
Seventh International Conference on CFD in the Minerals and Process Industries 

CSIRO, Melbourne, Australia 

9-11 December 2009 

Copyright © 2009 CSIRO Australia 1 

D 

DU∞ 

 
GRID CONVERGENCE STUDY FOR A TWO-DIMENSIONAL SIMULATION OF 

FLOW AROUND A SQUARE CYLINDER AT A LOW REYNOLDS NUMBER 
 

Mohamed Sukri Mat ALI∗ ,  Con J. DOOLAN∗ 
and Vincent WHEATLEY♠  

 

∗School of Mechanical Engineering, The University of Adelaide, South Australia 5005, AUSTRALIA 

♠School of Engineering, The University of Queensland, Queensland 4072, AUSTRALIA 
 

 

ABSTRACT 

This paper describes a systematic method of refining a 

computational grid for the Direct Numerical Simulation 

(DNS) of flow about a square cylinder. The grid 

refinement method involves two stages. The first stage 

constructs computational meshes based on reasonable 

estimates of cell size and grid stretching ratios and 

investigates the sensitivity of the computed flow field to 

these parameters. The findings from this stage are used as 

a guide for further grid refinement. In the second stage, 

the grid is divided into four regions to minimise the grid 

stretching ratio. The smallest cell is sized so the boundary 

layer on the front face of the cylinder is adequately 

resolved. Solutions on seven different grids are presented 

to investigate the effect of numerical scheme, boundary 

conditions and grid independence. The level of grid 

independence is evaluated using a form of Richardson 

extrapolation and the study shows that the finest grid 

solution has a Grid Convergence Index (GCI) of less than 

5%. 

INTRODUCTION 

The study of flow around a square cylinder has been and 

continues to be the subject of intense research (Sohankar 

et al.; 1998, Saha et al.;2002, Ozgoren;2005, Inoue et al.; 

2006 and Doolan;2009). Owing to its simplicity, this 

shape has become important for the study of the 

fundamental properties of bluff body wakes. These types 

of wakes are almost ubiquitous in all fields of engineering. 

For example, many types of flow mixers rely on bluff 

body wakes to enhance mixing. 

 Within the scope of predicting the flow field around a 

square cylinder using numerical analysis, many similar 

investigations have been made, but the results always 

show small discrepancies even though the overall global 

trends are similar. One of the reasons for these 

discrepancies is the difference in the construction of the 

mesh. Sohankar et al. (1998) for example, constructed a 

non-uniform mesh near the wall of a square cylinder and, 

at 5 diameters away from the cylinder surface, a uniform 

mesh was applied. The size of the smallest cell was 

located at the leading edge of the square cylinder with cell 

size of h/D = 0.004. Another similar study was carried out 

by Inoue et al. (2006). They constructed a non-uniform 

mesh but divided the computational domain into three 

regions, each with a different grid ratio. The smallest cell 

was located along the edges of the square cylinder with 

the value of h/D = 0.01. The most recent study by Doolan 

(2009) investigated the grid convergence for three 

different grid resolutions on DNS around a square cylinder 

and found that the solution converged when the smallest 

cell size along the square cylinder edge was h/D = 0.0167. 

 The DNS results from the three examples show 

similar physical flow features, such as vortex shedding, 

but there are small discrepancies in the integrated 

variables e.g., Strouhal number (St), root mean square lift 

coefficient (CLrms) and mean drag coefficient (CDmean). It 

is well accepted by the CFD community that the error 

from the numerical simulation is not solely from the grid 

convergence error, but also from many other error sources. 

However, one can minimise the total error by reducing the 

error due to grid dependence and this must be done in a 

systematic manner. 

 The purpose of this study is to assess the DNS grid 

convergence of flow around a square cylinder. While the 

results of grid refinement studies are generally reported, 

there is a need for a detailed assessment to be published to 

assist those involved in numerical simulation. Further, for 

the particular case of the square cylinder, there needs to be 

an objective method of determining adequate resolution of 

the boundary layers on the upstream face. This paper 

satisfies both these needs.  

Two stages of grid refinement are involved in this 

study and the level of grid convergence for the later stage 

is evaluated using the Grid Convergence Index (GCI). A 

novel of assessing grid independence using Thwaites’ 

method is also presented. DNS results from the grid with 

the lowest GCI are then compared with previously 

published data. 

 This report is organized as follows. After explaining 

the test case and the solution methodology, the first grid 

refinement study is presented and suggestions for grid 

improvements are made. A second grid refinement study 

is then described and the level of grid convergence is 

evaluated. Finally, conclusions are given in the last 

section.  

MODEL DESCRIPTION 

Test case  

 

 

   
 

Figure 1: Schematic of flow geometry. 
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CASE Nx x Ny Gedge gu gd gtb Δu Δd Δtb 

A 625 x 230 100 x 4edges 1.0212 1.0072 1.0212 0.0592x0.01 0.01x0.045 0.01x0.0592 

B 550 x 200 200 x 4edges 1.1142 1.0476 1.0985 0.0103x0.01 0.01x0.009 0.005x0.0181 

Table 1: Grid parameter for case A and case B. Subscript u, d and tb represent upstream, downstream and top and bottom 

location respectively. The total number of nodes is Nx x Ny, number of nodes along the cylinder front edge is Gedge, g is cell 

size ratio between the adjacent cell and the cell area is Δ. 

 

The case under investigation is a rigid square cylinder 

immersed in a two-dimensional uniform incompressible 

flow at a constant free stream velocity. Figure 1 shows a 

schematic illustrating the square cylinder with a side 

length of D, immersed in a flow with a constant free 

stream velocity of U∞. The Reynolds number in this study 

is 150 (Re = U∞ D/ν), based on the square cylinder height 

D, kinematic viscosity ν and free stream velocity U∞. All 

geometrical parameters and velocity flow fields are 

normalized by the square cylinder height D and free 

stream velocity U∞ respectively. 

Solution methodology 

Numerical investigation by Sohankar et al. (1999) has 

shown that for Re = 150 flow around a single square 

cylinder, two- and three-dimensional simulations give 

identical results. Additionally, experimental (Luo et al.; 

2003 and Luo et al.; 2007) and numerical (Saha et al.; 

2003) studies have shown that three dimensional 

instability (mode A) first occurs at Re = 160. Therefore, to 

reduce computational cost, the flow is mathematically 

modelled in two-dimensional form. 

 The primitive variables of the flow fields are 

calculated numerically based on the two-dimensional 

unsteady incompressible Navier-Stokes and continuity 

equations. The OpenFOAM (Weller et al.; 1998) 

numerical simulation system is used to solve these 

governing equations.  

 The pressure implicit split operator (PISO) solution 

algorithm (Barton; 1998) with two correction steps for 

pressure-velocity coupling are used to solve these 

transient problems. The convergence criterion for pressure 

and velocity solutions are set so the residual falls below 

the tolerance of 10−6  and 10−5  respectively  at each time 

step. A rectilinear grid system is applied for all cases. 

 In the first stage of the grid refinement study, the 1st-

order implicit Euler method is used for temporal 

discretisation, the convection and viscous terms are 

discretised using the 2nd-order unbounded Gauss linear 

differencing scheme (central differencing). The time step 

for pressure, convection and diffusion terms is set at 

ΔtU∞/D = 0.005 with the requirement to keep the CFL 

number below 0.5. 

 For second stage of the grid refinement study, the 

temporal discretisation is advanced using a 2nd-order 

backward scheme. The convection term is discretised 

using a 2nd-order upwind scheme and for the viscous term, 

a 2nd-order unbounded Gauss linear differencing scheme is 

used. Three different time steps have been imposed 

corresponding to the three different grid cases so the CFL 

number is always less than 0.5. 

GRID REFINEMENT STAGE 1 

The first stage of the grid refinement is investigated by 

comparing the results from two DNS simulations whose 

only differences are the cell size and the grid stretching 

ratio. The case with the coarser grid is called case A and 

the finer one is called case B (Table 1). 

 Small cells are distributed near the square cylinder 

wall. The grid is then stretched from the first cell located 

at the square cylinder wall to the last cell located at along 

the boundary of the computational domain by adopting the 

following equation; 

 

 ( )1N1G=g −/      (1) 

where g is cell size ratio between adjacent cells, G is the 

cell size ratio between the largest and the smallest cell and 

N is number of cells. Exception is made for the grid 

distribution behind the square cylinder as the wake 

formation length is located at around one diameter 

downstream from the trailing edge of the cylinder 

(Zdravkovich; 1987). Therefore, the grid is made uniform 

until two diameters downstream from the downstream 

edge of the cylinder before it is also stretched towards the 

boundary outlet. Table 1 summarizes the grid parameters 

for case A and case B and Figure 2 shows the cell 

distribution around the square cylinder for case A (top) 

and case B (bottom) respectively.  

Flow visualisation 

In the first stage of the grid refinement study, flow 

visualisations of each case were compared. The vorticity 

contour should shows a periodic staggered arrangement 

vortices trail behind the cylinder which is known as a von 

Kármán vortex street. 

 Figure 3 shows the instantaneous spanwise vorticity 

contours for case A (top) and case B (bottom). In both 

cases, similar vortex shedding is observed, where the free 

shear layers from the top and bottom sides of the cylinder 

roll-up downstream of the cylinder. The roll-up continues 

and then staggered eddies are shed downstream. 

 However, there are two obvious discrepancies in the 

vorticity distributions. First, at the square cylinder leading 

edges, case A has a small scattered vortices. Meanwhile 

for case B, the vortex smoothly sheds away from the 

leading edge. The second discrepancy is in the wake at a 

few diameters downstream from the cylinder. For case A, 

the wake shows a staggered arrangement of vortices with 

concentrated, well defined vortices of alternating sign 

extending downstream. For case B, the well-defined 

vortex structures are lost. Additionally, both cases have 

small spots of vorticity in the wake with case B having 

more spots than case A. 

These observations can be related to the cell size. 

Case A has a coarser grid around the leading sharp edges 

of the square cylinder when compared with the grid of 

case B. From the previous study of Sohankar et al. (1997) 

the leading sharp edges are the points where the boundary 

layer starts to separate and the flow field gradients are 

high at these points. The vortex spots generated at the 

upstream sharp edges of the case A are believed due to the 
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large cell size. Then the simulation is unable to accurately 

resolve the high velocity gradient at the leading edges. 

A similar reason can be used for the loss of well-

defined vortex structures in case B. The high grading ratio 

(gtb= 1.0985) used to stretch the grid in a transverse 

direction in case B created a large discrepancy in size 

between adjacent cells. Thus, case B had large cells only a 

few diameters away from the cylinder. This type of mesh 

produces high numerical dissipation when compared with 

the cell grid size used in case A. 

 

 

A) Case A 

 
 

B) Case B 

 
 

A) Case A 

 
B) Case B 

 

GRID REFINEMENT STAGE 2 

In the second stage of the grid refinement study, three 

different grid resolutions are used. Case C has the coarsest 

resolution, case D has medium resolution and case E has 

the finest grid. Each of the grids has four zones. Extending 

one diameter from the cylinder wall is region (1). In this 

region, the cell size is uniform and is the overall 

minimum. From one to three diameters from the cylinder 

wall is region (2). The cell distribution in this region is 

non-uniform with the cells being stretched slowly away 

from the cylinder. Region (3) extends from three to ten 

diameters from the cylinder wall. The cells in this region 

were stretched and the cell size is larger than the previous 

two regions. From ten diameters downstream of the 

cylinder to the outlet of the computational domain is 

region (4). This region is constructed to minimize the grid 

stretching ratio along the wake. 

 The upstream, top and bottom of the boundary 

computational domain are 10 diameters away from the 

body and the outlet is 20 diameters downstream from the 

body. This computational domain size is similar as in 

simulation works by Doolan (2009) and larger than in 

simulation works by Sohankar et al. (1999). 

Boundary layer thickness prediction 

When fluid flows past a bluff body, boundary layers 

develop from each side of the stagnation point where their 

characteristics length scale can be very small. The 

characteristics of the boundary layer play an important 

role to the overall flow structure (i.e. flow separation), 

therefore it is necessary to accurately capture the 

boundary layer profile. This can be achieved by first 

evaluating the boundary layer thickness based on 

Thwaites' method (Thwaites; 1949). 

An empirical relation for the momentum thickness (θ) 
based on Thwaites integral solution for incompressible 

laminar flow with a stagnation point on the body is; 
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where LR is defined as υLU /∞  and υ  is kinematic 

viscosity. The edge velocity, ue is calculated numerically 

using potential flow solution and using OpenFOAM’s 

potential flow solver to solve the equation. The integration 

in eqn. (2) is carried out from the stagnation point (y=0) to 

the front sharp corner of the square cylinder (y=L). Then, 

the momentum thickness is transformed into the 

displacement thickness using the following relationship; 

 

 θH(λ)=δ*      (3) 

 

where )H(λ is a shape factor. (Refer to Cebeci and 

Bradshaw (1977) for the complete equation.) For laminar 

flow, the following approximation for the boundary layer 

thickness can be made;  

 
*

3δδ ≈       (4) 

 

 Figure 4 shows the comparison of boundary layer 

thickness (δ/D) from Thwaites' method and simulation 

results of case A and case B. All three lines exhibited a 

similar boundary layer thickness distribution. For the 

Figure 2: Cell distribution around the square 

cylinder.  

Figure 3: Instantaneous streamwise vorticity contours 

colored by rotation direction (blue: clockwise and green: 

anticlockwise), 40 equally spaced over the range -

4≤ΩD/U∞≤4 (Ω is spanwise vorticity).  
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simulation results (case A and case B), the boundary layer 

thickness is larger than the calculated value using 

Thwaites's method.  

 

 
Figure 4: Boundary layer thicknesses from Thwaites' 

method and cases A and B. 

 

Ideally, the smallest cell size should be considerably 

less than the minimum boundary layer thickness. 

However, as the smallest thickness of the boundary layer 

from Thwaites’ method is nearly zero, it is difficult to 

achieve this. Additionally, potential flow theory does not 

able to accurately predict the rotational flow at the sharp 

corner. The true boundary layer thickness in this region is 

much larger as indicated by the simulations. Therefore, to 

make a practical grid, the cell size is based on the 

boundary layer thickness at position 10% before the sharp 

corner. From Thwaites' method calculation, the boundary 

layer thickness is approximately δ/D = 0.045 at that 

location, y/D = 0.45 from the stagnation point. 

Using this approximate minimum boundary layer 

thickness, three different grids were constructed. The 

coarsest grid has approximately one cell within the 

boundary layer at that point, the medium grid has three 

and the finest one has five cells. Table 2 summarizes 

parameters used for case C, D and E. For each case, the 

grid stretching ratio in the successive regions is set as 

( ) ( ) ( )321 ggg ≤≤ so the cells are only allowed to stretch 

slowly away from the cylinder. 

 

CASE C D E 

Nx x Ny 259 x 252 400 x 300 520 x 440 

Gedge 36 x 4edges 60 x 4edges 100 x 4edges

Δu = Δd = Δtb  0.0278x0.0278 0.0167x0.0167 0.01x0.01 

g(1) 1 1 1 

g(2) 1.047 1.033 1.042 

g(3) 1.047 1.057 1.057 

 ∆tU∞/D 0.002 0.005 0.005 

 

Table 2: Grid parameter for case C, D and case E.  

Subscript u, d and tb represent upstream, downstream and 

top and bottom location respectively and subcript (1), (2) 

and (3) represent region 1, 2 and 3 of computational 

domain respectively. The total number of nodes is Nx x Ny, 

number of nodes along the cylinder front edge is Gedge, g 

is cell size ratio between the adjacent cell and the cell area 

is Δ. 
 

The influence of the outlet boundary condition 

A comparative study is carried out between two common 

types of computational outlet conditions. The 

conventional outlet boundary condition is defined as a 

fixed pressure value and zero streamwise velocity 

gradient. The second type of outlet is known as convective 

boundary condition. This was proposed by Orlanski 

(1976) for a problem of flow with a wavy structure. The 

following equation is used:  

 

0=
x

U
U+

t

U

i

i
c

i

∂
∂

∂
∂

    (5)  

 

where indices i = 1, 2 refer to the streamwise (x) and 

crosswise (y) directions, respectively and Uc is the 

convective velocity. Following (Le et al.; 1997), the value 

is set to Uc = 0.8U∞. 

     A DNS similar to case C is carried out and it is labelled 

as case F. For case C, constant pressure and zero velocity 

gradient are applied at the outlet, meanwhile for case F, a 

convective boundary condition is introduced. Other 

parameters are kept unchanged. Both cases exhibited 

similar vortex shedding patterns and the vortices pass the 

outlet boundary smoothly. Inspection of the global results 

(CLrms, CDmean, and St) shows that both type of outlet 

boundary condition produced identical results. 

The influence of temporal discretisation schemes 

Two temporal discretisation schemes are compared to 

investigate the influence of higher order accuracy on the 

DNS results. Case D uses a 2nd-order backward Euler 

scheme for temporal discretisation. A second case labelled 

as case G uses a 1st-order Euler implicit method in time. 

Other parameters are keep identical between the two 

cases. 

 

CASE CLrms CDmean St 

case D 0.2917 1.484 0.1577 

case G 0.2849 1.478 0.1556 

Table 3: Comparison of global results between DNS with 

2nd-order accurate (case D) and 1st-order accurate (case G) 

temporal discretisation. 

    Inspections of the global results in Table 3 shows that 

the higher order scheme does not heavily influence the 

DNS results. Using a 1st-order scheme only slightly under 

predicts the global results when compared with the 2nd-

order temporal scheme. 

Grid convergence study using Richardson 
extrapolation 

Richardson extrapolation (Richardson et al.: 1927) is used 

to calculate a higher-order estimate of the flow fields from 

a series of lower-order discrete values (f1, f2, …, fn). For 

the case of grid refinement study, the value estimated 

from the Richardson extrapolation is the value that would 

results if the cell grid size tended to zero, (h→0). The 

extrapolation is made from the results of at least two 

different grid solutions. A convergence study requires a 

minimum of three grid solutions (Stern et al.: 2001).                                          

Roache (1994) generalized Richardson extrapolation 

by introducing the pth-order methods;  

 

[ ])(r)f(f+ff p
2exact 1/11 −−≈     (6) 
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In this study, the grid refinement ratio r, is constant; 

 

1.667// =ΔΔ=ΔΔ=r EDDC     (7) 

 
From equation (6), the extrapolated value is varied by 

different choice the order p. According to Stern et al. 

(2001) the order-of-accuracy can be estimated by using 

the following equation; 

(r)

)ε(ε
=p

ln

/ln 2132      (8) 

 

i1+ii+i ff=ε −1,      (9) 

 

To evaluate the extrapolated value from these solutions, 

the convergence conditions of the system must be first 

determined. The possible convergence conditions are;   

                           

  1. Monotonic convergence; 0<R<1 

  2. Oscillatory convergence; R<0 

  3. Divergence; R>1 

 

where R is the convergence ratio and it is determined by 

the equation; 

32

21

ε
ε

=R       (10) 

 

 Table 4 summarizes the order of accuracy for root 

mean square lift coefficient (CLrms) and mean drag 

coefficient (CDmean) from the simulation results on three 

grids. All means and root mean square results were 

obtained once a statistically stationary flow was 

observered. The convergence condition for CLrms and 

CDmean are monotonic. Strouhal number (St) is not 

included in this analysis as the differences between the 

successive grid solutions are very small (St = 0.1556, 

0.1577 and 0.1602 for case C, D and E respectively). 

Hence, this parameter is not suitable for use in this grid 

refinement study. 

The Grid Convergence Index (GCI) provides a 

uniform measure of convergence for grid refinement 

studies (Roache:1994). It is based on estimated fractional 

error derived from the generalization of Richardson 

extrapolation. The GCI value represents the resolution 

level and how much the solution approaches the 

asymptotic value. The GCI for the fine grid solution can 

be written as; 

| |
)(rf

ε
F=GCI

p
i

i+i

si1,+i
1

1,

−
    (11) 

Following Wilcox (2006), the safety factor (Fs) selected 

for this study is 1.25. 

 

Table 4: Order of accuracy and Grid Convergence Index 

for three integration variables. Subscripts 3, 2 and 1 

represent case C, D and E, respectively. 

 

  
 As listed in Table 4, there is a reduction GCI value 

for the successive grid refinements (GCI21 < GCI32) about 

each of the three variables. The GCI for finer grid (GCI21) 

is relatively low if compared to the coarser grid (GCI32), 

indicating that the dependency of the numerical simulation 

on the cell size has been reduced. Additionally, as the GCI 

reduction from the coarser grid to the finer grid is 

relatively high, the grid independent solution can be said 

to have been nearly achieved. Further refinement of the 

grid will not give much change in the simulation results. 

For variable CLrms, the extrapolated value is only 

slightly lower than the finer grid solution (h/D = 0.01) and 

it is in the range of the finer grid GCI as shown in figure 

5. Similar behavior is observed for variable of mean drag 

coefficient. Therefore, it is shown that the solution has 

converged with the refinement from the coarser grid to the 

finer grid.  

Similar behavior is observed for the point variable of 

boundary layer thickness (δ/D). The boundary layer 

thickness is calculated at the leading edge of the square 

cylinder. As the grid is refined, the discrepancy between 

the solution and the extrapolated value become small. In 

this paper, the discrepancy between the simulation value 

and this extrapolated value is used to define the error, 

RE

REi
i

f

ff
=E

−
     (12) 

Table 5 shows that the convergence condition is 

monotonic. The order-of-accuracy is then calculated by 

using equation (8) and (9) using the L2-Norm of the 

values. Figure 6 shows that the successive grid 

refinements nearly achieved the asymptotic value at the 

finest grid resolution, where the relative error compared 

with the RE is only E1 = 0.28%. This indicates that the 

boundary layer has been adequately resolved. 

 

Variable ||ε32/f1|| ||ε21/f2|| <R> p GCI32 GCI21 

δ 0.0050 0.0172 0.275 2,(2.54) 1.21% 0.35% 

 

Table 5: Order of accuracy and Grid Convergence Index 

for point variable. Subscripts 3, 2 and 1 represent case C, 

D and E respectively. The order of accuracy p for both 

variables are taken as 2 as the calculated values (indicated 

in a brace) exceeded the order of accuracy of the 

discretisation scheme. 

 

 
ε32 

(10-2) 

ε21 

(10-2) 
R p 

GCI32 

(%) 

GCI21 

(%) 

CLrms 1.53 0.64 0.4183 1.7062 4.71 2.02 

CDmean 2.30 1.0 0.4348 1.6305 1.49 0.65 

 

Figure 5: Comparison of global results normalized by 

the extrapolated value, between three grid solutions and 

Richardson Extrapolation estimation.  

CLrms; --□-- and CDmean; --◊-- 
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The grid convergence index (GCI) is estimated by using 

equation (11) with a safety factor of Fs = 1.25. As listed in 

the same table (Table 5), successive grid refinements 

resulted in a GCI reduction. Therefore, that can be said 

that the solution on the finest grid resolution is nearly grid 

independent. 

Comparison of numerical data from case E with 
previous studies 

Table 6 compares the current DNS results of case E with 

the summarized previous available data taken from 

Doolan (2009). The Strouhal number and root mean 

square lift coefficient from case E are in excellent 

agreement and in the range of the previous available data. 

Mean drag coefficient is slightly higher than previous 

studies, but is still in good agreement.  

Table 6: Comparison of current DNS (case E) with previous 

studies listed by Doolan (2009). 

III. CONCLUSION 

For the first grid refinement study, flow visualization of 

vorticity contours from the two different grid resolutions 

exhibited similar behavior of some vortex spots a few 

diameters downstream from the square cylinder. 

Additionally, for case A there was a small scattered vortex 

near the upstream corner of the square cylinder. These 

observations indicated that it was necessary to refine the 

grid in these regions and the grid stretching ratio between 

cells should be minimized. 

In the second grid refinement study, inspection of 

GCI values for integration and points variables shows that 

there was a gradual reduction when the grid system was 

refined. Comparison between the extrapolated value 

calculated from Richardson extrapolation indicated that 

the finer grid (case E) was appropriate to be used in 

further DNS analysis as the GCIs for all variables being 

studied were less than 5%.  
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Figure 6: Percent of RMS error for boundary layer 

thickness along the leading edge. The order-of- accuracy, 

p = 2 and E1 = 0.28%, E2 = 0.77% and E3 = 1.70%. 


