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 
Abstract—This paper investigates active damping of LCL-filter 

resonance in a grid-connected voltage source converter with only 

grid-current feedback control. Basic analysis in the s-domain 

shows that the proposed damping technique with a negative 

high-pass filter along its damping path is equivalent to adding a 

virtual impedance across the grid-side inductance. This added 

impedance is more precisely represented by a series RL branch in 

parallel with a negative inductance. The negative inductance helps 

to mitigate phase lag caused by time delays found in a digitally 

controlled system. The mitigation of phase-lag, in turn, helps to 

shrink the region of non-minimum-phase behavior caused by 

negative virtual resistance inserted unintentionally by most 

digitally implemented active damping techniques. The presented 

high-pass-filtered active damping technique with a single 

grid-current feedback loop is thus a more effective technique, 

whose systematic design in the z-domain has been developed in the 

paper. For verification, experimental testing has been performed 

with results obtained matching the theoretical expectations 

closely.  

 
Index Terms—Voltage source converter, LCL filter, resonance 

damping, non-minimum phase system, virtual impedance  

I. INTRODUCTION 

CL resonance has always been an important concern for 

LCL-filtered voltage source converters [1]. A wide variety 

of resonance damping techniques have thus been developed 

with the trend generally favoring active damping techniques 

because of the additional power losses experienced by passive 

damping techniques [2]. Active damping techniques can also be 

broadly divided into those realized by cascading a digital filter 

with the current controller [3], and those realized by feeding 

back the filter state variables [4]-[16]. The former represents a 

sensor-less technique realized by plugging in a digital filter, 

which unfortunately, is sensitive to parameter uncertainties and 

variations [10]. It is therefore not as popular as the feedback of 

filter state variables for damping purposes. Among the state 

variables fed back, the filter capacitor current has been widely 

chosen [4]-[9], and is usually realized with a proportional 

resistive gain. 
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The proportional resistive gain is, however, easily modified 

by transport delays found in a digital system. The outcome is a 

negative virtual resistance, which upon introduced, will add 

open-loop Right-Half-Plane (RHP) poles to the system. These 

open-loop poles will, in turn, introduce a non-minimum-phase 

closed-loop behavior to the system [7]. Such a non-minimum- 

phase behavior has subsequently been resolved by replacing the 

usual proportional gain with a High-Pass Filter (HPF) along the 

capacitor current feedback loop [8]. The capacitor current must 

however still be measured, which in practice, will demand an 

additional sensor or a complex software-based observer [6]. 

To avoid additional sensing, the single-loop current control 

schemes have increasingly been studied [9]-[16]. In [11], for 

example, it has been shown that a stable grid current control 

scheme can be implemented with only a single control loop 

without damping. The reason has been identified as an inherent 

damping introduced by the transport delays in the considered 

digital control system. This inherent damping effect is however 

available only when the LCL resonance frequency is above 

one-sixth of the system sampling frequency [9], [12]. It is, 

therefore, not always suitable like in weak grids, where grid 

impedances and hence system LCL resonance frequencies may 

vary widely. As a precaution, the external active damping is 

recommended, especially in the power-electronics-based power 

systems, where the interactions among multiple converters may 

lead to harmonic instability if not damped appropriately [13]. 

It is therefore encouraging to develop a robust active 

damping technique that relies only on the feedback of grid-side 

current (hence no additional sensor) [14]-[17]. Ideally, the 

developed scheme will require an s2 term for inserting the 

necessary positive virtual resistance, which in practice, is not 

implementable because of the possible noise amplification. A 

second-order Infinite Impulse Response (IIR) filter [14] or a 

first-order HPF with a negated output [15], [16] has thus been 

suggested as a replacement for the s2 term. Another alternative 

is to use the optimized loop shaping design discussed in [17], 

where the current controller and active damping have been 

designed together as a fifth-order feedback transfer function in 

the z-domain. In terms of simplicity, the HPF is clearly more 

attractive, while not compromising accuracy significantly. Its 

parameter design has thus been discussed in [15] and [16], but 

not its alteration caused by the transport delays. Its equivalent 

circuit notation has also not been discussed. These issues, when 
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left unresolved, will more easily lead to non-minimum-phase 

response of the system, owing to the overlooked presence of 

negative virtual resistance. 

This paper thus begins by presenting an impedance-based 

analysis in the s-domain for generalizing the physical circuit 

property of grid current feedback active damping. The analysis 

specifically demonstrates that the grid current active damping 

is equivalent to the insertion of a virtual impedance in parallel 

with the grid-side inductance. In case of a HPF with a negated 

output along the damping path, the virtual impedance can 

further be notated as a series RL branch in parallel with a 

negative inductance. The resistive part of the RL branch may 

become negative when influenced by transport delays, which 

may then cause non-minimum-phase response that can impair 

the overall system stability and robustness. The non-minimum- 

phase problem can, however, be minimized by the negative 

virtual inductance in parallel with the series RL damper. 

This mitigation effect is not inherited by other existing active 

damping techniques based on the feedback of filter capacitor 

current, and has presently not been discussed in the literature. It 

is thus the intention of this paper to study the combined 

negative resistive and inductive effects introduced by the grid 

current active damping. Moreover, the frequency region, within 

which negative virtual resistance exists, will also be identified, 

and shown to be dependent on the ratio between HPF cutoff 

frequency and system sampling frequency. A robust damping 

performance can subsequently be ensured by developing a 

systematic co-design procedure for the active damping and grid 

current controller. The procedure is explained with root locus 

analyses in the z-domain, before verifying it experimentally. 

II. IMPEDANCE-BASED ANALYSIS 

A. System Description 

Fig. 1 illustrates a three-phase grid-connected voltage source 

converter with an LCL filter and a constant DC-link voltage Vdc 

for simplicity. Parasitic resistances of the circuit have been 

ignored to arrive at the worst case condition, where no passive 

damping of resonance exists. The Synchronous Reference 

Frame Phase-Locked Loop (SRF-PLL) has also been employed 

for synchronizing the converter with the Point of Common 

Coupling (PCC) voltage [18]. A low-bandwidth SRF-PLL has 

been designed to avoid the undesired low-frequency instability 

[19]. The grid voltage Vg has also been assumed as balanced, 

which then allows per-phase diagrams to be used for analysis in 

Fig. 2, where the per-phase grid current control scheme has 

been shown. The illustrated scheme clearly has the grid current 

i2 sensed and fed back for regulation and active damping 

purposes. For current regulation, controller Gc(s) used is the 

Proportional-Resonant (PR) controller represented by (1) in the 

stationary αβ frame [9]. 
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where kp and ki are proportional and resonant gains, 

respectively, and ω1 is the grid fundamental frequency. 

**

 
Fig. 1.  Three-phase grid-connected LCL-filtered voltage source converter with 

single-loop grid current control scheme.   

 
*

 
Fig. 2.  Per-phase block diagram of the grid current control loop. 

 
Complementing, Gad(s) is for active damping, whose transfer 

function is analyzed in the following subsections. Influencing 

Gc(s) and Gad(s) is the digital time delay Gd(s), whose notation 

is given in (2) [20]. 
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where Ts is the system sampling period. The digital time delay 

is composed by the half sampling period of modulation delay, 

and one sampling period of computation delay. 

B. Impedance-Based Equivalent Circuits 

For demonstrating circuit properties realized by grid current 

active damping, its representation in Fig. 2 is redrawn as in Fig. 

3 (a), after introducing the following two modifications, while 

keeping the system closed-loop response unchanged. 

 Instead of sensing grid current i2 in Fig. 2, voltage 

across the grid-side inductor L2 is sensed in Fig. 3 (a). 

 Instead of adding at the output of Gc(s) in Fig. 2, the 

summing node has been shifted to after 1/(L2s) in Fig. 

3 (a). 

For retaining its closed-loop characteristics, Zv(s) in Fig. 3 

(a) is further set as (3). 
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Transfer functions surrounded by the dashed enclosure in 

Fig. 3 (a) can eventually be redrawn like the equivalent circuit 

shown in Fig. 3 (b). This representation immediately informs
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Fig. 3.  Equivalent control diagram and generalized equivalent circuit for the 

grid current active damping scheme. (a) Control diagram. (b) Equivalent 

circuit. 

 

that grid current active damping is no different from paralleling 

a virtual impedance Zv(s) across the grid-side inductance L2. 

The added impedance can be shaped by varying Gad(s) rather 

than Gd(s), which is usually fixed by the chosen sampling 

frequency. For example, with Gd(s) = 1 fixed by having no 

system delay, a resistive damper Zv(s) = Rv like in Fig. 4 (a) can 

be inserted by shaping Gad(s) = s2 for cancelling the same s2 

term found in the numerator of (3).  

Shaping Gad(s) = s2 is, however, not practically feasible, 

leading next to the series RL damper represented by (4) and 

shown in Fig. 4 (b). The series RL damper can be implemented 

by Gad,1(s) in (5), which clearly does not have the undesired s2 

term, yet is still having a first-order derivative term, which in 

practice, is commonly approximated by a first-order HPF term. 

That makes it no different from the second HPF term in (5).  
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A third possibility is thus to consider only the second HPF 

term in (5) with its negative polarity retained (implemented by 

placing a HPF with negated output along the damping path). 

Note that the same high-pass scheme has been mentioned in 

[15] and [16], yet neither its physical circuit meaning nor the 

accompanied nontrivial features are discussed. These issues are 

investigated here by deriving its circuit equivalence using the 

analytical technique developed earlier. Transfer functions and 

circuit representation obtained are shown in (6), (7) and Fig. 4 

(c). 
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where Lv,2 and Rv,2 are virtual inductance and resistance 

furnished by the HPF active damping, and ωad and kad are cutoff 

frequency and gain of the HPF, respectively. 

Fig. 4 (c) again shows a series RL damper, but now with an 

additional negative virtual inductance (−Lv,2) connected in 

parallel. This negative virtual inductance, if chosen equal to the 

grid-side inductance L2, will lead to only Rv,2 and L2 in series on 

the grid-side of the filter. The HPF gain in (7) will also simplify 

to kad = ωadL1. However, this simplified case is only for the 

conceptual information, since the grid-side inductance will drift 

in practice, making it hard to be exactly cancelled by the 

negative virtual inductance in parallel. 

Then, with a finite time delay considered, the virtual 

impedance in (4) changes to (8) and (9), and that in (6) changes 

to (10) and (11). 
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From either (9) or (11), the observation noted is imaginary 

and real terms of the virtual impedance can both become 

negative after introducing the finite time delay. The negative 

imaginary term will tend to shift the actual LCL resonance 

frequency ωres, while the negative real term will add open-loop 

RHP poles to the current control loop. The latter causes the 

non-minimum-phase behavior, which should preferably be 

avoided if a fast dynamic response is demanded. Comparing the 

real terms in (9) and (11) also informs that the negative 

paralleled virtual inductance (−Lv,2) in Fig. 4 (c) helps to lessen 

the likelihood of Re{Zv,2} in (11) being negative. It is thus an 

important feature furnished by the HPF-based grid current 

active damping, which has so far been overlooked by [15] and 

[16], even though the same HPF scheme has been tried. 

With this understanding, the next immediate task is to 

identify the critical frequency ωv, above which Re{Zv,2d} in (11) 

becomes negative. The task can be done by first replacing 

Gad(s) in (3) with the HPF parameters kad and ωad. The 

expression obtained is given in (12), which when equated to



 

   

(a) (b) (c) 

   

Fig. 4.  Virtual impedance-based equivalent circuits realized by grid current active damping. (a) Single resistance. (b) Series RL damper. (c) Series RL damper with 

paralleled –L. 
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Fig. 5.  Critical frequency ωv versus HPF cutoff frequency ωad. 

 
zero, leads to (13). 
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where ωs = 2πfs, and fs is the system sampling frequency. 

Equation (13) can further be plotted as Fig. 5 for showing the 

relationship between critical frequency ωv and HPF cutoff 

frequency ωad. It is shown in particular that with ωad = 0 or the 

HPF reduced to only a negative proportional gain (kad ≠ 0), the 

critical frequency read is ωv = ωs/6. This value can also be 

determined from the virtual impedance expression given in (3), 

which upon substituted with ωad = 0, simplifies to (14). Any 

resonance frequency ωres above ωs/6 considered for damping 

will then lead to negative Re{Zv,2d0}, and hence non-minimum- 

phase characteristic of the system. A simple solution is to invert 

the polarity of kad when ωres  ωs/6 and ωad = 0. Alternatively, 

active damping can be removed since it is not necessary for ωres 

 ωs/6 [9], [12]. 
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A third possibility is to set a non-zero ωad for generating a 

high critical ωv that saturates at ωv = ωs/3. Damping of 

resonance in the range of ωs/6  ωres  ωv  ωs/3 can then be 

performed with no negative virtual resistance introduced. Yet, 

above ωs/3, synthesis of negative virtual resistance cannot be 

avoided, which means the non-minimum-phase response will 

always be experienced. The value of ωs/3 can therefore be 

referred to as the theoretical upper limit for ωv when a HPF 

with negated output is used for synthesizing the demanded 

active damping. This limit is, however, not achievable in 

practice, where noise amplification and digital sampling error 

will realistically limit the HPF cutoff frequency ωad to below 

the Nyquist frequency of 0.5ωs. With ωad = 0.5ωs further 

assumed, Fig. 5 gives the companion practical upper limit as ωv 

 0.28ωs, which needless to say, is smaller than the theoretical 

limit. 

III. DISCRETE Z-DOMAIN ANALYSIS 

The impedance analyses in the s-domain aim to illustrate the 

active damping effects with the physical filter circuit, where 

components are always continuous. Therefore, demonstration 

of the circuit effects in the continuous s-domain is appropriate. 

Now, the intention is to co-design the discretized current 

controller and active damper, where classical control theory 

states that it is more accurately done in the z-domain. The root- 

locus analyses in this section are therefore performed in the z- 

domain, where results obtained can also be used for verifying 

the impedance-based equivalence identified earlier. 

Parameters used for the analyses are given in Table I, where 

three different filter capacitance values have been included for 

generating three different LCL resonance frequencies. 

Alternatively, the different resonance frequencies can be 

obtained with different grid-side inductance L2 values, which 

certainly, can also be viewed as a change in grid inductance. 

Changing of capacitance is, however, preferred for the eventual 

experimental testing owing to the ease of obtaining well-tested 

commercial capacitors, whose values over a frequency range 

are available. Different capacitances, instead of inductances, 

have therefore been chosen for analysis without compromising 

the objective of obtaining different resonance frequencies. 

A. Discrete z-Domain Model 

Fig. 6 illustrates the grid current control diagram in the 

discrete z-domain, where Lt has been used for combining L2 and 

Lg from Fig. 1 (Lt = L2 + Lg). A Zero-Order Hold (ZOH) block 

has also been included for modeling the Digital Pulse Width 

Modulation (DPWM) and its accompanied delay. The ZOH 

model is generally acceptable since it has been proven earlier to 

be a satisfactory approximation of the uniformly sampled 

DPWM, especially when its carrier is triangular [21], [22]. 
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Fig. 6.  Grid current control scheme in the z-domain. 

 

Complementing the ZOH block is a z-1 delay block included for 

representing computational delay [20]. With these included 

blocks, transfer function Yg(s) for representing the passive 

“plant” in Fig. 6 and (15) can eventually be discretized as (16), 

where HZOH(s) denotes the ZOH transfer function. 
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(16) 
 

The PR controller Gc(s) in (1) and active damper Gad,2(s) in 

(7) can also be discretized by applying Tustin transformation 

with the former further pre-warped at the grid fundamental 

frequency [23]. The expressions obtained are given in (17) and 

(18). 
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Using (16) to (18), the open-loop Tol (z) and closed-loop Tcl 

(z) transfer functions for the grid current control scheme can 

neatly be derived as (19) and (20). 
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B. Effects of Negative Virtual Resistance 

From Fig. 6, inclusion of Gad,2(z) can be viewed as the 

formation of an inner active damping control loop for reshaping  

TABLE I 

MAIN CIRCUIT PARAMETERS 

Symbol Electrical Constant Value 

Vg Grid voltage  400V 

f1 Grid frequency 50 Hz 

fsw Switching frequency 10 kHz 

fs Sampling frequency 10 kHz 

Ts Sampling period 100 μs 

Vdc DC-link voltage  750 V 

L1 Converter-side filter inductor 1.8 mH 

L2 Grid-side filter inductor 1 mH 

Cf Filter capacitor 4.7/9.4/13.5 μF 

Lg Grid inductance 0.8 mH 

 

the LCL filter. Open-loop transfer function of this inner active 

damping loop can be written as (21), which will include 

unstable poles if negative virtual resistance is inserted by 

Gad,2(z). These poles are related to the inner active damping 

loop only, excluding the outer PR controller. They appear as 

RHP poles, mentioned in Section II, when in the s-domain, and 

poles outside the unit circle when in the discrete z-domain. The 

initiation of negative virtual resistance can thus be sensed by 

identifying when the root loci of (21) move out of the unit circle 

in the z-domain. 
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To illustrate, Fig. 7 shows the root loci of the inner damping 

loop obtained by closing the forward transfer function in (21) 

and changing kad. These root loci are also the open-loop pole 

trajectories of the outer grid current control loop. Presence of 

unstable poles in the inner damping loop will hence cause the 

outer grid current control loop to have non-minimum-phase 

behavior, as mentioned in Section II. For comparison, root loci 

for two different LCL resonance frequencies are considered 

with the first plotted in Fig. 7 (a) for ωres = 0.24ωs and Cf = 4.7 

μF, and the second plotted in Fig. 7 (b) for ωres = 0.17ωs and Cf 

= 9.4 μF. For both plots, the HPF cutoff frequency ωad is swept 

from 0 to 0.5ωs (Nyquist frequency) with a step size of 0.05ωs. 

The obtained root loci initially track outside the unit circle, but 

are gradually moved inside it as ωad increases. 

The inward shifting is, however, slower in Fig. 7 (a), whose 

root loci only enter the unit circle after ωad crosses 0.3ωs. The 

root loci in Fig. 7 (b), on the other hand, enter the unit circle 

upon ωad rising above 0.05ωs. These observations can be 

explained by noting that ωres = 0.24ωs in Fig. 7 (a), which 

according to Fig. 5, requires critical frequency ωv to be higher 

than 0.24ωs. With a safety margin included, ωad of the HPF 
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Fig. 7.  Root loci of the active damping loop without the PR current controller. (a) Cf = 4.7 μF, ωres = 0.24ωs. (b) Cf = 9.4 μF, ωres = 0.17ωs. 

 
should hence be chosen higher than 0.3ωs according to Fig. 5. 

Similarly, with ωres = 0.17ωs in Fig. 7 (b), ωv must be higher 

than 0.17ωs, which can be ensured by choosing ωad higher than 

0.05ωs (with again a safety margin included). The discussed 

examples have therefore demonstrated the relevance of the 

impedance-based analyses presented in Section II, from which 

Fig. 5 has been derived for explaining phenomena observed in 

this subsection. 

C. Co-Design of Active Damper and Current Controller 

The conventional approach towards designing an actively 

damped system is to design the grid current controller first 

followed by the active damper. For the former, plenty of 

existing references are available with [24] being an example. 

The method proposed in [24] uses only the total inductance 

(L1+Lt) and a defined phase margin θm for computing the 

parameters of (1), according to (22). 
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where ωc is the crossover frequency of the grid current control 

loop. Parameters of the PR grid current controller can then be 

included for designing the active damper based on root locus or 

other analytical techniques [8], [9], [15]. However, such a 

design procedure has overlooked the virtual impedance shaping 

effect that the active damping has introduced to the physical 

LCL filter. For grid current active damping, the introduced 

effect is shown in Fig. 4 (c) when a HPF with negative output is 

used as the damping transfer function (see (7)). 

For illustrating more of the virtual impedance effects, Fig. 8 

to Fig. 10 plot the closed-loop pole trajectories of the overall 

grid current control scheme with both proportional gain kp of 

the PR current controller and active damping gain kad included. 

The former (kp) is continuously varied to obtain the root loci for 

a few chosen representative kad values. Moreover, since the 

resonant term of the PR controller is designed for obtaining the 

zero steady-state error at the fundamental frequency, its effect 

at the higher crossover frequency of the current control loop is 

comparably negligible. It is thus not included with the root 

locus analyses [9].  

The subsequent root locus plots obtained are for three 

different LCL resonance frequencies (ωres = 0.24ωs, 0.17ωs, 

0.14ωs), and for each plot (or resonance frequency), three 

cutoff frequencies (ωad = 0.15ωs, 0.25ωs, 0.35ωs) and four 

gains (kad = 0, 5, 15, 35) of the HPF have been compared. 

Beginning with Fig. 8 for the case of ωres = 0.24ωs and Cf = 4.7 

μF, the closed-loop poles can be kept within the unit circle even 

with kad = 0 for representing no added active damping. 

Obtaining stable poles with kad = 0 is, however, possible only 

when ωres>ωs/6, above which the system transport delay will 

create an inherent damping effect [9], [12]. Therefore, for Fig. 

8, external active damping is strictly not necessary, but can be 

introduced for improved robustness in case that parameter drift 

causes ωres to fall below ωs/6. 

Addition of external damping by setting kad ≠ 0 then results 

in prominent change in the root loci with both changes in kad 

and ωad causing the closed-loop poles to move inside the unit 

circle. Consequently, the dynamic performance of the overall 

system is altered, implying that the grid current controller 

cannot be designed without considering the virtual impedance 

shaping effect introduced by the active damper. It should also 

be noted that kad cannot be increased excessively since it forces 

the root loci to move out of the unit circle from the right. This 

can be seen in Fig. 8 (a), where the right root paths are always 

out of the unit circle when kad = 35. The overall system is, 

therefore, always unstable regardless of how the grid current 

controller is designed. The “always unstable” upper limit of kad 

in Fig. 8 is also noted to increase with ωad like demonstrated by 

the higher ωad = 0.25ωs in Fig. 8 (b) and ωad = 0.35ωs in Fig. 8 

(c). The higher ωad in either of the diagrams causes critical 

frequency ωv read from Fig. 5 to become higher than ωres = 

0.24ωs set for Fig. 8. The non-minimum-phase behavior is, 

therefore, avoided when in Fig. 8 (b) and (c), permitting higher 

gains like kad in the active damper and kp in the PR grid current 

controller to be used without causing instability. 

The same root loci have been re-plotted in Fig. 9 and Fig. 10, 

but with lower resonance frequencies of ωres = 0.17ωs  ωs/6 

and ωres = 0.14ωs  ωs/6 considered. Since ωres is no longer 

higher than ωs/6, inherent damping introduced by the transport 



 

Real Axis

Im
a

g
in

a
ry

 A
x

is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kad = 35
kad = 15
kad = 5
kad = 0

ωad = 0.15ωs

 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

a
ry

 A
x

is

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Real Axis

Im
a

g
in

a
ry

 A
x

is

   

(a) (b) (c) 
   

Fig. 8.  Root loci of the grid current control loop with Cf = 4.7 μF and ωres = 0.24ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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Fig. 9.  Root loci of the grid current control loop with Cf = 9.4 μF and ωres = 0.17ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 
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Fig. 10.  Root loci of the grid current control loop with Cf = 14.1 μF and ωres = 0.14ωs. (a) ωad = 0.15ωs. (b) ωad = 0.25ωs. (c) ωad = 0.35ωs. 

 

delay is no longer applicable, causing the closed-loop poles to 

track outside the unit circle when kad = 0. Active damping is, 

therefore, necessary when in Fig. 9 and Fig. 10, unlike in Fig. 8.  

Other than this, patterns of the root loci in Fig. 9 and Fig. 10 

are also noted to be different, except for an observation related 

to kad which remains unchanged. More specifically, increase of 

kad is again noted to gradually destabilize the system with the 

root loci always located outside the unit circle on the right when 

kad = 35 (see Fig. 9 (a) and Fig. 10 (a)). This upper limit of kad 

can similarly be raised by increasing ωad, which unfortunately, 

is not always effective now. Explanation for that can be 

deduced from Fig. 9 (c), Fig. 10 (b) and (c), where it can be seen 



 

that root loci related to kad = 15 change their trajectories 

prominently as ωad increases. A higher ωad forces the root loci 

for kad = 15 to move closer to the boundary of the unit circle 

rather than away from it. That gives lesser damping, which is 

certainly undesirable. 

Parametric influences of the active damper on the system 

response must therefore not be ignored, and it is certainly not 

appropriate to design the grid current controller with only the 

total inductance considered, like in (22). An acceptable design 

for the overall control scheme can only be guaranteed when 

both HPF and current controller are co-designed 

simultaneously using root locus or other analytical techniques. 

In this section, root loci have been plotted in Fig. 8 to Fig. 10, 

where it has been shown that for each pair of given kad and ωad, 

its accompanied root locus is formed by two conjugate pole 

trajectories moved along by two complex pole pairs. The pole 

pairs move in opposite directions as kp increases. It is hence not 

straightforward to decide on the eventual set of parameters. 

To resolve the problem, [25] uses a basic rule related to 

direct pole placement, which is to constrain all poles to have the 

same natural frequency. In other words, kad, ωad, and kp should 

be co-designed such that the two conjugate pole trajectories 

intersect, and hence reducing the poles to only one conjugate 

pole pair. The conjugate pole pair must then be shifted so that it 

has the same natural frequency as the real pole. Such a design 

is, however, too restrictive. A slightly relaxed criterion is thus 

adopted for the design procedure recommended below, while 

still relying on direct pole placement in the z-domain for 

producing acceptable performance.  

1) Identify the resonance frequency ωres, and then choose 

a few possible values for the HPF cutoff frequency ωad 

from Fig. 5 that will help to avoid non-minimum- 

phase characteristic by ensuring that ωv  ωres.  

2) Root loci like in Fig. 8 to Fig. 10 can be plotted using 

the chosen ωad and kad values for studying their 

influences on the system closed-loop poles. A final 

value can then be decided for ωad and another for kad 

through minimizing the distance between the two 

conjugate pole trajectories.  

3) Two conjugate pole pairs with the shortest separation 

distance can then be marked, from which proportional 

gain kp of the PR current controller can be determined. 

Natural frequencies of the conjugate pole pairs will 

then be the closest possible. 

4) Since the resonant term of the PR controller has an 

effect only at the grid fundamental frequency, its 

resonant gain ki can be approximately computed using 

(22) and an assumed crossover frequency ωc obtained 

by substituting phase margin θm = 40 to the first 

equation in (22). However, note that (22) is derived in 

[21] for a converter with L-filter only. It is therefore 

only an approximation, where ωc does not give the 

actual crossover frequency of the LCL-filtered system. 

5) The procedure can be iterated, where necessary. 

 

IV. EXPERIMENTAL RESULTS 

For verification, the three-phase converter and LCL filter 

shown in Fig. 1 were implemented and connected to a 

California Instruments MX-series AC power supply for 

emulating the grid. Circuit parameters used for the setup are 

listed in Table I, while Table II lists parameters of the PR 

controller and active damper designed using Fig. 8 to Fig. 10. 

Corresponding closed-loop poles obtained using Table II are 

also marked with “X” in the figures. The designed control 

scheme was eventually implemented using a dSPACE DS1006 

platform with a DS5101 digital waveform output board for 

generating the modulating pulses. Additionally, a DS2004 

high-speed analog-to-digital board was used for sampling the 

PCC voltage and grid current values in synchronism with the 

modulating pulses. 

With the implemented setup, Fig. 11 shows its measured grid 

voltage and current waveforms when ωres = 0.24ωs and Cf  = 4.7 

μF. Since ωres  ωs/6, the system remains stable even with no 

active damping added, as demonstrated by Fig. 11 (a) with kad = 

0. The system dynamic can however be improved by active 

damping, as understood from Fig. 8 (b) and (c). Corresponding 

results for showing the improved dynamic are given in Fig. 11 

(b) for kad = 5 and Fig. 11 (c) for kad = 15. Both figures use the 

same ωad = 0.35ωs, and experience the same current step from 5 

A to 7.5 A. Compared with Fig. 11 (a), Fig. 11 (b) and (c) 

exhibit faster response with shorter settling time and improved 

damping. These figures also confirm that with ωad = 0.35ωs, 

ωres is lower than the critical frequency of ωv = 0.27ωs read 

from Fig. 5. The improved damping in Fig. 11 (b) and (c) is 

therefore related to the positive virtual resistance inserted when 

ωres  ωv. A slightly improved transient response can also be 

seen from Fig. 11 (b) when compared with Fig. 11 (c). This 

observation is in agreement with the pole locations marked in 

Fig. 8 (c).  

Fig. 12 next shows the grid voltage and current waveforms 

when the filter resonance frequency was changed to ωres = 

0.17ωs  ωs/6 by using Cf  = 9.4 μF. Since ωres is no longer 

higher than ωs/6, the system cannot be stabilized without active 

damping, as demonstrated by Fig. 12 (a) obtained with a small 

kad of 5, ωad = 0.25ωs. It shows a critically stable operation, 

which matches with the dash-lined root locus in Fig. 9 (b). Note 

that kad has not been reduced further since it caused high 

oscillatory current that tripped the system over-current 

protection during the testing. Results for kad = 0 are therefore 

not provided. Instead, results for an increased kad of 15, but the 

same ωad, are provided in Fig. 12 (b). It can be seen from the 

results that the system is effectively damped by the larger kad, 

which hence confirms the dotted root locus drawn in Fig. 9 (b). 

For both Fig. 12 (a) and (b), it should also be mentioned that 

the system does not exhibit the non-minimum-phase behavior, 

because ωres is below ωv = 0.25ωs read from Fig. 5 when ωad = 

0.25ωs. The non-minimum-phase behavior will be avoided too 

when ωad is increased to 0.35ωs. However, according to Fig. 9 

(c) plotted with ωad = 0.35ωs, root locus corresponding to kad = 

15 is shown to shift closer to the unit circle. The system is thus 

comparably less damped. This expectation has been verified by  
 



 

TABLE II 

CONTROLLER PARAMETERS 

Test Case PR Controller (kp) PR Controller (ki) HPF (ωad) HPF (kad) 

Case I   Cf = 4.7 μF, ωres = 0.24ωs 16 600 0.35ωs 0/5/15 

Case II   Cf = 9.4 μF, ωres = 0.17ωs 12 600 0.25ωs/0.35ωs 5/15 

Case III   Cf = 14.1 μF, ωres = 0.14ωs 9 600 0.15ωs/0.25ωs 5/15 
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Fig. 11.  Measured grid voltage and currents when ωres = 0.24ωs and Cf = 4.7 μF. 

(a) kad = 0. (b) kad = 5, ωad = 0.35ωs. (c) kad = 15, ωad = 0.35ωs. 

 

the more oscillatory transient grid current waveforms observed 

in Fig. 12 (c) when compared with those in Fig. 12 (b).  

Comparing Fig. 12 (c) with Fig. 11 (c), another important 

observation should be noted too. Both figures are obtained with 

the same active damping parameters, but a decrease of the 

resonance from ωres = 0.24ωs in Fig. 11 (c) to 0.17ωs in Fig. 12 

(c) has significantly degraded the system transient performance 

even though a smaller proportional gain kp (16 for Fig. 11 (c) in 
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Fig. 12.  Measured grid voltage and currents when ωres = 0.17ωs and Cf = 9.4 μF. 

(a) kad = 5, ωad = 0.25ωs. (b) kad = 15, ωad = 0.25ωs. (c) kad = 15, ωad = 0.35ωs. 

 

comparison with 12 for Fig. 12 (c)) has been used with the grid 

current controller. Indirectly, it implies that the active damper 

and current controller must be co-designed simultaneously 

since their parameters affect each other. 

The same grid voltage and current waveforms are re-plotted 

in Fig. 13, but now for an even lower resonance frequency of 

ωres = 0.14ωs  ωs/6 obtained with Cf  = 14.1 μF. Since ωres is 

again lower than ωs/6, reducing kad to zero will gradually lead
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Fig. 13.  Measured grid voltage and currents when ωres = 0.14ωs and Cf = 14.1 

μF. (a) kad = 5, ωad = 0.15ωs. (b) kad = 15, ωad = 0.15ωs. (c) kad = 15, ωad = 0.25ωs. 

 

to instability according to the dashed root locus plotted in Fig. 

10 (a). This expectation has been confirmed by results shown in 

Fig. 13 (a) for kad = 5 and ωad = 0.15ωs. Also observed from Fig. 

13 (b) and (c) for the same kad = 15 is the more oscillatory 

transient response of the latter obtained with a higher ωad = 

0.25ωs. This observation has similarly been explained when 

analyzing root loci for the same kad = 15 in Fig. 10 (a) and (b). 

Fig. 10 (b), in particular, uses a higher ωad = 0.25ωs, whose 

effect is to push the root loci closer to the boundary of the unit 

circle. Expected dynamic response from Fig. 10 (b) will hence 

be more oscillatory or less damped, as verified by Fig. 13 (c) in 

comparison with Fig. 13 (b). 

Further comparison between Fig. 13 (c) and Fig. 12 (b), 

which use the same active damping parameters, can also be 

performed, where the lower resonance at ωres = 0.14ωs has 

caused the results in Fig. 13 (c) to be dynamically poorer even 

though a smaller proportional gain of kp = 9 has been used with 

it. This finding is similar to that concluded earlier when 

comparing Fig. 11 (c) and Fig. 12 (c). The preferred value for 

ωad in Fig. 13 has lastly been noted to be lower than that in Fig. 

12, which is, to a great extent, expected since the smaller ωres in 

Fig. 13 does not demand a high ωad for mitigating the 

non-minimum-phase response caused by the unintentionally 

inserted negative virtual resistance (based on Fig. 5). 

V. CONCLUSIONS 

This paper studies grid current active damping and control 

for LCL-filtered voltage source converters. Through systematic 

impedance-based analyses, it has been shown that active 

damping with grid current feedback is equivalent to adding a 

virtual impedance in parallel with the grid-side filter 

inductance. This virtual impedance has further been shown to 

be a series RL branch in parallel with a negative inductance 

when a HPF with negative output is used for implementing the 

active damper. The introduced negative inductance is 

particularly helpful for reducing non-minimum-phase behavior 

caused by transport delays in a digital system. Parametric 

influences of the active damper and current controller have also 

been studied through root locus analyses, where it has been 

shown that parameters of the active damper influence the 

system poles greatly. They have therefore been included in the 

co-design procedure recommended for the active damper and 

grid current controller. Experimental results obtained have 

shown the anticipated steady-state and transient performances, 

hence validating concepts presented in the paper. 
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