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Abstract—We present novel grid coverage strategies for effective surveillance

and target location in distributed sensor networks. We represent the sensor field

as a grid (two or three-dimensional) of points (coordinates) and use the term target

location to refer to the problem of locating a target at a grid point at any instant in

time. We first present an integer linear programming (ILP) solution for minimizing

the cost of sensors for complete coverage of the sensor field. We solve the

ILP model using a representative public-domain solver and present a divide-and-

conquer approach for solving large problem instances. We then use the framework

of identifying codes to determine sensor placement for unique target location. We

provide coding-theoretic bounds on the number of sensors and present methods

for determining their placement in the sensor field. We also show that grid-based

sensor placement for single targets provides asymptotically complete

(unambiguous) location of multiple targets in the grid.

Index Terms—Covering codes, identifying codes, integer linear programming,

optimization, sensor density, sensor field.

æ

1 INTRODUCTION

DISTRIBUTED networks are essential for effective surveillance in the
digitized battlefield and for environmental monitoring. An
important issue in the design of these networks is the placement
of sensors in the surveillance zone, also described as the sensor
field. In a typical scenario, several different types of sensors are
available which can be appropriately placed in the sensor field.
These sensors differ from each other in their monitoring range,
detection capabilities, and cost. Clearly, sensors that can accurately
detect targets at longer distances have higher cost. However, the
use of these expensive, long-range sensors may be prohibitive in
terms of total placement cost. On the other hand, if only small-
range sensors are used, effective surveillance can only be achieved
with a large number of these sensors. Therefore, efficient sensor
placement strategies are necessary to minimize cost and yet
achieve mandated levels of surveillance accuracy. Fig. 1 shows a
sensor field in which grid points (circles) are at distances of 100m
and two sensors are shown with different costs and range of
coverage.

Another important problem in sensor networks is that of target

location. If the sensor field is represented as a grid (two or three-

dimensional), target location refers to the problem of pinpointing a

target at a grid point at any point in time. For enhanced coverage, a

large number of sensors are typically deployed in the sensor field

and, if the coverage areas of multiple sensors overlap, they may all

report a target in their respective zones. The precise location of the

target must then be determined by examining the location of these

sensors. In many cases, it is even impossible to precisely locate the
target (within the granularity of a single grid point). Alternatively,

target location can be simplified considerably if the sensors are

placed in such a way that every grid point in the sensor field is
covered by a unique subset of sensors. In this way, the set of

sensors reporting a target at time t uniquely identifies the grid

location for the target at time t. The trajectory of a moving target

can also be easily determined in this fashion from time series data.
Previous research in distributed sensor networking has largely

ignored the above sensor placement issues. Most prior work has

concentrated exclusively on efficient sensor communication [1], [2]
and sensor fusion [3], [4] for a given sensor field architecture.

However, as sensors are used in greater numbers for field

operation, efficient deployment strategies become increasingly

important. Related work on terrain model acquisition for motion
planning has focused on the movement of a robot in an unexplored

“sensor field” [8]. While knowledge of the terrain is vital for

surveillance, it does not directly solve the sensor placement

problem.
There exists a close resemblance between the sensor placement

problem and the guard placement problem (AGP) addressed by

the art gallery theorem [9]. The AGP problem can be informally
stated as that of determining the minimum number of guards

required to cover the interior of an art gallery. (The interior of the

art gallery is represented by a polygon.) Several variants of AGP
have been studied in the literature, including mobile guards,

exterior visibility, and polygons with holes. Our sensor placement

problem differs from AGP in two fundamental ways: 1) The

sensors can have different ranges, unlike in AGP where guards are
assumed to have similar capabilities, and 2) the “identifying”

problem for target location requires more sensors than the

“covering” problem.
The sensor placement problem for target location is also closely

related to the alarm placement problem described in [5]. The latter

refers to the problem of placing “alarms” on the nodes of a graph G

such that a single fault in the system (corresponding to a single
faulty node in G) can be diagnosed. The alarms are therefore

analogous to sensors in a sensor field. It was shown in [5] that the

alarm placement problem is NP-complete for arbitrary graphs.

However, we show that, for restricted topologies, e.g., a set of grid
points in a sensor field, a coding theory framework can be used to

efficiently determine sensor placement. The sensor locations

correspond to codewords of an identifying code constructed over

the grid points in the sensor field. Such coding frameworks are
often used in computing systems, e.g., for error control [6], and,

more recently, for resource placement in multicomputers [7].
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Fig. 1. An example of a two-dimensional sensor field.
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We are interested in the following sensor placement problems:
1) Given a surveillance region (grid points) and sensors of different
types (with different ranges and costs), determine the placement
and type of sensors in the sensor field such that the desired
coverage is achieved and cost is minimized; 2) how should the
sensors be placed at grid points such that every grid point is
covered by a unique subset of these sensors.

We first formulate the sensor placement problem in terms of
cost minimization under coverage constraints. We then develop an
integer programming (ILP) model to solve the sensor deployment
problem. This allows us to leverage efficient ILP solvers for
combinatorial optimization problems. We carry out a case study
for sensor deployment using a representative ILP solver available
in the public domain [11]. We also present a divide-and-conquer
approach for solving large problem instances. Finally, we use the
theoretical framework of identifying codes [12] to determine the
best placement of sensors such that the grid point for a target can
be uniquely identified.

2 MINIMUM-COST SENSOR PLACEMENT

Let the sensor field consist of nx, ny, and nz grid points in the x, y,
and z dimensions, respectively. We assume that two types of
sensors (Type A and Type B) are available for deployment, with
costs CA and CB and ranges RA and RB, respectively. (The model
can be easily extended to more than two sensor types.) The
separation between the grid points in any dimension is at least
minfRA;RBg. We make the simplifying assumption here that a
sensor always detects a target that lies within its range.

The problem that is studied in this section is to minimize

the cost of sensors deployed in the sensor field by optimally

assigning sensors to grid points. A sensor with range RA (RB)

placed on grid point (x1; y1; z1) can detect a target (covers) at

grid point (x2; y2; z2Þ if the distance between these two grid

points (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 ÿ x2Þ2 þ ðy1 ÿ y2Þ2 þ ðz1 ÿ z2Þ2

q
) is less than RA (RB).

However, every grid point must be covered by at least m � 1

sensors. The parameter m measures the amount of fault tolerance

inherent in the sensor deployment scheme. For example, if m ¼ 1,

then a single sensor failure is likely to make several grid points in

the sensor field unobservable. In our optimization framework, we

consider m to be a parameter for the ILP model.
The optimization problem is stated as follows:

. P1: Given a parameter m � 1, a set of grid points, two
types of sensors (Type A and Type B) with costs CA and
CB, and ranges RA and RB, respectively, find an assign-
ment of sensors to grid points such that every grid point is
covered by at least m sensors and the total cost of the
sensors is minimum.

P1 can easily be shown to be NP-hard using the method of
restriction. If all sensors have the same cost, the restricted problem
P1? is equivalent to the minimum-cost satisfiability problem.

Let aijk be a 0-1 (binary) variable defined as follows:

aijk ¼
1; if a type A sensor is placed atgrid point ði; j; kÞ
0; otherwise:

�
Likewise, let bijk be a 0-1 variable defined as follows:

bijk ¼
1; if a type B sensor is placed at grid point ði; j; kÞ
0; otherwise:

�
The total cost C of sensor deployment is therefore given by the

following equation:

C ¼
Xnx
i¼1

Xny
j¼1

Xnz
k¼1

ðCAaijk þ CBbijkÞ:

Let covAðði1; j1; k1Þ; ði2; j2; k2ÞÞ be a (derived) binary variable
defined as follows:

covAðði1; j1; k1Þ; ði2; j2; k2ÞÞ ¼
1; if a type A sensor placed at grid point ði1; j1; k1Þ

covers grid point ði2; j2; k2Þ
0; otherwise:

8><>:
Similarly, let covBðði1; j1; k1Þ; ði2; j2; k2ÞÞ be the corresponding
binary variable for a Type-B sensor.

We now formulate an integer programming model for mini-
mizing the cost of sensor deployment while ensuring that all grid
points are covered adequately.

Objective: Minimize the cost function

C ¼
Xnx
i¼1

Xny
j¼1

Xnz
k¼1

ðCAaijk þ CBbijkÞ

subject to

Xnx
i1¼1

Xny
j1¼1

Xnz
k1¼1

ðai1;j1;k1cov
Aðði1; j1; k1Þ; ði2; j2; k2ÞÞ

þ bi1;j1;k1cov
Bðði1; j1; k1Þ; ði2; j2; k2ÞÞ � m

1 � i2 � nx; 1 � j2 � ny; 1 � k2 � nz:

In order to solve the above problem by standard ILP
techniques, we first need to express the derived binary variables
in terms of the independent binary variables. This is done as
shown below for covAðði1; j1; k1Þ; ði2; j2; k2ÞÞ. A similar method can
be used for covBðði1; j1; k1Þ; ði2; j2; k2ÞÞ.

Let

dðði1; j1; k1Þ; ði2; j2; k2ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði1ÿ i2Þ2 þ ðj1ÿ j2Þ2 þ ðk1ÿ k2Þ2

q
denote the distance between grid points (i1; j1; k1) and (i2; j2; k2).
Since covAðði1; j1; k1Þ; ði2; j2; k2ÞÞ ¼ 1 if and only if a Type-A sensor
placed at (i1; j1; k1) covers grid point (i2; j2; k2), we introduce the
following two inequalities. (For notational convenience, we use
covA and d without any loss in generality.)

covA � ðRA ÿ dÞ � 0 ð1Þ

ð1ÿ covAÞ � ðdÿ RAÞ � 0: ð2Þ

We can verify that if d < RA, then covA must be 1 in order to satisfy
(2). Similarly, if d > RA, then covA must be 0 in order to satisfy (1).
Note that the case d ¼ RA is not considered here—instead, we
assume that this case is avoided since the range is usually an
integer while the distance (computed by the square root operator)
will be a noninteger. Even if the distance is an integer, a fractional
offset can be added to the range in order to use the ILP model.

The constraint in the optimization model is nonlinear since it
involves products of binary variables. In order to linearize the
constraint inequalities, we introduce a new binary variable for each
appearance of a nonlinear term. Suppose u and v are binary
variables. Then, their product uv can be replaced by a new binary
variable w with the following additional constraints [10]:
1) uþ v � 2w, 2) uþ vÿ 1 � w. The resulting integer linear
programming model is shown in Fig. 2.

We carried out a case study for two-dimensional sensor fields
with a given number (p) of grid points in each dimension using the
two types of sensors discussed in Section 1. These include a type-A
sensor with cost $150 and range 100m and a type-B sensor with
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cost $200 and range 200m. We used the lpsolve package from

Eindhocen University of Technology in The Netherlands [11]. The

lpsolve input files were automatically generated using a Perl script.

The results on sensor placement for two values of p and m are

shown in Fig. 3 and Fig. 4 and in Table 1. Note that an exhaustive

search would require us to examine a total of 3p
2

possible sensor
deployments, hence the ILP model provides a convenient method

for performing this search in a systematic manner.
We draw several important conclusions from the case study.

First, as the value of m increases, it is more economical to use

the Type-B sensor, even though it costs more than the Type-A

sensor. This can be attributed to the fact that, even though a
Type-B sensor costs 1.5 times more, it has a range that is twice

that of a Type-A sensor. We expect the converse to be true if

the cost increases at a faster rate than the increase in the sensor

range. The second observation we make is that an exact

solution to the ILP model takes an excessive amount of

computation time for larger problem instances. Therefore, we

propose a “divide-and-conquer” near-optimal approach for

sensor placement when the number of grid points is very large

(> 50). It is based on the following observation:
Given a set of available sensors, let Np;n be an optimal number

of sensors required for covering a sensor field in n dimensions,

with p grid points in each dimension. Let the corresponding cost of

sensor deployment be Cp;n. Then, the number of sensors are given

by: 1) N2p;n � 2nNp;n, 2) C2p;n � 2nCp;n.
For example, when p ¼ 8 and we use the two sensor types

discussed above, we can obtain complete coverage for m ¼ 2 using

22 � 5 ¼ 20 sensors (sensor density = 0.31). We can also determine

the number of sensors and their cost as follows: 1) for p ¼ 4 � 2k,
N1
p;n � N1

4;n � 2nk, N2
p;n � N2

4;n � 2nk. 2) N3
p;n � N3

4;n � 2nk. Moreover,

C1
p;n � C1

4;n � 2nk, C2
p;n � C2

4;n � 2nk, and C3
p;n � C3

4;n � 2nk. 3) For

p ¼ 5 � 2k, N1
p;n � N1

5;n � 2nk, N2
p;n � N2

5;n � 2nk. Finally,

C1
p;n � C1

5;n � 2nk; C2
p;n � C2

5;n � 2nk:
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Fig. 2. Integer linear programming model for sensor placement.

Fig. 3. Optimal (minimum-cost) sensor placements for various sensor fields for

p ¼ 4: (a) m ¼ 1, (b) m ¼ 2, (c) m ¼ 3. Fig. 4. Optimal (minimum-cost) sensor placements for p ¼ 5: (a) m ¼ 1, (b) m ¼ 2.



Note that the sensor density remains constant as larger sensor
fields are considered using a divide-and-conquer approach. For

example, the sensor density is the same for p ¼ 4 and p ¼ 8. Note
that alternative divide-and-conquer approaches are also possible.

For example, instead of dividing p by 2, we can also divide by l

(l > 2), which yields 1) Nlp;n � lnNp;n and 2) Clp;n � lnCp;n.

3 SENSOR PLACEMENT FOR TARGET LOCATION

In this section, we address the problem of placing sensors on grid

points such that the grid positions of targets can be uniquely
identified from the subset of sensors that detect the targets. This

approach is based on the concept of identifying codes for uniquely
identifying vertices in graphs [12].

The identifying code problem can be stated as an optimal
covering of vertices in an undirected graph G such that any vertex

in G can be uniquely identified by examining the vertices that
cover it. A ball of radius r centered on a vertex v is defined as the

set of vertices that are at distance at most r from v, where the
distance between any two vertices u and v is defined to be the
number of edges on a shortest path from u to v. The vertex v is then

said to cover itself and every other vertex in the ball with center v.
The formal problem statement is as follows: Given an undirected

graph G and an integer r � 1, find a (minimal) set C of vertices
such that every vertex in G belongs to a unique set of balls of

radius r centered at the vertices in C. The set of vertices thus
obtained constitutes a code for vertex identification.

We now show that the problem of placing sensors for unique
target identification can be solved using the theory of identifying

codes. The grid points in the sensor field correspond to the vertices
in the graph G, while the centers of the balls correspond to the grid

points where sensors are placed. The unique identification of a
vertex in G corresponds to the unique location of a target by the

sensors in the sensor field. Each sensor at a grid point can detect a
target at grid points that are adjacent to it.

Let Spn denote the number of sensors required for uniquely
identifying targets in an n-dimensional (n � 3) sensor field with

p grid points in each dimension. We refer to such a grid as an
(n; p) grid. The following theorem provides upper and lower
bounds on Spn for r ¼ 1. Its proof follows from the properties of

identifying codes on regular graphs [12].

Theorem 1. The number of sensors Spn for uniquely identifying a target

in an (n; p) grid is given by pn=ðnþ 1Þ � Spn � pn=n.

For example, for a two-dimensional sensor field with 100 grid

points in each dimension, at least 3,334 sensors are required for the
104 grid points. However, 5,000 sensors are adequate for unique

target identification. For a two-dimensional sensor field, the upper
bound corresponds to a checkerboard placement of sensors on grid

points, as shown in Fig. 5. The grid points are marked by their
ðx; yÞ coordinates and each sensor can detect a target at distances

up to the next grid point in each dimension. Note that each grid
point for this placement is covered by a unique subset of sensors.

We now describe more efficient sensor placement strategies
based on coding theory principles from [12]. We first review some
terminology. For every grid point ðx; y; zÞ in a sensor field, we
associate a parity vector ðpx; py; pyÞ as follows: px ¼ xmod 2,
py ¼ ymod 2, pz ¼ zmod 2. For example, the parity vector for grid
point (2, 4, 5) in a three-dimensional sensor field is (0, 0, 1). The set
of parity vectors corresponding to the set of grid points C is called
the binary parity code and denoted by PðCÞ.
Theorem 2. For a ð3; pÞ grid with p even and p > 2, target location is

achieved with a smallest possible number of sensors (Sp3 ¼ p3=4) if the
binary parity code PðCÞ is the perfect binary ð3; 1; 3Þ Hamming code,

where a perfect ðn; k; dÞ Hamming code consists of 2k codewords in

n dimensions and the minimum distance between codewords is d.

Proof. We first prove that every grid point is uniquely covered.
Every sensor is covered only by itself because the Hamming
distance between any two parity vectors is at least three. Next,
consider a noncodeword vertex with coordinates ðx1; x2; x3Þ
and corresponding parity vector ðp1; p2; p3Þ. There are two
vertices with coordinates x0 ¼ ðx01; x02; x03Þ and x00 ¼ ðx001 ; x002 ; x003Þ
such that they have the same parity vector ðq1; q2; q3Þ, x0 and x00

are neighbors of x in the n-dimensional sensor field, ðq1; q2; q3Þ
belongs to the Hamming code, and the Hamming distance
between ðp1; p2; p3Þ and ðq1; q2; q3Þ is one. We note that x0 and x00

are uniquely determined by x.
To prove necessity, we note that if two sensors in the ðn; pÞ

grid are neighbors, their parity vectors are at distance 1. Thus,
for an identifying code, the covering radius of the set of parity
vectors must be equal to 1 and the smallest set with this
property is a perfect ð3; 1; 3Þ code. tu

The following theorem shows that if the number of grid points
in each dimension is even, the lower bound on the number of
sensors (Theorem 1) can be achieved for a three-dimensional
sensor field. The proof follows from Theorem 2.

Theorem 3. For a ð3; pÞ grid (p > 4, p even), sensor placement with a

minimum number of sensors (Spn ¼ p3=4) is be achieved if and only if
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Results on Optimal Sensor Placement Using Integer Linear Programming

Fig. 5. A checkerboard placement of sensors.



sensors are placed on grid points whose parity vectors are (0, 0, 0) and

(1, 1, 1).

Theorem 3 shows that if p is even, the sensor density (average

number of sensors per grid point) for three-dimensional sensor

fields is only 0.25. For example, let p ¼ 6. From Theorem 2, we see

that sensors should be placed at the set of grid points fS0; S1g,
where S0 and S1 are the set of grid points with parity vectors (0,

0, 0) and (1, 1, 1), respectively, as shown below:

S0 ¼ fð0; 0; 0Þ; ð0; 0; 2Þ; ð0; 2; 0Þ; ð0; 2; 2Þ; ð0; 0; 4Þ; ð0; 4; 0Þ; ð0; 4; 2Þ;
ð0; 2; 4Þ; ð0; 4; 4Þ; ð2; 0; 0Þ; ð2; 0; 2Þ; ð2; 2; 0Þ; ð2; 2; 2Þ; ð2; 0; 4Þ; ð2; 4; 0Þ;
ð2; 2; 4Þ; ð2; 4; 4Þ; ð4; 0; 0Þ; ð4; 0; 2Þ; ð4; 2; 0Þ; ð4; 2; 2Þ; ð4; 0; 4Þ; ð4; 4; 0Þ;
ð4; 4; 2Þ; ð4; 2; 4Þ; ð4; 4; 4Þg;

S1 ¼ fð1; 1; 1Þ; ð1; 3; 1Þ; ð1; 3; 1Þ; ð1; 3; 3Þ; ð1; 1; 5Þ; ð1; 5; 1Þ; ð1; 5; 3Þ;
ð1; 3; 5Þ; ð1; 5; 5Þ; ð3; 1; 1Þ; ð3; 1; 3Þ; ð3; 3; 1Þ; ð3; 3; 3Þ; ð3; 1; 5Þ; ð3; 5; 1Þ;
ð3; 3; 5Þ; ð3; 5; 5Þ; ð5; 1; 1Þ; ð5; 1; 3Þ; ð5; 3; 1Þ; ð5; 3; 3Þ; ð5; 1; 5Þ; ð5; 5; 1Þ;
ð5; 5; 3Þ; ð5; 3; 5Þ; ð5; 5; 5Þg:

Hence, a total of 54 sensors are required for the 216 grid points.
The next theorem addresses cases where p is not necessarily

even. For a sensor field with p grid points in each dimension, we

can define an n-dimensional p-ary code C with covering radius 2 as

follows: C is the smallest set of grid points (vertices) such that each

noncodeword is at a distance at most two from a codeword. Note

that the distance between two points ðx1; y1; z1Þ and ðx2; y2; z2Þ in

this context is given by d ¼ jx1 ÿ x2j þ jy1 ÿ y2j þ jz1 ÿ z2j.
Theorem 4. Let Kpðn; 2Þ be the minimum number of codewords in a

p-ary n-dimensional code with covering radius 2. Then, for any p > 4,

an upper bound on the minimum number of sensors Spn for target

location in an ðn; pÞ grid is given by Spn � ð2nþ 1ÞKpðn; 2Þ.
Proof. It is sufficient to show that all grid points in a ball B2 of

radius 2 with center v can be uniquely identified by balls of

radius 1 centered at all gridpoints that belong to the ball B1 of

radius 1 centered at v. Without loss of generality, assume that

v ¼ ð0; 0; . . . ; 0Þ. Then,

B1 ¼ fð0; 0; . . . ; 0Þg
[
fð0; . . . ; 0;�1; 0; . . . ; 0Þ mod ðpÞg

and

B2 ¼ B1

[
fð0; . . . ; 0;�2; 0; . . . ; 0Þ mod ðpÞg

[
fð0; . . . ;�1; 0; . . . ; 0;�1; 0; . . . ; 0Þ mod ðpÞg:

Let x 2 B2. Consider the following four cases:

1. x ¼ ð0; . . . ; 0Þ. Then, x belongs to all balls of radius 1
with centers in B1.

2. x ¼ ð0; . . . ; 0;�1; 0; . . . ; 0Þ. Then, x belongs to two balls
of radius 1 with centers at x and ð0; . . . ; 0Þ, respectively.

3. x ¼ ð0; . . . ; 0; �1|{z}
i

; 0; . . . ; �1|{z}
j

; 0; . . . ; 0Þ. Then, x belongs

to two balls with centers ð0; . . . ; 0; �1|{z}
i

; 0; . . . ; 0Þ and

ð0; . . . ; 0; �1|{z}
j

; 0; . . . ; 0Þ.

4. x ¼ ð0; . . . ; 0; �2|{z}
i

; 0; . . . ; 0Þ. Then, x belongs to one ball

with center ð0; . . . ; 0; �1|{z}
i

; 0; . . . ; 0Þ.

This completes the proof. tu

Theorem 4 implies that sensor placement can be carried out by
first determining a code Kpðn; 2Þ with covering radius 2. (Tables of
covering codes are easily available [13].). Sensors are then placed
on the grid points corresponding to the codewords, as well as on
all grid points that are adjacent to codewords of Kpðn; 2Þ. This is
shown in Fig. 6a for a two-dimensional sensor field with p ¼ 13.
We need a total of 65 sensors for 169 grid points (sensor density =
0.38), which is slightly greater than the lower bound of 57
predicted by Theorem 1. Note, however, that the lower bound
need not always be achievable. As another example, let p ¼ 5 and
n ¼ 3. For this case, K5ð3; 2Þ ¼ 5 [13], hence a total of 35 sensors
placed at the 125 grid points provides unique target location.

While the above sensor placement strategy can be used in
general for any p > 4, the sensor density can often be decreased for
specific values of p. For example, consider the special case p ¼ 8s

and n ¼ 2. An ad hoc sensor placement given by Fig. 6b yields a
sensor density of only 0.375, which improves upon the construc-
tion of Theorem 4.

We have assumed thus far that the location of only a single
target in the sensor field has to be uniquely identified. We now
show that sensor placement for unique location of single target
provides a near-complete location of sets of targets. This demon-
strates that the sensor placement strategy outlined in this section is
effective even for tracking multiple targets in the sensor field. Let
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Fig. 6. (a) An efficient placement of sensors given by Theorem 3. (b) An efficient ad hoc placement of sensors.



CðlÞ be the fraction of sets of targets of cardinality exactly l that are

uniquely identifiable. The following lemma provides a lower

bound on the fraction of multiple targets that can be located:

Lemma 1. The fraction CðlÞ of sets of targets of cardinality exactly l that

are uniquely identifiable with r ¼ 1 by sensor placement for single

targets is lower bounded by CðlÞ � �lÿ1
i¼0

NÿiV ð4Þ
Nÿi , where V ð4Þ is an

upper bound on the number of grid points at a distance up to four

from any given grid point and N is the number of grid points in the

sensor field.

Proof. A set of targets is uniquely identifiable if the distance

between any two targets (grid points) in this set is at least five.

Note that this condition is sufficient but not necessary. The

fraction of identifiable sets of vertices is therefore lower-

bounded by

CðlÞ � NðN ÿ V ð4ÞÞðN ÿ 2V ð4ÞÞ � � � ðN ÿ ðlÿ 1ÞV ð4ÞÞ
N

l

 !
l!

¼ �lÿ1
i¼0

N ÿ iV ð4Þ
N ÿ i :

ut

The above lemma can be used to show that if the number of

grid points is sufficiently large relative to the cardinality of the set

of targets, the multiple targets can be uniquely located (asympto-

tically) using sensor placement for single targets.

Theorem 5. As the number of grid points in a sensor field tends to

infinity, the fraction of sets of targets of cardinality exactly l that are

uniquely identifiable approaches one if l ¼ oð
ffiffiffiffiffi
N
p
Þ.

Proof. Let
Q
¼ �lÿ1

i¼0ð
NÿiV ð4Þ
NÿiÞ . It can be easily seen that, for i �<

ffiffiffiffiffi
N
p

,

ln
N ÿ iV ð4Þ
N ÿ i ¼ ln 1ÿ iðV ð4Þ ÿ 1Þ

N ÿ i

� �
� ÿ iðV ð4Þ ÿ 1Þ

N ÿ i ;

and ln
Q
�
Plÿ1

i¼1ÿ
iðV ð4Þÿ1Þ
Nÿi . Now,

Xlÿ1

i¼1

iðV ð4Þ ÿ 1Þ
N ÿ i

�����
����� � ðlÿ 1ÞðV ð4Þ ÿ 1Þ

N ÿ lþ 1
ðlÿ 1Þ

and limN!1
ðlÿ1ÞðV ð4Þÿ1Þ

Nÿlþ1 ðlÿ 1Þ ¼ 0 if l2=N ! 0 (since V ð4Þ is

constant). tu
This underlines the effectiveness of the sensor placement

approach for single targets and implies that separate placement

algorithms for multiple targets are not necessary.
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