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Abstract
New developments are presented in the area of grid

convergence error analysis and error estimation for

mixed-order numerical schemes. A mixed-order scheme

is defined here as a numerical method where the order

of the local truncation error varies either spatially (e.g.,

at a shock wave) or for different terms in the governing

equations (e.g., first-order convection with second-order

diffusion). The case examined herein is the Mach 8 lam-

inar flow of a perfect gas over a sphere-cone geometry.

This flowfield contains a strong bow shock wave where

the formally second-order numerical scheme is reduced

to first order via a flux limiting procedure. The mixed-

order error analysis method allows for non-monotone

behavior in the solutions variables as the mesh is re-

fined. Non-monotonicity in the local solution variables

is shown to arise from a cancellation of first- and sec-

ond-order error terms for the present case. The proposed

error estimator, which is based on the mixed-order anal-

ysis, is shown to provide good estimates of the actual er-

ror. Furthermore, this error estimator nearly always

provides conservative error estimates, in the sense that

the actual error is less than the error estimate, for the

case examined.

Nomenclature
CD drag coefficient

Cf skin friction coefficient

DE discretization error
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Fs factor of safety (Fs = 3)
f solution variable

gi ith order error term coefficient

h measure of grid spacing (hk = [N1/Nk]
1/2)

N number of mesh cells

p spatial order of accuracy

q dynamic pressure, N/m2

RN nose radius (RN = 0.00508 m)

St Stanton number (dimensionless heat transfer)

r grid refinement factor

u axial velocity component, m/s
x axial coordinate, m
y radial coordinate, m
εk+1,k difference between a solution variable on

mesh k+1 and mesh k (εk+1,k = fk+1 - fk)
γ ratio of specific heats (γ = 1.4)

ρ density, kg/m3

Subscripts and Superscripts

exact exact value

inf freestream value

k mesh level, (k = 1, 2, 3, etc., fine to coarse)

n flowfield node index

~ estimated value to order hp+1

Introduction
As computers become faster and algorithms become

more efficient, computational fluid dynamics (CFD) has

enormous potential to contribute to the design, analysis,

and certification of engineering systems. However, sim-

ulation results are often regarded with skepticism by the

engineering community as a whole. Judging by the re-

sults of numerous blind validation studies,1-3 this lack

of confidence in CFD is not surprising. To quote one au-

thor,2 “the results of such exercises can be highly user-
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dependent even when the same CFD software with the

same models is being used.” Oftentimes, when a num-

ber of users do obtain the same results, these results do

not agree with the experimental data. In order for CFD

to achieve its potential, more work must be done to

quantify the uncertainty in simulation results.

The uncertainty, or error, of a given CFD simulation

can be categorized into two distinct areas.4,5 Verifica-

tion deals purely with the mathematics of a chosen set of

equations, and can be thought of as “solving the equa-

tions right.” Validation, on the other hand, entails a

comparison to experimental data (i.e., the real world)

and is concerned with “solving the right equations.”

With regards to the sequence, verification must be per-

formed first for quantitative validation comparisons to

be meaningful. Topics that are included under the broad

heading of verification include coding errors, incom-

plete iterative convergence error, truncation error,

round-off error, far-field boundary error, and grid con-

vergence (or discretization) error. This last source of er-

ror is related to the adequacy of the computational mesh

employed and is the focus of the current paper.

For complex problems, the most reliable methods4

for assessing the grid convergence errors in the solution

to partial differential equations are a posteriori methods

based on Richardson Extrapolation. Roache has pro-

posed a Grid Convergence Index6 (GCI) as a uniform

method for reporting the results of grid refinement stud-

ies. As a minimum requirement for demonstrating solu-

tion accuracy, two grid solutions are used along with a

knowledge of the nominal order of accuracy of the nu-

merical scheme to produce an error estimate in the solu-

tion properties. However, this minimum requirement

can be misleading when the “observed” order of accura-

cy differs from the nominal order of accuracy. In Ref. 6,

Roache further promotes the idea of using an additional

grid level (or levels) in order to verify the order of accu-

racy of the numerical method and insure that the solu-

tions are in the asymptotic grid convergence range.

Error analysis methods for high-speed compressible

flows can be complicated by the presence of shock dis-

continuities. The most common numerical methods used

for high-speed flows are characteristic-based upwind

methods. For steady flows, methods that are second or-

der in space are often employed due to their favorable

mixture of accuracy and numerical stability. In order to

prevent non-physical oscillations, most upwind schemes

employ limiters which reduce the spatial accuracy to

first order through shock waves. In fact, Van Leer

showed that the capturing of a discontinuity without os-

cillation required that the spatial accuracy of the scheme

reduce to first order.7 The presence of both second- and

first-order spatial accuracy (at discontinuities) can

greatly complicate grid convergence analyses.

Carpenter and Casper8 conducted a careful study of

the grid convergence behavior for a two-dimensional

hypersonic blunt-body flow. Their study employed

higher-order methods and omitted any flux limiting at

the shock wave. While the numerical schemes they em-

ployed were nominally third and fourth order, they

found that the spatial order of accuracy always reverted

to first order on sufficiently refined meshes. Their find-

ings indicate that even without the use of flux limiters to

reduce the spatial order of accuracy at discontinuities,

the information is passed through the shock wave in a

first-order manner (at least in two dimensions and high-

er). Similar results have been observed by other au-

thors.9-11 For shock-containing flows, it is surmised that

the local truncation error reduces to first order at the dis-

continuity, regardless of the use of flux limiters. Since

the truncation error determines the order of the method,

this spatial variation in the truncation error results in a

mixed-order scheme.

In addition to flows with shock waves, there are

many other examples of mixed-order numerical

schemes. Leonard’s QUICK scheme12 employs a third-

order accurate convective operator and standard second-

order central differences for diffusion. Celik et al.13,14

examined the subsonic, backward-facing step problem

with a numerical scheme which used central differences

for the diffusion terms, but was a mixture of first-order

upwind and second-order central difference for the con-

vective terms. A mixed-order behavior can also occur

for cases where the transport properties undergo large,

abrupt changes, such as at the interface between two po-

rous media.4

Previous work by Roy et al.11,15 verified the presence

of both first- and second-order errors for a hypersonic

blunt-body flow with a nominally second-order numeri-

cal scheme. It was shown that the use of a mixed-order

numerical scheme resulted in non-monotonic conver-

gence of some of the flow properties as the mesh was re-

fined. This non-monotonic grid convergence behavior

was found to occur when the first- and second-order er-

ror terms were of opposite sign, thus leading to error

cancellation. Non-monotonic grid convergence has been

observed by a number of other authors. For example,

Celik and Karatekin14 examined the flow over a back-

ward facing step using the k-ε turbulence model with

wall functions. These authors found significant non-

monotonicity in both the velocity and turbulent kinetic

energy profiles as the grid was refined.

The two main goals of the current paper are to ex-

plore in detail the behavior of a mixed first- and second-

order numerical scheme as the grid is refined and to de-

velop an error estimator which can be applied to such

schemes. The test problem used is the Mach 8 laminar

flow of a perfect gas (γ = 1.4) over a sphere-cone geom-
2
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etry. The accuracy of the surface pressure solutions on

several grid levels was presented in Ref. 11 and includ-

ed a detailed model validation study. These same calcu-

lations are explored further in the current paper, with a

focus on the analysis and estimation of grid conver-

gence errors.

Computational Model
The computational fluid dynamics code used herein

is SACCARA, the Sandia Advanced Code for Com-
pressible Aerothermodynamics Research and Analysis.
The SACCARA code was developed from a parallel
distributed memory version16-19 of the INCA code,20

originally written by Amtec Engineering. For the

present simulations, the SACCARA code is used to

solve the Navier-Stokes equations for conservation of

mass, momentum, and energy in axisymmetric form.

The perfect gas assumption is made, and the flow is fur-

ther assumed to be laminar. Further details of the flow-

field models employed can be found in Ref. 11. The

governing equations are discretized using a cell-cen-

tered finite-volume approach. The convective fluxes at

the interface are calculated using the Steger-Warming21

flux vector splitting scheme. Second-order reconstruc-

tions of the interface fluxes are obtained via MUSCL

extrapolation. The viscous terms are discretized using

central differences.

A flux limiter is employed which reduces to first or-

der in regions of large second derivatives of pressure

and temperature. This limiting is used to prevent oscilla-

tions in the flow properties at shock discontinuities. The

use of flux limiting results in a mixture of first- and sec-

ond-order accuracy in space. The implications of the

mixed-order scheme on the convergence behavior of the

method as the grid is refined will be discussed in detail.

The SACCARA code employs a massively parallel

distributed memory architecture based on multi-block

structured grids. The solver is a Lower-Upper Symmet-

ric Gauss-Seidel scheme based on the works of Yoon et

al.22,23 and Peery and Imlay,24 which provides for ex-

cellent scalability up to thousands of processors.25 The

simulations presented herein were run using a single

400 MHz processor of a Sun Enterprise 10000 shared-

memory machine.

Flowfield Conditions
The conditions used in the current simulations are

presented below in Table 1. These conditions corre-

spond to those employed in the Joint Computational Ex-

perimental Aerodynamics Program (JCEAP)

experiment conducted at Sandia National Laboratories

by Oberkampf and Aeschliman. This experimental data

set consists of both force and moment data26 as well as

high-quality surface pressure data.27,28 Since the focus

of this paper is on the numerical accuracy of the simula-

tions, comparisons to experimental data are omitted. See

Ref. 11 for an extensive model validation study. For

plotting purposes, the spatial coordinates are normalized

by the nose radius (RN=0.00508 m).

Iterative Convergence
Iterative convergence was assessed by monitoring the

L2 norms of the residuals for the momentum equations.

Since the flowfield is two-dimensional/axisymmetric,

laminar, and has no flow separation or chemical reac-

tions, the residuals were reduced down to machine zero

(approximately fourteen orders of magnitude), thus in-

suring convergence of the iterative algorithm.

Extrapolation Techniques
The following development is based on a series

expansion4 of discretization error on mesh level k

(1)

where fk is a discrete solution value on mesh level k and

fexact is the exact solution. Eq. (1) may be applied on a

point-by-point basis locally within the domain or to glo-

bal quantities (such as lift and drag). For a uniform

mesh, this series expansion may be written as

(2)

Table 1  Test conditions for JCEAP experiments

Flow Parameter Value

Freestream Mach

Number

7.841

Stagnation

Pressure

2.4724×106 N/m2

Stagnation

Temperature

632.8 K

Freestream Static

Pressure

286.8 N/m2

Freestream Static

Temperature

47.7 K

Freestream Unit

Reynolds Number

6.88×106/m

Freestream

Dynamic Pressure

1.2344×104 N/m2

Wall Temperature 316.7 K

DEk f k f exact–=

f k f exact g1hk g2hk
2

g3hk
3

O hk
4( )+ + + +=
3
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where gi is the ith order error term coefficient and hk is

some measure of the grid spacing on mesh k. For a sec-

ond-order scheme, the g1 coefficient will be zero. The

general procedure is to write Eq. (2) for a number of dif-

ferent mesh levels and solve for an approximation to fex-

act and the error term coefficients. In certain cases, a

general error term of order p will be employed, where

both the coefficients and this “observed” order p may be

solved for. Without loss of generality, the fine grid spac-

ing is normalized to unity (i.e., h1=1), and the grid re-

finement factor is defined as

(3)

Some of the required assumptions for using these ex-

trapolation methods are that the solutions must be in the

asymptotic grid convergence range, the solutions must

be smooth, and the local error should be an indication of

the global error. Some of the caveats for using these ex-

trapolation methods are that they tend to magnify round-

off and incomplete iterative convergence error, and that

the extrapolated solution generally does not obey the

same conservation laws which are obeyed by the origi-

nal solutions.

Standard Richardson Extrapolation

In the early 1900’s, Richardson29,30 developed a

method of extrapolating two discrete second-order solu-

tions to yield a fourth-order accurate solution. The solu-

tions were obtained on a fine grid with spacing h1 and a

coarse grid with spacing h2, with h2/h1=2 (i.e., grid dou-

bling/halving). The fourth-order accuracy of the extrap-

olated solution arose from the use of central differences,

which contain only even powers in the expansion given

in Eq. (2). Unless central differences are used exclusive-

ly, the odd terms should be included, thus for a second-

order numerical scheme, the two discrete solutions may

be generally written as

By neglecting the terms of order h3 and higher, the

above system can be solved for approximations to fexact
and g2 (the coefficient of the second order error term)

(4)

(5)

where the overtilde (~) denotes approximate values

which neglect higher-order terms. Defining the differ-

ence in two successive grid levels as

(6)

and taking h1=1, Eqs. (4) and (5) reduce to

(7)

In general, the above relations for and are

third-order accurate, however they will be fourth-order

accurate when central differences are used. The assump-

tion that h1=1 and that the odd error terms are present

will be used for the remainder of this section.

Generalized Richardson Extrapolation

The above Richardson Extrapolation technique can

be generalized to arbitrary grid refinement factor r and

order p following Roache.4 The series representation is

written as

Approximating the above equations by dropping the

higher-order terms and then solving for the pth order er-

ror coefficient gp and the exact solution fexact results in

(8)

(9)

where r = r12 from Eq. (3). In this case, the order of the

discretization p must be assumed a priori since only two

solutions are used. The above estimates will in general

be (p+1)th order accurate.

In addition to using the extrapolated values to esti-

mate the errors in the discrete solutions, it is strongly

recommended that the order of accuracy also be veri-

fied. This type of order verification requires three dis-

crete solutions which are monotonic as the grid is

refined. Recovery of the formal order of accuracy of the

scheme further requires that the three grid solutions be

in the asymptotic grid convergence range. The series

representation is now expressed as

rk k 1+, hk 1+ hk⁄=

f 1 f exact g2h1
2

O h1
3( )+ +=

f 2 f exact g2h2
2

O h2
3( )+ +=

g̃2

f 2 f 1–

3h1
2

------------------=

f̃ exact f 1

f 1 f 2–

3
------------------+=

ε21 f 2 f 1–=

g̃2
1
3
---ε21=

f̃ exact f 1
1
3
---ε21–=

g̃2 f̃ exact

f 1 f exact gph1
p

O h1
p 1+( )+ +=

f 2 f exact gph2
p

O h2
p 1+( )+ +=

g̃ p

ε21

r
p

1–
--------------=

f̃ exact f 1

ε21

r
p

1–
--------------–=
4
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(10)

(11)

(12)

If the higher order terms are neglected, then the above

equations can be solved for approximations to the order

p, gp, and fexact to give

(13)

(14)

(15)

Notice that Eq. (13) is transcendental in , and thus

must be solved iteratively (see Ref. 4). For the case

when r12 = r23 = r (i.e., constant grid refinement factor),

this equation reduces to

(16)

This last equation was used by de Vahl Davis in Ref. 31

to solve for the “observed” order of accuracy for the nat-

ural convection in a square cavity.

When the three discrete solutions do not converge

monotonically as the grid is refined, then ε32/ε21 < 0 and

Eq. (16) is therefore undefined. Celik and Karatekin14

addressed the issue of non-monotone, or “oscillatory,”

grid convergence by inserting a negative sign in front of

the gp coefficient in Eq. (11) (the medium mesh). How-

ever, mathematical justification for such a procedure is

not well-founded. This paper will present both an analy-

sis method and an error estimation technique for dealing

with non-monotone grid convergence.

Mixed 1st + 2nd Order Extrapolation

For the case when both first- and second-order error

terms are included,11,15 three discrete solutions are

needed, where the series representation is written as

The inclusion of more than one error term in the expan-

sion is not a new concept. For example, see Ref. 32 for a

discussion of Romberg interpolation as applied to the

trapezoidal rule. For arbitrary mesh refinement, the

above equations may be solved for approximations to

g1, g2, and fexact to yield

For example, if h1 = 1, h2 = 1.5, and h3 = 2, then

r12 = 3/2 and r23 = 4/3, and the above equations simply

reduce to

For the case of constant grid refinement factor, the

above equations simplify to

(17)

(18)

(19)

and for r = 2, these equations further reduce to

f 1 f exact gph1
p

O h1
p 1+( )+ +=

f 2 f exact gph2
p

O h2
p 1+( )+ +=

f 3 f exact gph3
p

O h3
p 1+( )+ +=

r12
p̃

1–

r12
p̃

r23
p̃

1–
------------------------

ε21

ε21 ε32+
---------------------=

g̃ p

ε21

r12
p̃

1–
----------------=

f̃ exact f 1

ε21

r12
p̃

1–
----------------–=

p̃

p̃
ε32 ε21⁄( )ln

r( )ln
-----------------------------=

f 1 f exact g1h1 g2h1
2

O h1
3( )+ + +=

f 2 f exact g1h2 g2h2
2

O h2
3( )+ + +=

f 3 f exact g1h3 g2h3
2

O h3
3( )+ + +=

g̃1

ε32 1 r12
2

–( ) ε21r12
2

r23
2

1–( )+

r12 r12 1–( ) r23 1–( ) r12r23 1–( )
--------------------------------------------------------------------------------=

g̃2

ε32 r12 1–( ) ε21r12 r23 1–( )–

r12 r12 1–( ) r23 1–( ) r12r23 1–( )
--------------------------------------------------------------------------------=

f̃ exact f 1

ε32 r12 1–( ) ε21 r12r23
2

r12– r23– 1–( )–

r12 1–( ) r23 1–( ) r12r23 1–( )
---------------------------------------------------------------------------------------------------+=

g̃1 5ε– 32 7ε21+=

g̃2 2ε32 2ε21–=

f̃ exact f 1 3ε32 5ε21–+=

g̃1

r
2ε21 ε32–

r r 1–( )2
--------------------------=

g̃2

ε32 rε21–

r r 1+( ) r 1–( )2
--------------------------------------=

f̃ exact f 1

ε32 r
2

r 1–+( )ε21–

r 1+( ) r 1–( )2
-------------------------------------------------+=
5
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The above estimates are generally third-order accurate.

A third-order error term could be easily included by

simply adding another mesh level (see Appendix A).

Flowfield Grids
Solutions were obtained for two different families of

meshes. The first mesh family contains six grid refine-

ment levels, from Mesh 1 (480×480 cells) to Mesh 6

(15×15 cells), with each successive grid level found by

eliminating every other grid line in the two spatial di-

mensions (i.e., grid halving). The second family of

meshes was obtained in the following fashion. A sec-

ond-order accurate interpolation procedure was applied

to a 960×960 mesh (not shown), resulting in a

1920×1920 cell mesh. Every third point was retained

from this mesh, resulting in a 640×640 cell mesh (Mesh

0.5). This mesh, although not used, is the baseline mesh

for the second family of meshes (Meshes 1.5 through

6.5) which are determined by again eliminating every

other grid line in both directions. The meshes used in

this study are summarized below in Table 2.

a
Family A has (3⋅5⋅2n, n=0, 1,..., 5) cells in each direction,

while Family B has (2⋅5⋅2n, n=0, 1,..., 5) cells in each direction
b
The grid spacing measure is normalized by the grid spacing

on the finest mesh (e.g., Mesh 1 has h=1)

Grid Convergence Error Analysis
A contour plot of Mach number is presented in Fig. 1

along with the flowfield mesh. The 60×60 mesh is used

for clarity. A strong shock wave occurs in the domain

roughly halfway between the body and the outer bound-

ary. Along the stagnation streamline (y/RN = 0), the

shock is normal to the y-axis and is effectively grid

aligned. For the remainder of the domain, the shock is

generally not aligned with the mesh. In addition, no ef-

fort was made to cluster the grid to the shock.

The order of accuracy for the surface skin friction

distributions has been calculated using Eq. (16) with

r = 2 (see Fig. 2). Recall that the underlying assumption

for this equation is that the solutions must change mono-

tonically as the grid is refined. The results indicate that

the local order of accuracy varies from negative values

to values as large as nine. The undefined values, which

are not included in the figure, occur when the argument

of the natural logarithm in Eq. (16) is negative (i.e., the

solutions are not monotonic). The failure of Eq. (16) to

provide an “observed” order of accuracy close to the

nominal order of the scheme (second order) provides the

motivation for the current paper.

The first step towards quantifying the observed order

of accuracy of the method is to examine the behavior of

some norms of the spatial error. In order to calculate er-

ror norms, local estimates of the exact solution are re-

quired. Estimates of the exact solution were obtained by

extrapolating the solutions using Meshes 1, 2, and 3 (re-

stricted onto a 121×121 node mesh) using the 1st + 2nd

order extrapolation method presented in Eqs. (17)-(19).

Although not employed in the current work, Roache and

Knupp33 developed a method for obtaining estimates of

Table 2  Flowfield meshes

Mesh Name
Mesh

Familya
Mesh

Cells

Grid

Spacing, hb

Mesh 1 A 480×480 1

Mesh 1.5 B 320×320 1.5

Mesh 2 A 240×240 2

Mesh 2.5 B 160×160 3

Mesh 3 A 120×120 4

Mesh 3.5 B 80×80 6

Mesh 4 A 60×60 8

Mesh 4.5 B 40×40 12

Mesh 5 A 30×30 16

Mesh 5.5 B 20×20 24

Mesh 6 A 15×15 32

Mesh 6.5 B 10×10 48

g̃1
1
2
---ε

32
– 2ε21+=

g̃2
1
6
---ε

32

1
3
---ε21–=

f̃ exact f 1
1
3
---ε

32

5
3
---ε21–+=

x/RN

y/
R

N

0 10 20 30 40 50

-20

-10

0

10

20 8.00
6.00
4.00
2.00
0.00

JCEAP - Axisymmetric
Mesh 4 (60x60 Cells)

Mach Number

Fig. 1  Grid and Mach contours for JCEAP simulations.
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the exact solution on the fine mesh points. The L1 and

L2 norms were then calculated as follows:

where k indicates the mesh level and n is summed over

the N points used in the norm calculation. Due to the re-

quirement of three grids in the local calculation of

the norms for mesh Family A were calculated on

either a 61×61 node mesh or the grid for Mesh k, which-

ever was smaller. For mesh Family B, the norms were

calculated for the smaller of a 41×41 node mesh and the

grid for Mesh k. All of the norms employed only half of

the available flowfield points from the body out towards

the shock. The omission of the shock wave was required

since the extrapolation technique used to approximate

fexact is not valid for discontinuous solutions.

These norms are presented in Fig. 3 for the mass den-

sity and the axial component of velocity. The norms are

all normalized to unity at the coarsest grid level (Mesh

6.5) for convenience. The norms are plotted versus the

measure of the grid cell size h on a log-log plot. Recall

that this cell size was normalized such that h = 1 on the

finest mesh (Mesh 1). Since a grid refinement factor of

two (grid halving) was used for each grid family, the

discrete solutions for Family A fall at 1, 2, 4, 8, 16, and

32, and the discrete solutions for Family B fall at 1.5, 3,

6, 12, 24, and 48. The density norms exhibit nearly first-

order behavior for all mesh sizes. The axial velocity ex-

hibits a region of second-order behavior which asymp-

totes to a first-order slope on the finer meshes. The first-

order asymptotic behavior as the mesh is refined is not

unexpected, as discussed previously in the introduction.

The general first-order convergence behavior for the

flowfield density norms could be a result of either the

first-order flux limiter at the shock wave or an error in

the code. In the latter case, it is important to note that the

code will produce the correct solutions based on prior

validation work (see for example Ref. 11), but may ap-

proach these “correct solutions” at a less than second-

order rate for certain flowfield properties. This reduc-

tion in order has been observed for relatively minor cod-

ing errors34 (e.g., an incorrect array index, an incorrect

constant in a difference operator, etc.).

The behavior of the surface heat transfer (Stanton

number) with mesh refinement is presented in Fig. 4 at

the axial location x/RN = 11.2. For all but the coarsest

mesh, the Stanton number converges monotonically as

the grid is refined (i.e., as h→0). The solid line repre-

sents an estimate of the exact solution found from

Eq. (19) using Meshes 1, 2, and 3. Further insight into

the error behavior can be gained by examining the con-

tributions of both the first- and second-order error terms.

Fig. 5 shows the behavior of the grid convergence er-

ror in the local Stanton number as the mesh is refined.

The discrete solution error is calculated using the third-

order accurate estimate for fexact from Eq. (19) (using

x/RN

O
rd

er
of

A
cc

ur
ac

y,
p

0 10 20 30 40 50
-8

-6

-4

-2

0

2

4

6

8

10

JCEAP - Axisymmetric
Meshes 1, 2, and 3
Skin Friction Coefficient

Fig. 2  Order of accuracy of the surface shear stress

distributions from Eq. (16) using Meshes 1, 2, and 3.
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k

f k n, f̃ exact n,–
n 1=

N

∑
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Meshes 1, 2, and 3) and the following relationship:

(20)

The discrete error appears as the square symbols in

Fig. 5 and is expected to be a good representation of the

true error, especially for the coarser meshes. Also

shown in the figure are the normalized magnitudes of

the first- and second-order error terms

(21)

along with the magnitude of their sum:

(22)

The first-order error term has a slope of unity on the

log-log plot. For a first-order scheme, this first-order er-

ror term will dominate the second-order error term, and

the discrete solution error will coincide with the first-or-

der error. The second-order error term has a slope of

two, and will dominate the total error when the scheme

exhibiting second-order behavior. The magnitude of the

sum of the two terms (solid line) is forced to pass

through the points associated with Meshes 1, 2, and 3

since these solutions are used in the determination of the

coefficients in Eqs. (17)-(19). First-order accuracy is

seen in the fine grid solutions, while the error analysis

predicts that the coarse grid solutions will begin to ex-

hibit a second-order behavior. The grid convergence

analysis, which uses only Meshes 1, 2, and 3, qualita-

tively predicts the reduction in error exhibited on the

coarse meshes.

The behavior of the skin friction coefficient as the

mesh is refined is presented in Fig. 6 for the same axial

location. In this case, the skin friction values first de-

crease as the grid is refined and then increase at h = 1.

The spatial error in the skin friction as the grid is refined

is presented in Fig. 7. The discrete skin friction values

again exhibit a second-order behavior on the coarser

meshes and a first-order behavior on the finer meshes.

The coefficients of the first- and second-order error

terms ( and ) are of opposite sign, thus giving er-

ror cancellation when . This error cancel-

lation manifests as a sharp drop in the error “predicted”

from using Meshes 1, 2, and 3 (solid line). This error

cancellation corresponds to the location where the dis-

crete solutions cross over the estimated exact value in

Fig. 6. As a result, the solution on Mesh 3 (120×120

cells) is actually estimated to have much less error than

the finest mesh (Mesh 1 with 480×480 cells). The “pre-

dicted” error using Meshes 1, 2, and 3 (solid line) agrees

well with the discrete solution errors shown in Fig. 7.

The estimated errors in the Stanton number at the

stagnation point (x/RN = 0) are given in Fig. 8. The error

analysis again predicts error cancellation between the

first- and second-order error terms. First-order behavior

is evident for the fine mesh solutions, while coarser so-

lutions also appear to have a second-order component.

The agreement between the “predicted” error and the

discrete error is not as good in this case.
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Error estimates for the skin friction at the stagnation

point are shown in Fig. 9. Since the exact solution for

the shear stress at the stagnation point is zero, the error

terms in Eqs. (20)-(22) are normalized by the freestream

dynamic pressure (qinf = 1.2344×104 N/m2). The error

analysis predicts that the error terms will be of the same

sign and thus have a smooth transition from second or-

der on the coarse meshes to first order as the mesh is re-

fined. In this case, the first- and second-order

coefficients ( and ) have the same sign, so the

magnitude of the sum of the error terms is larger than

each of the individual error terms and the discrete solu-

tions converge monotonically as the mesh is refined.

The agreement between the “predicted” error and the

discrete error is good for the finest meshes.

This error analysis has also been applied to the fore-

body drag, an integrated quantity. Fig. 10 gives the be-

havior of the drag coefficient as the mesh is refined. A

non-monotone behavior is seen on the three coarsest

meshes only. The spatial errors in the drag coefficient

are presented in Fig. 11. Good agreement is again ob-

served between the error analysis (using only Meshes 1,

2, and 3) and the discrete solution error for the finer

meshes; however, the non-monotonic behavior on the

three coarsest meshes is not captured in the error analy-

sis.
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Fig. 6  Behavior of the skin friction coefficient as the

mesh is refined (x/RN = 11.2).
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Grid Convergence Error Estimators
In the previous section, the focus was on error analy-

sis and, specifically, on understanding how and why

non-monotonic behavior can occur for flow properties

as the mesh is refined. In this section, the focus now

shifts to error estimation. The error estimation methods

discussed below are intended to be used for engineering

calculations where only a limited number of grid levels

are available.

In Ref. 6, Roache encourages the use of at least three

grid levels for problems sufficiently different than those

previously studied. This position is also taken by the

current author. If the three solutions converge monoton-

ically as the mesh is refined, then the observed order of

accuracy can be calculated with Eq. (16), and the gener-

alized Richardson Extrapolation procedure of Eq. (15)

can be employed using the two finest mesh levels. If the

solutions do not converge monotonically, then the pro-

cedures developed in this section are recommended.

The goal of this section is to examine the behavior of

a number of different error estimators for cases when

the flowfield properties converge non-monotonically.

The ideal error estimator would provide an error esti-

mate that is very close to the actual error and carries

some statistical measure of the confidence that the error

estimate will be conservative (i.e., a 2σ or 95% confi-

dence band). For complicated, nonlinear problems in

multiple dimensions (and rarely in the true asymptotic

grid convergence range), a rigorous proof of such an er-

ror band is probably not attainable.4,6 We are therefore

forced to rely on more heuristic methods of determining

the uncertainties in CFD due to grid convergence errors.

The simplest method would be to simply use the ex-

trapolated estimate of fexact to estimate the error in the

discrete solutions. For example, if the observed order of

accuracy of some property has been verified (and the so-

lutions are monotonic), then the generalized Richardson

Extrapolation can be used to estimate the error from

Eq. (20). However, since there is an equal possibility

that the true exact solution is larger or smaller than the

estimated fexact, this method could be thought of as pro-

ducing a 50% confidence band (i.e., there would be only

a 50% chance that the true error estimate would be

smaller than the estimated error). One approach would

be to add a factor of safety to the error estimate of

Eq. (20), such as

(23)

where the factor of safety can be chosen as some appro-

priate value (e.g., Fs = 3).

Another common approach to reporting grid conver-

gence studies is to report the difference between a

coarse grid solution f2 and a fine grid solution f1. These

differences are generally reported as some percentage of

the fine grid value. If the factor of safety is included,

then this method could be expressed as

(24)

In Ref. 6, Roache points out the main problems with this

approach, namely that the error estimate is independent
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of the order of accuracy of the numerical method or the

grid refinement factor used. Clearly the true errors

would be quite different if a 5% error is found using

Eq. (24) for both a first-order scheme and a third-order

scheme. A similar statement can be made for two cases

where the grid refinement factor was r = 2 and r = 1.1.

Roache has proposed a uniform method for reporting

grid convergence studies which properly accounts for

the order of accuracy of the method and the grid refine-

ment factor.6 Roache’s Grid Convergence Index (GCI),
on a percentage basis, is defined as

(25)

where p is the order of the scheme, r is the grid refine-

ment factor, and the factor of safety is generally taken to

be Fs = 3. It can be shown that Eqs. (23) and (25) pro-

duce similar error estimates when the generalized Rich-

ardson Extrapolation method is used to determine

in Eq. (23) and when the GCI error estimate is

less than 10-20% (see Appendix B for details). As pre-

sented in Eq. (25), the GCI is a fine grid error estimator.

In Ref. 6, Roache presents a simple extension of the

GCI to be used as a coarse grid error estimator. Coarse

grid error estimates can be useful when a large number

of parametric studies are required. In addition, all of

these error estimators must be normalized by some ref-

erence value (other than ) when (or f1 for

the GCI) approaches zero.

Five different methods have been used to estimate the

grid convergence errors. The first three methods all em-

ploy Eq. (23), but differ in that the estimate of the exact

solution is taken to be either the mixed 1st + 2nd

order estimate of Eq. (19), or the generalized Richard-

son Extrapolation value of Eq. (9) with p = 1 or p = 2.

Also shown in the figure is Roache’s GCI(%) assuming

either p = 1 or p = 2. The mixed 1st + 2nd order method

required three solutions to obtain the estimate of the ex-

act solution. Coarser meshes (from the same grid fami-

ly) are used to provide the two additional solutions. For

example, the 1st + 2nd order estimate at Mesh 4 will also

use the discrete solutions on Meshes 5 and 6. The other

estimators all require a single additional coarse grid,

thus estimates are available on all but the coarsest mesh-

es of each mesh family.

These estimates are compared to the best estimate er-

ror, which is determined using the mixed 1st + 2nd order

extrapolation method on the three finest mesh solutions

from grid Family A (Meshes 1, 2, and 3) and omitting

the factor of safety (i.e., Fs = 1). This best estimate error

is expected to be a very good error estimate, especially

on the coarser meshes. These five error estimators are

applied to the discrete values for the Stanton number at

the x/RN = 11.2 axial location for the various mesh lev-

els, with the results shown in Fig. 12. For this case, all

of the error estimation methods provide conservative es-

timates of the error over the entire range of grids. The

differences between the first-order extrapolation of

Eq. (23) and the first order GCI(%) are negligible until

the estimates get as large as 10% (h > 6). It should be

noted that the first-order GCI and the second-order GCI
will, by definition, differ only by a factor of three (see

Eq. (25)). The error estimator results for the skin friction

at x/RN = 11.2 are presented in Fig. 13. For this case, all

of the error estimates are conservative with the excep-

tion of the second-order extrapolation (and second-order

GCI) for h = 1 and h = 2. In addition, the mixed

1st + 2nd order extrapolation gives error estimates much

closer to the actual (best estimate) error than the first-or-

der methods.

Error estimates for the Stanton number and the skin

friction coefficient at the stagnation point are presented

in Figs. 14 and 15, respectively. In both cases, the sec-

ond-order error estimates fail to provide conservative

error estimates on a significant number of the meshes.

This figure highlights the dangers of simply employing

the nominal order of the method (in this case second or-

der) when the scheme is actually of mixed order. For the

Stanton number, the mixed-order method provides con-

servative estimates of the error which are consistently

better than the first-order estimates. For the skin friction

coefficient, the first-order estimator and the mixed-order

estimator give similar results except at h = 12, where the

latter method is not conservative. It should be noted that

this is the only location where the mixed-order error es-
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timator fails to provide a conservative estimate of the er-

ror for all cases examined in this paper.

Error estimates for the forebody drag coefficient are

presented in Fig. 16. The mixed-order method is the

only method that provides conservative error estimates

on all mesh levels. The first-order estimates, while gen-

erally fairly good, do not give a conservative estimate of

the error at h = 8.

Another possible error estimator is to determine an

“observed” order of accuracy by a weighting of the first-

and second-order error terms from the mixed-order

method. These terms may be combined as

If a constant grid refinement factor is assumed as well as

allowing h = h2 for convenience, then the expressions

for and from Eqs. (17) and (18) can be substitut-

ed into the above equation to produce

(26)
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Fig. 13  Comparison of error estimates for the skin

friction coefficient (x/RN = 11.2).

h

S
p

at
ia

lE
rr

or
(%

)

100 101 102

100

101

102

Best Estimate Error
1st + 2nd Order Extrap.
1st Order Extrap.
2nd Order Extrap.
1st Order GCI
2nd Order GCI

JCEAP - Axisymmetric
x/RN = 0 (Stagnation Point)
Stanton Number

Fig. 14  Comparison of error estimates for the Stanton

number (x/RN = 0).

h

S
p

at
ia

lE
rr

or
(%

)

100 101 10210-7

10-6

10-5

10-4

Best Estimate Error
1st + 2nd Order Extrap.
1st Order Extrap.
2nd Order Extrap.
1st Order GCI
2nd Order GCI

JCEAP - Axisymmetric
x/RN = 0 (Stagnation Point)
Skin Friction Coefficient

Fig. 15  Comparison of error estimates for the skin

friction coefficient (x/RN = 0).

h

S
p

at
ia

lE
rr

or
(%

)

100 101 102

10-2

10-1

100

Best Estimate Error
1st + 2nd Order Extrap.
1st Order Extrap.
2nd Order Extrap.
1st Order GCI
2nd Order GCI

JCEAP - Axisymmetric
Drag Coefficient

Fig. 16 Comparison of error estimates for the forebody

drag (excluding base drag).

p̃ 1
g̃2h

2

g̃1h g̃2h
2

+
--------------------------------+=

g̃1 g̃2

p̃ 1 1
ϕ 1+
-------------+=
12

American Institute of Aeronautics and Astronautics



AIAA 99-xxxx
where

This “observed” order of accuracy can then be used with

the generalized Richardson Extrapolation procedure to

obtain an estimate of fexact for use in Eq. (23). However,

this method does not always produce conservative error

estimates, as will be shown later. As an aside, this meth-

od for calculating the “observed” order of accuracy

should be used with caution since it will always produce

an order between one and two, regardless of the behav-

ior of the discrete solutions. By no means can Eq. (26)

be used to verify that a code is indeed providing second-

order accurate solutions.

This pth order extrapolation procedure has been ap-

plied to the drag coefficient results presented earlier and

is shown in Fig. 17. The estimates appear to be similar

to the first-order error estimates shown previously in

Fig. 16, and are not conservative for h = 8. Also shown

in the figure is the pth order GCI(%) using the standard

method for calculating the from Eq. (16). This meth-

od for calculating is undefined for h = 4, 6, and 8, and

is thus not a useful error estimator for this problem. The

pth order error estimators have also been applied to the

Stanton number at the stagnation point (see Fig. 18).

The pth order extrapolation fails the conservative test at

h = 1.5 and 2, while the pth order GCI(%) is undefined

for h < 3.

Based on the above results, the best error estimation

procedure for the current case is the mixed 1st + 2nd or-

der method. This method almost always gave conserva-

tive estimates of the error, i.e., the error estimate was

rarely smaller than the actual error. In addition, this

method generally provided error estimates that were

closer to the true (best estimate) error. The mixed

1st + 2nd order error estimator is therefore recommended

for mixed-order problems. The first-order error estima-

tor (along with the first-order GCI) also provided fairly

good results, but failed to give conservative error esti-

mates for certain cases where the solutions were not

monotonic with grid refinement.

The mixed 1st + 2nd order extrapolation has been ap-

plied to the surface and field properties of the current

simulations using Mesh 1. The error estimates for the

surface heat flux (Stanton number) and shear stress

(skin friction coefficient) are presented in Fig. 19 and

20, respectively. The maximum errors in the heat flux

occur at the stagnation point (6%) and at the sphere-

cone tangency point (4%). With the exception of the

stagnation region (where Cf →0 as x/RN →0, thus re-

quiring normalization of the error estimates) the maxi-

mum errors in the shear stress are approximately 3.5%

and occur near the sphere-cone tangency point. The rel-

atively large errors at the sphere-cone tangency point

are due to the fact this point is a surface curvature dis-

continuity. Although not employed in this work, such

singular points should be addressed either by additional

grid refinement or other special treatment.

The field errors in the mass density are shown in

Fig. 21 for the spherical nose region using Mesh 1. Al-

though not shown, the errors were by far the largest at

the shock wave, probably due to the poor estimate of the

exact solution in the presence of the shock discontinuity

(recall that the series expansion of Eq. (2) is not valid at

ϕ r 1+
r

-----------
ε32 r

2ε21–

ε32 rε21–
--------------------------=

p̃
p̃

h

S
p

at
ia

lE
rr

or
(%

)

100 101 102

10-2

10-1

100

101

Best Estimate Error
pth Order Extrap.
pth Order GCI

JCEAP - Axisymmetric
Drag Coefficient

Fig. 17  Comparison of pth order extrapolation error
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a discontinuity). The large errors at the shock wave are

partly due the misalignment of the bow shock and the

grid lines. Errors appear to convect downstream from

the shock wave. The contour levels were scaled down to

illustrate the behavior of the error between the shock

and the body. Relatively large errors are also seen origi-

nating at the sphere-cone tangency point. Large errors at

this location are expected since no effort was made to

cluster the grid to this discontinuity in surface curvature

(second derivative of surface position). The error ap-

pears to propagate from the sphere-cone tangency point

along the characteristic Mach line.

Summary and Conclusions
Results were presented for the Mach 8 laminar flow

of a perfect gas over a sphere-cone geometry. A formal-

ly second-order numerical method was employed; how-

ever, the spatial order of accuracy of the method was

reduced to first order at the shock wave via a flux limit-

ing procedure in order to prevent numerical oscillations.

The numerical scheme is therefore mixed-order in the

sense that the order of the local truncation error (which

determines the order of accuracy of the scheme) varies

from second order over most of the domain to first order

at the shock wave. The first-order truncation error at the

shock wave leads to the presence of a first-order discret-

ization error component (however small) everywhere

downstream. As the mesh spacing is refined, this first-

order error component eventually dominates the total

discretization error.

An error analysis method was presented for mixed-

order numerical schemes in which both first- and sec-

ond-order error terms were included. When the coeffi-

cients of these error components have the same sign, the

convergence of the solution properties as the mesh is re-

fined is monotone. However, when these coefficients

are of opposite sign, error cancellation occurs at the

crossover point where , resulting in non-

monotonic behavior in the solution variables. The pro-

posed mixed-order error analysis captures the non-

monotone behavior of the solution variables, whereas

methods based on linear extrapolation are unable to cap-

ture such features.

An error estimator was proposed which used a
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mixed-order extrapolation to obtain an estimate of the

exact solution. When combined with a factor of safety

of three (Fs = 3), this mixed-order error estimator was

shown to provide good local estimates of the error, even

on fairly coarse meshes. This error estimator was further

shown to provide conservative estimates of the error in

almost all cases examined, in the sense that the true er-

ror was almost always smaller than the error estimate.

Error estimators based on a locally “observed” order of

accuracy were also examined, but were shown to fail for

certain cases which exhibited non-monotonic solution

behavior with grid refinement.

The error in the surface heat transfer (Stanton num-

ber) and surface shear stress (skin friction) was quanti-

fied using the mixed-order error estimator. The largest

errors in the heat transfer were found to occur at the

stagnation point (6%) and at the sphere-cone tangency

point (4%). The largest errors in the surface shear stress

were approximately 3.5% and occurred near the sphere-

cone tangency point. A field plot of the mixed-order er-

ror estimated in the mass density also showed larger rel-

ative errors at the sphere-cone tangency point. These

errors appear to propagate downstream along a charac-

teristic Mach line. The sphere-cone tangency point is a

surface curvature discontinuity and therefore requires

grid clustering.

Further investigation into the grid convergence be-

havior of mixed-order numerical schemes is required.

The nature of the local reduction to first order for flows

with shock waves needs to be better understood. Exami-

nation of a “control” problem which does not contain

shock waves would also be helpful. Finally, other sourc-

es of error which can influence the discretization error

should be explored further including: mesh non-unifor-

mities, boundary conditions, and singularities.

Appendices

Appendix A: Mixed 1st + 2nd + 3rd Order Extrap.

Although not employed in the current paper, it is pos-

sible to include first-, second-, and third-order error

terms in the analysis. In this case, four grid levels must

be used, and the series representation is

Neglecting terms of order h4 and higher, the above set

of equations can be solved for approximations to g1, g2,

g3, and fexact. Assuming that the grid refinement factor

is held constant, the above equations reduce to

If the grid refinement factor is held constant at r = 2,

then the above equations further reduce to

The above equations are generally fourth-order accu-

rate. Results for arbitrary grid refinement, although

straightforward, are somewhat cumbersome and thus are

omitted from the present work.

Appendix B: Relation Between Error Estimators

When the generalized Richardson Extrapolation

method is used to estimate the exact solution fexact, then

the resulting error estimates, when combined with a fac-

tor of safety as in Eq. (23), can be shown to be approxi-

mately equivalent to Roache’s Grid Convergence Index

(GCI). Omitting the (×100) factor for simplicity, the

definition for the error of Eq. (23) for the fine grid may

be written as

(A.1)

Also recall the generalized Richardson extrapolation

formula from Eq. (9)

f 1 f exact g1h1 g2h1
2

g3h1
3

O h1
4( )+ + + +=

f 2 f exact g1h2 g2h2
2
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3

O h2
4( )+ + + +=

f 3 f exact g1h3 g2h3
2

g3h3
3

O h3
4( )+ + + +=

f 4 f exact g1h4 g2h4
2

g3h4
3

O h4
4( )+ + + +=

g̃1

ε43 r
2 ε21r
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r
2

r 1+( ) r 1–( )3
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ε43– rε32 r
2

1+( ) ε21r
4

–+

r
3

r 1+( ) r 1–( )3
-------------------------------------------------------------------=

g̃3
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3
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r
3

r 1+( ) r 1–( )3
r
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r 1+ +( )

----------------------------------------------------------------------=

f̃ exact f 1 +=

ε43– ε32 r
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3
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1
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5
12
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1

168
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1
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1
21
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f̃ exact f 1
1
21
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43
21
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Spatial Error Fs
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(A.2)

Substituting Eq. (A.2) into Eq. (A.1), and requiring that

r > 1 and p > 0, results in

The first two terms on the right hand side are the GCI,
thus we may write

Taking the spatial error estimate (which uses the ex-

trapolated value) as the more accurate estimate, we can

calculate the error in the GCI as

Substituting Eq. (A.2) into the above relation yields

where

Notice that is simply the GCI without the factor of

safety Fs. Thus we can write

So, when the GCI < 300%, < 1, and we have

The error in the GCI, relative to Eq. (A.1) thus becomes

or, taking the absolute value

(A.3)

So the two error estimators are essentially equal when

the Grid Convergence Index is small. These results are

best summarized in Table A.1 below, where the two

cases of Φ > 0 and Φ < 0 occur when the discrete solu-

tions approach the exact solution from above and below,

respectively. It is clear that for GCI < 20%, these two

error estimators provide similar results.
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