
Vis Comput

DOI 10.1007/s00371-011-0593-8

O R I G I NA L A RT I C L E

Grid-based SAH BVH construction on a GPU

Kirill Garanzha · Simon Premože · Alexander Bely ·

Vladimir Galaktionov

© Springer-Verlag 2011

Abstract We present an efficient algorithm for building an

adaptive bounding volume hierarchy (BVH) in linear time

on commodity graphics hardware using CUDA. BVHs are

widely used as an acceleration data structure to quickly ray

trace animated polygonal scenes. We accelerate the con-

struction process with auxiliary grids that help us build high

quality BVHs with SAH in O(k ∗ n). We partition scene tri-

angles and build a temporary grid structure only once. We

also handle non-uniformly tessellated and long/thin trian-

gles that we split into several triangle references with tight

bounding box approximations. We make no assumptions

on the type of geometry or animation motion. However,

our algorithm takes advantage of coherent geometry lay-

out and coherent frame-by-frame motion. We demonstrate

the performance and quality of resulting BVHs that are built

quickly with good spatial partitioning.

Keywords GPU · Ray tracing · Acceleration structure ·

Triangle subdivision · SAH · Surface area heuristic · BVH ·

Bounding volume hierarchy

K. Garanzha (�) · V. Galaktionov

Keldysh Institute of Applied Mathematics, Moscow, Russia

e-mail: kirill@garanzha.com

V. Galaktionov

e-mail: vlgal@gin.keldysh.ru

K. Garanzha

NVIDIA, Moscow, Russia

S. Premože

Santa Monica, CA, USA

e-mail: simon.premoze@gmail.com

A. Bely

Capital Research and FUGU, Moscow, Russia

e-mail: a.bely@capital-research.ru

1 Introduction

Ray tracing has become ubiquitous for providing global illu-

mination, soft shadows, glossy reflections, motion blur and

depth of field. Efficient ray tracing makes use of spatial in-

dexing data structures such as grids, KD-trees and bound-

ing volume hierarchies (BVHs) to accelerate intersection

between rays and scene geometry. Many other applications

such as collision detection and visibility culling also benefit

from efficient spatial partitioning. An efficient acceleration

structure is fast to build, requires little extra memory and

allows fast searching and traversal. While there is no con-

sensus which acceleration method is the best, we focus on

a Bounding Volume Hierarchy (BVH) as it provides a good

balance between building time, traversal efficiency and abil-

ity to handle dynamic geometry. One advantage of the BVH

is predictable memory consumption as each scene primitive

is referenced only once in the tree.

As modern computer architectures become massively

parallel, building and traversal of spatial acceleration data

structures must also be done in parallel if they are to scale

with the number of available processors. Until recently, most

of the research work has been done on serial or only mod-

erately parallel building algorithms and architectures. Our

goal is to explore massively parallel real-time construction

algorithms for fully dynamic geometry while making few or

no assumptions about underlying geometry or motion. Re-

cent groundbreaking work by Lauterbach et al. [10] made

fast BVH building entirely on GPUs possible. Pantaleoni

and Luebke [12] made many improvements to this algorithm

by exploiting coarse-grain coherency in the input geometry.

Their work inspired us to improve building of high quality

BVHs for interactive applications and further reduce build-

ing times while maintaining bounded memory usage.

BVHs adapt very poorly to non-uniformly tessellated

scenes. Many scenes fall into this category as architectural

mailto:kirill@garanzha.com
mailto:vlgal@gin.keldysh.ru
mailto:simon.premoze@gmail.com
mailto:a.bely@capital-research.ru


K. Garanzha et al.

scenes modeled by various Computer-Aided Design (CAD)

packages contain many long and wide (or thin) triangles.

The choice of partitioning method significantly influences

the quality of the tree. Surface Area Heuristic (SAH) consid-

ers the density of geometry in 3D space and efficiently culls

empty regions. Unfortunately, building a high quality tree

is expensive. This becomes even more obvious for dynamic

and animated scenes where BVH trees have to be rebuilt for

every frame.

Our BVH building algorithm splits long and wide trian-

gles into several triangle references with a tight AABB ap-

proximation. We compute a 3D density grid and its mip-map

for triangle references. The grid helps computing the SAH

cost of each node split. The cost of computing SAH split is

bounded for all BVH nodes. We make several contributions.

First, we utilize spatial splitting that produces high qual-

ity BVHs even for non-uniformly tessellated scenes without

memory overflow problems. Second, we describe a fast Sur-

face Area Heuristic (SAH)-based builder that exhibits linear

asymptotic behavior. We explicitly bound the computational

(and memory fetch) work to produce a single node split.

The cost of building a single top level node and a bottom

level (leaf) node is the same. Third, we reduce the amount

of sorting needed. Fourth, the BVH building algorithm and

described concepts are well suited for massively parallel ar-

chitectures and are relatively simple to implement.

We implement our algorithm in CUDA [11] and bench-

mark it on NVIDIA GeForce 480 GTX (Fermi) GPUs. The

implementation of the algorithm can handle fully dynamic

geometry. We compare our algorithm with the results from

some recent papers in Sect. 4.

2 Background

Spatial acceleration data structures have been used in ray

tracing and collision detection for many years. With the ad-

vent of GPUs and multicore architectures, research commu-

nity has renewed interest in building fast and efficient accel-

eration structures. We only mention some recent develop-

ments in the field. We direct reader to Havran’s dissertation

[6] for an excellent and comprehensive overview accelera-

tion structures and in-depth discussion of problems.

Until recently, most of the research has focused on se-

rial algorithms and memory optimizations and improve-

ments [17]. With the paradigm shift in computer architec-

ture from a single high performing processor towards mul-

ticore and highly parallel architectures, there have been

many new innovative algorithms. Foley and Sugerman [3]

looked into building and traversing KD-trees on modern

GPUs. There have been numerous other improvements,

most notably described in the works of Popov et al. [13],

Shevtsov et al. [15], Zhou et al. [20]. An efficient imple-

mentation of KD-tree builder on multicore platforms was

presented by Choi et al. [2]. Wald gives a great recipe for

building fast BVHs with Surface Area Heuristic [18]. Some

acceleration structures such as KD-trees produce high qual-

ity trees, but they are not applicable for dynamic geometry or

animated scenes due to long building times. Wald et al. [19]

have extended BVHs building to be more amenable for de-

forming and animated geometry. Ize et al. [7] give yet an-

other extension of building BVH on moderately parallel sys-

tems. On the other hand, Kalojanov and Slusallek [8] tackle

the problem of efficient acceleration using grids and hierar-

chical grids that can be build entirely on a GPU. Kalojanov

and Slusallek [9] further improved grid traversal efficiency

using a hierarchical grid. In our work, we use grid only to

help with efficient BVH building.

We have also already mentioned the problem of building

structures suitable for non-uniform tessellation of geometry.

Stich et al. [16] present an easily directable BVH algorithm

for such geometric configurations utilizing SAH for prim-

itive splitting. Unfortunately, the algorithm is not directly

amenable to efficient GPU implementation.

2.1 LBVH and HLBVH

Lauterbach et al. [10] described a BVH construction algo-

rithm based on space-filling Morton curve and sorting prim-

itives in the scene along the curve. Each point in space can

be discretized to n bits. By interleaving the coordinates of

a 3D point, we get a 3n-bit index, called Morton code, that

enumerates where this discretized point lies on the Morton

curve of order n. If all geometric primitives are enumerated

with Morton codes and then sorted, a Linear Bounding Vol-

ume Hierarchy (LBVH) [10] is constructed. LBVH building

is extremely fast, however, it produces trees that are less than

optimal for fast traversal and it does not exploit any existing

coherency in the scene geometry.

Pantaleoni and Luebke [12] introduced Hierarchical Lin-

ear Bounding Volume Hierachy (HLBVH) that significantly

reduces memory traffic and the amount of sorting work

done. HLBVH takes advantage of any spatial coherency in

the input mesh by doing hierarchical grid decomposition.

Surface Area Heuristic (SAH) is used to construct top levels

of the BVH and Morton curve-based partitioning for bottom

levels. The resulting algorithm produces high quality trees

that are still very efficient for traversals while having im-

pressive building times.

2.2 Massively parallel computing model

Modern desktop GPU is a powerful device that is best suited

for streaming data-parallel algorithms with a coherent exe-

cution and memory access pattern. The GPUs are composed

of several independent cores [11]. A host (CPU) initiates



Grid-based SAH BVH construction on a GPU

parallel kernels on a device (GPU). A kernel executes a pro-

gram across many (thousands) threads. GPU threads are or-

ganized into blocks (each block is executed on the single

GPU core). Each block of threads is organized into several

warps (bundles of 32 threads) which execute a single kernel

instruction for the entire warp of threads. An algorithm that

can be efficiently implemented on massively-parallel plat-

forms like GPUs must: (a) decompose work into suitably

sized chunks that will be mapped onto thread blocks, (b)

have enough fine grained parallelism and (c) be conscious

of memory access and memory utilization.

3 BVH construction algorithm

Overview We assume building a binary BVH of Axis

Aligne Bounding Boxes (AABBs). Wald [18] and Lauter-

bach et al. [10] proposed CPU/GPU BVH builders that are

based on binning technique and recursive triangle list par-

titioning at each tree level. In these algorithms, a transient

grid structure is created in the process of each BVH node

creation (binning). Triangle references are distributed in the

grid and the SAH cost of the best partition split is evaluated

using the grid.

We also accelerate the BVH build process with the help

of auxiliary grids that help us build high quality SAH BVH

in O(k ∗ n). In contrast to previous methods, we partition

scene triangles and build the grid only once. We construct

several mip levels of the density grids from the input set of

triangles. Each grid cell encodes a range of primitives inside.

The root node of the BVH is constructed from the coarse

mip level (83): we evaluate 21 possible split planes (all

planes between grid cells for each axis), select the best one

and partition the input set of primitives. Then we find split

positions for resulting two subsets of primitives and recur-

sively continue. The number of primitives and approximate

bounding boxes for each partition are computed quickly

from the density grid. We can select the best split plane

with a fewer accumulation/comparison operations than the

binning approach by Wald [18] where all primitives are

processed to evaluate the best split plane. Our algorithm

takes advantage of the compression–sorting–decompression

(CSD) technique introduced by Garanzha and Loop [4].

Grid0 setup First, we build the highest resolution grid (la-

beled Grid0) for the entire scene. Scene AABB extents de-

termine the grid dimensions. We use 1024 × 1024 × 1024

resolution for Grid0 (each cell ID can be encoded with a 30-

bit key). Storing 10243 cells is impractical since most grid

cells are empty. We decompose Grid0 into a two-level hi-

erarchy of TopGrid0 and a number of bottom grids created

within each non-empty cell of TopGrid0. In practice, we use

128 × 128 × 128 resolution for TopGrid0 and 8 × 8 × 8 for

each BottomGrid0.

Fig. 1 The process of triangles distribution in a Grid0

Distribution of triangle references in Grid0 (See Fig. 1.)

Each triangle is represented by a triangle reference (triangle

ID, AABB over a triangle or a triangle part). An array of

reference IDs, refIDs, is initially filled with sequential IDs.

Using Grid0 resolution, we compute a 30-bit cell ID of each

triangle centroid. The most significant 21 bits represent a

cell ID within TopGrid0 (Fig. 1(a)–(e) sub-keys); the least

significant 9 bits represent a cell ID within BottomGrid0

(Fig. 1(t)–(w) sub-keys).

We then sort the refIDs array using cell IDs as keys in

radix sort. This step is accelerated by the CSD technique [4].

Adjacent elements of CellIDs array may be equal and can

be compressed into representative chunks (cell ID, base,

length). A shorter array of chunks is sorted faster than the

original CellIDs array. Sorted array of chunks is then de-

compressed into a final sorted CellIDs array. We then fur-

ther compact it (using the most significant 21-bits, sub-key,

of CellID) into an array of non-empty TopGrid0 cell descrip-

tors. Entries with equal sub-keys will fall into the same de-

scriptor. Each cell descriptor represents a segment of sorted

triangles in the grid cell. The most significant 21-bit CellID

of each descriptor is used as a cell address inside TopGrid0

where we write triangle segment information.

Similarly, we then compact CellIDs array (using all

30 bits) into an array of non-empty BottomGrid0 cell de-

scriptors. These descriptors are used to construct Bottom-

Grid by concatenating all 8 × 8 × 8 refinements of non-

empty cells of TopGrid0.



K. Garanzha et al.

Fig. 2 Mipmap-style computing of coarser-level grids (the number of

triangles per cell is highlighted). 2D-projection

More implementation details with pseudocode are given

in the Appendix and the distribution process is illustrated in

Fig. 1.

Coarse Gridi creation (See Fig. 2.) Any coarse Gridi res-

olution is twice smaller than previous Gridi−1. We create

n grids in total; the largest resolution of any dimension of

Gridn−1 is 8. For each Gridi we maintain a single array

numRefs (e.g., Gridi .numRefs that keeps the number of tri-

angle references per cell). Each element of this array is equal

to the sum of underlying 8 elements in the finer Gridi−1.

We choose Gridn−1 resolution bound of 8 to efficiently

map the hierarchy emission algorithm to CUDA imple-

mentation. We take into account the warp width (group of

threads that execute together) and the amount of computa-

tion. The maximum resolution of 16 was also tested and

resulted in slower BVH emission but faster ray tracing af-

terwards.

Hierarchy emission At this stage, we build a hierarchy of

links between BVH nodes without computing actual bound-

ing boxes. We build an adaptive BVH using approximate

SAH heuristic guided by Gridi (i = n − 1, n − 2, . . . ,0).

We build the tree in the breadth-first order where each tree

level is generated in parallel on the GPU (see Algorithm 2).

We do not repartition triangle references.

Similar to Lauterbach et al. [10] we maintain a queue of

nodes that are subject to split operation. The maximum size

of each split queue is twice the number of triangle refer-

ences. Each node split operation may result in 0, 1 or 2 new

split queries for the next level generation. These split queries

are written into the output split queue sparsely. A hierarchy

of BVH links (linkArray) is accumulated sequentially level

by level with nodes from compacted output queue. Namely,

the BVH nodes are stored breadth-first, and we can extract

node ranges for each tree level (levelOffset array, see Algo-

rithm 2). The output queue is considered as an input split

queue for the next level generation. The work is stopped

when there are no new split queries.

Fig. 3 Warp-wise grid-based evaluation of the SAH cost function for

inner node creation. 2D-projection

The linkArray array represents relations between inner

nodes of the BVH while leaf nodes represent blocks of tri-

angle references. Using levelOffset array and the number of

tree levels produced we refit AABBs of all nodes in the

bottom-up order. At each tree level iteration, the bounding

boxes of nodes at this level are computed in parallel using

boxes from the previous level.

Approximate SAH evaluation Each element in the split

queue represents a task to evaluate a SAH cost function

and produces two new BVH nodes. For each task, we load

the address of Gridi and Integer Bounding Box (IBB) (see

Fig. 2). The integer bounding box represents the grid subset

we are working on. For initial split task (the root node) we

load the address of Gridn−1 and the IBB = (0,0,0,8,8,8).

If all extents of the current IBB are less than 5 then we ad-

vance to the finer level Gridi−1 and multiply all IBB com-

ponents by 2. Thus, we always work in a grid subset with

resolution up to 8 × 8 × 8 (see blue border in Fig. 3). Each

cell of the grid subset contains the number of triangles ref-

erences (see Fig. 3). For each axis, x, y and z, we evaluate

up to 7 SAH split candidates (see red lines in Fig. 3) using

binning approach (up to 8 bins). For each bin, we track the

number of triangle references and the integer bounding box

(bounding boxes are shown with grey cells on Fig. 3). In

practice, the task processing is assigned to 8 parallel threads

(e.g., each CUDA 32-thread warp evaluates 4 split tasks in

parallel). The split data is generated using warp-wise prefix

sums.



Grid-based SAH BVH construction on a GPU

The optimal best split candidate can be computed by the

SAH cost [5]:

SAH(P ) = CT + CI

(

SAL

SA
NL +

SAR

SA
NR

)

, (1)

where P is the splitting plane candidate, SA is the surface

area of the current node, SAL, SAR are surface areas of the

current node to the left and to the right of P , NL and NR are

the numbers of the node’s triangles to the left and to the right

of P , and CT and CI are relative costs of plane intersection

and node traversal.

Our best split candidate is computed using the following

SAH cost metric:

SAH(P ) = SA(bboxL)NL + SA(bboxRR)NR. (2)

Using this split plane, the inner-node is produced and two

open splits are added to the working queue (the first one

is associated with the current Gridi and IBB = bboxL, the

second one is associated with Gridi and IBB = bboxR). The

leaf node is created only if the current IBB bounds only one

cell of Grid0.

Object-median split We may have multiple triangles ref-

erences in a small region even when we use 30-bit trian-

gle/grid cell mapping. In a post-process, we find BVH leaves

that contain more than 4 triangle references. We subdivide

these nodes into small subtrees using object median split un-

til each leaf contains no more than 4 triangles.

BVH refitting Finally, we compute actual AABBs of BVH

nodes using bottom-up refitting (we exploit the references

generated in the hierarchy construction stage). This process

is also implemented on the GPU: we execute refitting ker-

nels for each level of the BVH starting from the lowest level.

Triangle split stage The SAH evaluation step of our

builder uses a density grid of triangle centroids. Actual

bounding boxes of triangles are not taken into account dur-

ing the SAH evaluation as it is done in the Walds binning

approach [18]. If triangles are large and their distribution

is non-uniform, there may be a significant overlap between

AABBs that bound these triangles. Bounding box overlaps

may result in inefficient raytracing. Stitch et al. [16] de-

scribed a solution to this problem for the CPU-side BVH

builder that supports spatial splits within the BVH (as in

kd-trees) if they improve the SAH cost. The spatial splits,

if applied, may split a long triangle into multiple references

that are bounded with tighter AABBs. As a result, any tri-

angle can be approximated with a number of tight AABBs

that better cull the empty space. The use of spatial splits im-

proves ray tracing performance by 20–60% for the scenes

with long and wide/thin triangles reducing the overlaps be-

tween the AABBs and increasing the number of triangle

Fig. 4 A triangle reference subdivision. Large triangles can be subdi-

vided into many new references

references. This process is relatively slow. Furthermore, it

can cause a memory overflow, especially for CAD scenes

(composed of long/wide triangles), and cannot allocate large

arrays for triangle references and BVH boxes.

We implement the triangle split stage that tries to split

all long triangles into several parts that are represented with

AABBs (see Fig. 4) prior to the BVH build stage. Each tri-

angle can be represented with several AABBs to better ap-

proximate its shape. The number of approximating AABBs

computed for all scene triangles is bounded by some fixed

number of references (e.g., no more than 10% new refer-

ences of existing triangles). We opt to have triangle refer-

ence dimensions not larger than

sceneCellWidth =
sceneExt

NoOverlapResolution
, (3)

where sceneExt is the maximum scene extent and NoOver-

lapResolution is the resolution of a virtual scene grid G

where the overlaps are not allowed. The split algorithm tries

to split triangles that are longer than the cell width of this

virtual grid. This virtual grid is never constructed, only its

dimensions are used in our computation.

For each AABB of the ith triangle reference, we compute

the number of requested triangle splits:

reqSplits(refAABBi) = int

(

refMaxExti

sceneCellWidth

)

, (4)

where refMaxExti is the maximum extent of the reference

AABB. The value of reqSplits is rounded to the nearest in-

teger and represents the number of new references that we

need to satisfy the size condition. This value is scaled by

scaled_reqSplitsi :

scaled_reqSplitsi

=
reqSplits(refAABBi)

∑

j∈all refs reqSplits(refAABBi)
availableMemory,

where availableMemory is the number of entries that can be

used for new references storage. Each ith triangle reference

from the input queue is divided into the scaled_reqSplitsi +1

new AABBs uniformly distributed along the longest extent

of the parent AABB (see Fig. 4). Resulting triangle refer-

ences bounded with tighter AABBs are written to the refer-

ences output queue.



K. Garanzha et al.

Fig. 5 The screenshots from

our test scenes rendered

(Sponza, Fairy Forest,

Exploding Dragon, Conference,

Happy Buddha, and Turbine

Blade). The BVHs for these

scenes were built using our

approach (see Table 1 for

builder stats). The absolute path

tracing timings (5-bounce

diffuse inter-reflection): 55 ms

(45 Mrays/s), 46 ms

(65 Mrays/s), 35 ms

(63 Mrays/s), 36 ms

(65 Mrays/s), 16 ms

(105 Mrays/s), 19 ms

(98 Mrays/s)

We perform two passes of triangle subdivision. In the first

pass, the initial triangles are divided along their longest di-

mensions (e.g., x-dimension). In the second pass, the refer-

ences from the first pass are also divided along their longest

dimension (for a wide triangle, it is a different dimension

than in the first pass). This process is implemented in a

GPU-friendly fashion. Small triangles can be divided into

2 or 3 new references (or not divided at all). Very long trian-

gles can be divided into 1000s of new triangle references.

The overall amount of output triangle references will be

bounded by 110% of initial number of triangles. The irreg-

ularity of subdivision is controlled efficiently using explicit

work queue organization using GPU scan and segmented-

Scan procedures [14].

4 Results and comparisons

Implementation setup We implemented our BVH build-

ing algorithm using CUDA 3.0. All measurements were

done with NVIDIA GTX 480 with 1.5 GB of GPU mem-

ory and Core 2 Duo 2.13 GHz with 2 GB of main mem-

ory. We use Utah Fairy Forest, UNC Exploding Dragon,

Conference, Sponza, Stanford Dragon, Happy Buddha, Tur-

bine Blade scenes for our tests (see Fig. 5). Conference and

Sponza scenes contain long and wide/thin triangles and pro-

vide a good test case for our split triangles approach. Other

scenes are finely tessellated, and Fairy Forest and Exploding

Dragon are animated scenes that demonstrate dynamic BVH

building.

For all scenes, we split triangles using 1283 virtual grid

resolution. We limit the number of new split triangle refer-

ences to be no more than twice the original number of trian-

gles. We build BVHs using a 30-bit cell id (21 bits encode

the TopGrid cell ID, 9 bits encode the BottomGrid cell ID).

For each node the SAH is evaluated using up to 8 × 8 × 8

sub-grid range. We continue hierarchy emission until each

tree node contains no more than 4 triangles. We analyze ray

tracing performance BVHs using a path tracing test with 5

diffuse ray bounces at 1024×768 resolution. The path tracer

is implemented using the depth-first ray traversal kernel im-

proved by persistent threads where each ray is mapped to

one thread [1]. The path tracer is additionally accelerated

using a fast ray sorting stage [4]. The path tracing kernel

takes the stream of sorted rays for the coherent execution on

the GPU.

Build stats In Table 1, we show absolute building times

for our BVH construction algorithm. The absolute build-

ing times include all stages from “Split triangles” stage to

“AABB refit” stage. For larger scenes, the building time in-

creases relatively slowly. The reason is the bounded compu-

tational work for SAH evaluation of each node. While we

use the same resolution of TopGrid in all scenes, the num-

ber of non-empty TopGrid cells varies from scene to scene.

This determines the number of bottom grids and influences

building times. The number of non-empty cells within Top-

Grid varies from 0.1% to 2%.

Tree quality We evaluate tree quality using path tracing

performance and the SAH cost [5] of produced hierarchies.

This SAH metric represents the probabilistic estimate of the

number of operations required to traverse a tree with a ran-

dom ray. The metric is computed recursively starting at the

root node:

C(N) = 2 + C(NL)
area(NL)

area(N)
+ C(NR)

area(NL)

area(N)
,

C(leaf) = numTriangles(leaf),

where NL and NR are the children of the node N , area is the

surface area of the bounding box of the node. Each leaf node

returns the number of triangles. This traversal cost metric is

independent of traversal algorithm used.



Grid-based SAH BVH construction on a GPU

Table 1 Build stats for our grid-assisted BVH builder. These build

stats use parameters described in Implementation Setup section. The

second column is the number of triangles in each scene. The third col-

umn is the number of AABBs that approximate triangles relative to

the number of triangles. The forth column is the total memory con-

sumption of the TopGrid, the number of BottomGrids, triangle ranges

for all the cells and grid mip-map levels. The fifth column represents

the number of BVH nodes produced by our build. The sixth column is

the absolute building time, including triangles split, grid construction,

hierarchy emission and AABB-tree refitting

Table 2 Performance

evaluation of our BVH builder

algorithm (GridBvh with and

without triangle split stage)

compared to our implementation

of some recent algorithms

(SplitBvh by Stitch et al. [16]

and Wald [18]) for the four

scenes. The left column shows

theoretical BVH performance

estimate that is computed using

SAH cost metric over the tree.

The right column shows

practical performance of

resulting BVHs with measured

timings of a 5-bounce path

tracing (see Fig. 5). All values

in the chart are normalized to

100% where 100% is

performance of SplitBvh by

Stitch et al. [16]. Smaller values

mean better performance.

SplitBvh approach results in the

fastest ray tracing; however, the

BVH construction time is

longer. In contrast,

GridBvh-split has comparable

ray tracing performance, but can

be constructed in a few

milliseconds

In Table 2, we show quality measurements of BVHs pro-

duced by our builder with and without triangle split stage,

high-quality Wald’s CPU builder [18] and SplitBVH CPU

builder [16]. Wald’s builder uses binning approach to ac-

celerate building, and Stitch et al. [16] use full SAH sweep

[6] building and spatial splits that reduce the bounding box

overlap problem. We have implemented these builders (stop-

ping tree construction when the node contains no more than

4 triangles) on the CPU and transfer the generated BVHs

to the GPU where they are used in the same traversal al-

gorithm. Table 2 shows that SplitBVH [16] produces trees

that result in the fastest path tracing. However, this builder

is relatively slow (a few seconds or minutes). Our GridBVH

without triangle-split stage can result in a slower ray tracing

for scenes with non-uniformly sized triangles such as Con-

ference and Sponza. However, the introduction of a cheap

GPU-based triangle split stage makes our builder competi-

tive with other high-quality builders.



K. Garanzha et al.

Table 3 Comparison times for acceleration data structure builders pre-

sented in recent papers. In brackets we show hypothetical 2× faster

times assuming these algorithms would run on GTX 480 that is used for

our measurements. Preliminary evaluation of the HLBVH algorithm

[12] on GTX 480 showed 1.5–2 times faster running time compared to

GTX 280

Varying build parameters We have described build param-

eters for our BVH construction algorithm. Varying these pa-

rameters can result in different tree qualities and build times.

For example, 16 × 16 × 16 sub-grid range for SAH evalua-

tion results in ≈30% slower building time and ≈3–5% faster

ray tracing. Cell ID representations with 24- or 27-bits en-

coding triangle centroids result in significantly lower mem-

ory consumption, slightly faster BVH build time (≈2–3%)

and slightly slower ray tracing (≈5%). Lower virtual grid

resolution for triangle split stage results in extended AABBs

and slower ray tracing. On the other hand, higher virtual grid

resolution results in more triangle references across the tree

that can be tested for intersection with the same ray multiple

times.

Comparison to the other GPU builders Thus far we have

analyzed the quality of BVHs produced by our algorithm.

Here we compare our builder with recent results of other

acceleration data structure builders (see Table 3).

We use Nvidia GTX 480 for our measurements; all the

other results from Table 3 use GTX 280 hardware. In brack-

ets we show 2× shorter times (we assume that the algo-

rithms listed would run up to 2× faster on GTX 480). Build-

ing times from Pantaleoni and Luebke approach [12] with

≈120% SAH Cost trees (pure HLBVH) are equal to our

building times for trees with ≈110% SAH Cost, although

their algorithm does not address the AABB overlap issue in

BVHs for scenes with long and wide/thin triangles. This is-

sue was solved in our real-time triangle split stage (also in

Stitch et al. [16] for offline CPU builder). If we compare

our ≈110% SAH Cost trees with Pantaleoni’s ≈110% SAH

Cost trees, then our build times are 4× faster. Kalojanov

Algorithm 1 GPUBVHBuild(BVH bvh, Mesh mesh)

1: int numTriangles = mesh.numTriangles;

2: int refArraySize;

3: // TriTefernce is a (triangleID, AABB) pair that encloses

4: // a triangle or a part of a triangle

5: TriReference refArray[2*numTriangles]

6: // Split wide triangles into many approximating

7: // tight AABBs

8: refArray = SplitBVH(mesh.triangleArray);

9:

10: int CellIDs[refArraySize]

11: // 30-bit cell id where first 21 bits encode topGrid cell

12: // ID and remaining 9 bits encode bottomGrid ID.

13: CellIDs = ComputeCellIDs(refArray);

14:

15: int refIDs[refArraySize] = {0, 1, 2, 3, . . . , refArraySize-1};

16: // Reorder refIDs array with keys represented by CellIDs.

17: RadixSort(CellIDs, refIDs);

18:

19: // topGrid represents a mip-map of numRefs values.

20: // (resx, resy, resz) is the grid size.

21: // Top mip level has resolution 8 × 8 × 8.

22: Grid topGrid = AllocateGrid(resx, resy, resz, 1);

23: // Uses the most significant 21 bits of cellID. Every

24: // non-empty cell contains a range [refBegin..numRefs)

25: // of refIDs that fall into the cell.

26: int numNonEmptyTopGridCells =

27: BuildTopGrid(topGrid, CellIDs);

28:

29: Grid bottomGrid =

30: AllocateGrid(8, 8, 8, numNonEmptyTopGridCells);

31: // Uses last 9 bits of the CellID and distributes triangles,

32: // every bottom grid is referenced in non-empty cell

33: // of topGrid for transition during hierarchy emission.

34: // Every non-empty bottomGrid cell contains a range

35: // of refIDs that fall into the cell. bottomGrid can also

36: // represent the mip-map of numRefs values.

37: bottomGrid = BuildBottomGrid(topGrid, CellIDs);

38:

39: // Each linkArray[i] references two child nodes or the

40: // range of primitives. Results in a breadth-first layout.

41: EmitHierarchy(bvh.linkArray, topGrid);

42:

43: // Bottom up refit of aabbArray considering the

44: // linkArray hierarchy. The nodes from the same BVH

45: // level are updated in parallel using LevelOffset array

46: // (Algorithm 2)

47: RefitAABB(bvh.aabbArray, bvh.linkArray);

and Slusallek [8] grid construction time is fast, but provides

much slower ray tracing performance.

5 Conclusions

In this paper, we have presented an efficient algorithm

for constructing and adaptive bounding volume hierarchy

in linear time on a GPU. The constructed BVH is used



Grid-based SAH BVH construction on a GPU

Algorithm 2 EmitHierarchy(int2* linkArray, int* sorte-

dRefIDs, Grid topGrid, int numRefs)

1: BVHQueue qSplit[2];

2:

3: // levelOffset[] array and numLevels are

4: // used for bottom-up BVH refitting.

5: int numLevels = 0;

6: int levelOffset[60];

7:

8: int numNodesTotal = 0;

9: int numQElems = 1;

10: int qin = 0;

11:

12: levelOffset[numLevels++] = 0;

13: IAABB box = make_iaabb(0, 0, 0,

14: topGrid.resx, topGrid.resy, topGrid.resz);

15: qSplit[qin] = SplitQueueInit(numRefs, box);

16: numNodesTotal++;

17:

18: // Build the hierarchy of links

19: while numQElems > 0 do

20: LevelOffset[numLevels++] = numNodesTotal;

21:

22: // Evaluates SAH, split each node into two and write

23: // them into qSplit[1−qin] that can be 2× larger

24: // than qSplit[qin].

25: SplitQueueProcess(qSplit[qin], qSplit[1−qin],

26: numQElems);

27:

28: // Compute prefix sum over non-empty qSplit[1−qin]

29: // positions and compact them.

30: int newNumQElems =

31: CompactQueue(qSplit[1-qin], 2*numQElems);

32:

33: // for each i = [0.. newNumQElems)

34: // linkArray[numNodesTotal + i] =

35: // qSplit[1−qin].NodeInfo[i];

36: linkArray = AccumulateLinks(numNodesTotal,

37: qSplit[1−qin], newNumQElems);

38:

39: numQElems = newNumQElems;

40: numNodesTotal + = newNumQElems;

41: qin = 1 − qin;

42: end while

as an acceleration data structure for ray tracing animated

polygonal scenes. We accelerate the construction process

of BVHs using several techniques: compression–sorting–

decompression, an approximated SAH evaluation using uni-

form grids, and limited work to produce a single BVH node.

We do not make any assumptions about the type of geom-

etry or underlying motion. We also address the problem

of long and non-uniformly tessellated triangles that cause

many overlapping bounding boxes. We split long triangles

into several triangle references with tight bounding box ap-

proximations. We demonstrate the performance of resulting

BVHs using path tracing and show that high-quality BVHs

can be constructed quickly and result in fast ray triangle in-

tersections.

In the future, we plan to add support for very large models

and other geometry primitives. It would also be interesting

to test our algorithm on other platforms and adjust imple-

mentation to exploit new architectures.

Appendix

The pseudocode for the building procedure is summarized

in Algorithm 1, and the pseudocode for the actual hierarchy

emission is in Algorithm 2.

References

1. Aila, T., Laine, S.: Understanding the efficiency of ray traversal

on GPUs. In: Proc. High-Performance Graphics 2009, pp. 145–

149 (2009)

2. Choi, B., Komuravelli, R., Lu, V., Sung, H., Bocchino, R.L., Adve,

S.V., Hart, J.C.: Parallel SAH k-D tree construction. In: Proceed-

ings of High Performance Graphics (2010)

3. Foley, T., Sugerman, J.: KD-tree acceleration structures for a GPU

raytracer. In: Graphics Hardware 2005, pp. 15–22 (2005)

4. Garanzha, K., Loop, C.: Fast ray sorting and breadth-first packet

traversal for GPU ray tracing. Comput. Graph. Forum 29(2)

(2010)

5. Goldsmith, J., Salmon, J.: Automatic creation of object hierarchies

for ray tracing. IEEE Comput. Graph. Appl. 7(5), 14–20 (1987)

6. Havran, V.: Heuristic ray shooting algorithms. Ph.D. thesis, De-

partment of Computer Science and Engineering, Faculty of Elec-

trical Engineering, Czech Technical University in Prague (2000)

7. Ize, T., Wald, I., Parker, S.G.: Asynchronous BVH construction for

ray tracing dynamic scenes on parallel multi-core architectures.

In: Proceedings of the 2007 Eurographics Symposium on Parallel

Graphics and Visualization (2007)

8. Kalojanov, J., Slusallek, P.: A parallel algorithm for construction

of uniform grids. In: HPG’09: Proceedings of the 1st ACM con-

ference on High Performance Graphics, pp. 23–28 (2009)

9. Kalojanov, J., Billeter, M., Slusallek, P.: Two-level grids for ray

tracing on gpus. In: Eurographics 2011. Comput. Graph. Forum

30(2) (2011)

10. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D.,

Manocha, D.: Fast BVH construction on GPUs. Comput. Graph.

Forum 28(2), 375–384 (2009)

11. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel

programming with CUDA. ACM Queue 6(2), 40–53 (2008)

12. Pantaleoni, J., Luebke, D.: HLBVH: Hierarchical LBVH con-

struction for real-time ray tracing. In: High Performance Graphics

(2010)

13. Popov, S., Günther, J., Seidel, H.P., Slusallek, P.: Stackless KD-

tree traversal for high performance GPU ray tracing. Comput.

Graph. Forum 26(3), 415–424 (2007)

14. Satish, N., Harris, M., Garland, M.: Designing efficient sort-

ing algorithms for manycore GPUs. In: Proceedings of the 23rd

IEEE International Parallel and Distributed Processing Sympo-

sium (2009)

15. Shevtsov, M., Soupikov, A., Kapustin, A.: Highly parallel fast kd-

tree construction for interactive ray tracing of dynamic scenes.

Comput. Graph. Forum 26(3) (2007)



K. Garanzha et al.

16. Stich, M., Friedrich, H., Dietrich, A.: Spatial splits in bounding

volume hierarchies. In: Proc. High-Performance Graphics (2009)

17. Wachter, C., Keller, A.: Instant ray tracing: The bounding interval

hierarchy. In: Proceedings of the 17th Eurographics Symposium

on Rendering, pp. 139–149 (2006)

18. Wald, I.: On fast Construction of SAH based bounding volume

hierarchies. In: Proceedings of the 2007 Eurographics/IEEE Sym-

posium on Interactive Ray Tracing (2007)

19. Wald, I., Boulos, S., Shirley, P.: Ray tracing deformable scenes

using dynamic bounding volume hierarchies. ACM Trans. Graph.

26(1) (2007)

20. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time KD-tree con-

struction on graphics hardware. ACM Trans. Graph. 27(5), 126:1–

126:11 (2008)

Kirill Garanzha received his M.S.

in Computer Science from Bauman

Moscow State Technical University,

Russia, in 2009. Since then he has

been a Ph.D. student at the Keldysh

Institute of Applied Mathematics,

Russian Academy of Sciences. Kir-

ill’s primary interest area is Com-

puter Graphics, in particular, global

illumination rendering. His Ph.D.

dissertation thesis title is “Out-of-

core global illumination rendering

on memory limited architectures”.

Kirill has also been a member of

OptiX group at NVIDIA since Oc-

tober 2010.

Simon Premože received his B.S.

in Computer Science from Univer-

sity of Colorado at Bouler, USA,

in 1996. He received his Ph.D. in

University of Utah, Salt Lake City,

USA, in 2003. Simon’s primary

interest area is photorealistic ren-

dering, in particular, global illu-

mination rendering. His Ph.D. dis-

sertation thesis title is “Approxi-

mate Methods For Illumination and

Light Transport in Natural Environ-

ments”.

Alexander Bely is currently a

master-student in RosNOU Uni-

versity, Moscow Russia. His inter-

ests include Computer Graphics and

business activities. He is the co-

founder of the companies such as

FUGU and Capital Research, Rus-

sia.

Vladimir Galaktionov has received

Ph.D. in Physics and Mathemat-

ics in 1982 (Moscow Institute of

Physics and Techniques), Doctor

of Science degree in Physics and

Mathematics in 2006 (Keldysh In-

stitute of Applied Mathematics).

Since 2003 is the head of com-

puter graphics department in KIAM.

More than 50 publications in the

area of computer graphics and com-

putational optics.


	Grid-based SAH BVH construction on a GPU
	Abstract
	Introduction
	Background
	LBVH and HLBVH
	Massively parallel computing model

	BVH construction algorithm
	Overview
	Grid0 setup
	Distribution of triangle references in Grid0
	Coarse Gridi creation
	Hierarchy emission
	Approximate SAH evaluation
	Object-median split
	BVH refitting
	Triangle split stage

	Results and comparisons
	Implementation setup
	Build stats
	Tree quality
	Varying build parameters
	Comparison to the other GPU builders

	Conclusions
	Appendix
	References


