fast magnetosonic waves (top left), the slow magnetosonic waves (top right), and both the fast and
slow magnetosonic waves (bottom left). When the gas moves in x-direction (i.e., along the magnetic field;
bottom right) the surfaces still exhibit the rotational symmetry around the x-axis, and the Type I and II
degeneracies still occur in the y − z plane and along the x-axis, respectively. Image adapted from Antón
et al. (2010).
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them considerably more complex than the hydrodynamic ones. Shock waves in hydrodynamic
flows are regular, while MHD flows admit non-regular or intermediate shocks (see Torrilhon, 2003,
for the corresponding definitions). Among these intermediate shocks are the so-called overcom-
pressive shocks2 and switch-on/off shocks, where the magnetic field vanishes on one side of the
wave.3 Intermediate shocks are also associated with rarefactions in the so-called compound waves
(Torrilhon, 2003). They are related to the question of the existence and the uniqueness of solu-
tions of some Riemann problems. However, there is a ongoing controversy about the significance
of non-regular shocks (and compound waves) in MHD (see Takahashi and Yamada, 2014, for an
up-to-date overview of the problem).

3.2.4 Divergence-free constraint

The solutions of the system of classical and relativistic MHD must satisfy the divergence-free
constraint for the magnetic field derived from the temporal component of Eq. (6). The evolution
system guarantees the fulfillment of this constraint for an initially divergence-free magnetic field
at all later times, but to satisfy the constraint in numerical simulations of MHD flows poses a
challenge. We shall come back to this point later, when discussing specific numerical methods.

2 In overcompressive shocks, the number of characteristics running into a shock is larger than that for regular
shocks (p+ 1, for a system of p equations).

3 Fast shocks and slow rarefactions can be switch-on (i.e., a zero tangential field ahead of the wave becomes
non-zero behind it), whereas slow shocks and fast rarefactions can be switch-off (i.e., a non-zero tangential field
ahead of the wave becomes zero behind it).
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4 Grid-based Methods in RHD

The application of high-resolution shock-capturing (HRSC) methods caused a revolution in nu-
merical RHD. These methods satisfy in a quite natural way the basic properties required for any
acceptable numerical method: (i) high order of accuracy, (ii) stable and sharp description of dis-
continuities, and (iii) convergence to the physically correct solution. Moreover, HRSC methods
are conservative, and because of their shock capturing property discontinuous solutions are treated
both consistently and automatically whenever and wherever they appear in the flow.

HRSC methods are built following two possible strategies, namely finite volume (FV) and finite
difference (FD) methods. Both strategies rely on a conservative form of the discretized equations.
However, whereas FD methods are based on the differential form of the conservation equations
and evolve point values of the state vectors in time, FV methods utilize the integral form of the
conservation laws and cell averaged values. This difference has implications for the algorithms that
have been developed following both strategies.

In FV methods, the numerical fluxes (i.e., the functions that govern the time evolution of the
corresponding state vectors) are considered as an approximation to the time-averaged true fluxes.
They are obtained solving in a variety of ways (e.g., Riemann solvers, flux formulas) the Riemann
problems defined at each numerical interface. This restriction in the interpretation of the numerical
fluxes is eased in FD methods leading to a wider set of methods.

The difference between FV and FD methods manifests itself also in the use of different spatial
interpolation strategies. Although the division between both classes of methods is not strict in
this respect, most RHD codes based on FV methods achieve second order spatial accuracy by
employing linear interpolation and slope limiters, which leads to TVD (total variation diminish-
ing) algorithms. The piecewise parabolic method (PPM) of Colella and Woodward (1984), using
parabolas for cell reconstruction, has an accuracy higher than second order but it is not TVD. Most
FD methods rely on more modern (and higher order) ENO (essentially non-oscillatory) schemes,
which use adaptive stencils to reconstruct the variables at the desired grid locations from the cor-
responding point values. ENO schemes can be employed also in FV methods, but because they
require multidimensional reconstruction they have not been employed in RHD codes.

While we present the fundamentals of HRSC methods in Section 8.3, we review specific ingre-
dients used in modern numerical RHD codes based on HRSC methods in this section.

4.1 Relativistic Riemann solvers

4.1.1 Solvers based on the exact solution of the relativistic Riemann problem

Mart́ı and Müller (1996) used the procedure discussed in Section 8.5 to construct an exact Riemann
solver, which they then incorporated in an extension of the PPM method (Colella and Woodward,
1984) for purely 1D RHD (i.e., in the absence of transverse velocities). In their relativistic PPM
method numerical fluxes are calculated according to

F̂RPPM = F(URP(0;UL,UR)) , (18)

where UL and UR are approximations of the state vector at the left and right side of a cell interface
obtained by a second-order accurate interpolation in space and time, and URP(0;UL,UR) is the
solution of the Riemann problem defined by the two interpolated states at the position of the initial
discontinuity.

The two-shock approximate Riemann solver is obtained from a relativistic extension of Colella’s
method (Colella, 1982) for classical fluid dynamics, where it has been shown to properly handle
shocks of arbitrary strength (Colella, 1982; Woodward and Colella, 1984). In order to construct
Riemann solutions in the two-shock approximation one analytically continues shock waves towards
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the rarefaction side (if present) of the cell interface instead of using an actual rarefaction wave
solution. Balsara (1994) developed an approximate relativistic Riemann solver of this kind by
solving the jump conditions in the oblique shocks’ rest frames in the absence of transverse velocities,
after appropriate Lorentz transformations, although it was only tested for purely 1D flows. Dai
and Woodward (1997) developed a similar Riemann solver based on the jump conditions across
oblique shocks that is more efficient.

Wen et al. (1997) developed a first-order code for 1D RHD combining Glimm’s random choice
method (Glimm, 1965; Chorin, 1976) – using an exact Riemann solver (Mart́ı and Müller, 1994)
– with standard FD schemes. Cannizzo et al. (2008) extended the method of Wen et al. to 1D
problems involving transversal flows using the exact Riemann solver in Pons et al. (2000) and
Rezzolla et al. (2003). Finally, Mignone et al. (2005b) implemented and tested the two-shock
relativistic Riemann solver for arbitrary initial transverse velocities and incorporated it into the
RHD module of the FLASH code.

4.1.2 Roe-type relativistic solvers

Linearized Riemann solvers are based on the exact solution of Riemann problems of a modified
system of conservation equations obtained by a suitable linearization of the original system. This
idea was put forward by Roe (1981), who developed a linearized Riemann solver for the equations of
ideal (classical) gas dynamics. Eulderink (1993) and Eulderink and Mellema (1995) extended Roe’s
Riemann solver to the general relativistic system of equations in arbitrary spacetimes. Eulderink
used a local linearization of the Jacobian matrices of the system fulfilling the properties demanded
by Roe in his original paper. Let B = ∂F/∂U be the Jacobian matrix associated with one of the
fluxes F of the original system, and U the vector of unknowns. Then, the locally constant matrix
B̃, depending on UL and UR (the left and right state defining the local Riemann problem) must
have the following four properties:

1. It constitutes a linear mapping from the vector space U to the vector space F.

2. As UL → UR → U, B̃(UL,UR)→ B(U).

3. For any UL, UR, B̃(UL,UR)(UR −UL) = F(UR)− F(UL).

4. The eigenvectors of B̃ are linearly independent.

Conditions 1 and 2 are necessary to recover smoothly the linearized algorithm from the nonlinear
one. Condition 3 (supposing 4 is fulfilled) ensures that if a single discontinuity is located at the
interface, then the solution of the linearized problem is the exact solution of the nonlinear Riemann
problem.

Once a matrix, B̃, satisfying Roe’s conditions has been obtained for every cell interface, the
numerical fluxes are computed by solving the locally linear system. Roe’s numerical flux is then
given by

F̂ROE =
1

2

[
F(UL) + F(UR)−

m∑

p=1

|λ̃(p)|α̃(p)r̃(p)

]
, (19)

with

α̃(p) = l̃(p) · (UR −UL) , (20)

where λ̃(p), r̃(p), and l̃(p) are the eigenvalues and the right and left eigenvectors of B̃, respectively
(m is the number of equations of the system).
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Roe’s linearization for the relativistic system of equations in a general spacetime can be ex-
pressed in terms of the average state (Eulderink, 1993; Eulderink and Mellema, 1995)

W̃ =
WL +WR

kL + kR
(21)

with
W = (ku0, ku1, ku2, ku3, k

p

ρh
) (22)

and
k2 =

√−gρh , (23)

where g is the determinant of the metric tensor gµν . The role played by the density ρ in case of
the Cartesian non-relativistic Roe solver as a weight for averaging, is taken over in the relativistic
variant by k, which apart from geometrical factors tends to ρ in the non-relativistic limit. A
Riemann solver for special relativistic flows and the generalization of Roe’s solver to the Euler
equations in arbitrary coordinate systems are easily deduced from Eulderink’s work. The results
obtained in 1D test problems for ultrarelativistic flows in the presence of strong discontinuities and
large gravitational background fields demonstrate the excellent performance of the Eulderink–Roe
solver (Eulderink and Mellema, 1995).

Relaxing condition 3 above, Roe’s solver is no longer exact for shocks but still produces accurate
solutions. Moreover, the remaining conditions are fulfilled by a large number of averages of the
left an right states. The 1D codes described in Mart́ı et al. (1991) (RHD, test-fluid approximation
of GRHD) and Romero et al. (1996) (dynamical GRHD) use Eq. (19) with an arithmetic average
of the primitive variables at both sides of the interface to compute the numerical fluxes.

Roe’s original idea has been exploited in the local characteristic approach (see, e.g., Yee,
1989a), which relies on a local linearization of the system of equations by defining at each cell a
set of characteristic variables that obey a system of uncoupled scalar equations. This approach
has proven to be very successful, because it allows for the extension of scalar nonlinear methods to
systems in both FV and FD methods. The codes cited in the previous paragraph are examples of
FV methods based on the local characteristic approach, while examples of FD methods based on
this approach are those developed by Marquina et al. (1992) and Dolezal and Wong (1995), both
using high-order reconstructions (PHM Marquina et al., 1992; ENO Dolezal and Wong, 1995) of
the numerical characteristic fluxes.

The 2D RHD code developed by Mart́ı (1994; 1997) and its 3D extensions GENESIS and
Ratpenat can be cast as FV schemes based on the local characteristic approach. More details
about the computation of the numerical fluxes in these codes will be given in Section 4.2.

Also based on a local linearization of the RHD equations are the relativistic Riemann solvers
developed by Falle and Komissarov (1996) relying on previous work by Falle (1991). Instead of
starting from the conservative form of the hydrodynamic equations, one can use a primitive-variable
formulation in quasi-linear form

∂V

∂t
+A∂V

∂x
= 0 , (24)

where V is any set of primitive variables. Using a local linearization of the above system one
obtains a solution of the Riemann problem and from that the numerical fluxes needed to advance
a conservation form of the equations in time.

Falle and Komissarov (1996) have considered two different algorithms to solve the local Riemann
problems in RHD by extending the methods devised in Falle (1991). In the first algorithm, the
intermediate states of the Riemann problem at both sides of the contact discontinuity, VL* and
VR*, are obtained by solving the system

VL* = VL + bLr
−
L , VR* = VR + bRr

+
R , (25)
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where r−L is the right eigenvector of A(VL) associated with sound waves moving upstream and r+R
is the right eigenvector of A(VR) of sound waves moving downstream. The continuity of pressure
and of the normal component of the velocity across the contact discontinuity allows one to obtain
the wave strengths bL and bR from the above expressions, and hence the linear approximation to
the solution of the Riemann problem, VFK(VL,VR).

In the second algorithm proposed by Falle and Komissarov (1996), a linearization of system

(24) is obtained by constructing a constant matrix Ã(VL,VR) = A( 12 (VL +VR)). The solution

of the corresponding Riemann problem is that of a linear system with matrix Ã, i.e.,

VFK = VL +
∑

λ̃(p)<0

α̃(p) r̃(p) , (26)

or, equivalently,

VFK = VR −
∑

λ̃(p)>0

α̃(p) r̃(p) , (27)

with
α̃(p) = l̃(p) · (VR −VL) , (28)

where λ̃(p), r̃(p), and l̃(p) are the eigenvalues, and the right and left eigenvectors of Ã, respectively
(p runs from 1 to the number of equations of the system).

In both algorithms, the final step involves the computation of the numerical fluxes for the
conservation equations

F̂FK = F(U(VFK(VL,VR))) . (29)

4.1.3 Relativistic HLL and HLLC methods

Schneider et al. (1993) proposed to use the method of Harten, Lax and van Leer (HLL hereafter
Harten et al., 1983) to integrate the equations of RHD. This method avoids the explicit calculation
of the eigenvalues and eigenvectors of the Jacobian matrices and is based on an approximate
solution of the original Riemann problems with a single intermediate state

UHLL(x/t;UL,UR) =





UL for x < aLt

U* for aLt ≤ x ≤ aRt
UR for x > aRt

, (30)

where aL and aR are lower and upper bounds for the smallest and largest signal velocities, re-
spectively. The intermediate state U* is determined by requiring consistency of the approximate
Riemann solution with the integral form of the conservation laws in a grid cell. The resulting
average of the Riemann solution between the slowest and fastest signals at some time is given by

U* =
aRUR − aLUL − F(UR) + F(UL)

aR − aL
, (31)

and the numerical flux vector by

F̂HLL =
a+RF(UL)− a−LF(UR) + a+Ra

−
L (UR −UL)

a+R − a−L
, (32)

where
a−L = min{0, aL} , a+R = max{0, aR} . (33)
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An essential ingredient of the HLL method are good estimates for the smallest and largest
signal velocities. In the non-relativistic case, Einfeldt (1988) proposed calculating them based
on the smallest and largest eigenvalues of the Jacobian matrix of the system. The HLL scheme
with Einfeldt’s recipe is a very robust scheme for the Euler equations and possesses the property
of being positively conservative, i.e., the scheme is conservative, and the internal energy and
density remain positive during the flow’s evolution. In the relativistic case, several estimates of the
limiting characteristic wavespeeds have been proposed which rely on the 1D relativistic addition
of velocities. For example, Schneider et al. (1993) used in their 1D simulations the estimates

aL =
v̄ − c̄s
1− v̄c̄s

, aR =
v̄ + c̄s
1 + v̄c̄s

, (34)

where v̄ and c̄s are the fluid velocity and the sound speed, respectively. The bar denotes some
average (arithmetic or Roe-like) between the corresponding left and right states. Duncan and
Hughes (1994) and Hughes et al. (2002) performed multidimensional simulations with a wave
speed estimate based on the 1D relativistic addition of velocities formula applied to the individual
components of the velocities. Del Zanna and Bucciantini (2002) generalized the method of Schnei-
der et al. to multidimensional RHD, the estimates of the limiting characteristic wavespeeds being
based on the multidimensional relativistic addition of velocities.

Underestimating the signal velocities may introduce instabilities or entropy violating shocks,
because the numerical domain of dependence does not completely cover that of the true solution.
One way to prevent these undesired effects, is e.g., to define the wave speeds as

aL = −∆x/∆t , aR = ∆x/∆t . (35)

This overestimate of the signal speeds, however, gives rise to a larger numerical dissipation, and
the resulting HLL scheme leads to the Lax–Friedrichs scheme (see Section 4.2.1), which is very
dissipative. Finally, in the relativistic case, the speed of light is an absolute limit, i.e., one can also
define the wave speeds according to

aL = −1 , aR = 1 (36)

Nowadays the relativistic HLL method is one of the most popular Riemann solvers in RHD codes;
see Del Zanna and Bucciantini (2002), RAM, WHAM, RENZO, and RAMSES.

The HLL method is exact for single shocks and it is very robust. However, it is also very
dissipative, especially at contact discontinuities. In the HLLC method (Toro et al., 1994) the
contact discontinuity in the middle of the Riemann fan is also captured in an attempt to reduce
the dissipation of the HLL method across contacts. Mignone and Bodo (2005) extended the HLLC
method to 1D, 2D and 3D RHD and incorporated it in the RHD module of the PLUTO code. In
the HLLC approximate Riemann solver, the solution of the Riemann problem reads

UHLLC(x/t;UL,UR) =





UL for x < aLt

UL* for aLt ≤ x ≤ a*t
UR* for a*t ≤ x ≤ aRt
UR for x > aRt

, (37)

where a* is the (constant) speed of the contact discontinuity separating the L* and R* intermediate
states. Consistency of the approximate Riemann solution with the underlying conservation laws
in a grid cell results in the relations:

(a* − aL)UL* + (aR − a*)UR*

aR − aL
= UHLL

* , (38)
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and
(a* − aL)FL*aR + (aR − a*)FR*aL

aR − aL
= a*F

HLL
* , (39)

where FL*,R* is the flux associated with the intermediate state UL*,R* (note that, in general,
FL*,R* 6= F(UL*,R*)), and

UHLL
* =

aRUR − aLUL − F(UR) + F(UL)

aR − aL
, (40)

and

FHLL
* =

aRF(UL)− aLF(UR) + aRaL(UR −UL)

aR − aL
, (41)

are the intermediate state in the original HLL method and its associated flux, respectively.
In two dimensions, the consistency relations (38) and (39) together with the continuity of

pressure and normal velocity across the contact wave provide ten conditions to resolve the two
intermediate states. In order to reduce the number of unknowns and to have a well-posed problem,
τL*,R* and FL*,R* are defined in terms of the ten unknowns DL*,R*, v

x
L*,R*, S

x
L*,R*, S

y
L*,R*, pL*,R*,

and the speed of the contact discontinuity a*. The latter follows from the condition a* = vxL*,R*,
and the intercell numerical flux is given by

F̂HLLC =





FL for aL ≥ 0

FL* for aL ≤ 0 ≤ a*
FR* for a* ≤ 0 ≤ aR
FR foraR ≤ 0

. (42)

The HLLC solver has been implemented in the relativistic code of Matsumoto et al. (2012),
and also in RENZO, AMRVAC and RAMSES.

4.2 Flux formulas

In this category we include numerical flux functions that are not obtained from the solution of
specific (exact or approximate) Riemann problems, although they can be interpreted and used
in that way. Given their popularity in numerical RHD, we will restrict our discussion to the
Lax–Friedrichs and the Marquina flux formulas here.

4.2.1 Lax–Friedrichs flux formula

The Lax–Friedrichs scheme (Lax, 1954) is among the most known FD schemes. When applied to
the linear advection equation, ∂u/∂t+ a∂u/∂x = 0, the scheme reads

un+1
i =

1

2
(1 + a∆t/∆x)uni−1 +

1

2
(1− a∆t/∆x)uni+1 , (43)

where a is the constant signal propagation speed. It can be cast in conservation form by defining
the numerical flux

f̂i+1/2 =
1

2

[
auni + auni+1 −

∆x

∆t
(uni+1 − uni )

]
. (44)

In the nonlinear case, a suitable definition of the Lax–Friedrichs (LF) numerical flux is

f̂LFi+1/2 =
1

2

[
fni + fni+1 − α(uni+1 − uni )

]
(45)
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with
α = max

i
|f ′(ui)|, (46)

where f ′(u) is the derivative of f with respect to u. A less dissipative formulation is the local
Lax–Friedrichs (LLF) scheme, the numerical flux being given by

f̂LLFi+1/2 =
1

2

[
fni + fni+1 − αi+1/2(u

n
i+1 − uni )

]
(47)

with
αi+1/2 = max {|f ′(ui)|, |f ′(ui+1)|} . (48)

For systems of conservation laws, conservative schemes can be built based on the numerical
fluxes defined by Eqs. (45) or (47) applied either directly to the equations in conservation form or
to the characteristic equations (within the local characteristic approach, Section 4.1.2).

Lax–Friedrichs flux formulas are nowadays widely used in RHD codes. Dolezal and Wong
(1995) used the LLF flux in combination with ENO-FD schemes both for the characteristic fields
(following the local characteristic approach) or directly for the conserved variables. Del Zanna
and Bucciantini (2002) implemented a version of the LLF flux for the conserved equations in
combination with CENO (convex ENO) interpolation routines. Lucas-Serrano et al. (2004) tested
the performance of the LLF flux with piecewise parabolic and piecewise hyperbolic reconstructions.
RAM allows for the use of the LLF flux for both FV and FD methods (in this last case together
with WENO reconstruction of the characteristic fluxes). RENZO exploits the LLF flux as an
alternative for FV methods. The RHD module of AMRVAC was tested and applied to a GRB
model in Meliani et al. (2007), the discretization relying on a TVDLF type method (Yee, 1989b;
Tóth and Odstrčil, 1996) based on the LLF fux formula.

The Lax–Friedrichs flux is also at the heart of the NOCD (non-oscillatory central differencing)
schemes (see Section 8.3) implemented in COSMOS and tested in RHD calculations (Anninos and
Fragile, 2003).

4.2.2 Marquina flux formula

Godunov-type schemes are indeed very robust in most situations although they fail on occasions
(Quirk, 1994). Motivated by the search for a robust and accurate approximate Riemann solver
that avoids these common failures, Donat and Marquina (1996) extended to systems a numerical
flux formula first proposed by Shu and Osher (1989) for scalar equations. In the scalar case and for
characteristic wave speeds which do not change sign at the given numerical interface, Marquina’s
flux formula is identical to Roe’s flux. Otherwise, the scheme switches to the more viscous, entropy
satisfying LLF scheme (Shu and Osher, 1989).

In the case of systems, the combination of Roe and LLF solvers is carried out in each char-
acteristic field after the local linearization and decoupling of the system of equations Donat and
Marquina (1996). However, contrary to Roe’s and other linearized methods, the extension of Mar-
quina’s method to systems is not based on any averaged intermediate state. In Marquina’s flux
formula the lateral local characteristic variables and fluxes are calculated, for given left and right
states, according to:

ω
(p)
L = l(p)(UL) ·UL φ

(p)
L = l(p)(UL) · F(UL)

ω
(p)
R = l(p)(UR) ·UR φ

(p)
R = l(p)(UR) · F(UR)

for p = 1, 2 . . . ,m, where m is the number of equations of the system. Here l(p)(UL) and l(p)(UR),
are the (normalized) left eigenvectors of the Jacobian matrix B of the system of equations in
conservation form, calculated for the left and right states UL and UR, respectively.
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Let λ(1)(UL), . . . , λ
(m)(UL) and λ

(1)(UR), . . . , λ
(m)(UR) be the corresponding eigenvalues. For

every k = 1, . . . ,m, one then proceeds as follows:

• If λ(k)(U) does not change sign in [UL,UR], the scalar scheme is upwind and the numerical
flux is calculated according to the relevant characteristic information:

If λ(k)(UL) > 0 then

φ
(k)
+ = φ

(k)
L

φ
(k)
− = 0

else
φ
(k)
+ = 0

φ
(k)
− = φ

(k)
R

endif

• Otherwise, the scalar scheme is switched to the more viscous LLF scheme:

α(k) = max{|λ(k)(UL)|, |λ(k)(UR)|}

φ
(k)
+ = (φ

(k)
L + α(k)ω

(k)
L )/2

φ
(k)
− = (φ

(k)
R − α(k)ω

(k)
R )/2

Marquina’s flux formula is then given by

F̂M =
m∑

p=1

(
φ
(p)
+ r(p)(UL) + φ

(p)
− r(p)(UR)

)
, (49)

where r(p)(UL) and r(p)(UR) are the right (normalized) eigenvectors of the Jacobian matrices
B(UL) and B(UR), respectively.

Marquina flux formula is nowadays widely used in RHD codes. Mart́ı et al. (1995, 1997)
implemented a version that applies the LLF flux to all characteristic fields in their 2D FV RHD
code. This modified Marquina’s flux formula (MMFF) is also implemented in the 3D RHD codes
GENESIS and Ratpenat, and in the code of Mizuta et al. (2001, 2004), the RAM code, and the
RENZO code. In all these cases FV methods are used.

4.3 Spatial reconstruction

No special contributions from numerical RHD concern the strategies of spatial reconstruction, i.e.,
techniques developed for general hyperbolic systems of conservation laws are carried over to RHD.

In HRSC methods, the spatial order of accuracy is increased by interpolating the approximate
solution between grid points to produce more accurate numerical fluxes. In FV schemes, this is
achieved by substituting the mean values by better representations of the true flow at the left and
right of cell interfaces as initial data for Riemann problems. The interpolation algorithms have to
preserve the TV-stability of the algorithm. This is usually achieved by using linear interpolation
and slope limiters, leading to TVD schemes. PPM (Colella and Woodward, 1984) uses parabolas
for cell reconstruction and specific monotonicity constraints that keep the solution free of numerical
oscillations. Experience has shown that the approach where one first recovers the primitive vari-
ables (see Section 4.6) from averaged conserved ones and then reconstructs the primitive variables
is numerically more robust than the reverse approach. Hence, most of the relativistic conservative
codes reconstruct primitive variables, like e.g., density, pressure, and the spatial components of the
four velocity.
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In FD schemes, the standard approach relies on the use of ENO schemes based on adaptive
stencils to reconstruct variables (typically fluxes) at cell interfaces from point values. Contrary
to TVD schemes, ENO schemes do not degenerate to first-order accuracy at extreme points but
achieve the same high-resolution (third to fifth order) everywhere. We also note that there are
ENO schemes adapted to FV methods.

4.3.1 Piecewise linear reconstruction and slope limiters

Within a numerical cell i a piecewise linear function of the form

a(x, tn) = ani + sni (x− xi) (50)

with xi−1/2 < x < xi+1/2 is constructed for the quantity a from the corresponding cell averages.
The quantity sni is the linear slope for cell i. Note that according to the definitions of xi and
xi±1/2, the linear reconstruction of a preserves its average value ani within the cell. The idea to
use piecewise linear slopes for cell reconstruction in combination with slope limiters is due to van
Leer (1973, 1974, 1977b,a, 1979). Among the most popular slope limiters are the following:

• MINMOD (Roe, 1985, 1986):

sni =
1

∆x
minmod

(
ani − ani−1, ani+1 − ani

)
, (51)

where the minmod function of a set of arguments selects the one that is smaller in modulus
if all of them have the same sign, or is otherwise zero.

• MC (monotonized central-difference limiter ; van Leer, 1977a)

sni =
1

∆x
minmod

(
ani+1 − ani−1

2
, 2(ani − ani−1), 2(ani+1 − ani )

)
. (52)

• VAN LEER (van Leer, 1974):

sni =
2

∆x

max(0, (ani − ani−1)(ani+1 − ani ))
ani+1 − ani−1

(53)

The effect of the minmod function is, on one hand, to guarantee linear slopes within cells that
avoid the generation of spurious extrema at cell interfaces, and on the other, a vanishing slope
at extrema (reducing the accuracy of the method to first order at these points). The MC limiter
results in somehow steeper slopes than the pure MINMOD limiter, while the slopes of the VAN
LEER limiter are intermediate to those obtained with the MINMOD and MC limiters.

Piecewise linear reconstructions have been widely used in RHD codes. Schneider et al. (1993)
used piecewise linear reconstruction of the primitive variables (baryonic number, pressure and
velocity components) together with the MINMOD slope limiter in their FV algorithm based on the
relativistic HLL scheme. Duncan and Hughes (1994) and Hughes et al. (2002) employed piecewise
linear reconstruction of the conserved variables within each cell. Falle and Komissarov (1996) used
piecewise linear reconstruction within cells based on the gradients in the adjacent cells and applied
a slope limiter different from MINMOD. The variables chosen for reconstruction were the proper
rest-mass density, the pressure and the spatial components of the four-velocity. Also based on a
linear interpolation within cells (and the MINMOD slope limiter) is the reconstruction procedure
(applied in this case to the density, pressure and velocity components) in the code of Mizuta et al.
(2004). The MUSCL-Hancock scheme (implemented in PLUTO and in the relativistic extension
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of RAMSES) and the PLM method implemented in the relativistic extension of RAMSES rely on
piecewise linear reconstruction, too.

The RAM code utilizes a linear interpolation procedure in two of its implemented schemes,
called U-PLM and F-PLM. In the first (FV) scheme, the reconstruction is performed on the
primitive variables. Pressure and proper rest-mass density are reconstructed directly, whereas
velocities are reconstructed using a combination of the reconstruction of the three-velocity and
the Lorentz factor. For all variables, the slope limiter is a generalized MINMOD slope limiter
according to which

sni =
1

∆x
minmod

(
ani+1 − ani−1

2
, θ(ani − ani−1), θ(ani+1 − ani )

)
. (54)

The more diffusive usual MINMOD limiter results when θ = 1, whereas the MC limiter is recovered
for θ = 2. Zhang and MacFadyen (2006) usually use θ = 1.5. In the (FD) F-PLM scheme the same
reconstruction and limiter (the averaged values substituted by the corresponding point values) are
used, but applied to the characteristic fluxes. The same reconstruction procedures are implemented
in the HLL-PLM and F-PLM schemes in the RENZO code.

The AMRVAC code incorporates more modern limiters, like Koren and its generalizations (see
Keppens et al., 2012, and references therein), which achieve third order accuracy on smooth profiles.

4.3.2 Piecewise parabolic reconstruction

The piecewise parabolic interpolation algorithm described in Colella and Woodward (1984) gives
monotonic conservative parabolic profiles of variables within a cell. In the (1D) relativistic version
of PPM (Mart́ı and Müller, 1996), the original interpolation algorithm is applied to cell averaged
values of the primitive variables (pressure, proper rest-mass density, 1D fluid velocity), which
are obtained from cell averaged values of the conserved quantities. For each cell i, the quartic
polynomial with cell averaged values ai−2, ai−1, ai, ai+1, and ai+2 (where a = ρ, p, v) is used
to interpolate the structure inside the cell. In particular, the values of a at the left and right
interface of the cell, aL,i and aR,i, are obtained in this way (interpolation step). Up to this point,
the reconstructed values are continuous at cell interfaces, however these reconstructed values can
be modified near contact discontinuities to produce narrower jumps (contact steepening), and
at strong shocks to avoid spurious oscillations (flattening). Finally, the interpolated values are
modified to force the parabolic profile inside each cell (uniquely determined by aL,i, aR,i and ai)
to be monotonic (monotonization).

This piecewise parabolic reconstruction is used in the 2D RHD code developed by Mart́ı et al.
(1994; 1997), GENESIS and in the Ratpenat code. It is implemented also in the multidimensional
version of the relativistic PPM method developed by Mignone et al. (2005b) and in the RHD
module of the FLASH code. Finally, it is also used in RAM (U-PPM scheme), RENZO, and
AMRVAC.

4.3.3 ENO schemes

The interpolation algorithms discussed so far use fixed stencils to reconstruct the solutions inside
numerical cells. However, fixed stencil interpolation of second or higher order accuracy is neces-
sarily oscillatory near a discontinuity. Hence the need to use slope limiters (reducing the order
of the method to first order at jumps). The ENO idea proposed by Harten et al. (1987) is the
first successful attempt to obtain a uniformly high order accurate, yet essentially non-oscillatory
interpolation (i.e., the magnitude of the oscillations decays as O(∆xk), where k is the order of
accuracy) for piecewise smooth functions. The idea behind the ENO schemes is the use of adap-
tive stencils for cell reconstruction, which can vary from cell to cell in order to avoid including
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the discontinuous cell in the stencil, if possible. To this end a kth-order accurate ENO scheme
involves a stencil of k + 1 consecutive points including the cell (or interface) to be reconstructed,
such that the primitive of the interpolating function is the smoothest in this stencil compared to
other possible stencils.

Since the publication of the original work of Harten et al. (1987), they and many other re-
searchers have improved the methodology and expanded the area of its application (see Shu, 1997,
for a review). The original ENO schemes constructed in Harten et al. (1987) were applied to cell
averages (FV schemes) obtaining left and right states of variables at cell interfaces as initial states
for Riemann solvers. Hence, a reconstruction procedure is needed to recover point values from
cell averages to the correct order, which can be rather complicated, especially in multidimensional
problems. Shu and Osher (1988, 1989) developed ENO schemes to be carried out on numerical
fluxes (FD scheme) in combination with TVD-RK methods for time advance. For stability rea-
sons, it is important that upwinding is used in constructing the fluxes. One possibility is to use
the flux splitting approach where one reconstructs separately the parts of the flux with positive
and negative derivatives.

Liu et al. (1994) proposed an improved fourth-order accurate weighted ENO (WENO) scheme
utilizing a weighted combination of several possible stencils instead of just one stencil. This im-
proves the accuracy of the scheme without loosing the essentially non-oscillatory property close to
discontinuities. An even more accurate scheme is the modified fifth-order WENO scheme of Jiang
and Shu (1996). A more recent variant is the CENO reconstruction (Liu and Osher, 1998), which
has third-order accuracy in smooth regions but reduces to linear reconstruction or even to first-
order (by using minmod -type limiters) near discontinuities. Finally, ENO schemes for hyperbolic
conservation laws can be applied component-wise or characteristic-wise. In general, component
by component versions of ENO schemes are simple and cost effective. They work reasonably well
for many problems, especially when the order of accuracy is not high (second or sometimes third
order). However, for more demanding problems, or when the order of accuracy is high, the more
costly but more robust characteristic-wise schemes are preferred (Shu, 1997).

Dolezal and Wong (1995) followed the ENO strategy in their RHD code and applied the ENO re-
construction on numerical fluxes (previously splitted according to the Lax–Friedrichs splitting) both
component-wise CW-ENO-LF and CW-ENO-LLF schemes) and characteristic-wise (CH-ENO-LF,
CH-ENO-LLF). Del Zanna and Bucciantini (2002) developed an RHD code based on the CENO
reconstruction of the point values of primitive variables in combination with approximate Riemann
solvers. The RAM and RENZO codes use fifth-order WENO reconstruction of the fluxes according
to a characteristic-wise flux-splitting FD scheme. The RENZO code provides CENO reconstruc-
tion of primitive variables (in a FV scheme), too. In their FV RHD code WHAM, Tchekhovskoy
et al. (2007) implemented a modified WENO scheme that avoids field-by-field decomposition by
adaptively reducing to 2-point stencils near discontinuities for a more accurate treatment of shocks,
and the excessive reduction to low-order stencils as in standard WENO schemes.

4.4 Non-conservative finite-difference schemes

4.4.1 Flux-corrected transport method

The flux-corrected transport (FCT) algorithm of Boris and Book (1973), Boris et al. (1975), and
Boris and Book (1976) was constructed to solve scalar advection equations numerically. As early as
in 1982, Yokosawa et al. (1982) applied FCT techniques to describe the dynamical interaction of a
hypersonic (relativistic) beam with a homogeneous ambient medium, in the context of extragalactic
jets. However, it is in the context of heavy ion collisions (Mart́ı and Müller, 2003) where relativistic
extensions of FCT algorithms have been widely used. Schneider et al. (1993) compared a code
based on the relativistic HLL method (see Section 4.1.3) with two FCT algorithms (SHASTA
and LCPFCT). Further comparisons between these two strategies were performed by Rischke
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et al. (1995a,b). In the FCT algorithms, each hydrodynamic equation is treated separately as an
advection equation for the corresponding conserved quantity with proper source terms. Relativistic
FCT algorithms built in this way have been able to handle flows with discontinuities and large
Lorentz factors although the results are in general poorer than those obtained with HLL or other
Godunov-type methods.

4.4.2 Artificial viscosity methods

May and White (1966, 1967) were the first to develop a numerical code to solve the RHD equations.
With their time-dependent FD Lagrangian code they simulated the adiabatic spherical collapse
in general relativity. Artificial viscosity (AV) terms were included in the equations to damp the
spurious numerical oscillations at shock waves. The idea of modifying the hydrodynamic equations
by introducing an artificial dissipative mechanism near discontinuities mimicking a physical viscos-
ity (AV schemes) was originally proposed by von Neumann and Richtmyer (1950) and Richtmyer
and Morton (1967) in the context of the classical Euler equations. The form and strength of the
AV terms are such that the shock transition becomes smooth, extending over a small number of
numerical cells.

This generic recipe has been used with minor modifications in conjunction with standard FD
schemes in all numerical simulations employing May and White’s approach, and particularly in
Wilson’s formulation of numerical RHD. Relying on an Eulerian explicit non-conservative FD code
with monotonic transport and AV terms, Wilson (1972, 1979) and collaborators (Centrella and
Wilson, 1984; Hawley et al., 1984) simulated for the first time relativistic flows in more than one
spatial dimension.

Wilson’s formulation was widely used in the 1980s in numerous general relativistic scenarios
including cosmology, multidimensional stellar collapse, and accretion onto compact objects (see,
e.g., Font, 2008, for a review). However, despite its popularity it turned out to be unable to
accurately describe extremely relativistic flows (Lorentz factors larger than 2; see, e.g., Centrella
and Wilson, 1984). Norman and Winkler (1986) concluded that those large errors were mainly due
to the way in which the AV terms were included in the numerical scheme in Wilson’s formulation.
They proposed a reformulation of the difference equations with an artificial viscosity consistent
with the relativistic dynamics of non-perfect fluids (consistent AV schemes). The strong coupling
introduced in the equations by the presence of the viscous terms in the definition of relativistic
momentum and total energy densities required an implicit treatment of the difference equations.
Accurate results across strong relativistic shocks with large Lorentz factors in 1D were obtained in
combination with adaptive mesh techniques. Artificial viscosity techniques in numerical RHD are
reviewed in the book of Wilson and Mathews (2003).

Anninos and Fragile (2003) and Anninos et al. (2003) compared state-of-the-art AV schemes
and high-order central schemes using Wilson’s formulation for the former class of schemes and
a conservative formulation for the latter (NOCD scheme). Employing the 3D Cartesian code
COSMOS, they found that earlier results for AV schemes in shock tube tests are improved thanks
to the consistent implementation of the AV terms (see Sections 6.3.1 and 6.3.2). This does not hold,
however, for the shock reflection test that cannot be simulated accurately beyond infall velocities
0.95 (or 0.99 by adjusting the AV parameters). Similar results are obtained with the traditional
AV schemes implemented in COSMOS++, which is a FV code designed to solve the equations of
GRMHD. The results improve when applying the eAV scheme. In this scheme one solves an extra
equation for the total energy, which is used to substitute the solution obtained from the internal
energy equation, depending on the accuracy of the results. We note here for completeness that
COSMOS and COSMOS++ incorporate five different AV recipes – three scalar (von Neumann
and Richtmyer, 1950; White, 1973) and two tensor ones (Tscharnuter and Winkler, 1979; Anninos
et al., 2005).
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4.5 Multidimensional schemes and time advance

Many modern HRSC methods for RHD use multistep algorithms for time advance. Codes in
Mart́ı et al. (1991); Mart́ı et al. (1994); Falle and Komissarov (1996); Choi and Wiita (2010) and
the NOCD scheme in COSMOS use standard predictor-corrector algorithms to achieve second-
order accuracy in time. Other codes (Marquina et al., 1992; Dolezal and Wong, 1995; Mart́ı
et al., 1997; Del Zanna and Bucciantini, 2002; Lucas-Serrano et al., 2004) and GENESIS, RAM,
PLUTO, RENZO, and Ratpenat rely on second and third-order TVD-RK time discretization
algorithms developed in Shu and Osher (1988, 1989). These algorithms preserve the TVD property
at every substep, although standard fourth- and fifth-order Runge–Kutta methods (Lambert, 1991)
have been used, too (RAM, WHAM). Radice and Rezzolla (2012) employed a third-order strong-
stability-preserving Runge–Kutta scheme (Gotlieb et al., 2009).

Other RHD codes exploit single-step, second-order algorithms. Codes based on relativistic ex-
tensions of the PLM Lamberts et al. (2013) and PPM methods (Mart́ı and Müller, 1996; Mignone
et al., 2005b; FLASH; Mignone et al., 2007; Morsony et al., 2007; Lamberts et al., 2013) achieve
second-order accuracy in time by incorporating information of the domain of dependence of each
interface during the time step to the states used in the solution of the Riemann problems (character-
istic tracing). Of special interest by its simplicity, accuracy, and robustness is the MUSCL-Hancock
scheme implemented in the HRSC method of Schneider et al. (1993), the code of Mignone and
Bodo (2005), and in PLUTO, and in the TVDLF scheme (Yee, 1989b; Tóth and Odstrčil, 1996)
of AMRVAC.

The codes developed on the basis of Wilson’s formulation (see Section 4.4.2) all rely on explicit
fully-discrete schemes. Their accuracy is sensitive to the order and frequency of the updates
composing a complete time cycle, specially in the highly relativistic regime. Hence, the sequence
of steps is determined by a reasonable balance between accuracy and computational cost.

Codes using operator splitting apply the differential operators separately along coordinate di-
rections and the integration of sources in successive steps according to Strang’s (Strang, 1968)
prescription to preserve second-order accuracy (Mart́ı et al., 1994; Eulderink, 1993; Eulderink and
Mellema, 1995; Mignone and Bodo, 2005; Choi and Ryu, 2005), while codes based on Runge–Kutta
methods (Dolezal and Wong, 1995; Mart́ı et al., 1997; Aloy et al., 1999b; Lucas-Serrano et al., 2004;
Zhang and MacFadyen, 2006; Tchekhovskoy et al., 2007; Mignone et al., 2007; Wang et al., 2008;
Perucho et al., 2010) advance the spatial operators simultaneously (unsplit schemes). The code in
Mignone et al. (2005b) uses Strang splitting for the source terms and the spatially unsplit fully
corner-coupled method CTU (Colella, 1990) for the evaluation of the fluxes.

4.6 Equation of state and primitive variable recovery

The equations of RHD and RMHD are closed by means of an EOS relating the thermodynamic
variables. For single component fluids (like those presented in Section 3.1) only three thermody-
namic quantities are involved and an EOS of the form p = p(ρ, ε) is usually needed. For multiple
component fluids the EOS depends on the densities (or mass fractions) of the species, i.e., addi-
tional continuity equations (including reactive terms if necessary) for all species must be added to
the evolution system.

Early on most astrophysical simulations dealt with matter whose thermodynamic properties
can be described by an ideal gas equation of state with constant adiabatic index. However, present
day applications concerned with astrophysical jets, GRB, accretion flows onto compact objects
and the evolution of relativistic stars require a more sophisticated, microphysical EOS for a proper
description of the phenomena.

In the context of relativistic jets, Falle and Komissarov (1996), Komissarov and Falle (1998),
Scheck et al. (2002), and Perucho and Mart́ı (2007) considered a mixture of ideal relativistic Boltz-
mann gases (Synge EOS; Synge, 1957; Chandrasekhar, 1967), hence allowing for jets with general
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(i.e., e, e+, p) composition. Assuming plasma neutrality, only one parameter is needed to fix the
composition, e.g., the mass fraction of the leptons, Xl. Using the Synge EOS instead of a constant
adiabatic index EOS requires more computation time, because an iteration of the temperature,
involving modified Bessel functions, has to be performed for each cell in every time-step to recover
the primitive variables from the conserved ones (see below). To avoid this extra complexity, ap-
proximate expressions for the relativistic ideal gas EOS for single (Duncan et al., 1996; Sokolov
et al., 2001; Mignone et al., 2005b; Ryu et al., 2006) and multiple component (Chattopadhyay and
Ryu, 2009; Choi and Wiita, 2010) flows were proposed. Of particular interest are the approximate
EOS proposed by Mignone et al. (2005b) (first used by Mathews, 1971; see also Meliani et al., 2004)
and Ryu et al. (2006) which are consistent with Taub’s inequality4 at all temperatures. They have
the correct classical and ultrarelativistic limiting values and differ from the exact ideal gas EOS
by only up to a few percent in the relevant thermodynamic quantities.

A comprehensive discussion of the EOS used in the astrophysical scenarios mentioned above
is beyond the scope of this review. However, it is worth mentioning that a general EOS causes
no special problems for HRSC methods based on Riemann solvers. If the latter are based on the
exact solution, one needs to implement the proper adiabats across rarefactions and shocks (Taub’s
adiabat, see Section 8.5), while if they are based on the spectral decomposition of the Jacobian
matrices one has to write the eigenvalues and eigenvectors in terms of the thermodynamic quantities
(i.e., enthalpy, density, sound speed, and other thermodynamic derivatives) of the EOS. Donat et al.
(1998) (see also Section 8.1) provided the eigenvalues, and the left and right eigenvectors of 3D
RHD for a general EOS of the form p = p(ρ, ε), and Ryu et al. (2006) for an EOS of the form
h = h(ρ, p). Finally, simpler Riemann solvers like HLL or those based on the LF flux formula can
be used directly.

The situation described in the previous paragraph extends to the use of any convex EOS (see
Section 3.2), for which a discontinuity in the initial state gives rise to at most one (compressional)
shock, one contact, and one simple centered expansion fan, i.e., one wave per conservation equation.
For a real gas, however, the EOS can be nonconvex. If that is the case, the character of the solution
of the Riemann problem changes resulting in anomalous wave structures. In particular, the solution
may be no longer unique, i.e., an initial discontinuity may give rise to multiple shocks, multiple
contacts, and multiple simple centered expansion fans (see, e.g., Laney, 1998). In these situations,
Riemann solvers based on the common Riemann problem break-out or on a local linearization of
the system will obviously fail.

Conservative numerical schemes in both RHD and RMHD require a method to switch between
conserved variables (D,Si, τ) and primitive variables (ρ, vi, p). The transformation from primitive
to conserved variables has a closed-form solution (see Eqs. (11) – (13)), but the inverse transfor-
mation (conserved to primitive) requires the solution of a set of nonlinear equations that depends
explicitly on the equation of state p(ρ, ε). In the RHD case, a function of pressure, whose zero
represents the pressure of the physical state, can be obtained easily from Eqs. (11) – (13), (14) and
the EOS:

f(p̄) = p (ρ*(p̄), ε*(p̄))− p̄ (55)

with ρ*(p̄) and ε*(p̄) given by

ρ*(p̄) =
D

W*(p̄)
, (56)

and

ε*(p̄) =
τ −DW*(p̄) + p̄ [1−W*(p̄)2])

DW*(p̄)
, (57)

4 Taub’s fundamental inequality (Taub, 1948) determines the admissible region of the EOS for a relativistic gas
in the enthalpy-temperature plane.
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where

W*(p̄) =
1√

1− vi*(p̄)v* i(p̄)
(58)

and

vi*(p̄) =
Si

τ + p̄
. (59)

The root of Eq. (55) can be obtained by means of a nonlinear root-finder (e.g., a 1D Newton–
Raphson iteration). For an ideal gas with constant adiabatic index this procedure has proven
to be very successful in a large number of tests and applications (Mart́ı et al., 1991; Mart́ı and
Müller, 1996; Mart́ı et al., 1997; Aloy et al., 1999b; Mizuta et al., 2004). One can approximate the
derivative of f with respect to p̄ by (Aloy et al., 1999b)

f ′ = vi*(p̄)v* i(p̄)cs(ρ*(p̄), ε*(p̄))
2 − 1 , (60)

where cs(ρ, ε) is the sound speed which can be computed efficiently for any EOS. This approxima-
tion tends to the exact derivative as one approaches the solution, and it is used together with the
algorithm described above to recover the primitive variables in the codes GENESIS and Ratpenat.

Mignone et al. (2005b) proposed a similar procedure but for an EOS of the form h = h(p, ρ).
The resulting nonlinear equation is again a function of the pressure, and reads in our notation:

Dh(p̄, ρ*(p̄))W*(p̄)− τ − p̄ = 0. (61)

This procedure is implemented in the relativistic module of FLASH. It is also used in the code
of Choi and Wiita (2010), and specialized for an ideal gas equation in Mignone and Bodo (2005).
Radice and Rezzolla (2012) proposed a function of the enthalpy which in our notation can be
written as

g(h̄) = h(ρ*(h̄), ε*(h̄))− h̄, (62)

whose zero is the physical enthalpy.
Although the above procedures are valid for a general equation of state, in the case of the Synge

EOS, it is better to define another function of the pressure:

g(p̄) = w(ρ*(p̄), T*(ρ*(p̄), p̄))− w*(p̄), (63)

with w*(p̄) = ρ*(p̄)(1 + ε*(p̄)) + p̄, and ρ*(p̄) and ε*(p̄) being given by Eqs. (56) and (57), respec-
tively. T*(p̄) ∝ p̄/ρ*(p̄), where the constant of proportionality is a function of the effective mass of
the gas particles in the mixture. Finally, w(ρ, T ) is the enthalpy density according to the Synge
EOS. Alternative strategies were derived for approximations of the Synge EOS (Mignone et al.,
2005b; Ryu et al., 2006; Mignone et al., 2007).

Dolezal and Wong (1995) solved an implicit equation for the rest mass density and a general
EOS of the form p = p(ρ, ε), and Eulderink (1993), and Eulderink and Mellema (1995) developed
several procedures to calculate the primitive variables for an ideal gas EOS with constant adiabatic
index. One of their procedures is based on finding the physically admissible root of a fourth-order
polynomial of a function of the specific enthalpy. The quartic can be solved analytically by the exact
algebraic quartic root formula, but this computation is rather expensive. The root of the quartic
can be found much more efficiently using a 1D Newton–Raphson iteration. Another procedure
is based on the use of a six-dimensional Newton–Kantorovich method to solve the whole set of
nonlinear equations.

Also for ideal gases with constant adiabatic index, Schneider et al. (1993) and Duncan and
Hughes (1994), and Hughes et al. (2002) transform the system (11) – (13) (for zero magnetic field)
and (14) algebraically into a fourth-order polynomial in the modulus of the flow speed that can
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be solved analytically (Choi and Ryu, 2005; Ryu et al., 2006) or by means of iterative procedures
(Zhang and MacFadyen, 2006). The analytic solver seems to be more robust for large (i.e., ,
& 100) Lorentz factor flows (Bernstein and Hughes, 2009). Del Zanna and Bucciantini (2002)
solve, instead, a six-order polynomial in the Lorentz factor.

4.7 Adaptive mesh refinement (AMR)

The underlying concepts and general strategies of adaptive mesh refinement (AMR) are summa-
rized in Section 8.3.5. Here we discuss specific implementations of AMR for RHD. For general
relativistic flows, see e.g., the Whisky code which has AMR capabilities based on Carpet.

The first application of AMR in the field of RHD was presented by Duncan and Hughes (1994).
Their AMR algorithm was written by Quirk (1991, 1996), which is an outgrowth of the original
work of Berger and Oliger (1984), Berger and Colella (1989), and Bell et al. (1994). In order
for the AMR method to sense where further refinement is needed, Duncan and Hughes used the
gradient of the laboratory frame mass density. The simulations were performed using only one
level of refinement by a factor of 4 in both directions. The method was extended later to 3D
by Hughes et al. (2002). Wang et al. (2008) have also implemented a variant of Berger’s AMR
technique in their RHD code RENZO (see Table 1) that is adaptive in time and space, can handle
curvilinear coordinates (cylindrical and spherical), has load-balancing functionality, and uses the
standard message passing interface (MPI).

Further AMR simulations of relativistic flows were utilizing the FLASH code, which is a gen-
eral purpose simulation tool for astrophysical flow including modules for RHD and AMR. The
AMR module was adapted from PARAMESH, which is a block-structured AMR-package written
in Fortran 90. Contrary to the AMR implementation of Berger and Oliger (1984); Berger and
Colella (1989); Bell et al. (1994) PARAMESH does not allow patches (i) rotated relative to the
coordinate axes, (ii) of arbitrary shape, (iii) to overlap, and (iv) being merged with other patches
at the same refinement level whenever appropriate. These four properties provide a very flexible
and memory-efficient strategy, but result in a very complex code, which is difficult to parallelize.
Instead, PARAMESH uses a hierarchy of nested, logically Cartesian blocks that are aligned with
the coordinate axes and typically have eight cells per dimension for a total of 8d cells per block,
where d = 1, 2, or 3 is the dimensionality of the flow. The refinement is by a factor of two in
each direction so that each block is either at the highest level or contains 2d children blocks. Leaf
blocks are defined to be those blocks with no children, i.e., they are at the bottom of the tree. The
basic data structure is then an oct-tree, quad-tree and binary-tree for 3D, 2D, and 1D problems,
respectively. Flux conservation at patch boundaries is imposed by replacing fluxes computed at
the coarser level with appropriate sums of fluxes at the finer level. Whether to refine or coarsen
the grid is determined by calculating an approximate numerical second derivative of flow variables
that can be specified at run time. FLASH handles parallelization with the MPI library and uses
an estimate of the work per processor for load balancing.

Using the FLASH code, López-Cámara et al. (2013) performed 3D AMR simulations of long-
duration gamma-ray burst jets inside massive progenitor stars (see also Section 2.2) The AMR
components of FLASH are utilized also by the RHD code RAM which is designed to handle
special relativistic flows in the context of GRB, too.

A novel, hybrid block-adaptive AMR strategy for solving sets of near-conservation laws in
general curvilinear (orthogonal) coordinate systems was presented by van der Holst and Keppens
(2007). This was a further step in the development of the AMRVAC code (Keppens et al., 2003)
which is designed to integrate the equations of hydrodynamics and magnetohydrodynamics both in
their classical and special relativistic form. The hybrid block-AMR scheme is based on individual
grids with a pre-fixed number of cells instead of different-sized patches, but it relaxes the full
oct-tree structure where a block that needs refinement triggers 2d subblocks when the grids are

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1007/lrca-2015-3


Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics 51

refined by a factor of two. Hence, it allows for incomplete block families (also called ‘leaves’), by
incorporating the idea of the patch-based strategy of an optimal adjustment of the grid structure
to dynamical features of interest. However, in the patch-based strategy this was accomplished at
the expense of introducing unequally sized grids per level. On the other hand, the good cache
performance of the tree block-based scheme is fully utilized. In their code, van der Holst and
Keppens (2007) have also eliminated the possibility that patches residing on the same level can
overlap, which is a natural choice for both the hybrid and full oct-tree. The up to now latest version
in this development is the code MPI-AMRVAC (Keppens et al., 2012). Currently, it works with a
pure block-quadtree or block-octree (also for curvilinear grids). The block size is (N +2G)d, where
N is the number of cells in each mesh block (which can be different along each coordinate direction),
and G is the number of ghost cells on each lateral side. These parameters can be adjusted by the
user at compile time, i.e., MPI-AMRVAC can handle larger stencil expressions easily, and has in a
sense more flexibility than the 2d block size hardcoded in RAMSES (see below).

Another AMR code for simulating classical and relativistic hydrodynamics and MHD flows
is PLUTO, which was originally designed for static grids (Mignone et al., 2007, 2009, 2010), but
extended to more general grids by Mignone et al. (2012) to exploit block-structured AMR based on
the Chombo library. The latter is a software package providing a distributed infrastructure for serial
and parallel calculations over block-structured adaptively refined grids in multiple dimensions.
Chombo follows the Berger and Rigoutsos (1991) strategy to determine the most efficient patch
layout to cover the cells that have been tagged for refinement. In the MPI parallelized PLUTO
– Chombo code, cells are tagged for refinement whenever a prescribed function of the conserved
variables and of its derivatives exceeds a prescribed threshold.

De Colle et al. (2012a) developed Mezcal-SRHD an MPI parallelized AMR code for RHD. It
uses oct-tree block-structured grid refinement. Different from other AMR codes, at any given time
each position on the grid is covered by only one cell, i.e., there are no pointers between ‘parent’
and ‘sibling’. Furthermore, there are no ghost cells, usually present in other tree-AMR codes (e.g.,
Berger and Oliger, 1984; Khokhlov, 1998), attached to any of the blocks. The code employs a global
time step common to all grid levels, which may cause some important computational overhead with
respect to using a local time step, but avoids an important bottleneck for parallelization. Mezcal-
SRHD has been used to simulate GRB dynamics and afterglow radiation.

A relativistic extension of the AMR hydrodynamics code RAMSES was presented by Lamberts
et al. (2013). RAMSES uses a Cartesian grid, where cells are related in a recursive tree structure
and grouped into blocks of 2d cells (d is the number of spatial dimensions), which share the same
parent cell. Grid refinement is based on the gradient of the Lorentz factor. Prolongation is per-
formed by second-order interpolation using a minmod limiter, while restriction involves computing
block averages. To avoid failures in the restriction step in the case of nearly ballistic flows, the
relativistic extension of RAMSES employs reconstruction of the specific internal energy rather
than of the specific total energy. This method makes the numerical scheme non-conservative, but
guarantees positivity of the pressure and subluminal speeds. The code was used to perform 2D
simulations of gamma-ray binaries, which are systems composed of a massive star and a rotation-
powered pulsar with a highly relativistic wind. The simulated models involve winds with a Lorentz
factor up to 16 (Lamberts et al., 2013).

4.8 Summary of existing codes

Table 1 lists the multidimensional codes for RHD based on HRSC methods in chronological order,
which rely both on FD and FV schemes, and summarizes the basic algorithms implemented in
the codes (type of spatial reconstruction, Riemann solvers and flux formulas used, time advance
and multidimensional schemes). The table only includes those codes specifically developed for
RHD, and those GRHD codes for fixed spacetimes that were used or tested also in RHD. We
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also include the GRHD code for dynamical spacetimes Whisky, because it has been widely tested
in RHD. COSMOS, AMRVAC, PLUTO, and FLASH are multi-purpose codes for computational
astrophysics. Special attention is paid to the algorithms implemented in their corresponding rela-
tivistic modules. COSMOS++, RAISHIN, and TESS are RMHD codes, but they have been tested
in RHD, too.

The codes Whisky, AMRVAC, PLUTO, and FLASH are publicly available and provide com-
prehensive on-line documentation. They can be downloaded from the corresponding webpages:
Whisky, AMRVAC, PLUTO, and FLASH. AMRVAC is an AMR-offspring of the Versatile Advec-
tion Code (VAC, Tóth, 1996; VAC). The website AMRVAC hosts the development version of the
code and points to the former code website MPI-AMRVAC, where some further information can
be found that is unfortunatley not properly updated.
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Table 1: Multidimensional RHD codes based on HRSC methods, in chronological order.

Code name/ Spatial Order of Code characteristicsb

reference dims accuracya

MM94 (Mart́ı et al.,
1994)

2D 3, 2 FV; PP reconstruction of primitive variablesc; Riemann
solver of Roe type with arithmetic averaging; standard
predictor-corrector method; Strang splitting

DH94 (Duncan and
Hughes, 1994)

2D 2, 2 FV; AMR; PL reconstruction of conserved variables; HLL
Riemann solver

EM95 (Eulderink,
1993; Eulderink and
Mellema, 1995)

2D 2, 2 FV; PL reconstruction of conserved variables by steady
extrapolation; Relativistic Roe Riemann solver; two-step
method for time advance; Strang splitting

DW95 (Dolezal and
Wong, 1995)

3D ≤ 4d CH-ENO-LF, CH-ENO-LLF: FD; ENO reconstruction of
characteristic fluxes; TVD-RK methods; unsplit

3D ≤ 4d CW-ENO-LF, CW-ENO-LLF: FD; ENO reconstruction of
conserved fluxes; TVD-RK methods; unsplit

FK96 (Falle and
Komissarov, 1996)

2D 2, 2 FV; PL reconstruction of primitive variables; approximate
Riemann solver based on local linearizations of the RHD
equations in primitive form; predictor-corrector method;
unsplit

MM97 (Mart́ı et al.,
1997)

2D 3, 2-3 FV; PP reconstruction of primitive variables; MMFF; TVD-
RK methods; unsplit

GENESIS (Aloy et al.,
1999b)

3D 3, 2-3 FV; PP reconstruction of primitive variables; MMFF; TVD-
RK methods; unsplit

HM02 (Hughes et al.,
2002)

3D 2, 2 FV; AMR; PL reconstruction of conserved variables; HLL
Riemann solver

DB02 (Del Zanna and
Bucciantini, 2002)

3D 3, 3 FD; CENO reconstruction of primitive variables; HLL Rie-
mann solver, LLF flux formula; TVD-RK methods; unsplit

Whisky (Whisky;
Baiotti et al., 2003)

3D 2-3, 2-4 FV; AMR; PL/PP/ENO reconstruction of primi-
tive/conserved variables; HLL Riemann solver, Roe-type
Riemann solver with arithmetic averaging, MMFF; iterative
Crank–Nicholson scheme, various RK methods; unsplit

COSMOS (Anninos
et al., 2003; Anninos
and Fragile, 2003)

3D 2, 2 NOCD: FV; PL reconstruction of conserved quantities;
NOCD-type scheme with staggered (Nessyahu and Tad-
mor, 1990; Jiang and Tadmor, 1998) and non-staggered grids
(Jiang et al., 1998); standard predictor-corrector method;
dimensional splitting

LF04 (Lucas-Serrano
et al., 2004)

2D 3, 3 FV; PP/PH reconstruction of primitive variables; HLL Rie-
mann solver, MMFF/LLF flux formulas; TVD-RK methods;
unsplit

MY04 (Mizuta et al.,
2001, 2004)

2D 2-3, 1 FV; PL/quadratic reconstruction of primitive variables;
MMFF; single-step time integration; unsplit

MP05 (Mignone et al.,
2005b)

3D 3, 2 FV; PP reconstruction of primitive variables; two-shock
approximate Riemann solver; characteristic tracing for the
conservative step, second order RK for the source update;
Strang splitting for the sources; CTU

MB05 (Mignone and
Bodo, 2005)

2D 2, 2 FV; PL reconstruction of primitive variables; HLLC Rie-
mann solver; MUSCL-Hancock scheme; Strang splitting

CR05 (Choi and Ryu,
2005; Ryu et al., 2006)

3D 2, 2 FD; Harten (1983) TVD scheme; Strang splitting

Continued on next page
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Table 1 – Continued from previous page

Code name/ Spatial Order of Code characteristicsb

reference dims accuracya

RAM (Zhang and
MacFadyen, 2006)

3D 2-3, 3-5 U-PLM, U-PPM: FV; AMR; PL/PP reconstruction of prim-
itive variables; HLL Riemann solver and MMFF/LLF flux
formulas; third order TVD-RK method and standard fourth
and fifth order RK methods; unsplit

3D 2-5, 3-5 F-PLM, F-WENO: FD; AMR; PL/WENO reconstruction
of characteristic fluxes; third order TVD-RK method and
standard fourth and fifth order RK methods; unsplit

AMRVAC (Keppens
et al., 2003; AMR-
VAC; Meliani et al.,
2007; Keppens et al.,
2012)

3D 2-3, 2-4 FV; AMR; PL/PP reconstruction of primitive variables;
LLF flux formulas and HLL/HLLC Riemann solvers;
MUSCL-Hancock scheme/standard predictor-corrector
method/second to fourth order RK methods; unsplit

WHAM
(Tchekhovskoy et al.,
2007)

2D 5, 4 FV; WENO reconstruction of (point-valued) primitive vari-
ables and time advance of (cell-averaged) conserved vari-
ables; HLL Riemann solver; standard fourth order RK
method; unsplit

PLUTO (PLUTO;
Mignone et al., 2007)

3D 2-3, 2-3 FV; AMR; PL/PP/WENO reconstruction of primi-
tive/characteristic variables; two-shock/HLL/HLLC
Riemann solvers, LLF flux formula; MUSCL-
Hancock/characteristic tracing/TVD-RK methods; split
(Strang)/unsplit (CTU) methods

FLASH (FLASH;
Fryxell et al., 2000;
Mignone et al., 2005b;
Morsony et al., 2007)

3D 3, 2 FV; AMR; relativistic module as described in MP05
(Mignone et al., 2005b)

NY08 (Nagakura and
Yamada, 2008; Na-
gakura et al., 2011)

2D 2-3, 2-3 FV; PL/PP reconstruction of primitive variables; HLL Rie-
mann solver; TVD-RK methods; unsplit

RENZO (Wang et al.,
2008)

3D 2-5, 3 FV; AMR; PL/PP/CENO reconstruction of primitive vari-
ables; HLL/HLLC Riemann solver and MMFF/LLF flux
formulas; TVD-RK methods; unsplit

3D 2-3, 3 FD; AMR; PL/WENO reconstruction of characteristic
fluxes; TVD-RK methods; unsplit

To09 (Tominaga,
2009)

2D 3, 3 FV; PH reconstruction; MFF; TVD-RK methods; unsplit

RELDAFNA (Klein,
2010; Wygoda et al.,
2011)

2D 2, 2 FV; AMR

CW10 (Choi and Wi-
ita, 2010)

3D 2, 2 FV; PL reconstruction of primitive variables; HLL Riemann
solver; standard predictor-corrector method; Strang splitting

Ratpenat (Perucho
et al., 2010)

3D 3, 2-3 FV; PP reconstruction of primitive variables; MMFF; TVD-
RK methods; unsplit

Mezcal-SRHD
(De Colle et al.,
2012a)

2D 2, 2 FV; AMR; PL reconstruction of primitive variables; HLL
Riemann solver; RK methods

MM12 (Matsumoto
et al., 2012)

3D 2, 2 FV; PL reconstruction; HLLC Riemann solver; RK methods

Continued on next page
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Table 1 – Continued from previous page

Code name/ Spatial Order of Code characteristicsb

reference dims accuracya

THC (Radice and
Rezzolla, 2012)

3D 3-7, 3 FD; MP/WENO reconstruction of characteristic fluxes;
third-order strong-stability preserving RK scheme; unsplit

RAMSESe (Lamberts
et al., 2013)

3D 2, 2 FV; AMR; PL reconstruction of primitive vari-
ables; HLL/HLLC Riemann solvers; MUSCL-
Hancock/characteristic tracing methods

a Spatial and temporal order of the method for smooth flows in one spatial dimension.
b Finite volume/difference scheme; spatial reconstruction algorithm; computation of numerical fluxes; time advance;

split/unsplit scheme.
c In some cases the reconstruction of the primitive variables is done on the spatial components of fluid four-velocity

(to avoid unphysical reconstructed values).
d Global order of accuracy.
e The scheme used in relativistic simulations.
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5 Grid-based Methods in RMHD

The success of HRSC methods in (classical and relativistic) hydrodynamics fostered their appli-
cation to MHD, and more recently, to RMHD. In MHD two additional equations must be solved,
which are the induction equation

∂B

∂t
−∇× (v ×B) = 0 (64)

and the divergence-free condition for the magnetic field

∇ ·B = 0. (65)

The enlarged set of MHD equations is harder to solve than that of HD, because the MHD
equations possess additional families of waves and admit additional wave structures such as switch-
on/off shocks and rarefactions, and compound waves (see Section 3.2). The MHD equations involve
also degeneracies, i.e., they are no longer strictly hyperbolic. Finally, satisfying the divergence-free
constraint for the magnetic field poses a numerical challenge. Hence, the development of HRSC
methods for numerical MHD was slower than in classical computational fluid dynamics. In 1988,
Brio and Wu (1988) extended the HRSC techniques based on approximate Riemann solvers to
1D MHD. They renormalized the eigenvectors of the MHD equations in order to use them in the
degenerate cases and built a Roe-type Riemann solver for the 1D MHD equations. Later this line
of research was extended to Godunov-type methods for multidimensional MHD (e.g., Zachary
et al., 1994; Dai and Woodward, 1994a,b; Ryu et al., 1995).

Because the induction equation and the divergence-free condition are the same in both classical
and relativistic MHD, the techniques to integrate the former one and to force the magnetic field
to remain divergence free carry over from classical to relativistic MHD, i.e., respective numerical
schemes were developed for classical MHD in parallel with those for RMHD. The most popular
approaches are reviewed in Tóth (2000), and Mignone and Bodo (2008) and summarized in this
section.

In the following we discuss the development of multidimensional RMHD codes based on HRSC
techniques, an activity which took place mainly during the past decade. The structure of the
discussion closely follows that of the previous Section concerned with HRSC methods in RHD.

5.1 Relativistic Riemann solvers

5.1.1 Relativistic solvers based on the exact solution of the Riemann problem

The procedure described in Section 8.6 and derived by Giacomazzo and Rezzolla (2006) to obtain
the exact solution of the Riemann problem in RMHD can be used to construct an exact Riemann
solver. However, no numerical code based on this approach has been developed yet. As Giacomazzo
and Rezzolla discussed in a more recent paper (Giacomazzo and Rezzolla, 2007), the exact solver
described in Giacomazzo and Rezzolla (2006) is computationally too expensive to be used in
multidimensional codes.

5.1.2 Roe-type relativistic solvers

Roe-type Riemann solvers use as a key ingredient the spectral decomposition of the flux vector
Jacobians of the system of equations in conservation form. In the case of RMHD, the spectral de-
composition is done in covariant variables. After removing the unphysical waves (see Section 8.2),
the eigenvectors are obtained in conserved variables using the corresponding variable transforma-
tions. The treatment of degenerate states requires some extra effort.
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Komissarov (1999a) developed a linearized Riemann solver based on a primitive-variable for-
mulation of the 1D RMHD system in quasilinear form, which is similar to the RHD Riemann
solverB of Falle and Komissarov (1996) (see also Section 4.1.2). The 7-component right eigenvec-
tors in primitive variables are obtained from the 10-component right eigenvectors in the augmented
system of covariant variables. Unlike the Riemann solverB of Falle and Komissarov (1996), the
RMHD Riemann solver does not make use of the left eigenvectors and the wave strengths which
are needed to compute the fluid state at the numerical interface are obtained from the jump
conditions at the (central) contact discontinuity. Komissarov’s Riemann solver, which has been
implemented successfully in a multidimensional FV scheme, treats non-degenerate and degenerate
states separately.

Independently, Balsara (2001a) presented a detailed discussion of the characteristic structure
of the RMHD system in covariant variables and the algebraic transformations that are needed to
obtain the physical eigenvectors in primitive as well as conserved variables. The resulting eigenvec-
tors are input for both a TVD interpolation procedure that operates on the characteristic variables,
and a linearized Riemann solver. Although Balsara discussed a multidimensional extension of his
code in Balsara (2001a), he described and tested only a 1D version.

Koldoba et al. (2002) also described a 1D code for the RMHD system based on a linearized
Roe-type Riemann solver. They presented the left and right eigenvectors of the system in covariant
variables and the transformations that are required to obtain the numerical fluxes in conservation
form together with a small set of 1D tests. As far as we know, no further (multidimensional)
testing of the algorithm has been done.

Antón et al. (2010) (see also Section 8.2) presented a thorough analysis of the characteristic
structure of the RMHD equations and a Riemann solver based on renormalized (i.e., valid for
both non-degenerate and degenerate states) sets of left and right eigenvectors of the system in
conserved variables (Full Wave Decomposition Riemann solver, FWD). They provided the matrix
transformations (changes of variables) from the set of eigenvectors in covariant variables to the
corresponding sets in (i) the reduced system of covariant variables and (ii) the conserved variables.
Running a set of 1D and 2D test calculations, they also compared the performance of their FWD
Riemann solver with that of several Riemann solvers of the HLL family (HLL, HLLC, HLLD; see
next Section 5.1.3).

5.1.3 Relativistic HLL, HLLC and HLLD methods

The Harten–Lax–van Leer Riemann solver (Harten et al., 1983) described in Section 4.1.3 for
RHD can be used also in RMHD, if one applies proper lower and upper bounds for the smallest
and largest signal velocities (fast magnetosonic wavespeeds). In the RMHD code developed by
Del Zanna et al. (2003) and in the MHD version of the relativistic code GENESIS (Leismann
et al., 2005), the numerical fluxes are computed according to Eq. (30), with aL (aR) equal to the
speed of the slowest (fastest) left-propagating (right-propagating) wave, computed at both sides of
the cell interface. The same procedure is used in the GRMHD codes HARM, RAISHIN, ECHO,
WhiskyMHD, and in those of Duez et al. (2005) and Antón et al. (2006).

Relying on previous experience in RHD (Mignone and Bodo, 2005; see also Section 4.1.3),
Mignone and Bodo (2006) extended the HLLC Riemann solver of Gurski (2004) and Li (2005)
for classical MHD to RMHD. In the HLLC approximate Riemann solver (see Toro et al., 1994,
and Section 4.1.3), the presence of a contact discontinuity in the middle of the Riemann fan is
recovered. Requiring consistency of the approximate Riemann solution with the conservation laws
in a cell, gives rise to fourteen conditions determining the two intermediate states in 3D RMHD.

In their discussion, Mignone and Bodo (2006) differentiated between the cases where the com-
ponent of the magnetic field normal to the contact discontinuity, Bx, vanishes and where it does
not. In either case, the speed of the contact discontinuity is assumed to be equal to the (constant)
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normal velocity in the intermediate states, i.e., a* = vx* , and the normal component of the magnetic
field is assumed to be continuous at the interface. Hence, Bx

* = Bx
L = Bx

R can be considered as
a parameter of the solution. If Bx 6= 0, the fourteen consistency relations together with the six
continuity conditions across the contact discontinuity (for total pressure, flow velocity, and tan-
gential magnetic field components) allow one to determine the values of 20 variables, i.e., 10 per
state. Mignone and Bodo (2006) chose the relativistic density, the components of the fluid veloc-
ity, the components of the tangential magnetic field, the components of the tangential relativistic
momentum, the total energy, and the total pressure as independent unknowns.

For Bx = 0, the continuity of the normal component of the fluid velocity and of the total
pressure across the contact discontinuity together with the consistency relations, allows one to
determine 8 unknowns per state (relativistic density, normal fluid velocity, components of the
tangential magnetic field, components of the tangential relativistic momentum, total energy, and
total pressure). Once the corresponding algebraic problem is solved, the remaining state variables
and then the numerical fluxes can be calculated. Honkkila and Janhunen (2007) developed another
HLLC scheme for RMHD using different assumptions to solve the intermediate states.

The direct application of the HLLC solver of Mignone and Bodo (2006) to genuinely 3D prob-
lems suffers from a potential pathological singularity. It arises when the component of the magnetic
field normal to a cell interface is zero. Sticking to the HLL approach, Mignone et al. (2009) ex-
tended the five-wave Riemann solver HLLD originally developed by Miyoshi and Kusano (2005)
for MHD to the relativistic case. In this solver, besides the central contact discontinuity, the
Alfvén discontinuities are reintroduced in the Riemann fan, which then involves four intermediate
states. The resulting relativistic HLLD solver is considerably more elaborate than its classical
counterpart, because the velocity normal to the interface is (different from classical MHD) no
longer constant across Alfvén discontinuities, and because of the higher complexity of the RMHD
equations. PLUTO and ATHENA incorporate HLL, HLLC, and HLLD Riemann solvers. TESS
uses HLLC, whereas Mara relies on HLLD. MPI-AMRVAC allows to switch between HLL and
HLLC. The computational efficiency and the accuracy of HLL, HLLC and HLLD were tested and
compared in Mignone et al. (2009), and HLL, HLLC and FWD in Antón et al. (2010).

5.2 Flux formulas

The Lax–Friedrichs flux formula (see Section 4.2.1) can be used straightforwardly to compute the
numerical fluxes in conservative RMHD schemes. Most of the RMHD simulations performed by
van der Holst et al. (2008) with the AMRVAC code utilized the TVDLF scheme (Yee, 1989b;
Tóth and Odstrčil, 1996), which is a second-order accurate variant of the LLF flux formula. The
COSMOS++ code exploits the NOCD scheme of Kurganov and Tadmor (2000), in which the
numerical fluxes are calculated according to the LLF formula. None of the present-day RMHD
codes uses the Marquina flux formula.

5.3 Spatial reconstruction

As in RHD, the strategies for spatial reconstruction in numerical RMHD do not differ from those
developed for general hyperbolic systems of conservation laws. Again one of the preferred choices
are TVD schemes (mainly used in FV methods), which rely on linear interpolation and slope
limiters for cell reconstruction. The corresponding codes are limited to second-order of accuracy.
Preferably, one reconstructs primitive variables, like density, pressure, the components of the tan-
gential magnetic field, and the spatial components of the four velocity. The codes of Komissarov
(1999a), Gammie and Tóth (2003), Leismann et al. (2005), Duez et al. (2005), Antón et al. (2006),
Mizuno et al. (2006), Mignone and Bodo (2006), Giacomazzo and Rezzolla (2007) and Del Zanna
et al. (2007) use piecewise linear reconstruction with standard slope limiters (e.g., VAN LEER,
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MINMOD, MC), while MPI-AMRVAC incoporates also more modern limiters, like Koren (Kep-
pens et al., 2012). TESS employs piecewise linear reconstruction on a moving Voronoi mesh with
a TVD preserving slope limiter to extrapolate the primitive variables from cell centers to face
centers. Codes that also allow for piecewise parabolic reconstructions are those of Duez et al.
(2005), Leismann et al. (2005) and Mizuno et al. (2006), MPI-AMRVAC and an upgraded version
of HARM.

Another choice are ENO schemes (mainly used in FD methods), which are based on adaptive
stencils to reconstruct variables (typically fluxes) at cell interfaces from the point values. They
achieve third-order to fifth-order accuracy. The codes of Del Zanna et al. (2003) and Anderson et al.
(2006) are third-order accurate using CENO reconstruction. The ECHO code includes different
ENO reconstruction routines (ENO, CENO, and WENO), and also ENO-like routines, like e.g.,
the Monotonicity Preserving scheme (MP; Suresh and Huynh, 1997), which are up to fifth-order
accurate. The MP scheme is based on interpolation using a fixed 5-point stencil and a filter that
preserves monotonicity near discontinuities.

A comment is necessary here, because the above discussion concerned the spatial reconstruction
of cell interface values from cell average (FV methods) or cell center (FD methods) values. However,
most of the contemporary RMHD codes (i.e., those based on the constrained transport algorithm
to keep the magnetic field divergence free; see Section 5.5.1) need to reconstruct the magnetic field
components, defined on a staggered grid, from cell interfaces to cell centers. Special care must be
taken to avoid a reduction of the spatial accuracy of the method in this additional interpolation
step.

5.4 Flux-limiter methods: Davis scheme

The Lax–Wendroff scheme (Lax and Wendroff, 1960) is among the most well known finite difference
schemes. When applied to the linear advection equation, the scheme reads

un+1
i =

1

2
a
∆t

∆x
(1 + a∆t/∆x)uni−1 + (1− a2(∆t)2/(∆x)2)uni −

1

2
a
∆t

∆x
(1− a∆t/∆x)uni−1 , (66)

where a is the constant signal propagation speed. When applied to a nonlinear conservation law
with flux f , the previous scheme becomes the two-step Lax–Wendroff scheme

u
(1)
i = uni −

∆t

∆x
(fni − fni−1), (67)

u
(2)
i =

1

2

(
uni + u

(1)
i −

∆t

∆x

(
f
(1)
i+1 − f

(1)
i

))
(68)

(f
(1)
i = f(u

(1)
i )). In the original two-step Lax–Wendroff scheme un+1

i = u
(2)
i is the solution at the

new time step. However, in Davis’ approach (Davis, 1984)

un+1
i = u

(2)
i +Dn

i+1/2 −Dn
i−1/2 , (69)

where the extra terms are local, parameter-free dissipation terms that do not require any char-
acteristic information and make the whole algorithm TVD. Koide et al. (1999) implemented the
scheme of Davis in their GRMHD code.

5.5 Non-conservative finite-difference schemes

5.5.1 Flux corrected transport method

Special relativistic 2D MHD test problems with Lorentz factors up to 3 were investigated by Dubal
(1991) with a code based on FCT techniques. They utilized a second-order Lax–Wendroff FD
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60 José Maŕıa Mart́ı and Ewald Müller

method including a fourth-order dispersion error algorithm (Weber et al., 1979). In the context of
GRMHD, Yokosawa (1993) studied with a FCT technique developed for a RMHD code (Yokosawa
et al., 1982) the influence of frame dragging on MHD accretion flows onto a Kerr black hole. Both
Dubal (1991) and Yokosawa (1993) treated the RMHD equations as advection equations, and hence
violated the conservation laws.

5.5.2 Artificial viscosity methods

Relying on a similar formulation of the equations and AV techniques as those used in the early
days of numerical RHD (see Section 4.4.2), Wilson (1975, 1977) led the efforts to develop numerical
codes for GRMHD. More recently, De Villiers and Hawley (2003) presented a 3D GRMHD code
based on techniques (including AV) first developed for axisymmetric hydrodynamics around black
holes Hawley et al. (1984). The code suffers from the known limitations of the artificial viscosity
algorithm.

COSMOS++ also relies on Wilson’s formulation of the GRMHD equations, but uses consistent
AV techniques (involving different AV recipes) and solves an extra equation for the total energy
(see Section 4.4.2). The code seems not to suffer from the aforementioned limitations of traditional
AV methods in RHD.

5.6 Multidimensional schemes and time advance

The original version of HARM uses the mid-point method for time advance. However, most RMHD
codes (including the upgraded HARM) rely on Runge–Kutta methods of second and third order
accuracy (whether TVD-preserving or not; Del Zanna et al., 2003; Leismann et al., 2005; Antón
et al., 2006; Mizuno et al., 2006; Neilsen et al., 2006; Anderson et al., 2006; Del Zanna et al., 2007;
Nagataki, 2009; Antón et al., 2010; Beckwith and Stone, 2011), and even higher order accuracy
(Etienne et al., 2010), or on the MUSCL-Hancock scheme (Mignone and Bodo, 2006; van der Holst
and Keppens, 2007; van der Holst et al., 2008; Beckwith and Stone, 2011; Zrake and MacFadyen,
2012). Codes like PLUTO and MPI-AMRVAC incorporate both types of schemes. TESS employs
a third order TVD-RK to update the values of the conserved variables and the positions of the
points generating the moving Voronoi mesh. In all these cases, the solution is advanced in time in
an unsplit manner.

5.7 Divergence-free condition

In general, the divergence-free condition of the magnetic field is fulfilled during a simulation only at
the truncation level, i.e., non-solenoidal components of the magnetic field may be generated. This
numerical failure produces artificial forces parallel to the magnetic field and falsifies the solution
(Brackbill and Barnes, 1980). Hence, different numerical strategies have been developed to keep
the violation of the constraint below a reasonable value.

Mignone and Bodo (2008) gave a concise description of the respective approaches used in HRSC
schemes, while Tóth (2000) provided a thorough discussion of constrained transport (CT) methods,
also comparing the performance of the most popular ones. In this section, we shall closely follow
the description given in these two studies. Another useful overview of numerical strategies to keep
the solenoidal condition can be found in Chapter 19 of Goedbloed et al. (2010).

The approaches, which can be considered as modifications of the HRSC base scheme, comprise
two categories (Balsara, 2004; Mignone and Bodo, 2008). In the first one (divergence-cleaning
schemes), the magnetic field is advanced as any other variable and the fulfillment (up to truncation
error) of the divergence-free condition of the magnetic field is imposed in a separate divergence-
cleaning step. Such schemes use a cell centered representation of the magnetic field, which allows
for an easy extension of the base scheme. Moreover, with a cell centered representation of all
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conserved quantities the extension to adaptive and unstructured grids is straightforward. In the
second category (CT), the magnetic field is usually represented on a staggered grid, while the other
variables are still allocated to cell centers. In CT schemes, the induction equation is naturally
updated using Stokes theorem, i.e., the divergence-free condition is fulfilled to machine accuracy
(divergence-free schemes).

5.7.1 Eight-wave method

The eight-wave formulation of the MHD equations (Powell, 1994) is based on a derivation of
the equations that does not involve Maxwell’s ∇ · B = 0 equation. In this formulation, the
three components of the magnetic field are evolved in an unconstrained way and source terms
proportional to the divergence of the magnetic field appear in the momentum, energy, and induction
equations. Powell (1994) showed that these sources terms change the character of the equations
introducing an additional eighth wave which corresponds to the advection of the divergence of the
magnetic field. The other seven waves are the same as in the traditional formulation.

The eight-wave formulation is more stable and robust than the original conservative formulation
for any shock-capturing MHD code. However, Tóth (2000) pointed out that by virtue of the
Lax–Wendroff theorem (Lax and Wendroff, 1960), the non-conservative source terms can produce
incorrect jump conditions, leading to incorrect results particularly in problems involving strong
shocks. Janhunen (2000) and Dellar (2001) argued to add the source terms only to the induction
equation, hence restoring the momentum and energy conservation.

The eight-wave method is incorporated in PLUTO and MPI-AMRVAC as one of the algorithms
for divergence cleaning in both the MHD and RMHD modules.

5.7.2 Hyperbolic/parabolic divergence cleaning

In Dedner et al. (2002) the divergence constraint for the magnetic field is coupled to the hyper-
bolic MHD evolution equations by introducing a new unknown scalar function. Accordingly, the
induction equation is replaced by

∂B

∂t
−∇× (v ×B) +∇ψ = 0, (70)

and the solenoidal condition by
D(ψ) +∇ ·B = 0, (71)

where D is some differential operator. For any choice of D, it can be shown that the divergence of
B and the function ψ satisfy the same type of equation:

∂D(∇ ·B)

∂t
−∆(∇ ·B) = 0, (72)

∂D(ψ)
∂t

−∆ψ = 0. (73)

One chooses D, and the initial and boundary conditions of ψ in such a way that a numerical
approximation of Eqs. (70) and (71) also provides a good approximation of the original equations
(without the ψ-terms). One possibility is to define

D(ψ) = 1

c2p
ψ, cp > 0. (74)

With this parabolic correction Eq. (73) becomes

∂ψ

∂t
− c2p∆ψ = 0, (75)
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62 José Maŕıa Mart́ı and Ewald Müller

and any nonzero values of the divergence of B are dissipated if suitable boundary conditions are
imposed. In this case, ψ can be trivially eliminated from the equations and the modified induction
equation reads

∂B

∂t
−∇× (v ×B) = c2p∇(∇ ·B). (76)

Defining

D(ψ) = 1

c2h

∂ψ

∂t
, ch > 0, (77)

a hyperbolic correction is made, whereby Eq. (73) becomes

∂2ψ

∂t2
− c2h∆ψ = 0. (78)

This equation implies that local divergence errors propagate off the computational grid with the
speed ch.

Finally, choosing D(ψ) = 0 leads to an elliptic correction, since a Poisson equation has to be
solved for the function ψ (Dedner et al., 2002). This approach is equivalent to the projection
method of Brackbill and Barnes (1980) explained later in this section.

The hyperbolic and parabolic corrections can be combined to a mixed one offering both dis-
sipation and propagation of the divergence errors. The MHD system augmented with either the
hyperbolic or mixed corrections is hyperbolic and still possesses its original conservation proper-
ties. Moreover, divergence errors are transported by two kind of waves with speeds independent of
the fluid velocity, i.e., such an approach may be considered as an extension of Powell’s eight-wave
method.

COSMOS++, AMRVAC, PLUTO and TESS, as well as the codes of Neilsen et al. (2006) and
Anderson et al. (2006), incorporate different implementations of this divergence cleaning algorithm.

5.7.3 Constrained transport

The CT scheme, originally developed by Evans and Hawley (1988) for artificial viscosity methods,
relies on a particular discretization on a staggered grid, which maintains ∇·B exactly in a specific
discretization. If the initial magnetic field has zero divergence in this discretization, it will remain
so (to the accuracy of machine round off errors) for all times.

DeVore (1991) combined the CT scheme with the FCT method, and Dai and Woodward (1998),
Ryu et al. (1998), and Balsara and Spicer (1999) combined the CT discretization with schemes
based on Godunov-type Riemann solvers. In their original form, the algorithms of Dai and Wood-
ward, Ryu et al., and Balsara and Spicer require the introduction of a staggered magnetic field
variable. To advance this new variable in time one has to interpolate the magnetic and veloc-
ity fields (Dai and Woodward, 1998), or the fluxes (Balsara and Spicer, 1999), or the transport
fluxes (Ryu et al., 1998) of the base scheme to the cell corners. Tóth (2000) called these methods,
respectively, field-CT, flux-CT, and transport-flux-CT.

The interpolations performed to obtain the required fluxes at cell edges, and the cell centered
magnetic field from the staggered one reduces the accuracy of the algorithm to second order. Tóth
(2000) reformulated these schemes as standard cell-centered schemes (although this requires the
interpolation of the fluxes in the induction equation over a much wider stencil than in the base
scheme). Following Tóth’s notation we shall call these schemes field-CD and flux-CD (from central
difference as opposed to staggered one).

Before discussing more modern developments of the CT scheme, in particular, its application
in RMHD, let us describe the basics of this method (staggered version). The starting point is a
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surface integral of the induction equation (64) across an open surface S
∫

S

∂B

∂t
· dS =

∫

S

∇×Ω · dS, (79)

where Ω = v×B. Applying Stokes theorem to the integral on the right side of the equation leads
to ∫

S

∂B

∂t
· dS =

∮

∂S

Ω · dl, (80)

where ∂S denotes the boundary of S.
To simplify the following discussion we restrict ourselves to a time-independent, homogeneous

Cartesian grid. The cell centers of the grid have the coordinates (xi, yj , zk), and the cell interfaces
are located at xi±1/2, yj±1/2, and zk±1/2, respectively (see Figure 12). Because of the homogeneity
of the computational grid, the grid spacings xi+1/2 − xi−1/2, yj+1/2 − yj−1/2, and zk+1/2 − zk−1/2
in x, y and z-direction are constant, and hence simply are ∆x, ∆y and ∆z, respectively.

Considering now S as the face of the cubic cell (i, j, k) intersecting the x-axis at xi+1/2, and
assuming translational symmetry along the z-axis,5 Eq. (80) can be written as

∫

S

∂B

∂t
· dS =

∫ zk+1/2

zk−1/2

Ωz(xi+1/2, yj+1/2, z)dz −
∫ zk+1/2

zk−1/2

Ωz(xi+1/2, yj−1/2, z)dz, (81)

or in semidiscrete form as

dBx
i+1/2,j

dt
=

1

∆y

(
Ωz

i+1/2,j+1/2 − Ωz
i+1/2,j−1/2

)
, (82)

where

Bx
i+1/2,j =

1

∆Si+1/2,j

∫

S

B · dS. (83)

with ∆Si+1/2, j = [yj−1/2, yj+1/2] × [zk−1/2, zk+1/2] = ∆y ∆z. We note that the quantities Bx,
Ωz, and ∆S carry no k-index, because of the assumed translational symmetry along the z-axis.

Repeating the above procedure for the magnetic field averaged over the cell interface at yj+1/2,
we obtain

dBy
i,j+1/2

dt
=

1

∆x

(
Ωz

i+1/2,j+1/2 − Ωz
i−1/2,j+1/2

)
, (84)

with

By
i,j+1/2 =

1

∆Si,j+1/2

∫

S

B · dS. (85)

and ∆Si, j+1/2 = [xi−1/2, xi+1/2] × [zk−1/2, zk+1/2] = ∆x ∆z. Obviously, this algorithm for the
time advance of the cell-interface averaged magnetic field verifies

d

dt

∫

V

∇ ·B dV = 0, (86)

where the integral extends over the volume of the corresponding numerical cell.
To determine the quantities Ωz, which are defined at the vertices of numerical cells, different

procedures were proposed. Dai and Woodward (1998) used spatial and temporal interpolations to

obtain the cell-vertex centered magnetic field B
n+1/2
i+1/2,j+1/2 and the velocity v

n+1/2
i+1/2,j+1/2, and from

these
Ωz

i+1/2,j+1/2 = B
y n+1/2
i+1/2,j+1/2 v

x n+1/2
i+1/2,j+1/2 −B

x n+1/2
i+1/2,j+1/2 v

y n+1/2
i+1/2,j+1/2. (87)

5 In this case, Bz does not contribute to the conservation of magnetic flux and can be advanced in time with the
basic conservative scheme as a centered variable.
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Figure 12: Discretization of the magnetic field used in the basic staggered CT method in 2D. Bx
i,j and By

i,j

are defined at cell centers, Bx
i+1/2,j and By

i,j+1/2 at the centers of the cell interfaces in x and y direction,
respectively. The fluxes for the magnetic field update, Ωz

i+1/2,j+1/2, are defined at cell corners.

Balsara and Spicer (1999) compute Ωz
i+1/2,j+1/2 by interpolating the cell-interface centered

fluxes of the induction equation in the base Godunov-type scheme, F̂ x and F̂ y, such that

Ωz
i+1/2,j+1/2 =

1

4

(
F̂ x
i+1/2,j + F̂ x

i+1/2,j+1 − F̂ y
i,j+1/2 − F̂

y
i+1,j+1/2

)
, (88)

where F x = Byvx−Bxvy is the flux in x-direction in the equation for By, and F y = Bxvy−Byvx

is the flux in y-direction in the equation for Bx.
For plane-parallel grid-aligned flows the algorithm provides only half the dissipation of its 1D

version, questioning the stability of the algorithm (see the discussion in Gardiner and Stone, 2005).
This problem, which can be traced back to the lack of a directional bias in the averaging formula
for Ωz

i+1/2,j+1/2, was studied in a broader context by a number of researchers. To eliminate the

problem, Ryu et al. (1998) considered only the transport term in the corresponding numerical flux
and defined

Ωz
i+1/2,j+1/2 =

1

2

(
F̂ x
t i+1/2,j + F̂ x

t i+1/2,j+1 − F̂ y
t i,j+1/2 − F̂

y
t i+1,j+1/2

)
, (89)

where F x
t = Byvx is the transport flux in x direction in the equation for By, and F y

t = Bxvy is
the transport flux in y direction in the equation for Bx.

Gardiner and Stone (2005) proposed a family of staggered flux-CT algorithms that enforce con-
sistency between volume-averaged and area-averaged magnetic fields, and between the associated
numerical fluxes. These FV-consistent flux-CT schemes reduce to the 1D solver when applied to
plane-parallel flows aligned with one of the coordinate axes. They combined their CT schemes with
a single-step, second-order accurate Godunov scheme based on piecewise parabolic reconstruction,
and the CTU method (Colella, 1990) for multidimensional integration.

In all the previous CT schemes, one first computes the magnetic field at cell interfaces, Bx
i+1/2,j ,

By i,j+1/2, and then the corresponding cell-centered fields by linear interpolation, i.e.,

Bx
i,j =

1

2
(Bx

i−1/2,j +Bx
i+1/2,j), (90)

By
i,j =

1

2
(By

i,j−1/2 +By
i,j+1/2). (91)
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Focusing on the same problems as Gardiner and Stone (2005), i.e., on the construction of the
upwind fluxes in the induction equation and the consistency between volume-averaged and area-
averaged magnetic fields, Londrillo and Del Zanna (2000, 2004) developed the upwind constrained
transport (UCT) strategy, which extends the CT method to high-order upwind schemes. UCT
imposes the following conditions: (i) use the staggered magnetic field components in the compu-
tation of the numerical fluxes in the energy-momentum equations of the MHD system, (ii) avoid
time-splitting techniques (the magnetic field derivatives along the two coordinate directions have to
be computed at the same time), and (iii) use proper upwind expressions for the numerical fluxes in
the induction equation. Finally, to go beyond second-order accuracy, the reconstruction procedure
of the cell-centered magnetic fields, Eqs. (90), (91), should be changed Londrillo and Del Zanna
(2000). A respective third-order ENO central-type scheme was proposed and tested against several
1D and 2D problems by Londrillo and Del Zanna (2000, 2004).

Parallel to these developments, the CT algorithm was being implemented in RMHD codes.
Komissarov (1999a) used a kind of upwind field-CT scheme, the normal components of the mag-
netic field being defined on the staggered grid that is used to solve the Riemann problems at cell
interfaces (see condition (i) above). Gammie and Tóth (2003) implemented the flux-CD scheme in
their RMHD and GRMHD codes, as did Duez et al. (2005) in their GRMHD code for dynamical
spacetimes, and Mizuno et al. in their GRMHD code RAISHIN (and Nagataki, 2009). The flux-
CD scheme is also the option chosen in Mara. The transport-flux-CT scheme was implemented in
the RMHD code of Leismann et al. (2005) and the flux-CT scheme in the codes of Antón et al.
(2010) (RMHD), Antón et al. (2006) (fixed spacetime GRMHD), and WhiskyMHD (dynamical
spacetime GRMHD). Mignone and Bodo (2006) and Mignone et al. (2007) combined the flux-CT
scheme with the CTU method for multidimensional flows, and Del Zanna et al. (2003) and Mignone
et al. (2007), and Shibata and Sekiguchi (2005), Del Zanna et al. (2007) and Etienne et al. (2010)
implemented the UCT scheme in RMHD and GRMHD, respectively.

Using staggered grid involves two sets of cell-centered magnetic fields: one set consists of field
values obtained from the averages of face-centered magnetic fields, while the other set derives from
advancing the field directly with a Godunov method. The corresponding values from both sets
usually are not much different (of the order of the discretization error of the scheme). However,
in magnetically dominated flows the difference can lead to negative pressures. Hence, Komissarov
(1999a) proposed to recompute the conserved variables after every time step from primitive vari-
ables that are recovered from the conserved ones advanced in time with the Godunov scheme, and
cell-centered magnetic fields computed from the averages of face-centered fields. Following Balsara
and Spicer (1999), Mignone and Bodo (2006) recomputed the total energy only, making a classical
correction of the magnetic energy. Mart́ı (2015) compares several correction algorithms proving the
supremacy of the relativistic corrections as the one proposed by Komissarov (1999a). Redefining
the conserved variables has the drawback that the whole scheme is no longer conservative. Nev-
ertheless, the procedure was found to be useful for problems where the magnetic pressure exceeds
the thermal pressure by more than two orders of magnitude.

5.7.4 Projection scheme

Brackbill and Barnes (1980) proposed the projection scheme as a correction to the magnetic field
that is applied at the end of every time step. The name derives from the idea that the magnetic
field B* computed with a numerical scheme in time step n+1 is possibly not divergence-free, and
hence is projected to a divergence-free field Bn+1 according to

Bn+1 = B* −∇φ, (92)

where φ satisfies the Poisson equation ∆φ = ∇ ·B*.
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As noted by Tóth (2000), the correction resulting from the projection scheme is the smallest
possible one to make the field divergence-free. The projection scheme does not reduce the order of
accuracy of the numerical scheme, but adds the computational costs for the solution of the Poisson
equation.

5.8 Equation of state and primitive variable recovery

As in RHD, the evolution of the conserved variables in HRSC RMHD codes requires one to solve
a nonlinear algebraic system of equations to obtain the primitive variables. This involves the
inversion of the 5× 5 system given by Eqs. (11) – (13) in each time (sub)step. Balsara (2001a) and
Gammie et al. (HARM) used a Newton–Raphson iteration for this purpose and calculated the
corresponding Jacobian analytically.

The system can be manipulated, however, to reduce the number of equations that have to be
solved iteratively. In Koide’s code (Koide et al., 1996, 1999; Koide, 2003), and for an ideal gas
EOS, the original 5 × 5 system is reduced to two equations (with the flow Lorentz factor W and
the scalar product v ·B as unknowns), which are solved by means of a 2D Newton–Raphson. In
the absence of a magnetic field, one of these equations becomes the one in the RHD case as derived
in Schneider et al. (1993) and Duncan and Hughes (1994), whereas the other becomes a trivial
equation.

Komissarov (1999a) considered a reduced system of three equations for the unknownsW , v ·B,
and p (thermal pressure) for a general EOS of the form ω = ω(ρ, p) (where ω and ρ are the
enthalpy and the proper rest-mass densities, respectively) which is solved iteratively. Del Zanna
et al. (2003) particularized Komissarov’s system to an ideal gas. Concerned with the speed and
precision of the recovery procedure, Del Zanna et al. derived a single nonlinear equation to be
solved iteratively (and a cubic equation which is solved analytically to get the coefficients of the
other equation). The equation, a function of the square of the flow velocity, is solved by means of
a Newton–Raphson iteration.

The original Komissarov’s system can be manipulated (Leismann et al., 2005) to reduce the
recovery of primitive variables to the simultaneous solution of only two nonlinear equations for the
unknowns Z = ρhW 2 and v2

Z2v2 + (2Z +B2)B2v2⊥ − S2 = 0, (93)

Z − p+ 1

2
B2 +

1

2
B2v2⊥ − τ = 0, (94)

where B2v2⊥ = B2v2 − (v ·B)2 = B2v2 − (S ·B)2/Z2.
This system is valid for general equations of state of the form p = p(ρ, h), because ρ and h can

be expressed explicitly in terms of Z, v2, and the conserved variables. For an ideal gas, Eq. (94)
becomes a cubic in Z with coefficients depending on v2 only, which can be solved analytically.
Inserting the analytic solution Z(v2) into Eq. (93), one can solve it for v2 (Del Zanna et al., 2003).

With some modifications, the above described methodology is the basis of several procedures
for the recovery of primitive variables (Leismann et al., 2005; Antón et al., 2006; Giacomazzo and
Rezzolla, 2007).

Assuming an ideal gas EOS, Noble et al. (2006) analyzed the computational efficiency, accuracy
and robustness of the recovery of primitive variables for six different methods, which they labeled
5D, 2D, 1DW , 1Dv2 , 1D*v2 , and polynomial, respectively. Their survey covered a parameter space
of primitive variables given by

log ρ ∈ [−7, 1], log(ρε) ∈ [−10, 0], logW ∈ [0.002, 2.9], logB2 ∈ [−8, 1],

and any relative orientation between flow velocity and magnetic field.
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In the 5D method, also applicable for a general EOS, one directly solves the full set of five
nonlinear equations with a Newton–Raphson scheme. In the other five methods one reduces the
5× 5 system to either one or two nonlinear equations that are solved numerically as described in
the following.

In the 2D method, applicable also for general equations of state, one solves Eqs. (93) and (94)
simultaneously with a 2D Newton–Raphson method. In the 1DW method one solves Eq. (94) for
Z substituting the square of the velocity v by

v2 =
S2Z2 + (2Z +B2)(S ·B)2

(Z +B2)2Z2
. (95)

The 1Dv2 method, restricted to an ideal gas EOS, is similar to the method of Del Zanna et al.
(2003). However, because the cubic equation used in the latter method can sometimes have two
positive real solutions for Z, Noble et al. (2006) introduced another cubic that has only one, positive
(i.e., physically admissible) solution. In the related 1D*v2 method, instead of the cubic, Eq. (94)
is solved for Z using a 1D Newton–Raphson iteration and the latest value of v2 obtained from
Eq. (93). In this way the method also works for general equations of state.

Finally, in the polynomial method one solves the eight-order polynomial in Z that one obtains
when inserting Eq. (95) into Eq. (94) and assuming an ideal gas EOS. The eight roots of the poly-
nomial are found using a general polynomial root-finding method. The physical root is identified
by requiring that it is also a solution of the original 5× 5 system.

According to the survey of Noble et al. (2006) the 2D method is the fastest and has the smallest
failure rate (≈ 9× 10−7), whereas the polynomial method and the 5D method are the slowest and
have an unacceptably high failure rate (≈ 4×10−2 and 4×10−1, respectively). Source codes of the
methods discussed by Noble et al. (2006) can be downloaded from the Astrophysical Code Library
of the Astrophysical Fluid Dynamics Group at the University of Illinois (AFDG’s web).

Mizuno et al. (2006) implemented both Koide’s and Noble’s et al. 2D methods for primitive
variable recovery in RAISHIN. The ECHO code incorporates the 2D, 1DW , 1Dv2 and 1D*v2 methods
of Noble et al., and the RMHD versions of PLUTO and AMRVAC use variations of the 1DW

method for an ideal gas EOS described in Mignone and Bodo (2006) and Bergmans et al. (2005),
respectively. Nagataki (2009) considered Noble’s et al. 1DW and 2D methods and discussed a
procedure to obtain lower and upper limits for the (physical) solution of Z, while Etienne et al.
(2010) used just the 2D method. The Mara code employs the 1DW method (for an ideal gas
EOS), but switches to the 2D method, if a suitable solution is not obtained with the former one.
The algorithm implemented in ATHENA is the 1DW method for an ideal gas EOS, and TESS
incorporates a 3D solver based on the 2D method with an additional iteration for the temperature.
The codes of Neilsen et al. (2006), Anderson et al. (2006) and Giacomazzo and Rezzolla (2007) use
alternative 1D algorithms for an ideal gas EOS.

For a polytropic EOS (p = KρΓ), the integration of the total energy equation is unnecessary,
because the energy density can be computed algebraically from other flow quantities, and the recov-
ery problem reduces to the numerical solution of Eq. (93) with Z = DW + ΓKDΓW 2−Γ/(Γ− 1)
(Antón et al., 2006; Giacomazzo and Rezzolla, 2007). Casse et al. (2013) discuss briefly a variable
switch for isothermal RMHD.

Mignone and McKinney (2007) developed an inversion procedure that allows for a general EOS
and avoids problems due to loss of precision in the non-relativistic and ultrarelativistic limits. They
used the total energy minus the rest-mass energy instead of the total energy density itself as one
of the conserved variables, and Noble’s et al. 1DW method, but with Z ′ = Z −D and u2 =W 2v2

instead of Z and v2 as unknowns. The variable Z ′, properly written as

Z ′ =
Du2

1 +W
+ χW 2 (96)
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(where χ = ρε + p), is introduced to avoid machine accuracy problems in the non-relativistic
limit. In order to perform the inversion with a Newton–Raphson iteration, one has to compute the
derivative

dp

dZ ′
=
∂p

∂χ

∣∣∣∣
ρ

dχ

dZ ′
+
∂p

∂ρ

∣∣∣∣
χ

dρ

dZ ′
. (97)

Mignone and McKinney provided explicit expressions of the thermodynamic derivatives ∂p/∂χ|ρ
and ∂p/∂ρ|χ that avoid catastrophic cancellation in the non-relativistic limit (χ/ρ, p/ρ→ 0) for the
approximate Synge EOS (Mathews, 1971; Mignone et al., 2005b; Ryu et al., 2006). The authors

claim that their inversion method is accurate in the ultrarelativistic limit as long asW ≤ ε−1/2mp and
p/(ρW 2) ≥ εmp, where εmp is the machine precision. The upgraded version of HARM incorporates
this inversion method as well as the 2D method of Noble et al. (2006).

In addition to the accuracy problems in the ultrarelativistic and non-relativistic (both kinematic
and thermodynamic) limits, conservative RMHD codes also may encounter problems in the strong
magnetization limit, when B2 � ρε. In this limit relatively small truncation errors in the evolution
of the conserved variables lead to large (relative) errors in the computation of the internal energy
density and other primitive variables. To ease these problems, in codes based on CT schemes,
at the end of every time step one recomputes the conserved variables to make them consistent
with the cell-centered magnetic fields computed from the averages of the staggered fields (see
Section 5.7.3). The resulting small correction of the conserved quantities has turned out to be
essential in simulations of flows with a magnetization of one hundred or larger.

5.9 AMR

The application of AMR in RMHD was pioneered by Balsara (2001a,b,c). He pointed out the ne-
cessity that adaptive mesh MHD schemes should obey the divergence-free property of the magnetic
field on the entire AMR hierarchy. As in hydrodynamics, he argued, it is essential for divergence-
free AMR-MHD based on HRSC methods to prolong and restrict the data using the same recon-
struction strategy as for the underlying HRSC schemes. He has implemented a divergence-free
reconstruction strategy (of vector fields) into his RIEMANN framework, which supports mul-
tidimensional simulations of both Newtonian and relativistic MHD flows on parallel computing
architectures (Balsara, 2001b). Divergence-free prolongation of magnetic fields on an AMR hi-
erarchy requires a slight extension of the reconstruction scheme, while divergence-free restriction
involves area-weighted averaging of magnetic fields over faces of fine grid patches.

Because Balsara’s work is based on an integral formulation of the MHD equations, divergence-
free restriction and prolongation can be carried out on AMR grids with any integral refinement
ratio. In order to efficiently evolve the MHD equations on AMR grids, the refined patches are
evolved with time steps that are a fraction of their parent patch’s time step. The RIEMANN

framework has been validated by performing a set of 3D AMR-MHD tests with strong discontinu-
ities.

Adopting a local discontinuous Galerkin predictor method together with a space-time AMR
based on a “cell-by-cell” approach and local time stepping, Zanotti and Dumbser (2015) obtained a
high order one-step time discretization for the integration of the special relativistic hydrodynamic
and magnetohydrodynamic equations, with no need for Runge–Kutta sub-steps. They explore the
scheme’s ability to resolve the propagation of relativistic hydrodynamic and magnetohydrodynamic
waves in different physical regime by performing a set of numerical tests in one, two and three
spatial dimensions.

The GRMHD code of Anderson et al. (2006) and Neilsen et al. (2006) uses the AMR method of
Berger and Colella (1989) with WENO interpolation for prolongation (see Section 8.3.5), and both
hyperbolic and elliptic divergence cleaning to enforce a divergence-free magnetic field. They do
not consider constrained transport, because it requires that neighboring grids align in a structured
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manner, precluding its application to overlapping grids with arbitrary coordinates, resolutions
and/or orientation.

The (G)RMHD codes COSMOS++, WhiskyMHD, and the one developed by Etienne et al.
(2010) have AMR capabilities, too. In COSMOS++ individual cells are refined rather than in-
troducing patches of subgrids. The framework is similar to that of Khokhlov (1998), i.e., based
on a fully threaded oct-tree (in 3D), but generalized to unstructured grids. The robustness of the
numerical algorithms and the AMR framework implemented in COSMOS++ was demonstrated by
several tests including relativistic shock tubes, shock collisions, magnetosonic shocks, and Alfvén
wave propagation.

The code of Etienne et al. (2010) uses the Cactus parallelization environment and the Carpet
infrastructure to implement moving-box AMR. The induction equation is recast into an evolution
equation for the magnetic vector potential (Del Zanna et al., 2003) to keep the magnetic field
divergence-free, in particular at AMR refinement boundaries. Prolongation and restriction are
applied to the unconstrained vector potential components instead of the magnetic field components,
which gives flexibility in choosing different interpolation schemes for prolongation and restriction.
In simulations with uniform grids, the scheme is numerically equivalent to the constrained-transport
scheme based on a staggered-mesh algorithm (Evans and Hawley, 1988). Several tests including
nonlinear Alfvén waves and cylindrical explosions validated the proper working of the code (Etienne
et al., 2010).

WhiskyMHD also uses the Cactus parallelization environment and the Carpet infrastructure to
implement a “box-in-box” mesh refinement strategy (Schnetter et al., 2004). It adopts a Berger–
Oliger prescription for the refinement of meshes on different levels (Berger and Oliger, 1984).
In addition to this, a simplified form of adaptivity allows for new refined levels to be added at
predefined positions during the evolution or for refinement boxes to be moved across the domain
to follow, for instance, regions where higher resolution is needed.

We note that the relativistic AMR codes AMRVAC and PLUTO discussed in Section 4.7 can
simulate special relativistic magnetized flows, too. The latter also holds for the code ATHENA
that offers static mesh refinement.

5.10 Summary of existing codes

Table 2 lists the multidimensional codes based on HRSC methods in chronological order both for
FD and FV schemes, summarizing the basic algorithms implemented in the codes (type of spatial
reconstruction, Riemann solvers and flux formulas, time advance, multidimensional schemes, and
∇ ·B = 0 scheme). The table includes codes specifically developed for RMHD and those GRMHD
codes for fixed spacetimes that were also used or tested in RMHD. Moreover, we include several
GRMHD codes for dynamical spacetimes (Duez et al., 2005; Shibata and Sekiguchi, 2005; Neilsen
et al., 2006; Anderson et al., 2006; Giacomazzo and Rezzolla, 2007; Etienne et al., 2010) that
were widely tested in RMHD. AMRVAC, PLUTO, and ATHENA are multipurpose codes for
computational astrophysics that have RMHD modules.

The AMRVAC, PLUTO, and ATHENA codes are publicly available and provide extensive on-
line information about their usage. They can be downloaded from the corresponding webpages
(VAC; AMRVAC, PLUTO, ATHENA). The original 2D GRMHD accretion code HARM can be
downloaded from the Astrophysical Code Library of the Astrophysical Fluid Dynamics Group at
the University of Illinois (AFDG’s web).
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Table 2: Multidimensional RMHD codes based on HRSC methods in chronological order.

Code name/ Spatial Order of Code characteristicsb

reference dims accuracya

KN96 (Koide et al.,
1996, 1999; Koide,
2003)

2D 2, 2 FD: Davis scheme (Davis, 1984); operator splitting; free
evolution

Ko99 (Komissarov,
1999a)

2D 2, 2 FV; PL reconstruction of primitive variablesc; Roe-type
Riemann solver; predictor-corrector; unsplit; (upwind-)field-
CT

HARM (Gammie and
Tóth, 2003; McKin-
ney, 2006a)

3D 2-3,2-3 FV; PL/PP reconstruction of primitive variables; HLL Rie-
mann solver; mid-point/TVD-RK method; unsplit; flux-CD

DB03 (Del Zanna
et al., 2003)

3D 3, 3 FD; CENO reconstruction of primitive variables; HLL Rie-
mann solver; TVD-RK method; unsplit; UCT

DL05 (Duez et al.,
2005)

3D 2d FD; MC/CENO/PP reconstruction of primitive variables;
HLL Riemann solver; three-step Crank–Nicholson scheme;
unsplit; flux-CD

LA05 (Leismann
et al., 2005)

2D 2-3, 3 FV; PL/PP reconstruction of primitive variables; HLL Rie-
mann solver; TVD-RK method; unsplit; transport-flux-CT

SS05 (Shibata and
Sekiguchi, 2005)

3D 2d FD; PP reconstruction of primitive variables; LLF flux for-
mula; UCT

COSMOS++ (Anni-
nos et al., 2005)

3D 2, 2-3 NOCD: FV; AMR; PL reconstruction of conserved variables;
NOCD-type scheme; RK method; unsplit; parabolic diver-
gence cleaning

AZ06 (Antón et al.,
2006, 2010)

2D 2, 2-3 FV; PL reconstruction of primitive variables; HLL/Roe type
Riemann solvers, LLF flux formula; TVD-RK method; un-
split; flux-CT

RAISHIN (Mizuno
et al., 2006)

3D 2-3, 2-3 FV; PL/CENO/PP reconstruction of primitive variables;
HLL Riemann solver; TVD-RK method; unsplit; flux-CD

MB06 (Mignone and
Bodo, 2006)

2D 2, 2 FV; PL reconstruction of primitive variables; HLLC Rie-
mann solver; MUSCL-Hancock scheme; CTU; flux-CT

NH06 (Neilsen et al.,
2006; Anderson et al.,
2006)

3D 3, 3 FD; AMR; CENO reconstruction of conserved fluxes; HLL
Riemann solver, LF flux formula with light speed as char-
acteristic speed; RK method; unsplit; hyperbolic divergence
cleaning

WhiskyMHD (Giaco-
mazzo; Giacomazzo
and Rezzolla, 2007)

3D 2, 2 FV; AMR; PL reconstruction of primitive variables; HLL
Riemann solver; RK/iterated Crank–Nicholson method;
unsplit; flux-CT

ECHO (Del Zanna
et al., 2007)

3D 2-5, 2-3 FD; PL/ENO/CENO/WENO/MP reconstruction of prim-
itive variables; HLL Riemann solver; RK method; unsplit;
UCT

AMRVAC (AMR-
VAC; van der Holst
and Keppens, 2007;
van der Holst et al.,
2008; Keppens et al.,
2012)

3D 2-3, 2-4 FV; AMR; PL/PP reconstruction of primitive variables;
LLF flux formulas and HLL/HLLC Riemann solvers;
MUSCL-Hancock scheme/standard predictor-corrector
method/second to fourth order RK methods; unsplit; 8-
wave/ parabolic divergence cleaning

Continued on next page
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Table 2 – Continued from previous page

Code name/ Spatial Order of Code characteristicsb

reference dims accuracya

PLUTO (PLUTO;
Mignone et al., 2007,
2009)

3D 2-3, 2-3 FV; AMR; PL/PP/WENO reconstruction of primi-
tive/characteristic variables; HLL/HLLC/HLLD Rie-
mann solvers, LLF flux formula; MUSCL-Hancock/TVD-
RK methods; split (Strang)/unsplit (CTU) methods; 8-
wave/divergence cleaning/flux-CT/UCT

Na09 (Nagataki, 2009) 2D 2, 3 FV; PL reconstruction of primitive variables; HLL Riemann
solver; TVD-RK method; unsplit; flux-CD

EL10 (Etienne et al.,
2010)

2D 2-3, ≤ 4 FV; AMR; PL/PP reconstruction of primitive variables;
HLL Riemann solver, LLF flux formula; RK method; un-
split; flux-CT, UCT

ATHENA (ATHENA;
Beckwith and Stone,
2011)

3D 2, 2 FV; SMR; PL reconstruction of primitive variables;
HLL/HLLC/HLLD Riemann solvers; MUSCL-Hancock
scheme; unsplit; FV-consistent flux-CT

TESS (Duffell and
MacFadyen, 2011)

2D 2, 3 FV; unstructured, moving meshe; PL reconstruction of
primitive variables; HLLC Riemann solver; TVD-RK meth-
ods; unsplit; parabolic/hyperbolic divergence cleaning

Mara (Zrake and Mac-
Fadyen, 2012)

3D 2, 2 FV; PL reconstruction of conserved variables; HLLD Rie-
mann solver; MUSCL-Hancock scheme; unsplit; flux-CD

a Spatial and temporal order of the method for smooth flows in one spatial dimension.
b Finite volume/difference scheme; spatial reconstruction algorithm; computation of numerical fluxes; time advance;

split/unsplit scheme; magnetic field divergence free scheme.
c In some cases the reconstruction of primitive variables is done on the spatial components of fluid four-velocity (to

avoid unphysical reconstructed values).
d Global order of accuracy.
e The mesh-generating points are free to move with arbitrary velocity, including zero velocity (Eulerian mode) and

the local fluid velocity (Lagrangian mode). In this last case, corrections can be added to steer the cells in ways that

make the mesh better-behaved.
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6 Test Bench

This section contains a detailed discussion of most of the numerical tests presented in the literature
assessing the capabilities and limits of different HRSC methods and codes in RHD and RMHD. We
review the results published by different groups including one-dimensional and multidimensional
tests, with and without flow discontinuities.

In most relativistic codes one sets the speed of light equal to one, and one absorbs a factor
√
4π

in the definition of the magnetic field in RMHD codes. Hence, lengths and times have the same
dimension, and this also holds for mass and energy densities, i.e., [ρ] = [p] = [B2]. These are the
units we use throughout the review, and particularly in this section.

In order to convert code to physical units, one has to complete the system of units with two
independent units in addition to the velocity unit (uv, the speed of light, c). A common choice is
to fix the unit of density, uρ, and the unit of length, ul. In this system, the units of p or B2 (both
have dimension of energy density) are uρc

2. For example, with uρ = 1 g cm−3 and ul = 1 cm,
the unit of p is (2.99× 1010)2 g cm−1 s−2 or 8.94× 1020 erg cm−3, and that of the magnetic field
1.06× 1011 G (the square root of the pressure unit multiplied by

√
4π).

6.1 Numerical RHD: Testing the order of convergence on smooth flows

Modern HRSC codes have been mainly developed to describe strong (relativistic) shocks properly
and robustly, i.e., most tests in the literature are concerned with the shock capturing capabilities
of these codes. However, it is also very important to test the accuracy of HRSC codes in handling
smooth flows. This is specially relevant for codes based on high-order schemes, which are in general
computationally expensive.

6.1.1 Isentropic smooth flows in one dimension

This test consists of a 1D isentropic pulse set up in a uniform reference state. The pulse is initially
smooth and symmetric but steepens on one side during its propagation forming a shock in a finite
time. The width and height of the pulse does not change before the shock forms (see Figure 13).
Details of the initial state and the analytic solution of its evolution can be found in Zhang and
MacFadyen (2006). The test is a relativistic counterpart of the convergence test performed by
Colella et al. (2006) with their Newtonian hydrodynamics code.

Zhang and MacFadyen (2006) considered this test to evaluate the accuracy of the various op-
tional schemes that are implemented in their code RAM. In RAM one can combine any of the
spatial schemes F-WENO, F-PLM, U-PPM, and U-PLM) with one of the following Runge–Kutta
methods for time integration: a third-order TVD-RK method (Shu and Osher, 1988), or standard
fourth- and fifth-order Runge–Kutta methods (Lambert, 1991), RK4 and RK5, respectively. The
optimal order of convergence was obtained with the combination F-WENO and RK4, while com-
bining U-PPM (formally fourth-order accurate for smooth flows) and the third-order TVD-RK or
RK4 resulted only in second-order convergence.

Morsony et al. (2007) used the same test problem to determine the order of convergence of the
FLASH code. The RHD module of this code utilizes PP interpolation within cells and a two-shock
Riemann solver to compute the numerical fluxes. The time evolution is second-order accurate (for
details, see Mignone et al., 2005b). The study showed that FLASH achieves global second-order
accuracy for this test problem. Second-order convergence is also obtained with the moving grid
code TESS (Duffell and MacFadyen, 2011).
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Figure 13: One-dimensional isentropic pulse test simulated with the F-WENO-RK3 scheme of the RAM

code. Pressure, density, and velocity are shown in the top, middle, and bottom panels, respectively, at
t = 0 (plus signs) and t = 0.8 (triangles). Image reproduced with permission from Figure 6 of Zhang and
MacFadyen (2006), copyright by AAS.

6.1.2 Isentropic smooth flows in two dimensions

Several authors (Zhang and MacFadyen, 2006; Morsony et al., 2007; Duffell and MacFadyen, 2011)
simulated the previous test in 2D (using Cartesian coordinates) to validate the order of accuracy
of the multidimensional scheme (spatial reconstruction and time advance). The semi-discrete
approach followed in RAM leads to fourth-order accuracy for the F-WENO schemes, if combined
with the RK4 method, as in the 1D case. In FLASH, the second-order accurate time integration
again limits the global accuracy of the code to second order (Morsony et al., 2007). Duffell and
MacFadyen (2011) obtained a slightly higher than second-order accuracy in a non-relativistic limit
of this test with a different shape of the isentropic pulse. The 2D test further showed that the
convergence rate of TESS remains unchanged even when the nonuniform flow distorts the moving
mesh (Duffell and MacFadyen, 2011).

To verify the order of convergence of WHAM in two dimensions, Tchekhovskoy et al. (2007)
studied the advection of smooth oblique sound and density waves on a Cartesian mesh. A si-
nusoidal planar wave is set to propagate on a uniform background state at rest with an angle
α = tan−1(2) with respect to the x-axis. A polytropic EOS p = KρΓ with Γ = 5/3 is used. The
amplitude of either the sound wave or the density wave is chosen so that it remains within the
linear regime during the whole simulation. The results show that WHAM converges at fifth-order.
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For comparison, the authors also performed the test with the WENO-IFV scheme, implemented in
a simplified version of WHAM, in which the averaging and de-averaging procedures of conserved
variables, fluxes and sources between average and point values, are disabled. They found that the
convergence rate of this scheme is only of second-order.

6.2 Numerical RHD: Relativistic shock heating in planar, cylindrical
and spherical geometry

Shock heating of a cold fluid in planar, cylindrical or spherical geometry has been used since the
early developments of numerical RHD as a test case for hydrodynamic codes, because it has an
analytic solution (Blandford and McKee, 1976 for planar geometry; Mart́ı et al., 1997 for cylindrical
and spherical geometry), and involves the propagation of a strong relativistic shock wave.

Figure 14: Schematic solution of the shock heating problem in spherical geometry. The initial state
consists of a spherically symmetric flow of cold (p = 0) gas of unit rest mass density with a highly
relativistic inflow velocity everywhere. A shock is generated at the center of the sphere, which propagates
upstream with constant speed. The post-shock state is constant and at rest. The pre-shock state, where
the flow is self-similar, has a density which varies as ρ = (1 + t/r)2 with time t and radius r.

In planar geometry, an initially homogeneous, cold (i.e., ε ≈ 0) gas with velocity v1 and Lorentz
factor W1 is supposed to hit a wall (or to collide against a similar and opposite flow), while in the
case of cylindrical and spherical geometry the gas flow converges towards the symmetry axis or
the center of symmetry. In all three cases the reflection causes compression and heating of the gas
as kinetic energy is converted into internal energy. This occurs in a shock wave, which propagates
upstream. Behind the shock the gas is at rest (see Figure 14). Due to conservation of energy across
the shock the gas has a specific internal energy given by

ε2 =W1 − 1 . (98)
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The compression ratio of shocked to unshocked gas, σ, follows from

σ =
γ + 1

γ − 1
+

γ

γ − 1
ε2 , (99)

where γ is the adiabatic index of the EOS.
In the Newtonian case the compression ratio σ of shocked to unshocked gas cannot exceed a

value of σmax = (γ+1)/(γ−1) independently of the inflow velocity. This is different for relativistic
flows, where σ grows linearly with the flow Lorentz factor and becomes infinite as the inflowing
gas velocity approaches to speed of light.

The maximum flow Lorentz factor achievable for a hydrodynamic code with acceptable errors
in the compression ratio σ is a measure of the code’s quality. Explicit finite-difference techniques
based on a non-conservative formulation of the hydrodynamic equations and on non-consistent
(Centrella and Wilson, 1984; Hawley et al., 1984) or consistent artificial viscosity (Anninos and
Fragile, 2003) were able to handle flow Lorentz factors up to ≈ 10 with moderately large errors
(σerror ≈ 1 – 3%) at best. Norman and Winkler (1986) obtained excellent results (σerror ≈ 0.01%
for a flow Lorentz factor of 10 using consistent artificial viscosity terms and an implicit adaptive-
mesh method). The performance of explicit codes improved significantly when HRSC methods both
symmetric (Del Zanna and Bucciantini, 2002; Anninos and Fragile, 2003; Lucas-Serrano et al., 2004;
Tchekhovskoy et al., 2007; Meliani et al., 2007) or upwind (Mart́ı et al., 1991; Marquina et al., 1992;
Eulderink, 1993; Schneider et al., 1993; Dolezal and Wong, 1995; Eulderink and Mellema, 1995;
Mart́ı and Müller, 1996; Falle and Komissarov, 1996; Wen et al., 1997; Aloy et al., 1999b; Mizuta
et al., 2004; Lucas-Serrano et al., 2004; Mignone and Bodo, 2005; Choi and Ryu, 2005; Zhang
and MacFadyen, 2006; Wang et al., 2008) were introduced. Meliani et al. (2007) show results for
the shock heating test in Cartesian coordinates for an inflow Lorentz factor of 70710. Mart́ı and
Müller (2003) summarized the results obtained for this test by various authors until 2003. The
eAV scheme (see Section 4.4.2) incorporated in COSMOS++ seems to overcome the limitations of
traditional AV methods in this test and to allow for an accurate modeling of problems with highly
relativistic inflow speeds (> 0.99999).

The performance of a HRSC method based on a relativistic Riemann solver is illustrated in
Figure 15 (and the attached movie – online version only –) for the planar shock heating problem
for an inflow velocity v1 = −0.99999 (W1 ≈ 223). These results are obtained with the third-order
relativistic code rPPM described in Mart́ı and Müller (1996) and provided in Mart́ı and Müller
(2003). The shock wave is resolved by three cells and there are no post-shock numerical oscillations.
The density increases by a factor ≈ 900 across the shock. Near x = 0 the density distribution
slightly undershoots the analytic solution (by ≈ 8%) due to the numerical effect of wall heating.
The profiles obtained for other inflow velocities are qualitatively similar. The mean relative error
of the compression ratio is less than 10−3, and does not exhibit any significant dependence on the
Lorentz factor of the inflowing gas. As in other problems involving discontinuities, the L1-norm
errors converge linearly when increasing the grid resolution. The quality of the results obtained
with high-order symmetric schemes is similar.

The wall heating phenomenon (overheating, as it is known in classical hydrodynamics; Noh,
1987) is a numerical artifact that is considerably reduced when more diffusive methods are used.
For example, a third-order scheme using MFF (Donat et al., 1998) gives an overheating error
of 2.5%, whereas another third-order scheme using LLF (Lucas-Serrano et al., 2004) reduces the
error further down to 1%. This reduction of the error with diffusion extends to the order of the
reconstruction. The errors in density at the nearest cell to the reflecting wall amount to 3.9%,
2.4%, 7.4%, and 4.3% for the schemes F-WENO (third-order), F-PLM (second-order), U-PPM
(third-order), and U-PLM (second-order), respectively (Zhang and MacFadyen, 2006). Again, the
more diffusive schemes F-PLM and U-PLM perform better than F-WENO and U-PPM. Let us
also note that methods based on the direct reconstruction of (characteristic) fluxes lead to smaller
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errors than those of the same order based on the reconstruction of (primitive) variables.

Some authors considered the problem of shock heating in cylindrical or spherical geometry using
adapted coordinates to test the numerical treatment of geometrical factors (Romero et al., 1996;
Mart́ı et al., 1997; Wen et al., 1997; Mizuta et al., 2004). Other authors (Aloy et al., 1999b; Mignone
et al., 2005b; Wang et al., 2008) simulated the spherically symmetric shock heating problem in 3D
Cartesian coordinates as a test case for the numerical treatment of multidimensions and symmetry
properties. Aloy et al. (1999b) presented results of this test with the code GENESIS for an inflow
Lorentz factor of 707 in a 813 cell grid with acceptable relative global errors (32% for pressure, 39%
for density, and 2% for velocity). Mignone et al. (2005b) performed the test with their relativistic
PPM method under the same conditions up to an inflow Lorentz factor 2236 (corresponding errors
were 24%, 21%, and 1%). Wang et al. (2008) simulated the problem in spherical geometry with
RENZO (LLF-PLM algorithm) for an inflow velocity of 0.9 (Lorentz factor 2.29). Keppens et al.
(2012) considered this test with MPI-AMRVAC for an inflow velocity of 0.995 (Lorentz factor 10)
in planar, axial, and spherical symmetry in adapted coordinates, focusing on the performance of
the AMR strategy based on pure oct-tree block refinement.

Anninos et al. (2005) considered a boosted version of the shock collision test in which two
boosted fluids flow toward each other, collide and form a pair of shocks with a contact discontinuity
in between. Among other things, the simulation tested the Lorentz invariance of the code. In
further simulations, the eAV and NOCD methods of COSMOS++ were tested for symmetric and
asymmetric colliding fluids in the center-of-momentum frame, and with Lorentz factors up to 100.
The agreement between the analytic and numerical solutions was very good, in general, the relative
errors of the compression ratio being about 10−4. These highly relativistic, and thus very thin
shocks require very fine zoning, which can be provided by AMR techniques. The latter have been
extensively applied using up to 12 levels of refinement in the tests with the highest boost.

6.3 Numerical RHD: Propagation of relativistic blast waves

Riemann problems with large initial pressure jumps produce blast waves with dense shells of
material propagating at relativistic speed (see Figure 16). For appropriate initial conditions, both
the velocity of the leading shock front and of shell approaches the speed of light, hence producing
very narrow flow structures. The accurate description of these thin, relativistic shells involving
large density contrasts is a challenge for any numerical code.6

Some particular blast wave problems became standard numerical tests. Here we consider two
of these tests (Problems 1 and 2 below), which were already discussed in Mart́ı and Müller (2003).
Problem 1 was a demanding problem for RHD codes in the mid-1980s (Centrella and Wilson,
1984; Hawley et al., 1984), while Problem 2 is still a challenge for state-of-the-art codes today. We
will discuss two further tests involving discontinuous initial tangential speeds (Problems 3 and 4),
which are very demanding for fixed-grid FD or FV methods. The initial conditions for the four
tests are given in Table 3. The corresponding analytic solutions can be obtained with program
RIEMANN-VT (provided in Mart́ı and Müller, 2003).

6 Anninos et al. (2005) considered the spherical ultrarelativistic blast wave of Blandford and McKee (1976) to
test the performance of AMR in COSMOS++. The analytic solution depends on the initial total energy in the
blast wave, the initial Lorentz factor of the shock, and the ambient density into which it expands. The relativistic

blast wave is characterized by a very thin shell of matter, ∆r ∝ Γ
−8/3
bw

, where Γbw is the initial Lorentz factor of
the blast wave. The code was able to evolve a blast wave with an initial Γbw = 30 until it becomes non-relativistic,
on a base mesh of 100 cells with initially 17 levels of refinement. Both the eAV and NOCD results agreed very well
with the analytic solution. The eAV method gave a 10% error in the peak density of the blast wave. This error
reduced to 1% with NOCD.
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Figure 15: Still from a movie – Numerical (red points) and analytic (blue line) distributions of density,
velocity and pressure at t = 1.496 for the shock heating problem with an inflow velocity v1 = −0.99999
in Cartesian coordinates. The reflecting wall is located at x = 0. The adiabatic index of the gas is 4/3.
For numerical reasons, the specific internal energy of the inflowing cold gas is set to a small finite value
(ε1 = 10−7 W1). The simulation was performed on an equidistant grid of 100 cells with the code rPPM
(Mart́ı and Müller, 1996). Animation (online version only): Full evolution of the numerical solution. (To
watch the movie, please go to the online version of this review article at http://www.livingreviews.org/
lrca-2015-3.)
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Figure 16: Generation and propagation of a relativistic blast wave (schematic). The large jump in the
pressure of two homogeneous fluids at rest at both sides of a discontinuity initially located at r = 0.5 gives
rise to a blast wave and a shell of dense matter propagating at relativistic speeds. For appropriate initial
conditions both the velocity of the leading shock front and of the shell approaches the speed of light, hence
producing very narrow flow structures.

6.3.1 Problem 1

In Problem 1, the decay of the initial discontinuity gives rise to a dense shell of matter with velocity
vshell ≈ 0.72 (Wshell ≈ 1.38) propagating to the right. The shell, trailing a shock wave of speed
vshock ≈ 0.83, increases its width, wshell, according to wshell ≈ 0.11t, i.e., at time t = 0.4 the shell
covers about 4% of the grid (0 ≤ x ≤ 1). The test was first considered by Schneider et al. (1993).

Concerning artificial viscosity methods, the state-of-art performance on this test is still given
by the (second-order accurate) code COSMOS of Anninos et al. that uses a consistent scalar
artificial viscosity. With this code, it is possible to capture the constant states in a stable manner
and without noticeable errors (e.g., , the shell density is underestimated by less than 2% in a 400
cells calculation).

In Mart́ı and Müller (2003), a MPEG movie shows the Problem 1 blast wave evolution obtained
with a modern HRSC method (the third-order rPPM code described in Mart́ı and Müller, 1996
and provided in Mart́ı and Müller, 2003). The grid has 400 equidistant cells and, at t = 0.4, the
relativistic shell is resolved by 16 cells. Because of the third-order spatial accuracy of the method
in smooth regions and its small numerical diffusion (the shock is resolved by 4 – 5 cells, and the
contact discontinuity by 5 – 6 cells) the density of the shell is accurately computed (error less than
0.1%). The order of accuracy of the code when increasing the grid resolution (evaluated using the
L1-norm errors) is roughly 1 as expected for problems with discontinuities.

A large number of authors considered Problem 1 to test their HRSC algorithms (Schneider et al.,
1993; Eulderink and Mellema, 1995; Mart́ı and Müller, 1996; Mart́ı et al., 1997; Wen et al., 1997;
Donat et al., 1998; Del Zanna and Bucciantini, 2002; Anninos and Fragile, 2003; Mizuta et al., 2004;
Lucas-Serrano et al., 2004; Mignone and Bodo, 2005; Mignone et al., 2005b; Choi and Ryu, 2005;
Zhang and MacFadyen, 2006; Meliani et al., 2007; Tchekhovskoy et al., 2007; Morsony et al., 2007;
Wang et al., 2008). The performance of these algorithms in terms of accuracy and dissipation
is, generally speaking, similar to that of code rPPM. The results obtained with the relativistic
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Table 3: Initial pressure p, density ρ, normal velocity v, and tangential velocity vt for four common
relativistic Riemann test problems. The decay of the initial discontinuity leads to the formation of a dense
shell (velocity vshell and width wshell, the latter depending on time t) and a shock wave (velocity vshock
and compression ratio σshock) both propagating into the right state. The gas is assumed to be ideal with
an adiabatic index γ = 5/3.

Problem 1 Problem 2 Problem 3 Problem 4

Left Right Left Right Left Right Left Right

p 13.33333 10−6 103 10−2 103 10−2 103 10−2

ρ 10 1 1 1 1 1 1 1

v 0 0 0 0 0 0 0 0

vt 0 0 0 0 0 0.99 0.9 0.9

vshell 0.714020 0.960410 0.766706 0.319371

wshell 0.114378 t 0.026394 t 0.160300 t 0.125637 t

vshock 0.828398 0.986804 0.927006 0.445008

σshock 5.070776 10.415582 23.554932 4.464659

extension of the PPM method by Mignone et al. (2005b) are the best, the contact discontinuity
and the shock being spread by 2 – 3 cells. Given the similarities between these two PPM extensions,
the differences must come from the choice of the parameters in the reconstruction procedure. The
steeper contact discontinuity in Lucas-Serrano et al. (2004) could have the same origin. The TVD
scheme by Choi and Ryu (2005) produces very sharp shock transitions (1 – 2 cells). We note that
the schemes F-WENO (fifth-order in space, third-order in time; Zhang and MacFadyen, 2006),
WHAM (fifth-order in space, fourth-order in time), and F-WENO5 (fifth-order in space, third-
order in time; Wang et al., 2008) produce results which are similar to those obtained with rPPM
(third-order in space, second-order in time). Finally, some authors also simulated multidimensional
versions of this problem (Mart́ı et al., 1997; Aloy et al., 1999b; Anninos and Fragile, 2003; Baiotti
et al., 2003).

6.3.2 Problem 2

Problem 2 was proposed by Norman and Winkler (1986). The flow pattern is similar to that of
Problem 1, but more extreme. Relativistic effects reduce the post-shock state to a thin dense
shell with a width of only about 1% of the grid length at t = 0.4. The fluid in the shell moves
with vshell = 0.960 (i.e., Wshell ∼ 3.6), while the leading shock front propagates with a velocity
vshock = 0.987 (i.e., Wshock ∼ 6.0). The density jump in the shell reaches a value of 10.4. Norman
and Winkler (1986) obtained very good results with an adaptive grid of 400 cells using an implicit
hydro-code with artificial viscosity. Their adaptive grid algorithm placed 140 cells of the available
400 cells within the blast wave thereby accurately capturing all features of the solution.

Later, Mart́ı et al. (1991), Marquina et al. (1992), Mart́ı and Müller (1996), Falle and Komis-
sarov (1996), Wen et al. (1997), Donat et al. (1998), Del Zanna and Bucciantini (2002), Anninos
and Fragile (2003), Mizuta et al. (2004), Lucas-Serrano et al. (2004), Mignone and Bodo (2005),
Mignone et al. (2005b), Choi and Ryu (2005), Zhang and MacFadyen (2006), Meliani et al. (2007),
Tchekhovskoy et al. (2007), Morsony et al. (2007), and Wang et al. (2008) simulated Problem 2
to test their codes based on HRSC methods. Figure 17 (and the attached movie -online version
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only-) shows the evolution of the blast wave simulated with rPPM (Mart́ı and Müller, 1996; Mart́ı
and Müller, 2003) on a grid of 2000 equidistant cells. At this resolution rPPM obtains a con-
verged solution. At lower resolution (400 cells) the relativistic PPM method gives only 69% of
the theoretical shock compression ratio, which is a standard value (±3%) for third-order schemes
(Marquina et al., 1992; Mart́ı and Müller, 1996; Donat et al., 1998; Del Zanna and Bucciantini,
2002; Lucas-Serrano et al., 2004; Mignone et al., 2005b and schemes U-PPM of RAM, HLL-PPM
and HLL-CENO of RENZO, and the FLASH code). Second-order schemes (Mart́ı et al., 1991;
Falle and Komissarov, 1996; Mizuta et al., 2004; Mignone and Bodo, 2005 and schemes NOCD of
COSMOS and COSMOS++, F-PLM and U-PLM of RAM, HLL-PLM of RENZO) achieve 57±4%
of the theoretical shock compression value. Algorithms with an order of accuracy greater than 3
(the F-WENO scheme of RAM, the WHAM code, and the F-WENO5 scheme of RENZO) get
75±3% of the correct value. The most remarkable result is the one obtained with the second-order
HLLC scheme of Mignone and Bodo (2005) that gives 82% of the correct shock compression ratio,
because it uses a single-step MUSCL-Hancock method with fourth-order limited slopes (Colella,
1985; Miller and Colella, 2001) to construct the linear states.

The L1 global error of the density decreases with the formal order of accuracy of the method
as expected, although the differences between second-order methods and fourth- or fifth-order
methods are less than a factor of two. The order of accuracy is lower than one for third-order
methods (the average order of accuracy is 0.70 – 0.90 when increasing the grid resolution from
400 to 1600 cells), and approaches unity for schemes with an order of accuracy larger than three
(e.g., the F-WENO scheme of RAM, and WHAM). As their code is free of numerical diffusion and
dispersion, Wen et al. (1997) are able to handle this problem with high accuracy.

Anninos and Fragile (2003) and Anninos et al. (2005) considered Problem 2 as a test case
for their AV explicit codes. They find that the density jump across the shock wave is 24 – 28%
(12% in the case of the eAV scheme) too low when using 800 cells. This result demonstrates the
robustness and accuracy of the consistent formulation of the artificial terms in AV methods and
places consistent AV methods on the same level as HRSC methods in the simulation of highly
relativistic flows in 1D.

6.3.3 Problems 3 and 4

Problems 3 and 4 are variations of Problem 2 with non-zero tangential speeds in the initial state.
Their analytic solutions were first computed in Pons et al. (2000) (see also Figure 34 in Section 8.5).
The break-up of the initial discontinuity is similar to that of Problem 2 with a left-propagating
rarefaction wave and a right-propagating shock.

In Problem 3, the initial right state has a tangential velocity of 0.99, which increases its inertia.
This makes the shock stronger (shock compression ratio σshock = 23.6) and a bit slower (vshock =
0.927). However, the post-shock state moves also slower making the dense shell wider (about six
times) than in Problem 2, i.e., despite the larger density jump at the shock the analytic solution
is captured more easily than in the problem without an initial tangential flow component. Lucas-
Serrano et al. (2004) obtained a converged solution with 400 cells and a reasonable smearing of
both contact discontinuity and shock wave (5 – 6 cells; see Figure 18).

Similar results were produced with other HRSC schemes (Mignone et al., 2005b; Ryu et al.,
2006; Zhang and MacFadyen, 2006; Tchekhovskoy et al., 2007; Morsony et al., 2007; Wang et al.,
2008; Duffell and MacFadyen, 2011). The L1 global error of the density decreased in these sim-
ulations with the expected formal order of the accuracy of the method, although the differences
are small. For example, using 400 cells the absolute density error was 2.77× 10−1 and 2.31× 10−1

for the F-PLM and F-WENO schemes, respectively (Zhang and MacFadyen, 2006). The results
obtained with FLASH (1.71× 10−1) and TESS (1.36× 10−1) were slightly better.

The order of accuracy approaches unity (F-PLM: 0.90; F-WENO: 0.90; U-PLM: 0.85; U-PPM:
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Figure 17: Still from a movie – Numerical (red points) and analytic (blue line) distributions of density,
velocity and pressure at t = 0.43 for the relativistic blast wave Problem 2 defined in Table 3. The
simulation was performed with the code rPPM Mart́ı and Müller (1996) on an equidistant grid of 2000
cells. Animation (online version only): Full evolution of the numerical solution. (To watch the movie,
please go to the online version of this review article at http://www.livingreviews.org/lrca-2015-3.)
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82 José Maŕıa Mart́ı and Ewald Müller

0.95; WHAM: 0.78; FLASH: 0.98; TESS: 0.97) when increasing the grid resolution from 400 to
1600 cells. We note that the two schemes using piecewise parabolic reconstruction, U-PPM and
FLASH, have the highest order of accuracy.
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Figure 18: Results from Lucas-Serrano et al. (2004) (piecewise parabolic reconstruction, LLF flux formula,
TVD-RK method for time advance) for the relativistic blast wave Problem 3 with a non-zero tangential
velocity at t = 0.4. The figure shows normalized profiles of density, pressure and normal velocity for the
computed and exact (solid lines) solutions on an equally spaced grid of 400 cells. Image reproduced with
permission from Figure 6 of Lucas-Serrano et al. (2004), copyright by ESO.

In Problem 4, both the left and the right initial state have a tangential velocity component of
0.9, which limits the normal component of the left-propagating rarefaction to a value of vshell = 0.32
instead of 0.96 (Problem 2) or 0.77 (Problem 3). This fact, despite the increased inertia of the right
tate, weakens the right-propagating shock weak (σshock = .46) and widens the dense shell (almost
to the width of the shell in roblem 3). Because of a weaker shock and a similarly wide dense
hell Problem 4 seems to be an easier one than Problem 3 for any ode based on finite differencing.
However, this is not the case. The resence of a thin layer of gas with very large Lorentz factor
≈ 36) between the tail of the rarefaction wave and the ontact discontinuity requires extremely
high resolution. The shear t the contact discontinuity, where the tangential velocity jumps from
≈ 0.95 to ≈ 0.77, tends to change the flow in the vicinity of the thin layer through the numerical
dissipation of the scheme. As a result, the post-shock state is not well-captured and both contact
discontinuity and right-propagating shock have a wrong velocity.

This problem was first considered by Mignone et al. (2005b). More recently, Zhang and Mac-
Fadyen (2006), and Wang et al. (2008) used it to test the AMR capabilities of RAM and RENZO,
respectively. A correct solution (still with visible errors in the transverse velocity at the contact
discontinuity) can be obtained with RAM (F-WENO scheme) employing 8 refinement levels, a
refinement factor of 2, and 400 cells at the lowest grid level (equivalent fixed grid resolution of
51 200 cells; see Figure 19), while RENZO (HLL-PLM scheme) requires 4 refinement levels, a re-
finement factor of 3, and also 400 cells at the lowest level (equivalent fixed grid resolution of 25 600
cells). TESS captures the position of both the contact discontinuity and the right-propagating
shock (although with apparent errors in the intermediate state) with a moving mesh of an effective
fixed grid resolution of roughly 10000 cells.

The absolute density errors obtained with 400 cells for RAM (F-WENO scheme), WHAM,
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FLASH, and TESS are 5.21× 10−1, 4.13× 10−1, 3.25× 10−1, and 7.12× 10−1, respectively. The
corresponding orders of accuracy when increasing the grid resolution from 400 to 1600 cells are 0.58,
0.75, and 0.64, respectively. Ryu et al. (2006) considered Problem 3 and other tests in Pons et al.
(2000) for a relativistic perfect gas and obtained converged correct solutions with 217 (131 072)
cells.

Meliani et al. (2007) considered the nine combinations of Problem 2 in Pons et al. (2000)
with tangential speeds vt = (0, 0.9, 0.99) in the left and right initial states. For small tangential
velocities, the authors use a resolution of 200 cells on the base level, and four levels of AMR
refinement. However, initial states with high tangential velocities could only be simulated with a
higher base resolution of 400 cells and 10 levels of refinement.

Despite its known limitations in the description of smooth flows, Glimm’s random choice method
(Glimm, 1965; Chorin, 1976) performs very well when simulating problems that involve shocks.
It yields global errors ≈ 1 – 3 orders of magnitude smaller than traditional techniques. In the
relativistic case, the strongest differences arise in problems with shear flows, like Problems 3 and
4 (absolute density error with 400 cells: 5.9× 10−2 for Problem 3, and 9.6× 10−3 for Problem 4;
Cannizzo et al., 2008). The contact discontinuity and the right-propagating shock are captured at
the correct position (≈ 1 – 2 points off) without numerical diffusion. Constant states are reproduced
exactly (i.e., to within machine precision).

6.4 Numerical RMHD: Smooth flows with Alfvén waves

As in RHD, one uses various kinds of analytic smooth solutions to test the order of convergence
(when increasing the grid resolution) of RMHD codes. In 1D the convergence tests probe the
formal spatial and temporal order of the scheme, whereas in the multidimensional case, they
provide the accuracy of the multidimensional scheme (i.e., the spatial reconstruction and time
advance including the ∇ ·B = 0 constraint).

The properties of classical (i.e., non-relativistic) Alfvén waves are summarized, for example, in
Jeffrey and Taniuti (1964). The thermodynamic variables (e.g., pressure, density, entropy), the
magnetic pressure, the normal components of the velocity and magnetic field, and the wave speed
are invariant in Alfvén waves, whereas the tangential components of the magnetic field and the
flow velocity rotate by an arbitrary angle.

Since only the components tangential to the wave front change across the wave, classical Alfvén
waves are often referred to as transverse waves. They are linearly degenerate, because the wave
speed does not change across the wave. This has two interesting implications. Firstly, one can
construct smooth extended Alfvén waves of any amplitude (not necessarily small), and secondly
discontinuous Alfvén waves (i.e., Alfvén shocks) cannot be produced by steepening but only by
discontinuous initial conditions.

When Komissarov (1997) analyzed the properties of Alfvén waves in RMHD he found that the
normal component of the fluid velocity can change across the wave (if the amplitude is large) and
the tangential components of both the magnetic field and the flow velocity can rotate and change
their moduli. Hence, in a relativistic Alfvén wave, there are normal vector components that can
change across the wave, i.e., relativistic Alfvén waves are not transverse. The tips of the vectors
representing the tangential components of the waves’ magnetic field and flow velocity are located,
in general, on ellipses instead of circles. De Villiers and Hawley (2003) derived expressions for
small amplitude Alfvén waves propagating in a uniform background magnetic field with constant
fluid velocity.

Several groups developed various tests based on small-amplitude (De Villiers and Hawley,
2003; Del Zanna et al., 2003; Gammie and Tóth, 2003; Anninos et al., 2005; Leismann et al., 2005;
Mizuno et al., 2006) and large-amplitude (Komissarov, 1999a; Koldoba et al., 2002; Duez et al.,
2005; Shibata and Sekiguchi, 2005; Del Zanna et al., 2007; Mignone et al., 2009; Antón et al., 2010;
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Figure 19: Results from Zhang and MacFadyen (2006) for the relativistic blast wave Problem 4 with
non-zero tangential velocity at t = 0.6 obtained with the F-WENO scheme and AMR at three different
resolutions equivalent to 400 (top), 3200 (middle), and 51 200 (bottom) cells. Colored lines in the different
panels show density and pressure (left), normal velocity (middle), and transverse velocity (right). The
black lines show the exact solutions. Image reproduced with permission from Figure 9 of Zhang and
MacFadyen (2006), copyrighty by AAS.

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1007/lrca-2015-3


Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics 85

Beckwith and Stone, 2011) Alfvén waves to assess the consistency and accuracy of their codes. In
the following, some of these results will be discussed, in particular those devoted to testing the
order of convergence of the numerical schemes.

6.4.1 Circularly-polarized Alfvén waves

Del Zanna et al. (2003) studied the evolution of small-amplitude circularly polarized Alfvén waves.
As a particular case of the solutions discussed in De Villiers and Hawley (2003), they considered a
homogeneous state in the fluid rest frame characterized by a magnetic field B0, pressure p0, and
density ρ0. In the limit of small amplitudes, the modulus of the magnetic field is conserved, the
wave speed (i.e., the Alfvén speed; see Section 3.1) is given by ca = B0/

√
E , where E = ρ0h0 +B2

0

and h0 is the specific enthalpy of the fluid. The relation between velocity and magnetic field
perturbations reduces to δv = ±δB/

√
E , similarly to classical MHD, although in the latter case E

contains contributions beyond the proper rest-mass density.

To generate a circularly polarized Alfvén wave, one defines in a generic Cartesian reference
frame (ξ, η, ζ) an initial state with vξ = 0, Bξ = B0, and

vη = A cos(2πξ/λ), vζ = A sin(2πξ/λ), (100)

where A is a small amplitude, and λ is the wavelength. The corresponding magnetic field compo-
nent is given by

Bη = −
√
Evη, Bζ = −

√
Evζ . (101)

Under these conditions, the wave takes on its initial state again after one period, T = λ/ca.

The specific initial conditions considered by Del Zanna et al. (2003) were ρ0 = 1, p0 = 0.1, A =
0.01, and λ = 1. They performed simulations in 1D with (ξ, η, ζ) = (x, y, z) and B0 = 1, and in 2D
with (ξ, η, ζ) = ((x+y)/

√
2, (−x+y)/

√
2, z) and B0 =

√
2 studying the high resolution properties

of their code. Using the L1-norm errors of the z-component of the fluid velocity calculated after
one period they confirmed that both the 1D and 2D versions of their CENO3-HLL-MM scheme
are third-order accurate. Leismann et al. (2005) found second-order accuracy for their 2D RMHD
code utilizing both piecewise linear and piecewise parabolic reconstructions.

Applying slightly modified initial conditions (ρ0 = 1, p0 = 1, A = 0.01, λ = 1, vx = 0,
vy = A cos(2πx), vz = 0, Bx = B0 = 1, By = −

√
Evy, and Bz = 0) Mizuno et al. (2006)

studied the convergence properties of the RAISHIN code in 1D. They tested several second-order
(linear interpolation with MINMOD and MC limiters; see Section 4.3.1) and third-order (CENO,
PP interpolation) reconstruction procedures. None of the tested algorithms achieved second-order
accuracy, the order of accuracy becoming even worse with finer resolution, probably due to the
growth of round-off errors.

Del Zanna et al. (2007) extended the above studies considering large amplitude circularly po-
larized Alfvén waves. Their test problem has two advantages. Firstly, an exact solution of the
problem exists, while the solution of the previously studied RMHD Alfvén wave tests is exact only
in the limit of no perturbation. Secondly, since the test involves large amplitude perturbations,
round-off errors are insignificant. Both properties make this test well-suited to assess RMHD
schemes with a very high order of accuracy.

Del Zanna et al. (2007) looked for an exact, large amplitude solution with the same properties as
the linear one described above: (i) with unperturbed thermodynamic quantities, (ii) the transverse
components of the magnetic field and the fluid flow velocity as the only variables, which are parallel
to each other, and (iii) with vector tips describing circles in the plane normal to the unperturbed
magnetic field, B0.
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With Bx = B0 and vx = 0 the transverse velocity components are

vy = −A cos[
2π

λ
(x− vat)], vz = −A sin[

2π

λ
(x− vat)], (102)

and
By = −B0v

y/va, Bz = −B0v
z/va. (103)

In the previous expressions, the speed of the Alfvén wave, va, is unknown. Its value can be
obtained, however, from the transversal components of the RMHD momentum equation:

va = ±
√
B2

0(1−A2)

E −A2B2
0

. (104)

Notice that in the small amplitude limit (A � 1) the expression for ca is retrieved, and that the
expression for va is different from the one in Eq. (85) of Del Zanna et al. (2007), though equivalent.

Del Zanna et al. (2007) utilized this test to assess the order of accuracy of their code ECHO,
which incorporates schemes that are nominally second, third and fifth-order accurate. Using the
L1-norm errors of one of the transverse quantities (vz) calculated after one period they confirmed
the nominal order of the schemes for 1D and 2D test flow problems. Relying on the same test,
Beckwith and Stone (2011) demonstrated the second-order accuracy of the RMHD module of
ATHENA for 1D, 2D, and 3D flows.

6.4.2 Large-amplitude smooth non-periodic Alfvén waves

Komissarov included an Alfvén wave of this kind in his set of 1D tests for numerical RMHD
(Komissarov, 1999a, 2002a). Figure 20 shows his results together with the analytic solution at two
epochs. A detailed derivation of the latter can be found in the Appendix B of Duez et al. (2005).
The numerical dissipation of Komissarov’s code (1999a) creates perturbations in the pressure
distribution of the wave which are advected along with it. No converged results for the scheme were
presented. Duez et al. (2005) and Shibata and Sekiguchi (2005) used the same test to demonstrate
the second-order convergence of their respective codes. Koldoba et al. (2002) constructed another
solution to assess the consistency of their approximate Riemann solver.

6.5 Numerical RMHD: Riemann problems

A few Riemann test problems for RMHD were constructed by Dubal (1991) and van Putten (1993a),
while Komissarov (1999a) and Balsara (2001a) considered a whole series of Riemann problems that
have become a test bench for RMHD codes assessing their accuracy, stability, and diffusivity. Ever
since Giacomazzo and Rezzolla (2006) presented a procedure to derive analytic solution, the results
on RMHD test problems were compared with their analytic solutions, allowing one to evaluate the
order of accuracy of the codes for solutions involving discontinuities and to test the accuracy of
Riemann solvers quantitatively.

The general RMHD Riemann problem (see Giacomazzo and Rezzolla, 2006, and Section 8.6)
involves a set of seven waves: two fast waves, two slow waves, two (discontinuous) Alfvén waves,
and a contact discontinuity at which only the density can be discontinuous. The fast and slow
waves are nonlinear and can be either shocks or rarefactions. The remaining three waves are linear.

Two different cases can arise depending on the component of the magnetic field normal to the
initial discontinuity. If this component is zero (Type I degeneracy; see Section 3.2), the structure
of the solution is very similar to the hydrodynamic one. It consists of the two fast waves and a
tangential discontinuity across which only the total pressure and the normal component of the
velocity are continuous. Otherwise, if the magnetic field has a non-vanishing normal component,
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Figure 20: Propagation of a large-amplitude continuous Alfvén wave. The initial conditions are given by
the discontinuous lines in the different panels. Also shown are the numerical solution at t = 2 (crosses) and
the exact solution (continuous line) at the same time. Two characteristic properties of relativistic Alfvén
waves can be noticed: the change in the normal component of the fluid velocity, and the asymmetry in the
amplitude of the tangential magnetic field at the two sides of the wave. Image reproduced with permission
from Figure 5 of Komissarov (1999a), copyright by RAS.

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1007/lrca-2015-3
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the decay of the initial discontinuity involves all seven waves, except for planar Riemann problems
where the magnetic field and the flow velocity are coplanar. In the latter case the Alfvén waves
are absent.

Table 4 lists the initial data of a set of tests proposed in Komissarov (1999a), Balsara (2001a)
and Giacomazzo and Rezzolla (2006). In the first two tests (Ko2, GR1) the normal component
of the magnetic field is zero, i.e., the solution involves only three waves. Test Ko1 is a particular
case of a Type II degeneracy (see Section 3.2), for which the flow is purely hydrodynamic. This
test and the next five ones (Ko3, Ba1-4) are planar Riemann problems, whereas the two last tests
(Ba5, GR2) are generic ones involving all seven waves. Test Ba1 was first proposed by van Putten
(1993a). It is the relativistic extension of the test by Brio and Wu (1988) in classical MHD and
involves the formation of a compound wave (see Section 3.2).
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Table 4: Initial conditions for the RMHD Riemann problems discussed in Komissarov (1999a), Balsara
(2001a) and Giacomazzo and Rezzolla (2006) and references to the works that employed these tests. The
initial data for tests Ko1 and Ko2 are corrected according to Komissarov (2002b).

Test name ρ p vx vy vz Bx By Bz References

Purely tangential field

Ko2 (γ = 4/3)

left state 1.0 30.0 0.0 0.0 0.0 0.0 20.0 0.0 Komissarov (1999a),
Gammie and Tóth (2003),
De Villiers and Hawley
(2003), Duez et al. (2005),

right state 0.1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 Shibata and Sekiguchi
(2005), Anninos et al.

(2005), van der Holst
et al. (2008)

GR1 (γ = 5/3)

left state 1.0 0.01 0.1 0.3 0.4 0.0 6.0 2.0 van der Holst et al. (2008)

right state 0.01 5000 0.5 0.4 0.3 0.0 5.0 20.0

Planar Riemann problems

Ko1 (γ = 4/3)

left state 1.0 1000.0 0.0 0.0 0.0 1.0 0.0 0.0 Komissarov (1999a),
Gammie and Tóth (2003),
De Villiers and Hawley
(2003), Duez et al. (2005),

right state 0.1 1.0 0.0 0.0 0.0 1.0 0.0 0.0 Shibata and Sekiguchi
(2005), Anninos et al.

(2005), Mizuno et al.

(2006), van der Holst
et al. (2008)

Ba2 (γ = 5/3)

left state 1.0 30.0 0.0 0.0 0.0 5.0 6.0 6.0 Balsara (2001a),
Del Zanna et al. (2003),
Mignone and Bodo (2006),
Mizuno et al. (2006),

right state 1.0 1.0 0.0 0.0 0.0 5.0 0.7 0.7 Honkkila and Janhunen
(2007), Giacomazzo and
Rezzolla (2007), van der
Holst et al. (2008)

Ba3 (γ = 5/3)

left state 1.0 1000.0 0.0 0.0 0.0 10.0 7.0 7.0 Balsara (2001a),
Del Zanna et al. (2003),
Leismann et al. (2005),
Mignone and Bodo (2006),

right state 1.0 0.1 0.0 0.0 0.0 10.0 0.7 0.7 Mizuno et al. (2006),
Anderson et al. (2006),
Giacomazzo and Rez-
zolla (2007), van der Holst
et al. (2008)

Ko3 (γ = 4/3)

Continued on next page
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Table 4 – Continued from previous page

Test name ρ p vx vy vz Bx By Bz References

left state 1.0 1.0 5/
√
26 0.0 0.0 10.0 10.0 0.0 Komissarov (1999a),

Koldoba et al. (2002),
Gammie and Tóth (2003),
Duez et al. (2005),

right state 1.0 1.0 −5/
√
26 0.0 0.0 10.0 −10.0 0.0 Shibata and Sekiguchi

(2005), Mizuno et al.

(2006), van der Holst
et al. (2008)

Ba4 (γ = 5/3)

left state 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0 Balsara (2001a),
Del Zanna et al. (2003),
Leismann et al. (2005),
Mignone and Bodo (2006),
Mizuno et al. (2006),

right state 1.0 0.1 −0.999 0.0 0.0 10.0 −7.0 −7.0 Honkkila and Janhunen
(2007), Giacomazzo and
Rezzolla (2007), van der
Holst et al. (2008),
Mignone et al. (2009),
Antón et al. (2010)

Ba1 (γ = 2)

left state 1.000 1.0 0.0 0.0 0.0 0.5 1.0 0.0 van Putten (1993a), Bal-
sara (2001a), Del Zanna
et al. (2003), De Vil-
liers and Hawley (2003),
Mignone and Bodo (2006),

right state 0.125 0.1 0.0 0.0 0.0 0.5 −1.0 0.0 Mizuno et al. (2006),
Honkkila and Janhunen
(2007), Del Zanna et al.

(2007), Giacomazzo and
Rezzolla (2007), van der
Holst et al. (2008),
Mignone et al. (2009),
Antón et al. (2010), Beck-
with and Stone (2011),
Duffell and MacFadyen
(2011)

Generic Riemann problems

Ba5 (γ = 5/3)

left state 1.08 0.95 0.40 0.3 0.2 2.0 0.3 0.3 Balsara (2001a), Mizuno
et al. (2006), Giacomazzo
and Rezzolla (2007),
van der Holst et al.

(2008),

right state 1.0 1.0 −0.45 −0.2 0.2 2.0 −0.7 0.5 Mignone et al. (2009),
Antón et al. (2010), Beck-
with and Stone (2011)

GR2 (γ = 5/3)

Continued on next page
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Table 4 – Continued from previous page

Test name ρ p vx vy vz Bx By Bz References

left state 1.0 5.0 0.0 0.3 0.4 1.0 6.0 2.0 Mizuno et al. (2006),
van der Holst et al.

(2008), Mignone et al.

(2009), Antón et al.

(2010)

right state 0.9 5.3 0.0 0.0 0.0 1.0 5.0 2.0

The names of the tests refer to the original works (Ko: Komissarov (1999a); Ba: Balsara (2001a); GR: Giacomazzo

and Rezzolla (2006)) and their succession in these works (e.g., Ko2: Komissarov’s shock tube # 2).
* γ stands for the adiabatic index of the ideal gas EOS.

In the following sections we will summarize the results of the RMHD tests listed in Table 4.
We split the discussion of the tests into three groups of increasing difficulty: Riemann problems
with purely tangential magnetic fields, planar Riemann problems, and generic Riemann problems.

6.5.1 Riemann problems with purely tangential magnetic fields

The second-order code of Komissarov (1999a) is unable to capture the thin, moderately relativistic
(Lorentz factor about 2) shell of shocked gas of test Ko2 with 500 cells. His code also produces
noticeable overshoots and undershoots in the rarefaction tails, and exhibits post-shock oscillations.
These results are similar to those obtained with HARM, while the piecewise parabolic reconstruc-
tion schemes in Duez et al. (2005); Shibata and Sekiguchi (2005) give slightly better (i.e., less
dissipative) results.

Van der Holst et al. (2008) simulated a couple of tests with purely tangential magnetic fields
(Ko2 and GR1 in Table 4) with their multidimensional grid-adaptive code. In test Ko2, the code
captures well all the details of the analytic solution including the analytic density value of the
shell. The code has a small numerical diffusivity smearing the shock by only 2 – 3 cells. Test GR1
also involves only three waves (a left propagating shock, a tangential discontinuity, and a right
propagating rarefaction), but has a more complex structure than the one in test Ko2, because the
y- and z-components of the magnetic field and the flow velocity are non-zero. The code of van der
Holst et al. produces overshoots at both the shock and the tangential discontinuity, which can be
reduced only by increasing the grid resolution significantly. However, even then vz undershoots at
the tangential discontinuity.

6.5.2 Planar Riemann problems

Test Ko1 is a particular case of planar Riemann problem, in which the magnetic field is normal to
the initial discontinuity, making the flow purely hydrodynamic except for the contribution of the
magnetic pressure to the total pressure. Due to the large initial pressure jump, the break-up of
the initial discontinuity produces a strong blast wave (compression ratio about 9, Lorentz factor
larger than 2).

As in test Ko2, the code of Komissarov (1999a) is unable to capture the thin shell of shocked
gas of test Ko1 with 400 cells. Again, the scheme produces noticeable overshoots and undershoots
at rarefaction tails, and post-shock oscillations. The results are similar to those obtained with code
HARM. The scheme of Duez et al. (2005) again produces slightly better results than Komissarov’s
code does. When Shibata and Sekiguchi (2005) performed test Ko1, they noticed a large bump in
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92 José Maŕıa Mart́ı and Ewald Müller

the flow velocity (linked to an overshoot of the shell density) associated with the limiter used in
the piecewise parabolic interpolation.

With a four times larger resolution (1600 cells), the code of Balsara (2001a), which reconstructs
the characteristic variables, captures almost all thin structures in tests Ba1 to Ba4. This holds
particularly for tests Ba2 and Ba3, and the state between the right-propagating slow and fast
shocks. Neither overshoots nor undershoots at rarefaction tails and also no postshock oscillations
developed. The code resolves shocks, particularly fast shocks, with a few cells only.

The numerical setup used by Del Zanna et al. (2003) allows for a direct comparison with
Balsara’s results. Focusing on tests Ba2 and Ba3, Del Zanna et al. found that their CENO3-
HLL-MC scheme produces overshoots and undershoots at rarefaction tails. It also appears to be
more diffusive at contacts and somewhat more accurate in capturing thin structures. The first
two results can be attributed to the fact that primitive variables are reconstructed, whereas the
increased accuracy stems from the third-order spatial accuracy of the CENO scheme. Running
test Ba3, Leismann et al. (2005) obtained comparable results to those of Del Zanna et al..

Mignone and Bodo (2006) simulated several RMHD Riemann problems including tests Ba2 and
Ba3 and compared the accuracy of the HLLC Riemann solver with that of the HLL one. Their
results obtained with the second-order accurate MUSCL-Hancock scheme are the best in terms of
accuracy (thin structures are captured with relative errors of only few percent), stability (i.e., no
visible overshoots or undershoots at rarefaction tails), and with respect to the smearing of shocks
or contacts (Figure 21).

Mizuno et al. (2006) found that 400 cells were insufficient to capture the thin structures present
in test Ba2 and Ba3 with their code RAISHIN, even when using third-order reconstruction routines
(piecewise parabolic, ENO). The density in the shell between the contact discontinuity and the
slow magnetosonic shock was 30% too low. Moreover, both the mildly relativistic tangential flow
and the strong tangential magnetic field between the fast and the slow magnetosonic shock waves
were completely smeared out.

Giacomazzo and Rezzolla (2007) performed tests Ba2 and Ba3 with WhiskyMHD using 1600
cells. Their figures unfortunately do not allow one to assess the capabilities of their code in
capturing thin structures, like those in test Ba3, but the numerical solution seems to be accurate
and free of spurious oscillations. Two further works considered tests Ba2 and Ba3 to check the
performance of AMR modules (Anderson et al., 2006; van der Holst et al., 2008). The unigrid
simulations with the third-order code of Anderson et al. (2006) required 8000 cells to properly
capture the dense shell of test Ba3. The results presented for tests Ba2 and Ba3 in van der Holst
et al. (2008) are accurate and free of spurious oscillations, but the contact discontinuity and the
fast shock are smeared out over too many points.

Tests Ko3 and Ba4 are particular cases of planar Riemann problems, where two identical slabs
of magnetized plasma collide with a Lorentz factor of 5.1 (Ko3), and 22.4 (Ba4), respectively.
The symmetry of the problem reduces the number of waves emanating from the collision point to
four, a fast and slow shock propagating to the left and a fast and slow shock propagating to the
right. Table 4 lists the works that considered these collision tests. In general, the constant states
are correctly captured without any postshock oscillations, except for RAISHIN, which produces
(asymmetric) pronounced oscillations behind the fast shocks.

A common problem in tests Ko3 and Ba4 is wall heating (see Section 6.2) at the collision point,
which gives rise to a dip in the density profile that is less pronounced for more viscous schemes.
Hence, second-order schemes with more diffusive Riemann solvers (e.g., HLL) produce shallower
dips than third-order schemes with more elaborate Riemann solvers (e.g., HLLC). Some authors
(Mignone et al., 2009; Antón et al., 2010) also considered tests Ko3 and Ba4 to assess the accuracy
of various Riemann solvers in handling discontinuities. They found that slow shocks are better
resolved when using HLLC instead of HLL, and HLLD instead of HLLC, and equally well resolved
with HLLD and FWD.
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Test Ba1 is one of the test introduced by Brio and Wu (1988) to proof the non-convex character
of the classical MHD equations. The test, which was adapted to the relativistic case by van Putten
(1993a), consists of a fast rarefaction and slow compound wave propagating to the left, a contact
discontinuity, and a slow shock and fast rarefaction propagating to the right. The debate about the
physical relevance of solutions of the Riemann problem involving compound waves, and the lack
of an analytic solution (the compound wave consisting of a slow shock attached to a rarefaction
of the same family is treated as a slow shock in Giacomazzo and Rezzolla (2006)) limits somehow
the interest in this test. Apart from capturing the compound wave, the various codes perform
similarly as in the previously discussed tests. Duffell and MacFadyen (2011) considered this test
with TESS and found that the contact discontinuity, the shock, and the state in between both are
captured much better with the moving mesh than with a fixed one.

Figure 21: Results for the planar Riemann problem Ba3 obtained on a grid of 1600 cells with the second-
order scheme of Mignone and Bodo (2006), which is based on the MUSCL-Hancock scheme, the HLLC

Riemann solver, and linear reconstruction with the van Leer limiter. The relative error is 1.2% for the
density at the peak located between the slow and fast shock (propagating to the right). The corresponding
peak values of vy and By are 13% and 5% less than their exact values. Image reproduced with permission
from Figure 7 from Mignone and Bodo (2006), copyright by the authors.

6.5.3 Generic Riemann problems

Only two tests in Table 4 (Ba5 and GR2) are generic RMHD Riemann problems allowing all seven
waves to emerge after the decay of the initial discontinuity. Test Ba5 produces a fast shock, an
Alfvén discontinuity and a slow rarefaction wave propagating to the left, a contact discontinuity,
and a slow shock, a Alfvén discontinuity and a fast shock propagating to the right. In the test
GR2, instead, the magnetosonic waves propagating to the left are a fast rarefaction and a slow
shock. Both tests produce rather thin states between the Alfvén waves and the slow waves on both
sides of the initial discontinuity.
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Mignone et al. (2009) and Antón et al. (2010) used tests Ba5 and GR2 to assess the accuracy of
the Riemann solvers HLL, HLLC, HLLD, and FWD. Their results were similar to those obtained
for tests Ko3 and Ba4 (see above), namely that HLLD and FWD are more accurate solvers than
HLL and HLLC. The 800 cells used in the calculations of test GR2 were barely sufficient to detect
the increase of the tangential magnetic field between the Alfvén discontinuity and the fast shock
propagating to the right, but insufficient to detect the tangential flow in the same region (see
Figures 22 and 23). These statements also hold for the states between the slow waves and the
Alfvén discontinuities in test Ba5.
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Figure 22: Results for the generic Riemann problem GR2 computed with the HLL, HLLC, and FWD

Riemann solver. The computation were performed on a grid of 800 cells with a second-order RK method
with no spatial reconstruction. Image reproduced with permission from Figure 10 of Antón et al. (2010),
copyright by AAS.

Balsara (2001a) reproduced test Ba5 quite well with a grid of 1600 cells. The profiles show no
numerical oscillations, the numerical diffusion is small, and all the thin states are recovered except
for the profiles of vx, vy, and By between the slow rarefaction and Alfvén wave propagating to
the left. Mizuno et al. (2006) used only 400 cells, which are clearly insufficient to capture the thin
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Figure 23: Magnifications of the central region of Figure 22 displaying the rest-mass density (left), vy

(middle), and By (right), respectively. Image reproduced with permission from Figure 11 of Antón et al.
(2010), copyright by AAS.

structures. Moreover, their results display some spurious oscillations (well visible in the results
obtained with the piecewise parabolic version of RAISHIN). The same comments hold for the
results obtained for test GR2.

The WhiskyMHD results for test BA5 look accurate and show no numerical oscillations judging
from the profiles of the rest mass density and the y-component of the magnetic field. These are
shown in Giacomazzo and Rezzolla (2007), however, only for 160 of the 1600 cells used in their
calculations. The AMR results of van der Holst et al. (2008) also look accurate and stable both
for tests Ba5 and GR2. Again this judgment is based on restricted information, because only the
rest mass density and the z-component of the magnetic field are shown for test Ba5, and only the
rest mass density and the y-component of the flow velocity for test GR2. Beckwith and Stone
(2011) simulated problem Ba5 in 3D, which provides a test of the multidimensional parts of their
scheme including the constrained transport algorithm to update the magnetic field. The results
are accurate too, but the scales used in the figures prevent a more precise assessment of their code.

6.6 Numerical RMHD: Multidimensional tests

6.6.1 Blast waves

Despite the lack of an analytic solution, the evolution of cylindrical or spherical blast waves into
a magnetically dominated medium are a standard test for multidimensional numerical schemes in
RMHD. First blast wave results were presented by Dubal (1991), which indicated severe problems
of his scheme with this test, and by van Putten (1995), who achieved maximum expansion speed
of 0.35. Some years later, Komissarov (1999a) proposed a setup for the study of the propagation
of cylindrical blast waves that became standard.

The setup consists of a square Cartesian grid of side length L with N × N cells, which is
filled with a homogeneous gas at rest with a pressure pa, a density ρa, and a magnetic field Ba

(aligned with the x-axis). The explosion is initiated at the grid center by setting the pressure
and density of the gas inside a sphere of radius ri to values pi and ρi, respectively. Outside the
central sphere the properties of the gas vary smoothly (linearly, exponentially) reaching those of
the ambient gas at some radius ra (> ri). The important parameters of the blast wave test are
the initial ambient magnetization (βa = B2

a/2pa) and the Alfvén speed in the ambient medium
(ca, amb = Ba/

√
ρaha +B2

a).
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In Komissarov’s original setup, pa = 3 × 10−5, ρa = 10−4, Ba ∈ 0.01, 0.1, 1.0, pi = 1.0, and
ρi = 10−2. The grid length and the number of cells per dimension were L = 12 and N = 200,
respectively. The initial radius of the blast wave was ri = 0.8 ≈ 13.3∆x and the radius of the outer
edge of the transition layer was ra = 1.0 ≈ 16.6∆x, where ∆x = L/N was the cell size.

The homogeneous magnetic field permeating the numerical domain breaks the otherwise initial
cylindrical symmetry of the problem. Along the x−axis there is no tangential magnetic field and
the flow is purely hydrodynamic, while along the y-axis there is no normal magnetic field and the
blast wave compresses the tangential magnetic field. The main features of the solution are three
concentric discontinuities. The outermost one is a fast forward shock which is almost circular since
the fast speed is very close to the speed of light in all directions. The innermost discontinuity is
a strong reverse shock, which has an oblate shape, because the magnetic field is aligned with the
direction of shock propagation in x-direction, but perpendicular to it in y-direction. Between the
two fast shocks there is a contact discontinuity. Near the center, the expansion is almost circular,
because the gas pressure dominates the magnetic pressure. Figure 24 shows contour plots of some
quantities of a mildly magnetized cylindrical blast wave at time t = 4.0.

Several authors used this setup with slight modifications to simulate cylindrical blast waves
in 2D planar symmetry (Komissarov, 1999a; Del Zanna et al., 2003; Shibata and Sekiguchi, 2005;
Leismann et al., 2005; Mignone and Bodo, 2006; Noble et al., 2006; Neilsen et al., 2006; Del Zanna
et al., 2007; Antón et al., 2010; Beckwith and Stone, 2011; Mizuno et al., 2011a) and spherical
blast waves in 3D (Anderson et al., 2006; Mignone et al., 2007). Table 5 gives an overview of these
simulations. Ambient magnetizations range from 1.0 to 104, and the initial Alfvén speeds cover
the mildly relativistic regime (ca, amb = 0.56, i.e., B2

a ≈ 0.5 ρaha) up to the strongly relativistic one
(ca, amb = 0.9999, i.e., B2

a ≈ 5× 103ρaha).

Besides testing the proper working of multidimensional schemes and algorithms to preserve the
divergence constraint, the blast wave tests also provide information about the maximum magneti-
zation and Alfvén speed that can be handled by RMHD codes. All authors (Komissarov, 1999a;
Mignone and Bodo, 2006; Antón et al., 2010), who presented results of Komissarov’s strong mag-
netic field case (Ba = 1.0), used the CT approach and had to redefine the magnetic contribution
to the total energy (see Section 5.7.3), and hence the total energy itself, at the end of the time
step. They substituted the cell-centered magnetic field obtained after the Godunov step by the
average of the face-centered magnetic field obtained from the induction equation integrated (see
Section 5.7.3). Mignone and Bodo (2006) claimed that the substitution is useful when βa > 102,
although it violates energy conservation at the discretization level. Komissarov (1999a) estimated
the violation to be smaller than 3% in all the tests. We note that this kind of energy correction is
the one usually adopted in CT schemes in classical MHD (Balsara and Spicer, 1999; Tóth, 2000).

Using ECHO, Del Zanna et al. (2007) found that for magnetizations larger than 10 they had
to introduce various ad hoc numerical strategies in order to avoid numerical problems. Besides the
unbalance of the different terms in the energy equation, these authors argue that another cause
of these problems may be the use of independent reconstruction procedures along each spatial
direction, which can lead easily to incorrect fluxes and eventually unphysical states for flow or
Alfvén velocities close to the speed of light.

According to Beckwith and Stone (2011), the numerical problems observed in simulations of
strongly magnetized blast waves is caused by the initial conditions, and more specifically by the
maximum Lorentz factor W reached by the blast wave for test problems with the same magneti-
zation. They suggest that the recovery of the primitive variables becomes problematic for strongly
magnetized blast waves with W & 4. Whether this is indeed the case or whether the problem
only reflects inaccuracies in the evolution of conserved variables in strongly relativistic, strongly
magnetized flows still needs to be elucidated.

Duffell and MacFadyen (2011) considered a version of the blast wave test in classical MHD with
TESS. Although the code resolved the explosion reasonably well at low resolution, the violation of
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Figure 24: Results for the cylindrical blast wave test with moderate magnetization (βa = 10.0; see
Table 5) obtained with ECHO. Shown are contour plots (of the logarithm) of the rest-mass density (top
left), pressure (top right), Lorentz factor (bottom left), and magnetic pressure (bottom right). Image
reproduced with permission from Figure 4 of Del Zanna et al. (2007), copyright by ESO.
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Table 5: Initial conditions for cylindrical and spherical magnetized blast waves.

Code name/ pa ρa Ba βa ca, amb ra ri pi ρi

Reference

Cylindrical magnetized blast waves

Ko99 (Komissarov, 1999a) 3× 10−5 10−4 0.01 1.67 0.56 16.67 13.33 1.0 10−2

3× 10−5 10−4 0.1 1.67× 102 0.989 16.67 13.33 1.0 10−2

3× 10−5 10−4 1.0 1.67× 104 0.99989 16.67 13.33 1.0 10−2

DB03 (Del Zanna et al.,
2003)

10−2 1.0 4.0 8.0× 102 0.969 20.0 20.0 103 1.0

SS05 (Shibata and
Sekiguchi, 2005)

10−2 1.0 4.0 8.0× 102 0.969 20.0 20.0 103 1.0

LA05 (Leismann et al.,
2005)

5× 10−4 10−4 0.1 10.0 0.909 16.67 13.33 1.0 10−3

MB06 (Mignone and Bodo,
2006)

3× 10−5 10−4 0.1 1.67× 102 0.989 16.67 13.33 1.0 10−2

3× 10−5 10−4 1.0 1.67× 104 0.99989 16.67 13.33 1.0 10−2

HARM (Noble et al., 2006) 3× 10−5 10−4 0.1 1.67× 102 0.989 16.67 13.33 1.0 10−2

NH06 (Neilsen et al., 2006) 10−2 1.0 4.0 8.0× 102 0.969 20.0 20.0 103 1.0

ECHO (Del Zanna et al.,
2007)

5× 10−4 10−4 0.1 10.0 0.909 16.67 13.33 1.0 10−3

AM10 (Antón et al., 2010) 3× 10−5 10−4 1.0 1.67× 104 0.99989 33.33 26.67 1.0 10−2

BS11 (Beckwith and Stone,
2011)

5× 10−4 10−4 0.1 10.0 0.909 16.67 13.33 1.0 10−2

5× 10−3 10−4 0.1 1.0 0.576 16.67 13.33 1.0 10−2

5× 10−3 10−4 0.5 25.0 0.962 16.67 13.33 1.0 10−2

5× 10−3 10−4 1.0 100.0 0.980 16.67 13.33 1.0 10−2

RAISHIN (Mizuno et al.,
2011a)

5× 10−4 10−4 0.1 10.0 0.909 33.33 26.67 1.0 10−3

5× 10−4 10−4 0.1 10.0 0.909 66.67 53.33 1.0 10−3

Spherical magnetized blast waves

AH06 (Anderson et al.,
2006)

10−2 1.0 4.0 8.0× 102 0.969 12.48 12.48 103 1.0

PLUTO (Mignone et al.,
2007)

3× 10−5 10−4 1.0 1.67× 104 0.99989 42.67 34.13 1.0 10−2

The adiabatic index is 4/3 in all the cases. The cylindrical blast waves were simulated in 2D planar symmetry
using Cartesian coordinates and the spherical ones in 3D using also Cartesian coordinates (in the case of the
simulations of PLUTO, in 2D axisymmetry using cylindrical coordinates). The radii ra and ri are given in
units of the corresponding cell width. The effective numerical resolution varies by a factor of 4 among the
different test runs.
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the divergence-free constraint became unacceptably large with time. The growth of the violation
was associated with a change in topology of the Voronoi mesh in TESS during the simulation, which
occurred so fast that conventional techniques of divergence-cleaning were insufficient to resolve the
problem.

6.6.2 The relativistic rotor

The classical MHD rotor problem (Balsara and Spicer, 1999; Tóth, 2000) was extended to RMHD
by Del Zanna et al. (2003). A disc of radius rd = 0.1 and density ρd = 10 rotating at high
relativistic speed with Ωd = 9.95, i.e., the rotor, is embedded in a static background with density
1.0. Both disc and background are in pressure equilibrium with p = 1.0 and obey an ideal gas
EOS with an adiabatic index Γ = 5/3. They are permeated by an homogeneous magnetic field
Bx = 1.0.

The rotation of the disc makes the gas at r = 0.1 to move at a relativistic speed with a Lorentz
factor Wmax ≈ 10. The centrifugal force resulting from the rotation causes the disc to expand
producing a fast shock, which propagates into the ambient medium. The radial expansion of the
disc produces an oblate shell of high density and a rarefaction in the central region. The rotation
also winds up the magnetic field in the disc, which slows down the rotor.

Figure 25 shows the system at t = 0.4. The fast shock has propagated a distance of ≈ 0.3, and
the central field lines have been twisted by an angle of almost π/2. The shell density is ≈ 7 (in
x-direction) and 8 (in y-direction), respectively. The central density has decreased to a value of
≈ 0.4, and the maximum Lorentz factor is ≈ 1.79.

The relativistic rotor test, usually set up as a 2D test with slab symmetry, also exists in a
3D version, in which the disc is replaced by a sphere. When the sphere starts rotating around
the z-axis, torsional Alfvén waves propagate outward transporting angular momentum into the
ambient medium. The initially spherical structure gets squeezed into an equatorial disc, which
generates two symmetric reflected shocks propagating into ±z-direction. Matter in the equatorial
plane (z = 0) forms a thin, octagon-like shell reminiscent of the one generated in the planar 2D
case. The whole configuration is embedded in a spherical fast rarefaction (along the z-axis) or
shock front (in z = 0 plane) expanding almost radially.

Although there exists no analytic solution for the test, it has been widely used to gauge the
performance of RMHD codes in both 2D (Del Zanna et al., 2003; Shibata and Sekiguchi, 2005;
Neilsen et al., 2006; van der Holst et al., 2008; Antón et al., 2010; Etienne et al., 2010; Duffell
and MacFadyen, 2011; Keppens et al., 2012) and 3D (Anderson et al., 2006; Mignone et al., 2009;
Mizuno et al., 2011a). Convergence studies were hampered by the characteristics of the initial
data, which produce a large gradient of the Lorentz factor near the edge of the disk. At a (typical)
resolution of 500 cells (per unit length), the Lorentz factor decreases from 10 at the edge of the
disc to 4.5 at the next grid point inside the disc. The situation becomes worse if non-adapted (i.e.,
Cartesian) coordinates are used. Whereas there were some claims of convergence (Shibata and
Sekiguchi, 2005; Etienne et al., 2010), a quantitative study (Etienne et al., 2010) found none, i.e.,
the convergence rates were less than first order.

The results of different studies are consistent except for discrepancies that are related to the
existence of small density corrugations in the shear flow at the edge of the disk. The latter were
found in the 2D case by Del Zanna et al. (2003) and analyzed in detail by van der Holst et al. (2008)
using AMRVAC. The latter authors simulated the rotor evolution at higher resolution (effective
resolution equal to 6400 cells per unit length using seven refinement levels) for a longer time (until
t = 0.8) and found no evidence of any shear induced fine structure. The same result was reported
by Antón et al. (2010). In the 3D case, the differences concern the shape of the shell, octagonal in
Mignone et al. (2009) and elliptical in Mizuno et al. (2011a).

A couple of works Mignone et al. (2009); Antón et al. (2010) used the rotor test to compare
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100 José Maŕıa Mart́ı and Ewald Müller

the performance of Riemann solvers, namely HLL, HLLC, HLLD, and FWD in 2D and 3D. For
the 3D case, Mignone et al. (2009) reported that HLL needs twice the number of cells than HLLD
to capture some of the features of the solution. In terms of computational cost, the HLLD solver
requires approximately 1.6 times more computational time than HLL. However, it is still the more
efficient solver, because the grid resolution must be doubled to reach a comparable level of accuracy
with the HLL solver, which increases the computational costs by a factor ≈ 23 in 2D and ≈ 24 in
3D, respectively. The HLLC Mignone and Bodo (2005) failed to pass this test, most likely because
of the flux-singularity arising in 3D computations in the zero normal field limit. The 2D rotor tests
simulated by Antón et al. (2010) showed no significant differences in the performance of the HLLC
and FWD solvers. We note that the simpler HLL solver was utilized in the codes in Del Zanna
et al. (2003); Mizuno et al. (2011a); Duffell and MacFadyen (2011).

Anderson et al. (2006) performed three unigrid simulations with 400, 800, and 1600 cells (per
unit length) to test the hyperbolic divergence cleaning. At t = 0.4, the L2-norm error of the
∇ · B = 0 constraint is three times larger than without cleaning and decreases linearly with the
grid resolution. At the highest resolution, the maximum relative pressure difference is a few percent
(in the z = 0-plane) between simulations with and without divergence cleaning. The constraint
violation seems to saturate already at t = 0.4 with the hyperbolic cleaning applied by Anderson
et al., while it seems to continue growing linearly at t = 0.8 with the parabolic cleaning used by
van der Holst et al. (2008). The analysis of van der Holst et al. also showed that the largest
violations of the constraint occur at the shock fronts.

Etienne et al. (2010) presented an interesting analysis of the conservation of angular momentum
in the rotor test. Different from linear momentum, angular momentum is not conserved to machine
accuracy by conservative schemes in Cartesian coordinates. Etienne et al. (2010) found that the
angular momentum of the system changed by 1.7%, 1.2%, and 1.0% for a resolution of 250× 250,
400×400, and 500×500 cells, respectively. The authors attribute this slow convergence to the fact
that the initial steep Lorentz factor gradient near the edge of the rotor is insufficiently resolved.
The authors found that the numerically computed initial angular momentum deviates from the
analytic value by 6.8%, 2.7% and 1.8% for resolutions Nx = Ny = 250, 400, 500, respectively. They
claim that the angular momentum conservation would improve substantially, if the thin layer near
the edge of the rotor is well-resolved.

Some works also considered the rotor test to assess different aspects of AMR modules (Anderson
et al., 2006; van der Holst et al., 2008; Keppens et al., 2012)

6.7 Relativistic KH instability in RHD and RMHD

6.7.1 Linear regime

The KH instability (in the simplest case a tangential velocity discontinuity at the interface of paral-
lel flows) is one of the most important classical instabilities in fluid dynamics. Linear perturbation
analyses of the KH instability have been presented for many situations including incompressible
and compressible fluids, surface tension, finite shear layers, and magnetized fluids (Chandrasekhar,
1961; Gill, 1965; Gerwin, 1968).

Astrophysical applications in the context of extragalactic jets promoted studies of the KH in-
stability in the relativistic regime. For fluids in relativistic relative motion Turland and Scheuer
(1976); Blandford and Pringle (1976) developed the linear analysis of the KH instability in the
infinite, single-vortex-sheet approximation. The general dispersion relation for relativistic cylin-
drical jets was obtained and solved for a range of parameter combinations of astrophysical interest
in Ferrari et al. (1978); Hardee (1979); Hardee et al. (1998). A complete 3D analysis of the normal
modes (leading to helical, elliptical and higher-order asymmetric modes) was presented in Hardee
(2000). Further investigations considered the effects of magnetic fields oriented parallel to the flow
(see Ferrari et al., 1980, 1981; Ray, 1981 for the analysis of the corresponding dispersion relations
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Figure 25: Snapshots of the color-coded rest-mass density distributions of the 2D rotor problem at t = 0.4
using the code described in Antón et al. (2010). The results in the upper (bottom) panels were obtained
with a grid of 10242 (1282) cells. The left, middle, and right panels show the results obtained with the
FWD, HLLC, and HLL solver, respectively. Image reproduced with permission from Figure 14 of Antón
et al. (2010), copyright by AAS.

in the vortex-sheet approximation, and Hardee, 2007; Mizuno et al., 2007 for magnetized spine-
sheath relativistic jets). The growth of the KH instability was studied by Birkinshaw (1991) for
some particular class of cylindrical relativistic sheared jets. The study was limited, however, to
low-order reflection modes and marginally relativistic flows. Perucho et al. considered the effects
of very high-order reflection modes on sheared relativistic (both kinematic and thermodynamic)
slab jets (Perucho et al., 2005, 2007) and full 3D, initially cylindrical jets (Perucho et al., 2010).

In a series of papers, Perucho et al. studied the effects of relativistic dynamics and thermody-
namics on the development of KH instabilities in relativistic slab jets – both in the vortex-sheet
approximation (Perucho et al., 2004a,b) and for sheared flows (Perucho et al., 2005) – covering the
linear, saturation, and nonlinear phase of the evolution (see Figure 26) by means of hydrodynamic
simulations with a 2D pre-release of the Ratpenat code. In both cases, vortex-sheet approximation
and sheared flows, the linear growth rates of the different modes are reproduced by the numerical
simulations with a relative error of a few percent (Figure 27) for the chosen grid resolutions.

Whether a code can correctly determine the linear growth rate of the KH modes depends
critically on the numerical viscosity of the algorithm and the grid resolution. In the case of
Ratpenat, the grid resolution was 400 cells (across) × 16 cells (along the jet) per jet radius. This is
a compromise between accuracy and computational efficiency for the vortex-sheet models. In the
case of the sheared jets, a resolution of 256 × 32 cells per beam radius and about 40 cells within
the shear layer was used.

Zhang and MacFadyen (2006) used their code RAM with F-WENO-A and six levels of grid
refinement to simulate the linear phase of the growth of KH modes in model D10 of Perucho
et al. (2005). With an effective resolution of 256 × 32 cells per beam radius, RAM’s results are
comparable to those obtained with Ratpenat. Duffell and MacFadyen (2011) computed the linear
growth rates of the KH instability for subsonic, non-relativistic to moderately supersonic, mildly
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Figure 26: Two snapshots of the evolution of the KH instability in the jet model B05 of Perucho et al.
(2004a), i.e., for a pressure matched jet with a flow Lorentz factor 5.0, a specific internal energy 0.42, and
a jet to ambient rest-mass density ratio 0.1. The jet flow is from left to right and initially filled the slab
y ∈ [−1, 1]. The top four panels show various flow quantities at the end of the linear phase, very close to
saturation. The bottom four panels display jet quantities in the nonlinear regime (only the upper half of
the jet is shown). Image adapted from Perucho et al. (2004a,b).
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relativistic flows with TESS and compared them with the analytic solution calculated by Bodo
et al. (2004). With a resolution of 128 cells per beam radius, the linear growth rates are captured
within a 20% relative error.

Figure 27: Evolution of the relative amplitudes of pressure perturbations (pmax − p0)/p0 (dotted), lon-
gitudinal velocity perturbations in the jet reference frame 0.5 (v‖max − v‖min) (dashed), and perpendicular
velocity perturbations in the jet reference frame 0.5 (v⊥max − v⊥min) (dashed-dotted). The solid line gives
the prediction of a linear perturbation analysis. Arrows in the left panel mark specific stages in the evo-
lution. The parameters of model B05 are given in the caption of Figure 26, and those of model D05 are
identical to the parameters of model B05 except for the jet specific internal energy, which is 60.0. Image
adapted from Perucho et al. (2004a).

Bucciantini and Del Zanna (2006) tested the RMHD code of Del Zanna et al. (2003) comparing
the KH linear growth rates of subsonic and marginally supersonic, relativistic (unperturbed flow
speeds 0.1 to 0.4) magnetized sheared flows. The numerical results obtained with the HLL solver
differed from the analytic ones Ferrari et al. (1980) by less than 5% for a relativistically hot plasma
(see Figure 28). Mignone et al. (2009) considered the same set-up, but studied the dependence of
the growth rate on the Riemann solver (HLLD versus HLL) and the grid resolution. Simulations
carried out with the HLLD solver at low, medium (the one used by Bucciantini and Del Zanna,
2006; 180×360 cells), and high resolution revealed similar growth rates, and saturation was reached
at essentially the same time. When the HLL scheme is employed, the saturation phase and the
growth rate during the linear phase change with resolution. Beckwith and Stone (2011) extended
the comparison to the HLLC Riemann solver. In the linear regime, these authors find identical
growth rates for both the HLLC and the HLLD solver, i.e., including the contact discontinuity in
the Riemann solver leads to this behavior.

6.7.2 Beyond the linear regime: nonlinear turbulence

Bucciantini and Del Zanna (2006) presented a qualitative discussion of the effects of transverse and
aligned magnetic fields on the development of the KH instability for flows of different speeds. They
find that adding an even small aligned magnetic field component to a flow with purely transversal
field beyond the linear phase changes qualitatively the development of the instability. Such a
component strongly suppresses the KH growth and excites a turbulent cascade towards smaller
scales.

Mignone et al. (2009) quantified the small-scale structure in nonlinear RMHD turbulence for
the set-up of Bucciantini and Del Zanna (2006) computing the power residing at large wavenumbers
in the discrete Fourier transform of the transverse component of velocity. During the statistically
steady flow regime the HLL and HLLD solvers exhibit small-scale power that differs by more than
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Figure 28: Amplitude of the perturbation ∆vy = 0.5(vymax − vymin) as a function of time for a sheared
jet model with unperturbed flow speed 0.25 and aligned magnetic field. The solid line gives the numerical
results and the dashed line the prediction of the analytic theory Ferrari et al. (1980). From top to bottom:
β (σpol in the original paper) = 0.01, 0.05, 0.1, 0.2. The numerically determined growth rates are 0.21,
0.11, 0.16, and 0.08, respectively. These should be compared with the expectations of the linear theory,
which are 0.205, 0.108, 0.165, and 0.075, respectively. Image reproduced with permission from Figure 1 of
Bucciantini and Del Zanna (2006), copyright by ESO.
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one order of magnitude. The power is larger than 10−5 (at all resolutions) for HLLD and less than
10−6 for HLL (see Figure 29).

Beckwith and Stone (2011) computed the power spectra of density, Lorentz factor, and magnetic
pressure for the tests of Bucciantini and Del Zanna (2006); Mignone et al. (2009) concluding that
the differences between the integrated powers obtained with HLLC and HLLD are small at any
resolution. The HLL results tend to match those obtained with HLLC and HLLD at sufficiently
high resolution for the integrated power of density and Lorentz factor, but remain smaller by more
than one order of magnitude at any resolution for the integrated power in magnetic pressure. Thus,
the choice of the Riemann solver can play an important role in determining the overall spectral
resolution of a given integration scheme.

Figure 29: Top panel: KH growth rate as a function of time computed from ∆vy = (vymax−vymin)/2 at low
(L), medium (M), and high (H) resolution. The solid, dashed, and dotted lines show the results obtained
with HLLD, whereas symbols refer to HLL. Bottom panel: corresponding small-scale power (see definition
in Mignone et al. (2009)) as a function of time. Image reproduced with permission from Figure 16 of
Mignone et al. (2009), copyright by the authors.

In 3D simulations of the KH instability Beckwith and Stone (2011), the power spectra of density,
Lorentz factor, and magnetic pressure differed at small scales (wavenumber k ≥ 100) by more than
two orders of magnitude between the results obtained with HLL and HLLD, respectively. The
initial set-up for this study was the same as in the 2D test discussed in the previous paragraph,
but with an additional 1% Gaussian perturbation modulated by an exponential of the z-component
of the 3-velocity in order to break symmetry along the z-axis.

The results of the nonlinear phase of the simulations discussed in this Section cannot be re-
garded as converged because of the absence of any physical dissipation (ideal RMHD). Hence, the
multidimensional simulations presented here are no quantitative test of the codes. The simulations
rather serve as a qualitative demonstration of the difficulties that might be encountered when using
oversimplified Riemann solvers in the study of nonlinear flows.

Studies of fully-developed 3D turbulence in RHD and RMHD with the aim of determining its
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statistical properties were carried out by Radice and Rezzolla (2013) (with THC) and Zrake and
MacFadyen (2012) (with Mara). The power spectrum of the velocity field in the inertial range was
found to be in good agreement with the predictions of the classical theory of Kolmogorov, which
hence seems to apply at least to subsonic and mildly supersonic, relativistic flows, too.
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7 Conclusion

After the pioneering work performed in the late 1970s and 1980s, based mainly on AV and FCT
techniques, the last two decades have witnessed a major breakthrough in numerical relativistic
astrophysics. Conservative HRSC methods were extended to both numerical RHD and RMHD.
These methods satisfy in a quite natural way the basic properties required for any acceptable
numerical method: (i) high order of accuracy, (ii) stable and sharp description of discontinuities,
and (iii) convergence to the physically correct solution. In this review we summarize the main de-
velopments of HRSC methods including both FD and FV strategies. We also discuss the (present)
performance and limitations of these methods when simulating highly relativistic (magnetized)
flows.

7.1 Finite volume and finite difference methods in numerical RHD and
RMHD

Finite volume methods exploit the integral form of the partial differential conservation equations.
Zone averaged values are evolved in time following a sequence of steps that involves (i) the re-
construction of the variables inside the numerical cells up to a certain order, (ii) the solution of
Riemann problems at cell interfaces, which are defined by the reconstructed values, to compute the
intercell numerical fluxes, and (iii) the time advance of the conserved variables from their values
at the previous time step using the numerical fluxes (and sources). The interpolation inside the
numerical cells is done by means of conservative, monotonic functions with slope limiters to avoid
the generation of spurious oscillations in the solution (TVD property). The piecewise linear and
parabolic reconstructions commonly used restrict the spatial accuracy of the methods to second or
third order, respectively, or smaller since the reconstruction is usually carried out on the primitive
variables, which are not exactly cell averages, because they are obtained from cell averages of the
conserved quantities.

Although exact solutions of the Riemann problem exist in both RHD and RMHD, one com-
putes the numerical fluxes by means of approximate Riemann solvers or flux formulas. Linearized
Riemann solvers are based on the local linearization of the system of equations and the spectral de-
composition of the Jacobian matrices of the fluxes. The flux formula of Marquina, based on lateral
local linearizations of the system and the corresponding spectral decompositions, and the modified
Marquina flux formula (which applies the local Lax–Friedrichs flux to all characteristic fields) have
become a standard in numerical RHD. Among the Riemann solvers that avoid the computationally
expensive local spectral decompositions are the HLL Riemann solver and its extensions HLLC and
HLLD (in RMHD).

The equations are advanced in time using the method of lines which leads to a system of
ordinary differential equations that can be integrated with high-order predictor-corrector methods.
Of special interest are the second-order and third-order TVD-RK time discretization algorithms
although standard fourth-order and fifth-order Runge–Kutta methods have been applied, too. The
single-step MUSCL-Hancock method gives the best results at the highest computational efficiency.
In multidimensional problems, the fluxes in different coordinate directions are computed and used
to advance the equations simultaneously. The CTU method consists of two steps: one interpolates
variables to the interfaces using information from all coordinate directions, and then one solves the
Riemann problem.

In FD methods, the pointwise values of the conserved variables are advanced in time. Within
this category, algorithms based on ENO reconstruction techniques (CENO, ENO, WENO) are the
most successful ones. In combination with high-order Runge–Kutta methods they lead to schemes
that are third-order to fifth-order accurate.

Numerical codes for RMHD should involve an additional algorithm to preserve the divergence-
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108 José Maŕıa Mart́ı and Ewald Müller

free character of the physical magnetic field. Among the different strategies, the constrained
transport (CT) techniques are the most widely used ones. In their original form, CT techniques
require the introduction of an additional staggered magnetic field variable, which is advanced
in time using the induction equation and suitable interpolations to the cell edges of quantities
(magnetic fields, velocities, and fluxes) of the HRSC scheme. Because of these interpolations and
those needed to obtain the cell-centered magnetic field from the staggered magnetic field, the
accuracy of the whole algorithms is reduced to second order. The most recent developments have
focused on the construction of high-order upwind numerical fluxes in the induction equation and
the use of more accurate reconstruction procedures for the cell-centered magnetic fields to surpass
second-order accuracy.

7.2 Present limitations of HRSC methods for RHD and RMHD

7.2.1 Accuracy limits and the conserved-primitive variables mapping

Using conserved variables for the time advance in HRSC methods requires the recovery of the
primitive variables after each time (sub)step. Whereas the mapping between conserved and primi-
tive variables can be written in closed form in classical hydrodynamics and MHD, this mapping is
defined only implicitly in the relativistic case, i.e., it involves an iterative recovery procedure. The
requirement that this procedure is actually capable of obtaining the primitive variables from the
conserved ones places limits on the range of flows that can be studied with the numerical code.
In practice, the limits are set by the relative size of the various contributions to the total energy
density of the flow, i.e., rest-mass, internal energy, kinetic energy, and (in the RMHD case) mag-
netic energy. As a result, the accuracy of the recovery procedure decreases in the ultrarelativistic
limit where the kinetic energy dominates all other energies, in the non-relativistic limit where the
kinetic energy becomes much smaller than the rest-mass and/or the internal energy, in the limit
of low internal energy (pressure), and in the limit of high magnetization (i.e., large β and κ).

There are two sources of error that are responsible for the limited applicability of numerical
schemes in RHD and RMHD. The first source are truncation errors resulting from the scheme
as a whole which do not depend on the accuracy of the recovery procedure itself. The errors
introduced by the constrained transport method (or any other method to keep the magnetic field
divergence-free) belong to this class. The second source of error is the accuracy of the recovery
algorithm itself which involves the solution of a set of five nonlinear equations. In the most
robust and computationally fastest method one first solves the two equations for ρhW 2 and v2.

The subsequent manipulation of some intermediate quantities requires that Wmax . ε
−1/2
mp and(

p/ρW 2
)
min

& εmp, where εmp is the machine precision (i.e., Wmax . 108 and pmin & 10−16ρW 2

for double precision arithmetic). For magnetized flows the limit on the degree of magnetization
imposes another threshold on the thermal pressure, namely pmin ≈ 10−4B2.

7.2.2 The need for high resolution

When solving hyperbolic systems high resolution is needed to describe discontinuities in the vari-
ables and in their derivatives without excessive smearing. In the case of relativistic fluid dynamics,
this need is enhanced by two genuine relativistic effects. These are the Lorentz contraction and the
limiting velocity of light which can give rise to very thin flow structures, good examples being the
thin blast waves in Problem 2 of Section 6.3.2 and in the planar RMHD Riemann problem Ba3 of
Section 6.5.2. Fixed-grid state-of-the-art HRSC codes require about 1000 to 2000 numerical cells
per unit of length to obtain a converged solution in these tests. However, excessive smearing seems
not to be the only consequence of poor numerical resolution. In numerical tests involving discon-
tinuities with relativistic tangential velocities (as, e.g., Problem 4 in Section 6.3.3) the coupling of
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tangential and normal velocities leads to unphysical flow states and wave speeds.7 Whereas some
smearing in the representation of flow discontinuities is commonly accepted, unphysical flow states
and wave speeds spoil the solution, i.e., the use of high-order methods with AMR techniques or
moving grids is then necessary. Numerical studies of the growth of the (relativistic) KH instability
both in the linear and nonlinear regime, and of the development of (relativistic) turbulence also
foster the development of RHD codes comprising these grid features.

7.3 Current and future developments

In its early stage, the research of numerical RHD focused on the development of accurate and
robust numerical methods and codes that are capable of simulating even extreme relativistic flows,
i.e., flows involving large Lorentz factors and magnetic fields of relativistic strengths. Meanwhile,
the research focuses on the extension of existing methods and codes to handle relativistic flows in
which effects due to dissipation (viscosity, resistivity), and/or radiation are of importance. In the
following sections we will briefly review these developments.

7.3.1 Viscous RHD

Classical relativistic ideal (i.e., non-viscous) hydrodynamics is well understood theoretically, and
there exist well studied advanced methods to integrate the corresponding equations numerically.
However, relativistic viscous hydrodynamics and relativistic quantum fluids have been explored
less and only more recently, mostly in the context of the quark-gluon plasma produced in heavy-
ion colliders (see, e.g., Romatschke, 2010) and for relativistic Dirac spin-1/2 quantum plasmas
(Asenjo et al., 2011). The current knowledge of a relativistic theory of fluid dynamics in the
presence of (mostly shear) viscosity is discussed in a comprehensive review by Romatschke (2010);
see also Chapter 3 in Abramowicz and Fragile (2013), and Chapter 6 in Rezzolla and Zanotti
(2013). The derivation of the corresponding fluid equations is based either on the generalized
second law of thermodynamics, kinetic theory, or a complete second-order gradient expansion, the
fluid equations resulting from the three derivations being consistent (Romatschke, 2010).

Particular implementations of relativistic viscous hydrodynamics were presented by Takamoto
and Inutsuka (2011) who used a Riemann solver for the advection step and Strang-splitting for the
source terms, and more recently by Del Zanna et al. (2013), who developed the code ECHO-QGP
based on the ECHO code for simulations of the (3+1) spacetime evolution of the quark-gluon
plasma (see also Vredevoogd and Pratt, 2012).

7.3.2 Resistive RMHD

To simulate astrophysical phenomena involving magnetic fields, the numerical methods discussed
in the preceding sections are often insufficient, because the proper treatment of non-ideal effects
due to magnetic dissipation and reconnection is of importance. Magnetic reconnection is a physi-
cal process in highly conducting plasmas, in which the magnetic field topology is rearranged and
magnetic energy is converted into kinetic energy and thermal energy, and used to accelerate parti-
cles. Moreover, although the plasma encountered in these phenomena has a non-vanishing physical
resistivity, in most cases the magnetic dissipation and reconnection observed in simulations with
RMHD schemes is the result of their numerical resistivity, which depends on the resolution.

To control and properly simulate reconnection and Ohmic dissipation in a relativistic plasma
there is a need for suitable numerical methods in resistive RMHD (Watanabe and Yokoyama, 2006;
Komissarov, 2007). The development of such methods is challenging, because the resistivity can

7 Although the origin of the failure seems to be the coupling of tangential and normal velocities, something
similar (capturing unphysical flow states and wave speeds) also happens in purely normal flows in which flow
variables change by many orders of magnitude across the discontinuity.
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110 José Maŕıa Mart́ı and Ewald Müller

vary over many orders of magnitude in astrophysical phenomena, i.e., in regions of high conductivity
the system will evolve on time scales which are very different from those in the low-conductivity
regions.

When simulating Ohmic dissipation one has to take into account an additional term propor-
tional to −∇ × (∇ × B) in the induction equation. Thereby, the equation becomes parabolic
implying that information propagates with an infinite speed. This unphysical behavior arises be-
cause the time derivative of the electric field is neglected in the induction equation. Hence, one
must evolve the electric field too, when simulating (relativistic) magnetized flows with a finite
resistivity. The induction equation then becomes a telegraph equation satisfying causality (see,
e.g., Komissarov, 2007). Mathematically speaking, the equations of resistive (R)MHD are either
of mixed hyperbolic-parabolic type or hyperbolic with stiff source terms (if the resistivity varies
strongly within the flow), and they require special numerical methods to integrate them in a stable
and accurate manner (Palenzuela et al., 2009).

Watanabe and Yokoyama (2006) were the first to present a numerical study of relativistic
magnetic reconnection providing, however, no details of the numerical scheme and not any test
simulations. Komissarov (2007) gave the first detailed description of a numerical scheme capable
of simulating RMHD flows with a finite resistivity. He employed a multidimensional HLL method
in Cartesian coordinates and Strang-splitting to integrate the resistive RMHD equations for Ohm’s
law with a scalar (i.e., isotropic) resistivity. The magnetic field was kept divergence-free by means of
hyperbolic cleaning (see Section 5.7; Dedner et al., 2002). Because of the use of HLL, Komissarov’s
method becomes very diffusive when simulating problems whose characteristic velocity is much
lower than the speed of light.

A subsequent study was concerned with relativistic magnetic reconnection in an electron-
positron pair plasma (Zenitani et al., 2009, 2010) using a two-fluid model with an interspecies
friction force as an effective resistivity to dissipate magnetic fields. Applying a LLF approximate
Riemann solver and hyperbolic cleaning (Dedner et al., 2002). Palenzuela et al. (2009) proposed an
implicit-explicit (IMEX) Runge–Kutta method to integrate the equations of non-ideal RMHD for
a uniform conductivity. They showed that the IMEX method, which treats stiff terms implicitly
and non-stiff ones explicitly, allows for a proper treatment of both the fluid-pressure dominated
and magnetic-pressure dominated flow regime.

Unstructured grids, an element-local spacetime discontinuous Galerkin approach, and hyper-
bolic divergence cleaning (Dedner et al., 2002) were employed by Dumbser and Zanotti (2009) and
Zanotti and Dumbser (2011). This approach, which can handle properly both the resistive regime
and the stiff limit of low resistivity, allowed them to simulate in 2D and 3D relativistic reconnection
in a plasma giving rise to flows with Lorentz factors close to ∼ 4 (Zanotti and Dumbser, 2011).

Takamoto and Inoue (2011) proposed a method particularly suited to systems with initially
weak magnetic fields and arbitrary flow speeds ranging from non-relativistic to highly relativistic
ones. They employed an approximate Riemann solver to calculate the numerical flux of the fluid
having a scalar resistivity and the method of characteristics to advance the electromagnetic field.
They showed that their Strang-splitting method, which was used by Komissarov (2007) too, works
also well when applied to discontinuous flows with low resistivity, contrary to the claim of Palen-
zuela et al. (2009). According to the problem encountered by Palenzuela et al. (2009) with the
Strang-splitting method in that regime can be traced back to evolving the electric field during the
recovery of the primitives.

The AMR version of the PLUTO code (Mignone et al., 2012) provides an option to simulate
flows having a finite magnetic resistivity, which is accounted for by prescribing the resistive (di-
agonal) tensor. However, up to now this option is only publicly available for Newtonian MHD
(see also, e.g., Keppens et al., 2013). One of the Newtonian MHD tests discussed in Mignone
et al. (2012) is concerned with resistive reconnection, which was studied for various values of the
magnetic resistivity in a 2D Cartesian box using PP reconstruction and a Roe Riemann solver
(Roe, 1981).
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7.3.3 Further developments

In order not to go beyond the scope of this review, we only mention a few further developments in
the simulation of relativistic flows.

If electromagnetic fields are strong enough that hydrodynamic forces and the inertia of the
plasma can be neglected, one encounters the magnetodynamic, or force-free regime, in which the
Lorentz force density vanishes everywhere. Numerical studies in this ultrarelativistic limit of MHD,
which is appropriate for simulating magnetically dominated GRB jets (see Section 2.2), the magne-
tospheres of pulsars, or pulsar wind nebulae (see Section 2.3), were performed by Contopoulos et al.
(1999); Spitkovsky (2006); Tchekhovskoy et al. (2008); Parfrey et al. (2012); and Tchekhovskoy
et al. (2013).

Simulating systems in relativistic astrophysics often requires besides hydrodynamics and mag-
netohydrodynamics also some treatment of the radiation emitted by the systems (radiative transfer)
or even of the coupling between radiation and flow dynamics (radiation hydrodynamics). Numeri-
cal schemes for such simulations have been presented by Farris et al. (2008); Zanotti et al. (2011);
Sadowski et al. (2013); Takahashi and Ohsuga (2013); and Takahashi et al. (2013). The first three
studies were concerned with simulations of radiative flows in general dynamic spacetimes, but
they also presented tests in Minkowksi spacetime for RHD (Zanotti et al., 2011; Sadowski et al.,
2013) and RMHD (Farris et al., 2008). The code discussed in Zanotti et al. (2011) is an exten-
sion of the ECHO code. An explicit-implicit scheme with an approximate Riemann solver was
proposed by Takahashi et al. (2013) for relativistic radiation hydrodynamics, while Takahashi and
Ohsuga (2013) presented a scheme for coupling anisotropic radiation fields to relativistic resistive
magnetofluids.
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8 Additional Information

8.1 Spectral decomposition of the 3D RHD equations

This section, with slight variations, was already included in Mart́ı and Müller (2003) and is main-
tained here for completeness.

The full spectral decomposition including the right and left eigenvectors of the Jacobian ma-
trices associated with the RHD system in 3D was first derived by Donat et al. (1998). Mart́ı et al.
(1991) presented the spectral decomposition for 1D RHD, and Eulderink (1993) and Font et al.
(1994) the eigenvalues and right eigenvectors for 3D RHD.
The Jacobians of RHD are given by

Bi = ∂Fi
HD

∂UHD
, (105)

where the state vector UHD and the flux vector Fi
HD are the vectors defined in (9) and (10),

respectively, for a vanishing magnetic field. In the following we explicitly give both the eigenvalues
and the right and left eigenvectors of the Jacobi matrix Bx only (the cases i = y and i = z are
easily obtained by symmetry considerations).
The eigenvalues of matrix Bx are

λ± =
1

1− v2c2s

{
vx(1− c2s)±cs

√
(1− v2)[1− vxvx − (v2 − vxvx)c2s]

}
(106)

(where cs is the sound speed and v2 = vivi), and

λ0 = vx (triple) . (107)

A complete set of right-eigenvectors is

r0,1 =

( K
hW

, vx, vy, vz, 1

)T

(108)

r0,2 =
(
Wvy, 2hW 2vxvy, h(1 + 2W 2vyvy), 2hW 2vyvz, 2hW 2vy

)T
(109)

r0,3 =
(
Wvz, 2hW 2vxvz, 2hW 2vyvz, h(1 + 2W 2vzvz), 2hW 2vz

)T
(110)

r± = (1, hWA±λ±, hWvy, hWvz, hWA±)T (111)

where

K ≡ κ̃

κ̃− c2s
, κ̃ =

κ

ρ
, A± ≡

1− vxvx
1− vxλ±

(112)

(κ is the partial derivative of the pressure with respect to the specific internal energy at constant
rest-mass density). The corresponding complete set of left-eigenvectors is

l0,1 =
W

K − 1
(h,Wvx,Wvy,Wvz,−W )

l0,2 =
1

h(1− vxvx) (0, v
xvy, 1− vxvx, 0,−vy)
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l0,3 =
1

h(1− vxvx) (0, v
xvz, 0, 1− vxvx,−vz)

l∓ = (±1)h
2

∆




hWA±(vx − λ±)

1 +W 2(v2 − vxvx)(2K − 1)(1−A±)−KA±

W 2vy(2K − 1)A±(vx − λ±)

W 2vz(2K − 1)A±(vx − λ±)

−vx −W 2(v2 − vxvx)(2K − 1)(vx −A±λ±) +KA±λ±




T

where ∆ is the determinant of the matrix of right-eigenvectors, i.e.,

∆ = h3W (K − 1) (1− vxvx) (A+λ+ −A−λ−) . (113)

For an ideal gas EOS K = h, i.e., K > 1, and hence ∆ 6= 0 for |vx| < 1.

Finally, we note that if l̂ and r̂ are left and right eigenvectors of the system in terms of τ ′

(= τ −D; see Section 3.1), respectively, their components are related to those of the corresponding
eigenvectors of the system in terms of τ , l, and r, according to

r̂5 = r5 − r1, l̂1 = l1 + l5 , (114)

the remaining components being unchanged, i.e., r̂i = ri, and l̂i+1 = li+1 (i = 1, 2, 3, 4).

8.2 Spectral decomposition of the 3D RMHD equations

The hyperbolicity of the equations of RMHD including the derivation of wavespeeds and the
corresponding eigenvectors, and the analysis of various degeneracies was studied by Anile and
Pennisi (1987) and reviewed by Anile (1989). These authors performed their analysis in a covariant
framework using a set of covariant variables, in which the vector of unknowns

Ũ = (uµ, bµ, p, s)T , (115)

is extended to 10 variables, where s is the specific entropy. They cast their result in a form more
suitable for numerical applications by Komissarov (1999a) (see also Balsara (2001a)), and Antón
et al. (2010), which we review in the following.

In terms of variables Ũ, the system of RMHD equations can be written as a quasi-linear system
of the form

AµŨ;µ = 0, (116)

where ;µ denotes the covariant derivative. The 10× 10 matrices Aµ are given by

Aµ =




Euµδαβ −bµδαβ + Pαµbβ lαµ 0αµ

bµδαβ −uµδαβ fµα 0αµ

ρhδµβ 0µβ uµ/c2s 0µ

0µβ 0µβ 0µ uµ




(117)
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with

E = ρh+ b2, (118)

Pαµ = gαµ + 2uαuµ, (119)

lµα =
(
ρhgµα + (ρh− b2/c2s)uµuα

)
/(ρh), (120)

fµα =
(
uαbµ/c2s − uµbα

)
/(ρh), (121)

and
0µ = 0, 0αµ = (0, 0, 0, 0)T, 0µβ = (0, 0, 0, 0). (122)

The 10 covariant variables used to write down the system of equations are not independent. They
are related by the constraints

uαuα = −1, (123)

bαuα = 0, (124)

and
∂α(u

αb0 − u0bα) = 0. (125)

8.2.1 Wavespeeds

If φ(xµ) = 0 defines a characteristic hypersurface of the system (116), the characteristic matrix,
given by Aαφα, can be written as

Aαφα =




Eaδµν mµ
ν lµ 0µ

Bδµν aδµν fµ 0µ

ρhφν 0ν a/c2s 0

0ν 0ν 0 a




(126)

where φµ = ∂µφ, a = uαφα, B = bαφα, G = φαφα, l
µ = lµαφα = φµ + (ρh − b2/c2s)auµ/(ρh) +

Bbµ/(ρh), fµ = fµαφα = (abµ/c2s − Buµ)/(ρh), and mµ
ν = (φµ + 2auµ)bν − Bδµν .

Since φ(xµ) = 0 is a characteristic surface, the determinant of the matrix (126) must vanish,
i.e.,

det(Aαφα) = E a2A2N4 = 0 , (127)

where

A = Ea2 − B2, (128)

N4 = ρh

(
1

c2s
− 1

)
a4 −

(
ρh+

b2

c2s

)
a2G+ B2G . (129)

The above equations, valid for a general spacetime, can be used to obtain the wavespeeds in a
flat spacetime in Cartesian coordinates. To this end, we consider a planar wave propagating along
the x-axis with speed λ. The normal to the characteristic hypersurface describing this wave is
given by the four-vector

φµ = (−λ, 1, 0, 0). (130)

Substituting Eq. (130) into Eq. (127) we obtain the characteristic polynomial, whose zeroes give
the characteristic speed of the waves propagating in x-direction. There are three different kinds of
waves according to which factor becomes zero in Eq. (127): for entropic waves a = 0, for Alfvén
waves A = 0, and for magnetosonic waves N4 = 0.
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The characteristic speed λ of the entropic waves propagating in x-direction, given by the solution
of Eq. (127) with a = 0, is

λ = vx(= λe). (131)

For Alfvén waves (A = 0) there exist two solutions corresponding, in general, to different wave
speeds

λ =
bx ±

√
Eux

b0 ±
√
EW

(= λa,±). (132)

In the case of magnetosonic waves there are four solutions, two of them corresponding to the slow
magnetosonic waves and the other two to the fast magnetosonic ones. It is however impossible, in
general, to obtain simple expressions for their speeds, since these are given by the solutions of the
quartic equation N4 = 0 (129) with a, B, and G explicitly written in terms of λ as

a =W (−λ+ vx), (133)

B = bx − b0λ, (134)

G = 1− λ2. (135)

As in the classical case, the seven eigenvalues corresponding to the entropic (1), Alfvén (2),
slow (2) and fast (2) magnetosonic waves can be ordered as

λ−f ≤ λ−a ≤ λ−s ≤ λe ≤ λ+s ≤ λ+a ≤ λ+f , (136)

where the subscripts e, a, s, and f denote entropic, Alfvén, slow magnetosonic, and fast magne-
tosonic wave, respectively, and the superscripts − or + refer to the lower or higher value of each
pair. The ordering allows one to group the Alfvén and magnetosonic eigenvalues in two classes
separated by the entropic eigenvalue.

In the previous discussion about the roots of the characteristic polynomial we omitted the
fact that the entropy waves as well as the Alfvén waves appear as double roots. These super-
fluous eigenvalues are associated with unphysical waves and are the result of working with the
unconstrained system of equations. We note that van Putten (1991) derived a different augmented
system of RMHD equations in constrained-free form with different unphysical waves. Any attempt
to develop a numerical procedure to solve the RMHD equations based on their wave structure must
remove these unphysical waves (i.e., the corresponding eigenvectors) from the wave decomposition.
Komissarov (1999a) and Koldoba et al. (2002) eliminate the unphysical eigenvectors by demanding
the waves to preserve the values of the invariants uµuµ = −1 and uµbµ = 0 as suggested by Anile
(1989). Correspondingly, Balsara (2001a) selects the physical eigenvectors by comparing with the
equivalent expressions in the non-relativistic limit.

8.2.2 Degeneracies

Degeneracies are encountered for waves propagating perpendicular to (Type I) and along the
direction of the magnetic field (Type II). For the Type I degeneracy, the two Alfvén waves, the
entropic wave, and the two slow magnetosonic waves propagate at the same speed (λ−a = λ−s =
λe = λ+s = λ+a ). For the Type II degeneracy, one of the Alfvén waves and one of the magnetosonic
waves (slow or fast) belonging to the same class have the same speed (λ−f = λ−a , λ

−
a = λ−s ,

λ+s = λ+a , or λ
+
a = λ+f ). Finally, in the Type II′ subcase, one of the Alfvén waves and both the

slow and fast magnetosonic waves of the same class propagate at the same speed (λ−f = λ−a = λ−s ,

or λ+s = λ+a = λ+f ). If the Type II degeneracy is encountered in classical MHD, both Alfvén waves
are of Type II′, while in RMHD this holds only for one of the Alfvén waves due to aberration
effects. Only if the tangential component of the fluid velocity vanishes, one recovers the classical
behavior.
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Komissarov (1999a) provided a covariant characterization of the different types of degeneracy.
The Type I degeneracy is encountered when B = 0 (see Eq. (134)) for Alfvén waves, while the Type
II degeneracy arises when B2/(G + a2) = b2 for Alfvén waves. Antón et al. (2010) characterized
both types of degeneracy in terms of the components of the magnetic field normal and tangential
to the Alfvén wave front in the comoving frame, bαn and bαt , respectively. The Type I degeneracy is
encountered for bαn = 0 (magnetic field normal to the direction of propagation of the Alfvén waves),
and the Type II degeneracy for bαt = 0 (magnetic field aligned with the direction of propagation
of the Alfvén waves). We note that the condition bαn = 0 implies Bx = 0 for a wave propagating
along the x-direction in the laboratory frame. For more details, we refer the interested reader to
Antón et al. (2010).

8.2.3 Renormalized right eigenvectors

The eigenvectors given by Anile (1989) for the eigenvalue problem (Aµφµ) r = 0 do not form a
complete basis for degenerate states, because they become zero or linearly dependent. Antón et al.
(2010) derived a set of eigenvectors that do not suffer from this defect, but form a complete basis
both for nondegenerate and degenerate states. We omit the theoretical and technical details of
their derivation here. The new ten-component renormalized right eigenvectors are given below in
covariant variables. They can be transformed to the seven-component eigenvectors in conserved
variables by the appropriate matrix transformations.
Entropy eigenvector :

re = (0α, 0α, 0, 1)T. (137)

Alfvén eigenvectors:

ra,± =
(
f1α

µ
1 + f2α

µ
2 ,∓
√
E(f1αµ

1 + f2α
µ
2 ), 0, 0

)T
, (138)

where

f1,2 =





1/
√
2, g1 = g2 = 0

g1,2/
√
g21 + g22 , otherwise.

(139)

For an Alfvén wave propagating along the x-direction

αµ
1 =W (vz, λvz, 0, 1− λvx), (140)

αµ
2 = −W (vy, λvy, 1− λvx, 0), (141)

and

g1 =
1

W

(
By +

λvy

1− λvxB
x

)
, (142)

g2 =
1

W

(
Bz +

λvz

1− λvxB
x

)
, (143)

with λ = λa,±.
Magnetosonic eigenvectors: The eigenvector associated with the magnetosonic eigenvalue λm,±

with m ∈ {s, f} reads
rm,± = (eν , Lν , C, 0)T , (144)

where λm,± is the magnetosonic eigenvalue belonging to the same class as λa,±, i.e.,

λm,± =




λ±m, if λa,± = λ±a

λ∓m, if λa,± = λ∓a

, (145)
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and

eν = − a

ρhc2s(G+ a2)
(φν + auν)C − χm,±

ρh
Dν , (146)

Lν = −χm,±

ρh
uνC −

(
1 +

a2

G

)
Dν , (147)

with

C =





− (G+ a2)c2s
a2 − (G+ a2)c2s

|ζ|, Case 1

−1, Case 2,

(148)

D =





ζνu , Case 1

G

ρha2 − b2Gζ
ν , Case 2,

(149)

where Case 1 refers to the pair of magnetosonic eigenvalues (one from each class) that is closer
to the Alfvén eigenvalue of the same class, and Case 2 for the remaining pair. The remaining
quantities are

χm,± = ∓
√(

ρh+
b2

c2s

)
− ρh

(
1

c2s
− 1

)
a2

G
, (150)

ζνu =
(f1α12 + f2α22)α

ν
1 − (f1α11 + f2α12)α

ν
2[

(α11α22 − α2
12)(f

2
1α11 + 2f1f2α12 + f22α22)

]1/2 , (151)

and

ζν =
(g1α12 + g2α22)α

ν
1 − (g1α11 + g2α12)α

ν
2

α11α22 − α2
12

W (1− λvx), (152)

where α11 = αµ
1α1µ, α12 = αµ

1α2µ, α22 = αµ
2α2µ, and f1,2 are given by Eq. (139). For a magne-

tosonic wave propagating along the x-direction the quantities φµ, a, G, α
ν
1 , α

ν
2 , g1, and g2 are given

by Eqs. (130), (133), (135), and (140) – (143) with λ = λm,±, respectively. When encountering the
Type II′ degeneracy C = 0 for Case 1, and D = 0 for Case 2.

8.2.4 Right and left eigenvectors in conserved variables

To express the renormalized eigenvectors in conserved variables, one must construct the transfor-
mation matrix between the set of covariant variables, Ũ, and the set of the conserved ones, U,
i.e., (∂U/∂Ũ). Since we want to build up a Riemann solver based on the spectral decomposition
of the flux vector Jacobians of the system in conservation form, and since the Riemann solver will
be used to compute the numerical fluxes along the coordinate directions, we only need to consider
a 1D version of system (8). We restrict our discussion here to the x-direction, along which the
evolution equation for Bx reads ∂Bx/∂t = 0, which can be removed from the system. Hence, the
desired spectral decomposition will be directly worked out for the reduced 7 × 7 Jacobian of the
flux vector along the x-direction, i.e., the set of conserved variables contains only seven variables
and the aforementioned matrix will be of dimension 7× 10. Its elements, the partial derivatives of
the conserved variables with respect to their covariant counterparts, can be found in Antón et al.
(2010).
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The right eigenvectors in conserved variables, R, are computed as follows

R =

(
∂U

∂Ũ

)
r, (153)

while the calculation of the left eigenvectors is far more involved. One could obtain them by
direct inversion of the matrix of right eigenvectors, but to obtain tractable expressions (Antón
et al., 2010) suggested a two-step process starting from the left eigenvectors in covariant variables
l. From these eigenvectors they obtain the left eigenvectors, l̄, in the reduced system of covariant
variables, Ṽ = (ux, uy, uz, by, bz, p, ρ), through the transformation

l̄ = l

(
∂Ũ

∂Ṽ

)
, (154)

where (∂Ũ/∂Ṽ) is the 10× 7 matrix consisting of the partial derivatives of the covariant variables
with respect to the covariant variables in the reduced system. In a second step, the left eigenvectors
in conserved variables, L, are computed from those in the reduced system of covariant variables
through

L = l̄

(
∂Ṽ

∂U

)
. (155)

The comment at the end of Section 8.1) on the transformation of the fifth and first components
of the right and left eigenvectors, respectively, of the RHD equations, applies also in the RMHD
case.

8.3 Fundamentals of grid-based methods

We introduce the basic notation of finite differencing and summarize the fundamentals of HRSC
methods for hyperbolic systems of conservation laws, i.e., the content of this Section is neither
specific to RHD nor RMHD.

8.3.1 Difference schemes in conservation form, TV-stability and convergence

To simplify the notation and taking into account that the most powerful results were derived for
scalar conservation laws in one spatial dimension, we will restrict ourselves to the initial value
problem given by the equation

∂u

∂t
+
∂f(u)

∂x
= 0 (156)

with the initial condition u(x, t = 0) = u0(x).
Hydrodynamic codes based on finite difference (FD) or finite volume (FV) methods solve

Eq. (156) on a discrete numerical grid (xi, t
n) with

xi = (i− 1/2)∆x, i = 1, 2, . . . , (157)

and
tn = n∆t, n = 0, 1, 2, . . . , (158)

where ∆t and ∆x are the time step and the cell size, respectively.
A difference scheme is a time-marching procedure allowing one to obtain an approximation of

the solution at the new time, un+1
i , from the known approximations of previous time steps. In FD

schemes, the quantity uni is a pointwise approximation of the solution u(x, t) at x = xi, t = tn,
namely u(xi, t

n), whereas in FV schemes (consistent with the integral form of the conservation
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law) it is viewed as an approximation of the cell average of u(x, t) within a cell [xi−1/2, xi+1/2] at
time t = tn, namely

ūi(t
n) =

1

∆x

∫ xi+1/2

xi−1/2

u(x, tn) dx, (159)

where xi±1/2 = (xi + xi±1)/2.
Convergence under grid refinement implies that the global error ||E∆x||, defined as

||E∆x|| = ∆x
∑

i

|uni − u n
a,i | (160)

(where u n
a,i is the pointwise or volume-averaged analytic solution at cell i and time t = tn),

tends to zero as ∆x → 0. A method is said to be of order p, if the global error tends to zero
under grid refinement as ||E∆x|| ∝ ∆xp. Since the average of a linear function within the interval
[xi−1/2, xi+1/2] is equal to the point-value at the center of the interval, FV and FD schemes coincide
up to order p = 2. The Lax–Friedrichs (Lax, 1954) and Lax–Wendroff (Lax and Wendroff, 1960)
difference schemes for linear problems are first and second-order methods, respectively.

For hyperbolic systems of conservation laws methods in conservation form are preferred as they
guarantee that if the numerical solution converges, it converges to a weak solution of the original
system of equations (Lax–Wendroff theorem; Lax and Wendroff, 1960). Conservation form means
that the algorithm can be written as

un+1
i = uni −

∆t

∆x

(
f̂(uni−r, u

n
i−r+1, . . . , u

n
i+q)− f̂(uni−r−1, uni−r, . . . , uni+q−1)

)
, (161)

where q and r are positive integers, and f̂ is a consistent numerical flux function, i.e., f̂(u, u, . . . , u) =
f(u). The Lax–Friedrichs and Lax–Wendroff methods can be written in conservation form.

The Lax–Wendroff theorem does not reveal whether the method converges. To guarantee
convergence, some form of stability is required, as for linear problems (Lax equivalence theorem;
Richtmyer and Morton, 1967). In this context the notion of total-variation stability has proven to
be very successful, although powerful results were only obtained for scalar conservation laws. The
total variation of a solution at t = tn is defined as

TV(un) =
∑

i

|uni+1 − uni | . (162)

A numerical scheme is said to be TV-stable, if TV(un) is bounded for all ∆t at any time for each
initial data. In that case one can prove the following convergence theorem for nonlinear, scalar
conservation laws (LeVeque, 1992): For numerical schemes in conservation form with consistent
numerical flux functions, TV-stability is a sufficient condition for convergence.

8.3.2 High-Resolution Shock-Capturing schemes

Modern research has focused on the development of high-order methods in conservation form
that satisfy the condition of TV-stability. These methods are known as High-Resolution Shock-
Capturing (HRSC) since they converge to a weak solution of the equations by construction (shock
capturing property). Figure 30 summarizes the current strategies to build HRSC methods following
both FD and FV approaches.

8.3.2.1 Finite-volume approach: Godunov-type methods. Godunov-type methods
(Harten et al., 1983; Einfeldt, 1988) are an important subset of HRSC methods, which rely on
the integral form of the conservation laws (FV methods). Integrating the PDE over a finite space-
time domain [xi−1/2, xi+1/2] × [tn, tn+1] and comparing with Eq. (161), one recognizes that the
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Godunov-type  

methods

Upwind schemes 

Finite difference 

approach 

Central or symmetric  

schemes 

Finite volume  

approach 

Symmetric Flux Formulas 
(HLL RS, LF flux) 

Exact RS 
Roe-type RS 

Upwind Flux Formulas 

TVD reconstruction of primitive 
or conserved variables 

Reconstruction of 
characteristic fluxes 

TVD/TVB high-order generalizations 
 of FD schemes 

TVD flux-limiter methods 

ENO-based variable reconstruction 
+ Symmetric Flux Formulas  

Figure 30: Classification of High-Resolution Shock-Capturing (HRSC) schemes.

numerical flux function f̂i+1/2 is an approximation of the time-averaged flux across the respective
cell interface, i.e.,

f̂i+1/2 ≈
1

∆t

∫ tn+1

tn
f(u(xi+1/2, t)) dt . (163)

Because the flux integral depends on the solution at the cell interface during the time step, one
calculates u(xi+1/2, t) in Godunov-type methods by solving a Riemann problem at the cell interface,
i.e.,

u(xi+1/2, t) = uRP(0;u
n
i , u

n
i+1) . (164)

This approach was proposed in a seminal work by Godunov (1959), who solved the Riemann
problem exactly.

In general, Godunov-type methods use different procedures (Riemann solvers) to obtain the
exact or approximate solution uRP(0;u

n
i , u

n
i+1). Among the most popular ones is the method of

Roe (1981), originally devised for the equations of (classical) ideal gas dynamics. It is based on the
exact solution of Riemann problems of a modified system of conservation equations obtained by
a suitable local linearization of the original system. Roe’s original idea has been exploited in the
local characteristic approach (see, e.g., Yee, 1989a), which defines a set of characteristic variables
at each cell that obey a system of uncoupled scalar equations. This approach has proven to be
very successful, because it allows for the extension to systems of nonlinear scalar methods.

The Godunov-type methods described above are upwind, i.e., information propagates in the
correct directions as dictated by the characteristic fields of the hyperbolic system. The upwind
property is ensured through a local linearization and diagonalization of the system in the case of
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Roe-type Riemann solvers or the local characteristic approach, or by using the exact solution of
the Riemann problem to compute the numerical fluxes, as in the Godunov’s original method.

Unlike Roe’s Riemann solver and the local characteristic approach, the Riemann solver of
Harten, Lax and van Leer (HLL; Harten et al., 1983) avoids the explicit calculation of the eigen-
values and eigenvectors of the Jacobian matrices associated to the flux vectors. It is based on an
approximate solution of the original Riemann problems involving a single intermediate state, which
is determined by requiring consistency of the approximate Riemann solution with the integral form
of the conservation laws within a cell.

An essential ingredient of the HLL method are good estimates for the smallest and largest
signal velocities. Einfeldt (1988) proposed calculating them based on the smallest and largest
eigenvalues of Roe’s matrix. This method is a very robust one for solving the Euler equations. It
is exact for single shocks, but it is very dissipative, especially at contact discontinuities. In the
HLLC method (Toro et al., 1994 for the Euler equations; Gurski, 2004, Li, 2005 for the MHD
equations) the contact discontinuity in the middle of the Riemann fan is also captured in an
attempt to reduce the dissipation of the HLL method across contacts. Being independent of the
spectral decomposition of the system, these methods are symmetric in the sense that information
propagates without regard of the proper directions of the characteristic speeds.

Other methods based on the use of Riemann solvers are Glimm’s random choice method
(Glimm, 1965), the two-shock approximation (Colella, 1982), and the artificial wind method
(Sokolov et al., 1999). A comprehensive overview of numerical methods based on Riemann solvers
can be found in the book of Toro (1997).

Besides Riemann solvers, Godunov-type methods can also use flux formulas for the computation
of numerical fluxes. These flux formulas can be upwind (e.g., Marquina’s flux formula; Donat and
Marquina, 1996), or symmetric. To this last class belong the non-oscillatory central differencing
(NOCD) methods in Nessyahu and Tadmor (1990), Jiang et al. (1998), Jiang and Tadmor (1998),
Kurganov and Tadmor (2000), Kurganov et al. (2001), which are high-order extensions of the
Lax–Friedrichs central (i.e., symmetric) scheme.

A priori, upwind schemes are better than symmetric ones since they are less dissipative. How-
ever, the numerical dissipation terms in modern symmetric schemes are local, free of problem-
dependent parameters, and do not require any characteristic information (i.e., the knowledge of
the spectral decomposition of the Jacobians, or the solution of Riemann problems). This last fact
makes this kind of schemes extremely simple to program and very efficient from the computational
point of view.

In FV schemes, high-order of accuracy is usually achieved by interpolating the approximate
solution within cells. The idea is to produce more accurate left and right states at interfaces by
substituting the mean values uni (that give only first-order accuracy) by better representations of
the true flow, let say uLi+1/2 and uRi+1/2. The interpolation algorithms have to preserve the TV-
stability of the scheme. This is usually achieved by using monotonic functions and slope limiters,
which decrease the total variation (TVD schemes; Harten, 1984).

High-order TVD schemes were first constructed by van Leer (MUSCL scheme; van Leer, 1973,
1974, 1977b,a, 1979), who obtained second-order accuracy using monotonic piecewise linear func-
tions for cell reconstruction. Some of the most popular slope limiters are reviewed in, e.g., LeV-
eque (1992). The piecewise parabolic method (PPM) of Colella and Woodward (1984), which uses
monotonized parabolas for cell reconstruction, provides an accuracy higher than second order.

8.3.2.2 Finite difference approach. As an alternative to Godunov-type methods, the nu-
merical dissipation required to stabilize an algorithm across discontinuities can be provided also by
adding local dissipation terms to standard (conservative) FD methods. The idea goes back to some
of the earliest works on computational fluid dynamics, notably the paper by von Neumann and
Richtmyer (1950) (see Artificial Viscosity methods below). The symmetric schemes developed by
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Harten (1983), Davis (1984), and Roe (1984) are extensions of the original Lax–Wendroff scheme.
A general discussion and derivation of early (prior to 1987) symmetric FD TVD schemes can be
found in Yee (1987).

Stable high-order FD methods can be obtained also by combining a high-order flux that works
well in smooth regions and a low-order flux that behaves well near discontinuities. These algorithms
are sometimes called flux-limiter methods. The modified-flux approach of Harten (1984) and the
scheme of Sweby (1984) are second-order TVD flux-limiter methods (see also Yee, 1989a; LeVeque,
1992).

The TVD property implies TV-stability, but it can be too restrictive at times. In fact, TVD
methods degenerate to first-order accuracy at extreme points Osher and Chakravarthy (1984).
Hence, other reconstruction alternatives were developed, which allow for some growth of the total
variation. This holds for the total-variation-bounded (TVB) schemes (Shu, 1987), the essentially
non-oscillatory (ENO) schemes (Harten et al., 1987), and the piecewise-hyperbolic method (PHM;
Marquina, 1994).

Within the FD approach, ENO schemes8 use adaptive stencils to reconstruct variables (typically
fluxes) at cell interfaces from point values. Thus, in smooth regions symmetric stencils are used,
whereas near discontinuities the stencil will shift to the left or to the right selecting the smoother
part of the flow to achieve everywhere the same high resolution (typically third-order to fifth-order
in the case of WENO – weighted ENO – schemes; Jiang and Shu, 1996); see Shu (1997) for a
review of ENO and WENO schemes. The algorithms in Shu and Osher (1988, 1989) are ENO
high-order extensions of the Lax–Friedrichs central scheme. The method of Liu and Osher (1998)
is a third-order multidimensional (Lax–Friedrichs extension) NOCD-type scheme based on CENO
(convex ENO) reconstruction. Londrillo and Del Zanna (2000) developed a high-order FD scheme
based on CENO reconstruction of state variables (instead of flux components) for classical MHD.

8.3.3 Non-conservative FD schemes

To this category belong FD schemes that solve the hyperbolic system as a set of advection equations.
The Flux Corrected Transport (FCT) algorithm (Boris and Book, 1973) is a member of this class.
It can be viewed as a flux-limiter non-conservative method, in which high accuracy is obtained by
adding an anti-diffusive flux term to the first-order numerical (transport) flux.

In the Artificial Viscosity methods (von Neumann and Richtmyer, 1950; Richtmyer and Morton,
1967), terms mimicking the role of fluid viscosity are added to the equations (written as a set of
advection equations) to damp the spurious numerical oscillations caused by the development of
shock waves during the flow’s evolution. The form and strength of these terms are such that the
shock transition becomes smooth and covers only a small number of numerical cells.

8.3.4 Multidimensional schemes and time advance

Let us consider Eq. (156) and its explicit discretization in conservation form, i.e., Eq. (161). If the
discrete spatial operator at the right-hand-side of Eq. (161) is pth-order accurate, the algorithm

un+1
i = uni +∆tLx(u

n), (165)

with

Lx(u
n) = − 1

∆x

(
f̂(uni−r, u

n
i−r+1, . . . , u

n
i+q)− f̂(uni−r−1, uni−r, . . . , uni+q−1)

)
, (166)

is a fully-discrete explicit one that is 1st-order accurate in time (forward Euler algorithm) and pth-
order accurate in space. The Lax–Friedrichs scheme, which uses this kind of time discretization,
is hence 1st-order accurate in time.

8 ENO schemes do not exclusively belong to the FD approach. In fact, these schemes were originally constructed
for cell averages (Harten et al., 1987).
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The temporal order of the algorithm can be improved by introducing substeps in the time
advance (as, e.g., in standard second-order FD methods). In the method of lines, the process of
discretization proceeds in two stages. One first discretizes the equations only in space, leaving the
problem continuous in time (semi-discrete methods). This leads to a system of ordinary differential
equations in time (or a single ordinary differential equation in the scalar case),

du

dt
= Lx(u) . (167)

In predictor-corrector methods, the quantity Lx(u
n) is an estimate of the time derivative of u

at t = tn, and un+1
i in Eq. (165) is a prediction of u at t = tn+1, u*. This prediction is improved

using Lx(u
*), which is an estimate of the time derivative of u at t = tn+1. The value of u at the

new time step then reads, e.g.,

un+1
i = uni +

∆t

2
(Lx(u

n) + Lx(u
*)). (168)

Of particular interest among the predictor-corrector methods are the second-order and third-order
Runge–Kutta time discretization algorithms developed in Shu and Osher (1988, 1989). They
preserve the TVD property of the algorithm at every substep (TVD-RK methods). Standard
fourth-order and fifth-order Runge–Kutta methods (Lambert, 1991) have been used, too.

Second-order accuracy in time can also be obtained, if the input states for the Riemann problems
to be solved at each numerical interface incorporate information about the domain of dependence
of the interface during the time step. When eigenvalues and eigenvectors are available, upwind
limiting may be used to select only those characteristics that contribute to the effective left and
right states (characteristic tracing). This is the approach followed in the PLM (Colella, 1985) and
PPM methods (Colella and Woodward, 1984).

In the MUSCL-Hancock method (van Leer, 1984; Toro, 1997), the input states for the Riemann
solver are computed by a Taylor expansion of u at the middle of the time step

u*i ≈ uni +
∆t

2

∂u

∂t

∣∣∣∣
t=tn

≈ uni −
∆t

2∆x

(
f(uni,R)− f(uni,L)

)
, (169)

where uni,L and uni,R are linearly reconstructed, monotonized values of u at the left and right
interface of cell i, respectively. The values at the new time step are obtained by

un+1
i = uni +∆tLx(u

*) . (170)

In contrast to standard predictor-corrector methods, these single-step algorithms require only one
solution of the Riemann problem per cell and time step.

For explicit schemes the time step ∆t is restricted by the CFL condition (Courant, Friedrichs
and Lewy; Courant et al., 1928). This is a necessary condition for the method’s stability stating
that the numerical domain of dependence should include the domain of dependence of the partial
differential equation.

There exist several strategies to extend HRSC methods to more than one spatial dimension
(for a summary see LeVeque, 1992, 1998). The simplest way is to exploit dimensional splitting,
i.e., operators in the equations involving spatial derivatives are applied dimension by dimension
in successive steps (fractional step methods)9. Second-order accuracy in time can be preserved by
permuting cyclically the execution of the directional operators (Strang splitting; Strang, 1968). To
illustrate the method of fractional step, let us consider the 2D version of Eq. (156)

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 (171)

9 The method of fractional step can also be applied to advance any source term, which is present in the equations
(source splitting).
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and its explicit discretization in conservation form (compare with Eq. (161))

un+1
i,j = uni,j −

∆t

∆x

(
f̂(uni−r,j , u

n
i−r+1,j , . . . , u

n
i+q,j)− f̂(uni−r−1,j , uni−r,j , . . . , uni+q−1,j)

)

−∆t

∆y

(
ĝ(uni,j−r, u

n
i,j−r+1, . . . , u

n
i,j+q)− ĝ(uni,j−r−1, uni,j−r, . . . , uni,j+q−1)

)
. (172)

If we define

H∆t
x (un) = uni,j −

∆t

∆x

(
f̂(uni−r,j , u

n
i−r+1,j , . . . , u

n
i+q,j)− f̂(uni−r−1,j , uni−r,j , . . . , uni+q−1,j)

)
, (173)

as the pth-order accurate (p ≥ 2) discrete operator in x-direction, and H∆t
y as the corresponding

one in y-direction, Strang splitting has the form

un+2
i,j = H∆t

x H∆t
y H∆t

y H∆t
x (un) . (174)

In the method of lines (see above), one computes the fluxes in all coordinate directions (and
the potential source terms), and applies them simultaneously to advance the equations in time
(unsplit methods).

Finally, there exists a special class of unsplit methods, in which second-order accuracy requires
that one incorporates besides terms involving derivatives in the normal direction (as in 1D algo-
rithms) also terms involving transverse derivatives arising from cross-derivatives in a Taylor series
expansion. Examples of genuinely multidimensional upwind methods for hyperbolic conservation
laws that use slightly different strategies are those described in Colella (1990); LeVeque (1997).
The corner transport upwind method (CTU; Colella, 1990) proceeds in two steps. One first inter-
polates state variables to cell interfaces using information from all coordinate directions, and then
solves the Riemann problem. This approach was implemented for classical MHD by Gardiner and
Stone (2005). The algorithm proposed in LeVeque (1997) first solves Riemann problems and then
propagates the information in a multidimensional manner.

8.3.5 AMR

Many, if not most, flow problems encountered in astrophysics involve vastly different length scales,
and often time scales, too. Moreover, in many cases the most important flow features occupy only
a small fraction of the computational domain. These structures are usually flow discontinuities like
shock waves or contact surfaces. The addition of physical processes, like e.g., radiative losses or
nuclear burning, may lead to the formation of qualitatively new features which, similarly to flow
discontinuities, can occupy only a small fraction of the total volume. This poses a challenge to any
numerical method used to integrate the hydrodynamic (or magnetohydrodynamic) equations.

A common way of dealing with the resolution challenge is to adaptively refine the computational
mesh in regions where higher resolution is needed and coarsen it in regions where less resolution
is sufficient to guarantee a prescribed numerical accuracy. Hence, local errors are controlled by
adding or deleting cells or patches of cells from the computational grid, as and when necessary. An
alternative approach that will not be discussed in this review any further, relies on moving mesh
methods which adapt the grid by repositioning a fixed number of cells. However, this method has
the penalty that increasing the resolution in some region implies decreasing it in some other region
(see, e.g., He and Tang, 2012 for a method for 2D RMHD).

To refine the grid one can apply the cell-by-cell refinement strategy (see, e.g., Khokhlov, 1998;
Teyssier, 2002; Fromang et al., 2006) where individual parent cells are refined into children cells,
and the process is repeated until a predefined accuracy is obtained. This strategy is also called tree-
based AMR (Teyssier, 2002), since a recursive tree structure is the natural data structure associated
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with it. Cell-by-cell refinement results in a high adaptivity to flow features and provides the most
flexible grid structure, but it gives rise to a complicated data structure because the number of grid
cells becomes time-dependent. In addition, it requires irregular memory referencing which degrades
a code’s performance, particularly on computing systems with a distributed parallel architecture.
When only one region of the computational domain (e.g., the center of a collapsing cloud or of an
exploding star) has to be refined during the whole evolution a simpler approach with completely
nested grids can be used, where the grids have a fixed structure, i.e., they all consist of an identical
number of (equidistant) cells of decreasing size (see, e.g., Ruffert, 1992; Burkert and Bodenheimer,
1993; Ziegler and Yorke, 1997).

G(1,2)

G(3,1)

G(2,1)

G(2,2)

G(1,1)

Figure 31: Hierarchy of grids in the AMR method. The base level covers the entire computational
domain with mesh patches G(1,1) and G(1,2). Patches G(2,1) and G(2,2) form the second level and a
single mesh patch, G(3,1), is located on the finest level. The hierarchy is fully nested, i.e., finer mesh
patches are completely embedded in patches located on the next coarser level, each patch may have more
than one parent or/and offspring, and siblings may overlap each other. Image reproduced with permission
from Plewa and Müller (2001), copyright by Elsevier.

Alternatively, one adopts a patch-based or block-structured approach to grid refinement. Re-
fined grid cells are clustered together to form larger rectangular regions, or mesh patches, overlying
parent level grids. The refinement process is recursively applied to newly created fine mesh patches
until the prescribed accuracy is reached. In this way, the final data structure can be seen as a
hierarchy of mesh patches (Figure 31) located at different levels and integrated with individual
time steps. In some implementations of this strategy one can even allow for the use of a different
discretization scheme per level (as, e.g., in AMRVAC).

When each single mesh patch has a logical structure identical to the original numerical grid,
the scheme is commonly called adaptive mesh refinement, AMR. It was originally proposed by
Berger and her collaborators. In Berger and Oliger (1984) they presented an adaptive method
for the solution of hyperbolic partial differential equations, while in Berger and Colella (1989)
and Bell et al. (1994) they discussed its application to hyperbolic conservation laws in two and
three space dimensions, respectively. The problems that had to be considered by them in this
case are pedagogically summarized in Balsara (2001c): Solving hyperbolic conservation law with
AMR requires a conservative solution strategy on the whole grid hierarchy, which is not provided
if a bilinear interpolation is used for the prolongation of the solution from a coarse parent level to
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the finer child levels. However, when one prolongs the data with the same higher order Godunov
scheme as the one used for reconstructing the hydrodynamic state variables, the prolongation
can be made conservative. One also needs to develop a volume-weighted restriction strategy to
transfer the more accurate solution on fine patches to the corresponding coarser parent patches
that mirrors the volume-averaged representation of variables in higher order Godunov schemes.
Because restriction is not conservative in general, one cures the problem by using a consistent set
of fluxes at fine-coarse interfaces in a flux correction step. Berger and Colella (1989) have shown
that when applying all the above steps conservation is guaranteed as long as the grid levels are
properly nested, one within the other.

Berger and LeVeque (1998) extended the AMR algorithm for the Euler equations of gas dy-
namics further. They employed high-resolution wave-propagation algorithms in a more general
framework, including hyperbolic equations not in conservation form, problems with source terms,
and logically rectangular curvilinear grids. The algorithm is implemented in the AMRCLAW
package, which is freely available.

8.4 Other approaches in numerical RHD and RMHD

In Sections 8.4.1 – 8.4.3, we briefly discuss other approaches recently extended to numerical RHD
and RMHD although not widely used yet. In Section 8.4.4 we summarize the method of van
Putten, who first exploited the conservative nature of the RMHD equations for their numerical
integration.

8.4.1 Discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods were first applied to first-order equations in the early 1970s
by Reed and Hill (1973). Their widespread use followed from their application to hyperbolic
problems by Cockburn and Shu (1989); Cockburn et al. (1990); Cockburn (1998).

In the DG approach, the p-th order accurate solution in a numerical cell is expanded in space
using a polynomial basis whose expansion coefficients (the degrees of freedom) depend on time.
Substituting the expansion in the integral form of the system of equations leads to a system of
ordinary differential equations in time for the degrees of freedom, which can be solved by means
of a standard Runge–Kutta discretization (RKDG scheme).

In the RKDG scheme, the values of the fluxes at the cell interfaces can be obtained by solving
Riemann problems, thus incorporating the upwind property into the schemes. Moreover, the
solution of the Riemann problems does not require any additional spatial interpolation since the
relevant information is already incorporated in the expansion. However, if the discontinuities are
strong, the scheme generates significant oscillations (which can be damped with appropriate slope
limiters). The increasing success of RKDG schemes relies on their flexibility and adaptativity
in handling complex geometries, and on the possibility of an efficient parallel implementation of
these schemes, because the solution is advanced in time using information only from the immediate
neighboring cells.

Dumbser and Zanotti (2009) presented a hybrid FV-DG approach for resistive RMHD. In
their approach a local spacetime DG method provides an implicit predictor step for a high-order
FV scheme to handle the stiff source term of resistive MHD. Radice and Rezzolla (2011) and
Radice (2013) developed the necessary formalism for the application of fully explicit DG methods
to RHD in curved spacetimes. They presented a prototype numerical code, EDGES (Extensible
Discontinuous GalErkin Spectral library), which they used to test DG methods for GRHD in one
spatial dimension assuming spherical symmetry. Zanotti and Dumbser (2015) present a high-order,
one-step AMR FV-DG scheme for RHD and RMHD.

Zhao and Tang (2013) developed RKDG methods with WENO limiter for 1D and 2D RHD. In
cells that require limiting a new polynomial solution is reconstructed locally to replace the RKDG
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solution by the WENO one based on the original cell average and the cell average values of the
RKDG solution in the neighboring cells.

8.4.2 Kinetic beam schemes and KFVS methods

Sanders and Prendergast (1974) proposed an explicit scheme to solve the equilibrium limit of
the non-relativistic Boltzmann equation, i.e., the Euler equations of Newtonian fluid dynamics.
In their beam scheme, the Maxwellian velocity distribution function is approximated by several
Dirac delta functions or discrete beams of particles in each computational cell, which reproduce
the appropriate moments of the distribution function. The beams transport mass, momentum
and energy into adjacent cells, and their motion is followed to 1st-order accuracy. The new (i.e.,
time advanced) macroscopic moments of the distribution function are used to determine the new
local non-relativistic Maxwell distribution in each cell. The entire process is then repeated for the
next time step. The CFL stability condition requires that no beam of gas travels farther than
one cell in one time step. This beam scheme, although being a particle method derived from
a microscopic kinetic description, has all the desirable properties of modern characteristic-based
wave propagating methods based on a macroscopic continuum description.

The non-relativistic scheme of Sanders and Prendergast (1974) was extended to relativistic flows
by Yang et al. (1997) replacing the Maxwellian distribution function by its relativistic analogue,
i.e., by the Jüttner distribution function which involves modified Bessel functions. For 3D flows
the Jüttner distribution function is approximated by seven delta functions or discrete beams of
particles, which can be viewed as dividing the particles in each cell into seven distinct groups. In
the local rest frame of the cell these groups represent particles at rest and particles moving in
±x,±y, and ±z direction, respectively. Yang et al. (1997) showed that the integration scheme for
the beams can be cast in the form of an upwind conservation scheme in terms of numerical fluxes.
The simplest relativistic beam scheme is only 1st-order accurate in space, but it can be extended to
higher-order accuracy in a straightforward manner. They considered several high-order accurate
variants generalizing their approach developed in Yang and Hsu (1992); Yang et al. (1995) for
Newtonian gas dynamics, which is based on ENO reconstruction.

The same principles (microscopic kinetic approach to the Euler equations, and particles prop-
agating to the left and right to describe the transport of mass, momentum, and energy) are
exploited in the kinetic flux-vector splitting (KFVS) methods, which can be interpreted as flux-
vector splitting methods Steger and Warming (1981) (hence the name) as first noted by Harten
et al. (1983). Qamar (2003) reviewed the development of both kinetic schemes and KFVS schemes
for the non-relativistic and the relativistic hydrodynamic equations, and Kunik et al. (2004) pre-
sented a BGK-type KFVS scheme10 for ultrarelativistic hydrodynamics. Qamar and Warnecke
(2005) extended this scheme to 1D RMHD.

8.4.3 CE/SE methods

The spacetime conservation element / solution element (CE/SE) method is a HRSC method intro-
duced by Chang (1995) for 1D flows (see Zhang et al., 2002 and references therein for 2D and 3D
extensions using structured and unstructured meshes). In contrast with conventional FV methods
based on the Reynolds transport theorem, in which space and time are treated separately, the
CE/SE method adopts an integral form of spacetime flux conservation as the cornerstone for the
subsequent discretization. Because of its unified treatment of space and time, Chang’s flux con-
servation formulation allows one to choose the spacetime geometry of conservation elements such

10 BGK refers to the Bhatnagar–Gross–Krook collision operator term used in the Boltzmann equation. Its
inclusion in the flux function dramatically reduces the artificial dissipation in comparison with that of usual KFVS
schemes based on free, i.e., non-collisional particle transport to compute the intercell fluxes. BGK-type KFVS
methods were introduced in Prendergast and Xu (1993).
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that one does not need to solve Riemann problems. In addition, considering the spatial derivatives
of conserved variables as independent variables, the flux evaluation at cell interfaces can be carried
out without interpolation. The method was applied to complex problems in different areas in-
cluding problems related to unsteady flows, vortex dynamics in aeroacoustics, diffusion problems,
viscous flows, MHD, shallow water MHD, and electrical engineering (see references in Qamar and
Yousaf (2012)).

Qamar and Yousaf (2012) extended the CE/SE method to 1D and 2D RHD. In 1D they applied
the original CE/SE method of Chang (1995), while they used a variant of it (Zhang et al., 2002)
in 2D with a rectangular mesh. Qamar and Ahmed (2013), finally, extended the CE/SE method
to 1D RMHD.

8.4.4 Van Putten’s approach

Relying on a formulation of Maxwell’s equations as a hyperbolic system in divergence form, van
Putten (1991) devised a numerical method to solve the equations of ideal RMHD in flat spacetime
(van Putten, 1993a). In van Putten’s approach, of which we discuss only the basic principles for
1D flows here, the state vector U and the fluxes F of the conservation laws are decomposed into
a spatially constant mean (subscript 0) and a spatially dependent variational (subscript 1) part

U(t, x) = U0(t) +U1(t, x) , F(t, x) = F0(t) + F1(t, x) . (175)

The RMHD equations then become a system of evolution equations for the integrated variational
parts U1

*, which reads
∂U1

*

∂t
+ F1 = 0 , (176)

together with the conservation condition

dF0

dt
= 0 . (177)

The quantity U1

* is defined as

U1

*(t, x) =

∫ x

U1(t, y) dy . (178)

Continuous and standard methods can be used to integrate the system (176). Van Putten used a
leapfrog method.

The new state vector U(t, x) is obtained from U1

*(t, x) by numerical differentiation. This
process can lead to oscillations in the case of strong shocks, i.e., a smoothing algorithm should be
applied. Details of this smoothing algorithm and of the numerical method for 1D and 2D flows
can be found in van Putten (1992) together with the results of a large variety of tests.

Van Putten applied his method to simulate RHD and RMHD jets with moderate flow Lorentz
factors (< 4.25) (van Putten, 1993b, 1996) and blast waves (van Putten, 1994, 1995).

8.5 Exact solution of the Riemann problem in RHD

This section was already included in Mart́ı and Müller (2003) and is maintained here for complete-
ness.

The simplest initial value problem with discontinuous data is called a Riemann problem, where
the 1D initial state consists of two constant states separated by a discontinuity. The majority
of modern numerical methods, the Godunov-type methods, are based on exact or approximate
solutions of Riemann problems. Because of its theoretical and numerical importance, we discuss
the solution of the special relativistic Riemann problem in this section.
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Let us first consider the 1D special relativistic flow of a perfect fluid in the absence of a
gravitational field. The Riemann problem then consists of computing the breakup of a discontinuity,
which initially separates two arbitrary constant states L (left) and R (right) in the fluid (see
Figure 32 with L ≡ 1 and R ≡ 5). For classical hydrodynamics the solution can be found, e.g., in
Courant and Friedrichs (1976). In the case of RHD, the Riemann problem was considered by Mart́ı
and Müller (1994), who derived an exact solution for the case of pure normal flow generalizing
previous results for zero initial velocities (Thompson, 1986). Pons et al. (2000) presented the
general solution in the case of non-zero tangential speeds.

The solution is self-similar, because it only depends on the two constant states defining the
discontinuity vL and vR with v = (p, ρ, vx, vy, vz), and on the ratio (x − x0)/(t − t0), where x0
is the initial location of the discontinuity at the time of break up t0. Both in relativistic and
classical hydrodynamics the discontinuity decays into two elementary nonlinear waves (shocks or
rarefactions) which move in opposite directions towards the initial left and right states. Between
these waves two new constant states vL* and vR* (note that vL* ≡ 3 and vR* ≡ 4 in Figure 32)
appear, which are separated from each other through a contact discontinuity moving with the fluid.
Accordingly, the time evolution of a Riemann problem can be represented as

I → LW← L* C R* W→ R , (179)

where W and C denote a simple wave (shock or rarefaction) and a contact discontinuity, respec-
tively. The arrows (← / →) indicate the direction (left / right) from which fluid elements enter
the corresponding wave.

As in the Newtonian case, the compressive character of shock waves (density and pressure rise
across the shock) allows us to discriminate between shocks (S) and rarefaction waves (R):

W← (→) =




R← (→) , pb ≤ pa
S← (→) , pb > pa

(180)

Here, p is the pressure, and subscripts a and b denote quantities ahead and behind the wave. For
the Riemann problem a ≡ L(R) and b ≡ L*(R*) for W← (W→). Thus, the possible decays of an
initial discontinuity can be reduced to three types:

(a) I → L S← L* C R* S→ R pL < pL* = pR* > pR (181)

(b) I → L S← L* C R* R→ R pL < pL* = pR* ≤ pR (182)

(c) I → L R← L* C R* R→ R pL ≥ pL* = pR* ≤ pR. (183)

Across the contact discontinuity the density exhibits a jump, whereas pressure and normal
velocity are continuous (see Figure 32). As in the classical case, the self-similar character of the
flow through rarefaction waves and the Rankine–Hugoniot conditions across shocks provide the
relations to link the intermediate states vS* (S = L,R) with the corresponding initial states vS .
They also allow one to express the normal fluid flow velocity in the intermediate states (vxS* for
the case of an initial discontinuity normal to the x-axis) as a function of the pressure pS* in these
states.

The solution of the Riemann problem consists in finding the intermediate states, L* and R*,
as well as the positions of the waves separating the four states (which only depend on L, L*, R*,
and R). The functions W→ and W← allow one to determine the functions vxR*(p) and vxL*(p),
respectively. The pressure p* and the flow velocity vx* in the intermediate states are then given by
the condition

vxR*(p*) = vxL*(p*) = vx* , (184)
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with p* = pL* = pR*. The functions vxS*(p) are defined by

vxS*(p) =




RS(p) if p ≤ pS
SS(p) if p > pS ,

(185)

whereRS(p) and SS(p) denote the families of all states that can be connected through a rarefaction
and a shock, respectively, with a given state vS ahead of the wave.

In RHD, the major difference with classical hydrodynamics stems from the role of tangential
velocities. While for classical flows the decay of the initial discontinuity does not depend on the
tangential velocity (which is constant across shock waves and rarefactions), the components of the
flow velocity are coupled through the presence of the Lorentz factor in the equations for relativistic
flows. In addition, the specific enthalpy also couples with the tangential velocities, which becomes
important in the thermodynamically ultrarelativistic regime.

8.5.1 Solution across a rarefaction wave

The fact that one Riemann invariant is constant through any rarefaction wave provides the relation
needed to derive the function RS . In differential form, the function reads

dvx

dp
= ± 1

ρhW 2cs

1√
1 + g(ξ±, vx, vt)

, (186)

where vt =
√
(vy)2 + (vz)2 is the modulus of the tangential velocity, and

g(ξ±, v
x, vt) =

(vt)2(ξ2± − 1)

(1− ξ±vx)2
(187)

with

ξ± =
vx(1− c2s)± cs

√
(1− v2)[1− v2c2s − (vx)2(1− c2s)]

1− v2c2s
. (188)

The + (−) sign corresponds to S = R (S = L), and cs denotes the local sound speed.
Considering that in a Riemann problem the state ahead of the rarefaction wave is known, the

integration of Eq. (186) allows one to connect the states ahead (S) and behind the rarefaction wave.
Using Eq. (188), the EOS, and the following relation obtained from the constraint hWvt = const
in a rarefaction wave

vt = hSWSv
t
S

{
1− (vx)2

h2 + (hSWSvtS)
2

}1/2

, (189)

the ODE can be integrated (along an adiabat of the EOS). The solution is only a function of p.
If the tangential velocity is zero, vt = 0, the function g does not contribute. In this limiting

case and for an ideal gas EOS with an adiabatic index γ one finds

W 2dvx = ± cs
γp
dp = ±cs

ρ
dρ , (190)

which is expression (30) in Mart́ı and Müller (1994). The equation can be integrated to give (Mart́ı
and Müller, 1994)

RS(p) =
(1 + vS)A±(p)− (1− vS)
(1 + vS)A±(p) + (1− vS)

(191)
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Figure 32: Schematic solution of a Riemann problem in RHD. The initial state at t = 0 (top panel)
consists of two constant states (1) and (5) with p1 > p5, ρ1 > ρ5, and v1 = v2 = 0 separated by a
diaphragm at xD. The evolution of the flow, once the diaphragm is removed (middle panel), is illustrated
in a spacetime diagram (bottom panel) with a shock wave (solid line) and a contact discontinuity (dashed
line) moving to the right. The bundle of solid lines represents a rarefaction wave propagating to the left.
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with11

A±(p) =

(√
γ − 1− c(p)√
γ − 1 + c(p)

√
γ − 1 + cS√
γ − 1− cS

)± 2
√

γ−1

(192)

the + (−) sign of A± corresponding to S = L (S = R). In the above equation, cS is the sound
speed in state vS , and c(p) is given by

c(p) =

(
γ(γ − 1)p

(γ − 1)ρS(p/pS)1/γ + γp

)1/2

. (193)

8.5.2 Solution across a shock front

The family of all states SS(p) that can be connected through a shock with a given state vS ahead
of the wave is determined by the shock jump conditions. One obtains

SS(p) =
(
hSWSv

x
S ±

p− pS
j(p)

√
1− V±(p)2

)

[
hSWS + (p− pS)

(
1

ρSWS
± vxS
j(p)

√
1− V±(p)2

)]−1
, (194)

where the + (−) sign corresponds to S = R (S = L). The quantities V+(p) and V−(p) denote the
shock velocities for shocks propagating to the right and left, respectively. They are given by

V±(p) =
ρ2SW

2
Sv

x
S ± j(p)2

√
1 + ρ2SW

2
S(1− vx2S )/j(p)2

ρ2SW
2
S + j(p)2

. (195)

The tangential velocities present in the initial states are hidden within the flow Lorentz factor,
WS . The modulus of the mass flux across the shock front is

j(p) =

√√√√√
pS − p

h2S − h(p)2
pS − p

− 2hS
ρS

, (196)

where the enthalpy h(p) of the post-shock state can be obtained from the Taub adiabat (Thorne,
1973)

h2 − h2S =

(
h

ρ
+
hS
ρS

)
(p− pS). (197)

In general, the above nonlinear equation must be solved together with the EOS to obtain the
post-shock enthalpy as a function of p. For an ideal gas EOS with constant adiabatic index, the
post-shock density ρ can be eliminated, and the post-shock enthalpy is the (unique) positive root
of the quadratic equation Mart́ı and Müller (1994)

(
1 +

(γ − 1)(pS − p)
γp

)
h2 − (γ − 1)(pS − p)

γp
h+

hS(pS − p)
ρS

− h2S = 0 . (198)

Finally, the tangential velocities in the post-shock states can be obtained from Pons et al. (2000)

vt = hSWSv
t
S

[
1− (vx)2

h2 + (hSWSvtS)
2

]1/2
. (199)

11 Note that in the corresponding Eq. (39) of Mart́ı and Müller (1994) the two fractions in parenthesis have been
merged erroneously into one during manual typesetting.
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8.5.3 Complete solution

Figure 33 shows the solution of a particular, mildly relativistic Riemann problem for different
values of the tangential velocity. The crossing point of any two lines in the upper panel gives the
pressure and the normal velocity in the intermediate states. The range of possible solutions in the
(p, vx)-plane is marked by the shaded region. Whereas the pressure in the intermediate state can
take any value between pL and pR, the normal flow velocity can be arbitrarily close to zero in the
case of an extremely relativistic tangential flow. The values of the tangential velocity in the states
L* and R* are obtained from the value of the corresponding functions of vx (see lower panel of
Figure 33). The influence of initial left and right tangential velocities on the solution of a Riemann
problem is enhanced in highly relativistic problems.

Pons et al. (2000) computed solutions for different combinations of vtL and vtR. The initial data
were pL = 103, ρL = 1, vxL = 0; pR = 10−2, ρR = 1, vxR = 0, and the 9 possible combinations of
vtL,R = 0, 0.9, 0.99 (see Figure 34). The tests based on the propagation of relativistic blast waves
referred to as Problems 2, 3, and 4 in Section 6.3 are based on the initial setup considered by Pons
et al.

The procedure to obtain the pressure in the intermediate states, p*, is valid for general (convex)
EOS. Once p* is obtained, the remaining state quantities and the complete Riemann solution,

U = URP

(
x− x0
t− t0

;UL,UR

)
, (200)

can easily be derived. Mart́ı and Müller (2003) provide FORTRAN programs to compute the exact
solution of an arbitrary special relativistic Riemann problem for an ideal gas EOS with constant
adiabatic index, both with zero and non-zero tangential speeds using the algorithm discussed above.

Solving a Riemann problem involves the solution of an algebraic equation for the pressure
(Eq. (184)). The functional form of this equation depends on the wave pattern under consid-
eration (see Eqs. (181) – (183)). Rezzolla and Zanotti (2001) presented a procedure suitable for
implementation into an exact Riemann solver in one dimension that removes the ambiguity arising
from the wave pattern. The method exploits the fact that the expression for the relative veloc-
ity between the two initial states is a (monotonic) function of the unknown pressure, p*, which
determines the wave pattern. Hence, comparing the value of the relative velocity between the
initial left and right states with the values of the limiting relative velocities for the occurrence of
the wave patterns (181) – (183), one can determine a priori which of the three wave patterns will
actually result (see Figure 35). In Rezzolla et al. (2003) the authors extended the above procedure
to multidimensional flows.

8.6 Exact solution of the Riemann problem in RMHD

The general Riemann problem in RMHD consists of a set of seven waves: two fast-waves, two
slow-waves, two Alfvén-waves, and a contact discontinuity. The fast and slow waves are nonlinear
and can be either shocks or rarefactions depending on the change of pressure and the norm of the
magnetic field across the wave. The remaining three waves are linear.

Based on the experience with RHD, where the solution of the Riemann problem is found
expressing all quantities behind the wave as functions of the pressure at the contact discontinuity
(see Section 8.5), Giacomazzo and Rezzolla (2006) expressed all variables behind each wave as
functions of the same variables ahead of the wave and of an unknown variable behind the wave.
Constructing their solver, the authors assume that the Riemann problem has a unique (i.e., regular ;
see Section 3.2) solution. As a result, their method does not allow the formation of compound
waves.

Two different cases must be distinguished when one discusses the Riemann problem in RMHD.
Assuming that the initial discontinuity is oriented perpendicular to the x-axis, the initial magnetic
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Figure 33: Graphical solution in the (p, vx)-plane (top) and (vt, vx)-plane (bottom) of the relativistic
Riemann problem with initial data pL = 1.0, ρL = 1.0, vxL = 0.0; pR = 0.1, ρR = 0.125, and vxR = 0.0 for
different values of the tangential velocity: vt = 0 (solid), vt = 0.5 (dashed), vt = 0.9 (dashed-dotted), and
vt = 0.999 (dotted). An ideal gas EOS with γ = 1.4 was assumed. The crossing point of any two lines in
the upper panel gives the pressure and the normal velocity in the intermediate states. The value of the
tangential velocity in the states L* and R* is obtained from the value of the corresponding functions of
vx in the lower panel. The curve denoted I0 gives the solution for a vanishing tangential velocity, and the
shaded region in the upper panel marks the range of possible solutions. Image reproduced with permission
from Figure 3 of Pons et al. (2000), copyright by CUP.
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Figure 34: Analytic profiles of pressure, density, and flow velocity at t = 0.4 for the relativistic Riemann
problem with initial data pL = 103, ρL = 1.0, vxL = 0.0; pR = 10−2, ρR = 1.0, and vxR = 0.0 for
different values of the tangential velocity. From left to right, vtR = 0, 0.9, 0.99; and from top to bottom,
vtL = 0, 0.9, 0.99. An ideal EOS with γ = 5/3 was assumed. Image reproduced with permission from
Figure 4 of Pons et al. (2000), copyright by CUP.
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Figure 35: Relative velocity between the two initial states 1 and 2 as a function of the pressure at the
contact discontinuity. The curve shown consists of three segments which join smoothly at the locations
indicated by the filled dots. The segments describe the relative velocity corresponding to the cases of two
shocks (dashed; 2S), one shock and one rarefaction wave (dotted; SR), and two rarefaction waves (solid;
2R), respectively. The inset provides a magnified view of a smaller range of p*, the filled squares giving the
limiting values of the relative velocities (ṽ12)2S , (ṽ12)SR , and (ṽ12)2R . Image reproduced with permission
from Figure 1 of Rezzolla and Zanotti (2001), copyright by CUP.

field in x-direction can either be zero (Bx = 0) or not (Bx 6= 0). In the first case is the structure
of the solution very similar to the hydrodynamic one, consisting only of two fast waves and a
tangential discontinuity at which only the total pressure and the x-component of the velocity are
continuous. The spacetime structure of the Riemann problem with Bx = 0 is shown in Figure 36.
Its numerical solution can be obtained with the same procedure as that implemented in RHD.12

Giacomazzo and Rezzolla (2006) called this procedure the total-pressure approach or simply, the
p-method.

The Riemann problem for the case Bx 6= 0 is considerably more complex, because all of the
seven waves are allowed to form when the initial discontinuity is removed (Figure 37). Inspired by
the procedure to obtain the exact solution of the corresponding Riemann problem in non-relativistic
MHD Ryu and Jones (1995), Giacomazzo and Rezzolla (2006) implemented a hybrid approach in
which the total pressure is the unknown variable (p-method) between the fast and the slow waves
(i.e., in regions R2-R3 and R6-R7 in Figure 37), while the tangential components of the magnetic
field, By and Bz are used between the slow waves (i.e., in regions R4-R5 in Figure 37). In this
tangential magnetic field approach or Bt-method the resulting system consists of four equations for
four unknowns, which can be solved numerically with root-finding techniques for nonlinear system
of equations (e.g., with a Newton–Raphson method).

12 For the more restrictive case of a Riemann problem with tangential magnetic fields and the additional condition
v · B = 0, Romero et al. (2005) showed that the exact solution reduces to that of a purely RHD problem the
contributions of the magnetic field being incorporated in the definition of a new, effective EOS.
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Figure 36: Spacetime structure of the RMHD Riemann problem for a purely tangential magnetic field,
i.e., Bx = 0. The “Riemann-fan” is composed of only two fast-waves (FW) and a central tangential
discontinuity (TD), thus resembling the structure of the RHD Riemann problem. R1-R4 are the four
regions into which the Riemann problem can be decomposed, each representing a different state. Image
reproduced with permission from Figure 1 of Giacomazzo and Rezzolla (2006), copyright by CUP.

In the following sections, we briefly describe both the p-method and the Bt-method applied
to shocks, rarefactions, and Alfvén discontinuities. As in Section 8.5, the index a (b) denotes
quantities defined ahead (behind) the corresponding wave.

8.6.1 Total-Pressure Approach: p-method

8.6.1.1 Solution across a shock front. The solution consists of several steps. First, Giaco-
mazzo and Rezzolla derive vxb as a function of vyb , v

z
b , pb, and the mass flux J across the shock

(Eq. (4.25) in Giacomazzo and Rezzolla, 2006). Then they write vyb and vzb in terms of pb and
J (see Appendix A in Giacomazzo and Rezzolla, 2006), and finally express J and Vs (the shock
velocity) as a function of the post-shock pressure pb. Similar as in Pons et al. (2000), they write
Vs in terms of J using the definition of the mass flux. Then, in a procedure that involves the
post-shock density, the enthalpy, and the EOS, they solve numerically Eqs. (4.26) and (4.27) (the
Lichnerowicz adiabat ; Anile, 1989, the MHD counterpart of the Taub adiabat) of Giacomazzo and
Rezzolla (2006) to obtain Vs as function of the post-shock pressure pb. The root is sought after
in the appropriate physical interval, i.e., |Vs| ∈ (|VA|, 1) for fast shocks, and |Vs| ∈ (|vx|, |VA|) for
slow shocks. Here, VA is the speed of the corresponding Alfvén wave propagating to the left or
right (i.e., λ±a in Section 8.2).

8.6.1.2 Solution across a rarefaction wave. Exploiting the self-similar character of rarefac-
tion waves Giacomazzo and Rezzolla (2006) rewrote the set of partial differential RMHD equations
as a set of ordinary differential equations (ODE) in the seven variables ρ, p, vx, vy, vz, By, and Bz

as functions of the self-similar variable ξ ≡ x/t. These ODE fully determine the solution across
a rarefaction wave (Eqs. (4.43) – (4.49) in Giacomazzo and Rezzolla, 2006). The system can be
recast into matrix form.

Non-trivial similarity solutions exist only if the determinant of the matrix of coefficients is zero.
This condition leads to a quartic equation in the self-similar variable ξ (Eq. (4.50) in Giacomazzo
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Figure 37: Spacetime structure of the general RMHD Riemann problem in which the magnetic field has
also a normal component, i.e., Bx ̸= 0. The Riemann-fan is composed of two fast-waves (FW), two Alfvén
waves (AW), two slow-waves (SW), and a central contact discontinuity (CD). R1-R8 are the eight regions
into which the Riemann problem can be decomposed, each representing a different state. Indicated are
also the different methods used to compute the solutions in the different regions (i.e., Bt-method in regions
R4 and R5, and p-method in regions R2-R3 and R6-R7). Image reproduced with permission from Figure 2
of Giacomazzo and Rezzolla (2006), copyright by CUP.

and Rezzolla, 2006) whose roots coincide with the eigenvalues of the original RMHD system of
equations. For Bx = 0, the quartic reduces to a quadratic equation whose roots provide the
velocities of the left-going and right-going fast-waves. In the general case, i.e., if Bx 6= 0, the
solution must be found numerically. The corresponding roots give the velocities of the left-going
and right-going slow and fast magnetosonic rarefaction waves, respectively.

Using the appropriate root for ξ, Giacomazzo and Rezzolla rewrote the system of ODE in
terms of the total pressure to obtain a reduced system of six ODE, which they then integrated
over pressure across the rarefaction. Explicit expressions for these equations are given in App. B
in Giacomazzo and Rezzolla (2006).

8.6.1.3 Solution across an Alfvén discontinuity. Giacomazzo and Rezzolla (2006) imposed
continuity of ρ and p across the Alfvén discontinuity, and solved for the remaining jump conditions
(Eqs. (4.15) – (4.17), and (4.19) – (4.20) in Giacomazzo and Rezzolla, 2006) using Vs = VA, where
VA is the velocity of the corresponding Alfvén wave propagating to the left or right. Since ρ and
p are continuous across the Alfvén discontinuity, they need to find a solution only for the three
components of v and the tangential components of the magnetic field, By and Bz. They solved the
corresponding system of equations numerically with a Newton–Raphson scheme. They reported no
major difficulties in determining an accurate solution provided that the waves are all well separated
and a sufficiently accurate initial guess was used.

8.6.2 Tangential Magnetic Field Approach: Bt-method

In the Bt-method, all variables in the Riemann fan are calculated using as unknowns the values of
the tangential components of the magnetic field, i.e., By and Bz. The method is inspired by the
corresponding approach in non-relativistic MHD developed by Ryu and Jones (1995).

8.6.2.1 Solution across a shock front. Giacomazzo and Rezzolla (2006) solved for the jump
conditions considering By and Bz as the unknown quantities. In a first step, using Eqs. (4.13),

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1007/lrca-2015-3


Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics 139

(4.19), (4.20), and the shock invariant B defined in proposition 8.19 of Anile (1989), they express
all quantities as a function of the post-shock values of vx, By, Bz, and the mass flux J (or the
shock velocity Vs). Then they obtain the post-shock value of vx in terms of the other post-shock
quantities solving numerically one of the Eqs. (4.15) – (4.17). Finally, in analogy with the p-method,
they determine the value of the shock velocity solving Eq. (4.26) also numerically. They found that
the numerical solution of Eq. (4.26) is at times complicated by the existence of two roots within the
interval of admissible velocities of the slow shock (i.e., between vx and the corresponding Alfvén
velocity). Because only one of these two roots will lead to a convergent exact solution, one needs
to make a careful selection (for details see Giacomazzo and Rezzolla, 2006).

8.6.2.2 Solution across a rarefaction wave. The solution across a rarefaction wave within
the Bt-method relies again on the self-similar character of the flow. Giacomazzo and Rezzolla
(2006) used Eqs. (4.29) – (4.31) and (4.35) – (4.36) with the modulus of the tangential components
of the magnetic field, Bt, as the self-similar variable (i.e., substituting the derivative with respect
to ξ by the one with respect to Bt). In addition to these equations, which provide a solution
for variables ρ, p, vx, vy, and vz, they considered two additional ODE for the derivatives of the
tangential components of the magnetic field, By and Bz, with respect to Bt (Eqs. (5.6) and (5.7)
in Giacomazzo and Rezzolla, 2006). The resulting system of ODE can be solved numerically using
standard techniques. In practice, the integration begins ahead of the rarefaction and proceeds
toward the contact discontinuity, where Bt is given by By and Bz at the contact discontinuity.

In Eqs. (5.6) and (5.7), Giacomazzo and Rezzolla (2006) implicitly assumed that the tangential
magnetic field does not rotate across the rarefaction wave. Although this condition is exact in
non-relativistic MHD, it may not hold in RMHD where the tangential magnetic field can rotate
across the slow rarefaction. In that case, a new strategy needs to be implemented. The simplest
one consists of using the rotation angle as the self-similar variable. The integration of the system of
ODE is performed starting from the value of the rotation angle given by the ratio of the tangential
components of the magnetic field ahead of the rarefaction wave, up to the value given by the
amplitudes of By and Bz at the contact discontinuity. Furthermore, as in the p-method, the values
of the variable ξ are obtained from the quartic (Eq. (4.50) in Giacomazzo and Rezzolla, 2006) in
the Bt-method, too.

In Section 9.1 we provide the original code developed by Giacomazzo and Rezzolla (2006) based
on the procedure described here to compute the exact solution of 1D RMHD Riemann problems
with Bx 6= 0 and Bx = 0.
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9 Programs

A tar ball containing the source code of the following programs together with related information
is available for download at http://www.livingreviews.org/lrca-2015-3.

9.1 riemann rmhd

This program computes the solution of a 1D Riemann problem in RMHD with initial data UL if
x < 0.5 and UR if x > 0.5 for arbitrary speeds and magnetic fields in the spatial domain [0, 1]. The
program was developed by Giacomazzo and Rezzolla. Users of the code should credit the source
according to what is established in the README file provided in the tar ball.

9.2 rmhd 1d

This program simulates 1D RMHD flows in Cartesian coordinates using a FV method with various
cell-reconstruction techniques, Riemann solvers, and time advance algorithms. Initial data and
boundary conditions for several standard RMHD tests are already programmed. Readers are
requested to cite this review when using this code in their own publications.
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Acronyms

AGN Active Galactic Nuclei. 7, 9, 10

AMR Adaptive Mesh Refinement. 20, 21, 50, 51, 53–55, 68–71, 76, 82–84, 92, 95, 100, 109, 110,
124–126

AV Artificial Viscosity schemes. Sometimes refers to the extra terms added to the equations in
these schemes. 46, 60, 75, 80, 107

CE/SE Conservation element / solution element methods. 127, 128

CENO Convex, Essentially Non-Oscillatory, third-order, interpolation scheme. 41, 45, 53, 54, 59,
70, 85, 92, 107, 122

CENO3-HLL-MC Finite-difference scheme based on the CENO reconstruction with MC slope
limiter, and HLL Riemann solver (Del Zanna et al., 2003). 92

CENO3-HLL-MM Finite-difference scheme based on the CENO reconstruction with MINMOD
slope limiter, and HLL Riemann solver (Del Zanna et al., 2003). 85

CH-ENO-LF Finite-difference scheme based on the ENO reconstruction of the characteristic
fluxes splitted according to the Lax–Friedrichs splitting (Dolezal and Wong, 1995). 45, 53

CH-ENO-LLF Finite-difference scheme based on the ENO reconstruction of the characteristic
fluxes splitted according to the local Lax–Friedrichs splitting (Dolezal and Wong, 1995). 45,
53

CT Constrained Transport scheme for magnetic field advance. 60–62, 64, 65, 68, 96, 108

CTU Corner Transport Upwind method (Colella, 1990). 47, 53, 54, 64, 65, 70, 71, 107, 124

CW-ENO-LF Finite-difference scheme based on the ENO reconstruction of the component-wise
fluxes splitted according to the Lax–Friedrichs splitting (Dolezal and Wong, 1995). 45, 53

CW-ENO-LLF Finite-difference scheme based on the ENO reconstruction of the component-
wise fluxes splitted according to the local Lax–Friedrichs splitting (Dolezal and Wong, 1995).
45, 53

DG Discontinuous Galerkin methods. 126

eAV Artificial-viscosity finite-volume scheme that solves an extra equation for the total energy
used to overwrite the solution computed from the internal energy evolution equation, de-
pending on the accuracy of the results. One of the schemes in COSMOS++. 46, 75, 76,
80

ENO Essentially Non-Oscillatory, third-order to fifth-order, interpolation schemes (see Shu (1997)
for a review). 35, 37, 41, 43–45, 53, 59, 65, 70, 92, 107, 122, 127

EOS Equation of state. 29, 31, 32, 47–49, 66–68, 73, 75, 99, 113
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F-PLM Finite-difference scheme based on the piecewise linear reconstruction of the characteristic
fluxes splitted according to the Lax–Friedrichs splitting. One of the schemes in RAM and
RENZO codes (Zhang and MacFadyen, 2006). 44, 54, 72, 75, 80

F-WENO Finite-difference scheme based on the WENO fifth-order reconstruction of the charac-
teristic fluxes splitted according to the Lax–Friedrichs splitting. One of the schemes in RAM

code. 54, 72, 73, 75, 79, 80, 82, 84

F-WENO-A F-WENO scheme of RAM with adaptive mesh refinement. 101

F-WENO5 Finite-difference scheme based on the WENO fifth-order reconstruction of the char-
acteristic fluxes splitted according to the Lax–Friedrichs splitting. One of the schemes in
RENZO code and similar to F-WENO scheme in RAM. 79, 80

FCT Flux-Corrected-Transport method. 7, 45, 46, 59, 60, 62, 107, 122

FD Finite-Difference methods. 35–37, 40, 41, 43–46, 51, 53–55, 59, 69, 70, 76, 107, 118, 119,
121–123

field-CD Cell-centered (i.e., non-staggered) CT scheme. Notation introduced in Tóth (2000). 62

field-CT Field-interpolated CT scheme. The staggered magnetic field is advanced in time from
spatial and temporal interpolations to the cell corners of the magnetic and velocity fields.
Notation introduced in Tóth (2000). 62, 65, 70

flux-CD Cell-centered (i.e., non-staggered) CT scheme. Notation introduced in Tóth (2000). 62,
65, 70, 71

flux-CT Flux-interpolated CT scheme. The staggered magnetic field is advanced in time from
spatial and temporal interpolations to the cell corners of the fluxes of the base scheme.
Notation introduced in Tóth (2000). 62, 64, 65, 70, 71

FV Finite-Volume methods. 35, 37, 41–46, 51, 53–55, 57–59, 69–71, 76, 107, 118, 119, 121, 126,
127, 140

FV-consistent flux-CT Staggered CT algorithms forcing the consistency between volume-and
area-averaged magnetic fields and their associated numerical fluxes (Gardiner and Stone,
2005). 64, 71

FWD Full-Wave Decomposition Riemann solver. 57, 58, 92, 94, 100

GRB Gamma-Ray Burst. 7, 8, 16–23, 41, 47, 50, 51, 111

GRHD General Relativistic Hydrodynamics. 7, 8, 37, 51, 52, 126

GRMHD General Relativistic Magnetohydrodynamics. 8, 13, 16, 21, 46, 57, 59, 60, 65, 68, 69

HLL Harten–Lax–van Leer Riemann solver. 38–40, 43, 45, 46, 48, 53–55, 57, 58, 70, 71, 92, 94,
100, 103, 105, 107, 110, 121

HLL-CENO Finite-volume scheme based on the CENO reconstruction of the primitive variables
and the HLL Riemann solver. One of the schemes in RENZO. 80
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HLL-PLM Finite-volume scheme based on the piecewise linear reconstruction of the primitive
variables and the HLL Riemann solver. One of the schemes in RENZO. 44, 80, 82

HLL-PPM Finite-volume scheme based on the piecewise parabolic reconstruction of the primitive
variables and the HLL Riemann solver. One of the schemes in RENZO. 80

HLLC HLL Riemann solver with contact discontinuity. 39, 40, 53–55, 57, 58, 70, 71, 80, 92, 94,
100, 103, 105, 107, 121

HLLD HLLC Riemann solver with Alfvén discontinuities. 57, 58, 71, 92, 94, 100, 103, 105, 107

HRSC High-Resolution Shock-Capturing methods. 7–9, 35, 42, 47, 48, 51, 56, 60, 66, 68, 69, 72,
75, 78–80, 107, 108, 118, 119, 123, 127

ISM Interstellar Medium. 21, 23, 24

KFVS Kinetic flux-vector splitting methods. 127

KH Kelvin–Helmholtz instability. 10, 12, 13, 100, 101, 103, 105, 109

LF Lax–Friedrichs flux formula. 40, 48, 70

LLF Local Lax–Friedrichs flux formula. 41, 42, 53, 54, 58, 70, 71, 75, 82, 110

LLF-PLM Finite-volume scheme based on the piecewise linear reconstruction of the primitive
variables and the local Lax–Friedrichs flux formula. One of the schemes in RENZO. 76

MFF Marquina flux formula. 54, 75

MHD Magnetohydrodynamics. 8–11, 13, 22, 23, 25–27, 29, 31–34, 51, 56–62, 65, 68, 85, 88, 93,
96, 99, 108, 110, 111, 115, 121, 122, 124, 126, 128, 136–139

MMFF Modified Marquina flux formula. 42, 53, 54

MP Monotonicity Preserving interpolation scheme (fifth order). 55, 59, 70

MUSCL Monotonic Upstream-centered Schemes for Conservation Laws. 121

MUSCL-Hancock MUSCL-Hancock scheme. Global second-order, single-step, scheme based
on the solution of Riemann problems from second-order, monotonized states computed by
Taylor expansions at the middle of the time step. 43, 47, 53–55, 60, 70, 71, 80, 92, 107, 123

NOCD Non-Oscillatory Central-Differencing schemes. Also one of the schemes in COSMOS and
COSMOS++ based on this kind of techniques. 41, 46, 47, 53, 58, 70, 76, 80, 121, 122

PH Local piecewise hyperbolic interpolation. Originally developed as the reconstruction step in
the PHM method. 53, 54

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1007/lrca-2015-3
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PHM Local Piecewise-Hyperbolic Method (Marquina, 1994). 37, 122

PL Piecewise linear interpolation scheme with slope limiting. 53–55, 70, 71

PLM Piecewise-Linear Method. 44, 47, 123

PP Piecewise interpolation scheme with monotonic parabolae, including limiting at shocks and
steepening at contact discontinuities. Originally developed as the reconstruction step in the
PPM method. 53, 54, 70–72, 85, 110

PPM Piecewise-Parabolic Method. Refers to the original scheme developed in Colella and Wood-
ward (1984) or its relativistic extensions (Mart́ı and Müller, 1996; Mignone et al., 2005b).
35, 42, 44, 47, 76, 79, 80, 121, 123

PWN Pulsar Wind Nebula. 23, 25, 26, 28

RHD Relativistic Hydrodynamics. 7–10, 12, 20, 29, 31, 32, 35–48, 50–53, 56–58, 60, 66, 72, 74,
76, 83, 105, 107–109, 111, 112, 118, 126, 128–130, 133, 136, 137

RK Runge–Kutta time discretization algorithms. Third to fifth order of accuracy. 53–55, 70, 71

RKDG Runge–Kutta Discontinuous Galerkin methods. 126, 127

RMHD Relativistic Magnetohydrodynamics. 7–10, 13, 22, 23, 26, 27, 29–32, 47, 48, 52, 56–62,
65–69, 72, 83, 85, 86, 91–93, 95, 96, 99, 103, 105, 107–111, 113, 115, 118, 124, 126–128, 133,
137–140

SMR Static Mesh Refinement. 71

SNR Supernova Remnant. 23, 24, 26, 28

transport-flux-CT Transport-flux-interpolated CT scheme. The staggered magnetic field is ad-
vanced in time from spatial and temporal interpolations to the cell corners of the transport
fluxes of the base scheme. Notation introduced in Tóth (2000). 62, 65, 70

TV Total Variation. 42, 119, 121, 122

TVD Total-Variation-Diminishing schemes. Refers to the schemes satisfying the property of en-
suring the decrease of the total variation of the solution with time, or refers to the property
itself. 35, 42, 43, 47, 53, 57–60, 79, 107, 121–123

TVD-RK Runge–Kutta time discretization algorithms that preserve the TVD properties of the
algorithm at every substep. Second and third order of accuracy. 45, 47, 53, 54, 60, 70–72,
82, 107, 123

TVDLF Second-order TVD scheme relying on the local Lax–Friedrichs flux formula. The scheme
used in AMRVAC for relativistic simulations. 41, 47, 58

U-PLM Finite-volume scheme based on the piecewise linear reconstruction of the primitive vari-
ables. One of the schemes in RAM code. 44, 54, 72, 75, 80
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U-PPM Finite-volume scheme based on the piecewise parabolic reconstruction of the primitive
variables. One of the schemes in RAM code. 44, 54, 72, 75, 80, 82

UCT Upwind CT scheme. The staggered magnetic field is advanced in time from spatial and
temporal interpolations to the cell corners of the upwind fluxes of the base scheme. Described
in Londrillo and Del Zanna (2000, 2004). 65, 70, 71

WENO Weighted, Essentially Non-Oscillatory, third-order to seventh-order, interpolation schemes.
41, 45, 54, 55, 59, 68, 70, 71, 107, 122, 126, 127
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Codes

AMRCLAW AMRCLAW package. Web page: LeVeque’s web. 126

AMRVAC AMRVAC code (see Tables 1 and 2). Outgrowth of the VAC, Versatile Advection
Code (VAC; Tóth, 1996). (MPI-) AMRVAC web page: AMRVAC’s web. Current version of
the code: Keppens et al. (2012). The following references refer to previous variants of the
code and contain relevant information partly applicable to the current MPI version Keppens
et al. (2003); Meliani et al. (2007); van der Holst and Keppens (2007); van der Holst et al.
(2008). 40, 41, 44, 47, 50–52, 58–62, 67, 69, 76, 99, 125

ATHENA ATHENA code. For the relativistic extension, see Table 2 and Beckwith and Stone
(2011). Web page: ATHENA’s web. 58, 67, 69, 86

Cactus Cactus code. Cactus is an open source problem solving environment designed for scientists
and engineers. The Cactus Framework and Computational Toolkit provides the framework
for the Einstein Toolkit, that addresses computational relativistic astrophysics, supporting
simulations of black holes, neutron stars, and related systems. Cactus code web page: Cactus’
web. 69

Carpet AMR driver for the Cactus code. Web page: Schnetter’s web. 50, 69

Chombo Chombo (software for adaptive solutions of partial differential equations). Web page:
Chombo’s web. 51

COSMOS COSMOS code. See Table 1 and Anninos and Fragile (2003); Anninos et al. (2003).
41, 46, 47, 52, 78, 80

COSMOS++ COSMOS++ code. See Table 2 and Anninos et al. (2005). 46, 52, 58, 60, 62, 69,
75, 76, 80

ECHO ECHO code. See Table 2 and Del Zanna et al. (2007). 57, 59, 67, 86, 96, 98, 109, 111

FLASH FLASH code. See Table 1 and Fryxell et al. (2000); Morsony et al. (2007). Web page:
FLASH’ web. 20, 36, 44, 49, 50, 52, 72, 73, 80, 82, 83

GENESIS GENESIS code. See Table 1 and Aloy et al. (1999b). 37, 42, 44, 47, 49, 57, 76

HARM HARM code (see Table 2). Original version in Gammie and Tóth (2003). Upgraded
version in McKinney (2006a). The original version can be downloaded from the Astrophys-
ical Code Library of the Astrophysical Fluid Dynamics Group at the University of Illinois
(AFDG’s web). 57, 59, 60, 66, 68, 69, 91, 98

Mara Mara code. See Table 2 and Zrake and MacFadyen (2012). 58, 65, 67, 106
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Mezcal-SRHD Relativistic extension of Mezcal code. See Table 1 and De Colle et al. (2012a).
51

PARAMESH PARAMESH software (MacNeice et al., 2000). Web page: MacNeice and Olson
(2008)’ web. 50

PLUTO PLUTO code (see Tables 1 and 2) Mignone et al. (2007). AMR version: Mignone et al.
(2012). Web page: PLUTO’ web. 39, 43, 47, 51, 52, 58, 60–62, 67, 69, 98, 110

RAISHIN RAISHIN code. See Table 2 and Mizuno et al. (2006). 52, 57, 65, 67, 85, 92, 95, 98

RAM RAM code. See Table 1 and Zhang and MacFadyen (2006). 39, 41, 42, 44, 45, 47, 50, 72,
73, 80, 82, 101

RAMSES RAMSES code. See Teyssier (2002) for the original RAMSES code and Table 1 and
Lamberts et al. (2013) for its relativistic extension. 39, 40, 44, 51

Ratpenat Ratpenat code. See Table 1 and Perucho et al. (2010). 37, 42, 44, 47, 49, 101

RENZO RENZO code. See Table 1 and Wang et al. (2008). 39–42, 44, 45, 47, 50, 76, 80, 82

TESS TESS code. See Table 2 and Duffell and MacFadyen (2011). 52, 58–60, 62, 67, 72, 73, 80,
82, 83, 93, 96, 99, 103

THC THC code. See Table 1 and Radice and Rezzolla (2012). 106

WHAM WHAM code. See Table 1 and Tchekhovskoy et al. (2007). 39, 45, 47, 73, 74, 79, 80, 82

Whisky Whisky code. See Table 1 and Baiotti et al. (2003). Web page: Whisky’s web. 50, 52

WhiskyMHD WhiskyMHD code. See Table 2 and Giacomazzo and Rezzolla (2007). Web page:
Giacomazzo’s web. 57, 65, 69, 92, 95
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simulations of relativistic precessing jets probing the structure of superluminal sources”, Astrophys. J.
Lett., 585, L109–L112. [DOI], [ADS], [arXiv:astro-ph/0302123]. (Cited on page 12.)

AMRVAC, “AMRVAC”, project homepage, Gitorius. URL (accessed 6 Nov 2014):
https://gitorious.org/amrvac. (Cited on pages 52, 54, 69, 70, and 146.)

Anderson, M., Hirschmann, E. W., Liebling, S. L. and Neilsen, D., 2006, “Relativistic MHD with adaptive
mesh refinement”, Class. Quantum Grav., 23, 6503–6524. [DOI], [ADS], [arXiv:gr-qc/0605102]. (Cited
on pages 59, 60, 62, 67, 68, 69, 70, 89, 92, 96, 98, 99, and 100.)

Anile, A. M., 1989, Relativistic fluids and magneto-fluids: With applications in astrophysics and plasma
physics, Cambridge University Press, Cambridge; New York. [Google Books]. (Cited on pages 8, 29,
31, 32, 113, 115, 116, 137, and 139.)

Anile, A. M. and Pennisi, S., 1987, “On the mathematical structure of test relativistic magnetofluiddy-
namics”, Ann. Inst. Henri Poincare, 46, 27–44. Online version (accessed 21 December 2015):
http://www.numdam.org/item?id=AIHPA_1987__46_1_27_0. (Cited on pages 31, 32, and 113.)

Anninos, P. and Fragile, P. C., 2003, “Nonoscillatory Central Difference and Artificial Viscosity Schemes
for Relativistic Hydrodynamics”, Astrophys. J. Suppl. Ser., 144, 243–257. [DOI], [ADS], [arXiv:astro-
ph/0206265]. (Cited on pages 41, 46, 53, 75, 78, 79, 80, and 146.)

Anninos, P., Fragile, P. C. and Murray, S. D., 2003, “COSMOS: A radiation-chemo-hydrodynamics
code for astrophysical problems”, Astrophys. J. Suppl. Ser., 147, 177–186. [DOI], [ADS], [arXiv:astro-
ph/0303209]. (Cited on pages 46, 53, and 146.)

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.12942/lrr-2013-1
http://adsabs.harvard.edu/abs/2013LRR....16....1A
http://arxiv.org/abs/1104.5499
http://www.livingreviews.org/lrr-2013-1
http://rainman.astro.illinois.edu/codelib/
http://dx.doi.org/10.1086/319158
http://adsabs.harvard.edu/abs/2001ApJ...549L.183A
http://arxiv.org/abs/astro-ph/0101188
http://dx.doi.org/10.1086/588605
http://adsabs.harvard.edu/abs/2008ApJ...681...84A
http://arxiv.org/abs/0803.2693
http://dx.doi.org/10.1086/312266
http://adsabs.harvard.edu/abs/1999ApJ...523L.125A
http://arxiv.org/abs/astro-ph/9906428
http://dx.doi.org/10.1086/313214
http://adsabs.harvard.edu/abs/1999ApJS..122..151A
http://arxiv.org/abs/astro-ph/9903352
http://dx.doi.org/10.1086/312436
http://adsabs.harvard.edu/abs/2000ApJ...528L..85A
http://arxiv.org/abs/astro-ph/9911153
http://dx.doi.org/10.1086/312537
http://adsabs.harvard.edu/abs/2000ApJ...531L.119A
http://arxiv.org/abs/astro-ph/9911098
http://dx.doi.org/10.1086/374543
http://adsabs.harvard.edu/abs/2003ApJ...585L.109A
http://arxiv.org/abs/astro-ph/0302123
https://gitorious.org/amrvac
http://dx.doi.org/10.1088/0264-9381/23/22/025
http://adsabs.harvard.edu/abs/2006CQGra..23.6503A
http://arxiv.org/abs/gr-qc/0605102
http://books.google.com/books?id=0Z1_MFT1H44C
http://www.numdam.org/item?id=AIHPA_1987__46_1_27_0
http://dx.doi.org/10.1086/344723
http://adsabs.harvard.edu/abs/2003ApJS..144..243A
http://arxiv.org/abs/astro-ph/0206265
http://arxiv.org/abs/astro-ph/0206265
http://dx.doi.org/10.1086/375184
http://adsabs.harvard.edu/abs/2003ApJS..147..177A
http://arxiv.org/abs/astro-ph/0303209
http://arxiv.org/abs/astro-ph/0303209
http://dx.doi.org/10.1007/lrca-2015-3


Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics 149

Anninos, P., Fragile, P. C. and Salmonson, J. D., 2005, “COSMOS++: Relativistic magnetohydrodynamics
on unstructured grids with local adaptive refinement”, Astrophys. J., 635, 723–740. [DOI], [ADS],
[arXiv:astro-ph/0509254]. (Cited on pages 46, 70, 76, 80, 83, 89, and 146.)

Antón, L., Zanotti, O., Miralles, J. A., Mart́ı, J. M., Ibáñez, J. M., Font, J. A. and Pons, J. A., 2006,
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Böttcher, M., Harris, D.E. and Krawczynski, H. (Eds.), 2012, Relativistic Jets from Active Galactic Nuclei ,
Wiley-VCH, Weinheim. [Google Books]. (Cited on page 9.)

Brackbill, J. U. and Barnes, D. C., 1980, “The effect of nonzero ∇ · B on the numerical solution of the
magnetohydrodynamic equations”, J. Comput. Phys., 35, 426–430. [DOI]. (Cited on pages 60, 62,
and 65.)

Bridle, A., “Alan Bridle’s Image Gallery”, personal homepage, National Radio Astronomy Observatory.
URL (accessed 14 July 2014):
http://www.cv.nrao.edu/~abridle/images.htm. (Cited on page 10.)

Bridle, A. H., Hough, D. H., Lonsdale, C. J., Burns, J. O. and Laing, R. A., 1994, “Deep VLA Imaging of
Twelve Extended 3CR Sample”, Astron. J., 108, 766–820. [DOI], [ADS]. (Cited on page 10.)

Brio, M. and Wu, C. C., 1988, “An upwind differencing scheme for the equations of ideal magnetohydro-
dynamics”, J. Comput. Phys., 75, 400–422. [DOI]. (Cited on pages 32, 56, 88, and 93.)

Bucciantini, N., 2011, “MHD models of pulsar wind nebulae”, in High-Energy Emission from Pulsars and
Systems, Proceedings of the First Session of the Sant Cugat Forum on Astrophysics, (Eds.) Torres,
D. F., Rea, N., Astrophys. Space Sci. Proc., pp. 473–490, Springer, Berlin; New York. [DOI], [ADS],
[arXiv:1005.4781 [astro-ph.HE]]. (Cited on page 28.)

Bucciantini, N., 2012, “The relativistic wind in PWNe”, Int. J. Mod. Phys.: Conf. Ser., 8, 120–131. [DOI],
[ADS]. (Cited on page 28.)

Bucciantini, N. and Del Zanna, L., 2006, “Local Kelvin-Helmholtz instability and synchrotron modulation
in Pulsar wind nebulae”, Astron. Astrophys., 454, 393–400. [DOI], [ADS], [arXiv:astro-ph/0603481].
(Cited on pages 103, 104, and 105.)

Bucciantini, N., Amato, E. and Del Zanna, L., 2005, “Relativistic MHD simulations of pulsar bow-
shock nebulae”, Astron. Astrophys., 434, 189–199. [DOI], [ADS], [arXiv:astro-ph/0412534]. (Cited
on page 28.)

Bühler, R. and Blandford, R. D., 2014, “The surprising Crab pulsar and its nebula: a review”, Rep. Prog.
Phys., 77, 066901. [DOI], [ADS], [arXiv:1309.7046 [astro-ph.HE]]. (Cited on page 23.)

Burkert, A. and Bodenheimer, P., 1993, “Multiple fragmentation in collapsing protostars”, Mon. Not. R.
Astron. Soc., 264, 798–806. [DOI], [ADS]. (Cited on page 125.)

Cactus, “The Cactus Code”, project homepage, Max Planck Institute for Gravitational Physics. URL
(accessed 14 July 2014):
http://www.cactuscode.org/. (Cited on page 146.)

Camus, N. F., Komissarov, S. S., Bucciantini, N. and Hughes, P. A., 2009, “Observations of ‘wisps’ in
magnetohydrodynamic simulations of the Crab Nebula”, Mon. Not. R. Astron. Soc., 400, 1241–1246.
[DOI], [ADS], [arXiv:0907.3647 [astro-ph.HE]]. (Cited on page 26.)

Cannizzo, J. K., Gehrels, N. and Vishniac, E. T., 2008, “Glimm’s method for relativistic hydrodynamics”,
Astrophys. J., 680, 885–896. [DOI], [ADS], [arXiv:0802.1184 [astro-ph]]. (Cited on pages 36 and 83.)

Casse, F., Markowith, A. and Keppens, R., 2013, “Non-resonant magnetohydrodynamics streaming in-
stability near magnetized relativistic shocks”, Mon. Not. R. Astron. Soc., 433, 940–951. [DOI], [ADS],
[arXiv:1305.0847 [astro-ph.HE]]. (Cited on page 67.)

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1016/0021-9991(76)90091-7
http://dx.doi.org/10.1016/0021-9991(75)90002-9
http://books.google.com/books?id=dwasB3_vPPQC
http://dx.doi.org/10.1016/0021-9991(80)90079-0
http://www.cv.nrao.edu/~abridle/images.htm
http://dx.doi.org/10.1086/117112
http://adsabs.harvard.edu/abs/1994AJ....108..766B
http://dx.doi.org/10.1016/0021-9991(88)90120-9
http://dx.doi.org/10.1007/978-3-642-17251-9_39
http://adsabs.harvard.edu/abs/2011heep.conf..473B
http://arxiv.org/abs/1005.4781
http://dx.doi.org/10.1142/S2010194512004503
http://adsabs.harvard.edu/abs/2012IJMPS...8..120B
http://dx.doi.org/10.1051/0004-6361:20054491
http://adsabs.harvard.edu/abs/2006A&A...454..393B
http://arxiv.org/abs/astro-ph/0603481
http://dx.doi.org/10.1051/0004-6361:20042205
http://adsabs.harvard.edu/abs/2005A&A...434..189B
http://arxiv.org/abs/astro-ph/0412534
http://dx.doi.org/10.1088/0034-4885/77/6/066901
http://adsabs.harvard.edu/abs/2014RPPh...77f6901B
http://arxiv.org/abs/1309.7046
http://dx.doi.org/10.1093/mnras/264.4.798
http://adsabs.harvard.edu/abs/1993MNRAS.264..798B
http://www.cactuscode.org/
http://dx.doi.org/10.1111/j.1365-2966.2009.15550.x
http://adsabs.harvard.edu/abs/2009MNRAS.400.1241C
http://arxiv.org/abs/0907.3647
http://dx.doi.org/10.1086/587164
http://adsabs.harvard.edu/abs/2008ApJ...680..885C
http://arxiv.org/abs/0802.1184
http://dx.doi.org/10.1093/mnras/stt772
http://adsabs.harvard.edu/abs/2013MNRAS.433..940C
http://arxiv.org/abs/1305.0847
http://dx.doi.org/10.1007/lrca-2015-3
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160 José Maŕıa Mart́ı and Ewald Müller

Jiang, G.-S. and Tadmor, E., 1998, “Nonoscillatory central schemes for multidimensional hyperbolic con-
servation laws”, SIAM J. Numer. Anal., 19, 1892–1917. [DOI]. (Cited on pages 53 and 121.)

Jiang, G.-S., Levy, D., Lin, C.-T., Osher, S. and Tadmor, E., 1998, “High-resolution nonoscillatory central
schemes with nonstaggered grids for hyperbolic conservation laws”, SIAM J. Numer. Anal., 35, 2147–
2168. [DOI]. (Cited on pages 53 and 121.)

Kadler, M., Ros, E., Perucho, M. et al., 2008, “The trails of superluminal jet components in 3C 111”,
Astrophys. J., 680, 867–884. [DOI], [ADS], [arXiv:0801.0617 [astro-ph]]. (Cited on page 12.)

Kargaltsev, O. and Pavlov, G. G., 2008, “Pulsar Wind Nebulae in the Chandra Era”, in 40 Years of
Pulsars: Millisecond Pulsars, Magnetars and More, Montreal, Canada, 12 – 17 August 2007, (Eds.)
Bassa, C., Wang, Z., Cumming, A., Kaspi, V. M., AIP Conference Proceedings, 983, pp. 171–185,
American Institute of Physics, Melville, NY. [DOI], [ADS], [arXiv:0801.2602 [astro-ph]]. (Cited on
page 26.)

Kennel, C. F. and Coroniti, F. V., 1984a, “Confinement of the Crab pulsar’s wind by its supernova
remnant”, Astrophys. J., 283, 694–709. [DOI], [ADS]. (Cited on page 23.)

Kennel, C. F. and Coroniti, F. V., 1984b, “Magnetohydrodynamic model of Crab Nebula radiation”,
Astrophys. J., 283, 710–730. [DOI], [ADS]. (Cited on page 23.)

Keppens, R. and Meliani, Z., 2008, “Linear wave propagation in relativistic magnetohydrodynamics”,
Phys. Plasmas, 15, 102 103. [DOI], [ADS], [arXiv:0810.2416 [astro-ph]]. (Cited on page 32.)
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Romero, R., Mart́ı, J. M., Pons, J. A., Ibáñez, J. M. and Miralles, J. A., 2005, “The exact solution of the
Riemann problem in relativistic MHD with tangential magnetic fields”, J. Fluid Mech., 544, 323–338.
[DOI], [ADS], [arXiv:astro-ph/0506527]. (Cited on page 136.)

Rosen, A., Hughes, P. A., Duncan, G. C. and Hardee, P. E., 1999, “A comparison of the morphology and
stability of relativistic and nonrelativistic jets”, Astrophys. J., 516, 729–743. [DOI], [ADS], [arXiv:astro-
ph/9901046]. (Cited on page 10.)

Rossi, P., Mignone, A., Bodo, G., Massaglia, S. and Ferrari, A., 2008, “Formation of dynamical structures
in relativistic jets: the FRI case”, Astron. Astrophys., 488, 795–806. [DOI], [ADS], [arXiv:0806.1648
[astro-ph]]. (Cited on page 10.)

Rosswog, S., 2015, “SPH Methods in the Modelling of Compact Objects”, Living Rev. Comput. Astrophys.,
1, lrca-2015-1. [DOI], [ADS], [arXiv:1406.4224 [astro-ph.IM]]. URL (accessed 9 December 2015):
http://www.livingreviews.org/lrca-2015-1. (Cited on page 8.)

Ruffert, M., 1992, “Collisions between a white dwarf and a main-sequence star. II - Simulations using
multiple-nested refined grids”, Astron. Astrophys., 265, 82–105. [ADS]. (Cited on page 125.)

Ryu, D. and Jones, T. W., 1995, “Numerical magnetohydrodynamics in astrophysics: Algorithm and tests
for one-dimensional flow”, Astrophys. J., 442, 228. [DOI], [ADS], [arXiv:astro-ph/9404074]. (Cited on
pages 136 and 138.)

Ryu, D., Jones, T. W. and Frank, A., 1995, “Numerical magnetohydrodynamics in astrophysics: Algo-
rithm and tests for multidimensional flow”, Astrophys. J., 452, 785–796. [DOI], [ADS], [arXiv:astro-
ph/9505073]. (Cited on page 56.)

Ryu, D., Miniati, F., Jones, T. W. and Frank, A., 1998, “A divergence-free upwind code for multi-
dimensional magnetohydrodynamic flows”, Astrophys. J., 509, 244–255. [DOI], [ADS], [arXiv:astro-
ph/9807228]. (Cited on pages 62 and 64.)

Ryu, D., Chattopadhyay, I. and Choi, E., 2006, “Equation of state in numerical relativistic hydrodynamics”,
Astrophys. J. Suppl. Ser., 166, 410–420. [DOI], [ADS], [arXiv:astro-ph/0605550]. (Cited on pages 48,
49, 50, 53, 68, 80, and 83.)

Living Reviews in Computational Astrophysics
DOI 10.1007/lrca-2015-3

http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://hdl.handle.net/2060/19850005219
http://adsabs.harvard.edu/abs/1985ams..conf..163R
http://books.google.com/books?id=wFoD8x1CWDAC
http://dx.doi.org/10.1146/annurev.fl.18.010186.002005
http://dx.doi.org/10.1142/S0218301310014613
http://dx.doi.org/10.1086/177198
http://adsabs.harvard.edu/abs/1996ApJ...462..839R
http://arxiv.org/abs/astro-ph/9509121
http://dx.doi.org/10.1017/S0022112005006701
http://adsabs.harvard.edu/abs/2005JFM...544..323R
http://arxiv.org/abs/astro-ph/0506527
http://dx.doi.org/10.1086/307143
http://adsabs.harvard.edu/abs/1999ApJ...516..729R
http://arxiv.org/abs/astro-ph/9901046
http://arxiv.org/abs/astro-ph/9901046
http://dx.doi.org/10.1051/0004-6361:200809687
http://adsabs.harvard.edu/abs/2008A&A...488..795R
http://arxiv.org/abs/0806.1648
http://arxiv.org/abs/0806.1648
http://dx.doi.org/10.1007/lrca-2015-1
http://adsabs.harvard.edu/abs/2015LRCA....1....1R
http://arxiv.org/abs/1406.4224
http://www.livingreviews.org/lrca-2015-1
http://adsabs.harvard.edu/abs/1992A&A...265...82R
http://dx.doi.org/10.1086/175437
http://adsabs.harvard.edu/abs/1995ApJ...442..228R
http://arxiv.org/abs/astro-ph/9404074
http://dx.doi.org/10.1086/176347
http://adsabs.harvard.edu/abs/1995ApJ...452..785R
http://arxiv.org/abs/astro-ph/9505073
http://arxiv.org/abs/astro-ph/9505073
http://dx.doi.org/10.1086/306481
http://adsabs.harvard.edu/abs/1998ApJ...509..244R
http://arxiv.org/abs/astro-ph/9807228
http://arxiv.org/abs/astro-ph/9807228
http://dx.doi.org/10.1086/505937
http://adsabs.harvard.edu/abs/2006ApJS..166..410R
http://arxiv.org/abs/astro-ph/0605550
http://dx.doi.org/10.1007/lrca-2015-3


Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics 175

Sadowski, A. Narayan, R., Tchekhovskoy, A. and Zhu, Y., 2013, “Semi-implicit scheme for treating radia-
tion under M1 closure in general relativistic conservative fluid dynamics codes”, Mon. Not. R. Astron.
Soc., 429, 3533–3550. [DOI], [ADS], [arXiv:1212.5050 [astro-ph.HE]]. (Cited on page 111.)

Sanders, R. H. and Prendergast, K. H., 1974, “The Possible Relation of the 3-Kiloparsec Arm to Explosions
in the Galactic Nucleus”, Astrophys. J., 188, 489–500. [DOI], [ADS]. (Cited on page 127.)
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Tóth, G., 2000, “The ∇· ~B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes”, J. Comput.
Phys., 161, 605–652. [DOI], [ADS]. (Cited on pages 56, 60, 61, 62, 66, 96, 99, 142, and 144.)
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