
121

Grid Data Mirroring Package (GDMP)

Heinz Stockingera, Asad Samarb,

Shahzad Muzaffarc and Flavia Donnod

aCERN, European Organization for Nuclear

Research, Geneva, Switzerland

E-mail: Heinz.Stockinger@cern.ch
bCalifornia Institute of Technology, Pasadena,

California, USA

E-mail: Asad.Samar@cern.ch
cFermi National Laboratory, Batavia, Illinois, USA

E-mail: muzaffar@fnal.gov
dINFN Pisa, Italy

E-mail: Flavia.Donno@pi.infn.it

The GDMP client-server software system is a generic file

replication tool that replicates files securely and efficiently

from one site to another in a Data Grid environment using

Globus Grid tools. In addition, it manages replica catalogue

entries for file replicas and thus maintains a consistent view on

names and locations of replicated files. Files to be transferred

can be of any particular file format and GDMP treats them

all in the same way. However, for Objectivity database files a

particular plug-in exists. All files are assumed to be read-only.

1. Introduction

File replication is one of the essential features of a

Data Grid [2] where potentially large amounts of data

need to be stored in multiple copies (replicas) at sev-

eral, world-wide distributed sites. Although replication

is a well established field in the distributed computing

as well as in the database communities, dealing with

file replication in a Grid is a challenging task. The

GDMP software system is a file replication tool satisfy-

ing several requirements of current Data Grid users and

thus provides practical solutions to the file replication

problem.

The GDMP [10,13,14] project (originally called Grid

Data Management Pilot) was started in early 2000 as

a pilot project to evaluate the Globus toolkit (tm) [5],

take useful features for a file replication system and

produce a prototype to be evaluated in a real production

environment. In early versions (until release 1.2.2 of

the software), GDMP was restricted to replicate Objec-

tivity files but in the new release 2.0 any kind of file
format is accepted.

The driving force for the research and development
on GDMP was twofold: on the one hand, at CERN –
the European Organization for Nuclear research located
near Geneva in Switzerland – first efforts for the Eu-
ropean DataGrid project [3] were under way and first
state-of-the-art studies in Grid computing needed to be
done. On the other hand, the CMS experiment, one of
four next generation High Energy Physics (HEP) ex-
periments at CERN, required data transfer tools for the
distributed production of simulated data, in particular
for the High Level Trigger studies. Once the Data-
Grid project was kicked off in January 2001, the ex-
perience gained from GDMP was used and the current
version of the software system is part of the DataGrid
software and in use in the first DataGrid testbed. Cur-
rently, the software development process is well ad-
vanced and the project is now a collaboration between
the European DataGrid (in particular the Data Manage-
ment work package) and the Particle Physics Data Grid
(PPDG) [9].

With respect to DataGrid data management architec-
ture [12], GDMP is a replica manager with additional
high-level, application specific functionality like inte-
gration of Objectivity database files to an Objectivity
federation, a notification system for remote sites and
an interface to mass storage systems.

The paper is organised as follows: We first describe
the requirements for a file replication system and give
details on the GDMP architecture including all Grid
components that are used from the Globus Toolkit 2.0
Alpha release. Next, we outline the data replication
process in detail and describe tools and features that
are used to gain the task. Section 5 elaborates on ap-
plications and interfaces and outlines the usage of the
current GDMP release version 2.0. Some performance
results are given in Section 6 and we report on our
experience on data transfer. Finally, we conclude the
paper with some concluding remarks.

2. Requirements and basic functionality

The main propose of CERN and thus the CMS ex-
periment is to study the origin of matter. For this pur-

Scientific Programming 10 (2002) 121–133

ISSN 1058-9244 / $8.00 2002, IOS Press. All rights reserved

122 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

pose, large particle accelerators and detectors are used

and several Petabytes of data will be stored a year start-

ing from 2006. Although the CMS detector is sched-

uled to take data in year 2006, simulated production is

done already now in order to test and prepare physics

software and storage systems for the upcoming data

challenge of several Petabytes of data a year. As re-

gards the High Level Trigger study in CMS, simulated

data is created in several regional centres like Fermilab

(Chicago, USA), Pisa (Italy), Moscow (Russia), Lyon

(France), Bristol (UK) in the CMS Data Grid and then

needs to be transferred to other sites in the Grid. Data

is either stored in Objectivity databases or in special,

HEP specific file formats.

Although Objectivity provides a synchronous data

replication option, it is not optimised for wide-area

replication and thus a replication system was required

that replicates Objectivity files as well as files of any

other file format. Furthermore, synchronous replica-

tion bears the danger of deadlocks and the entire sys-

tem might be blocked if remote replica sites are not

available [8]. Instead, asynchronous replication mech-

anisms are required in a wide-area DataGrid and GDMP

provides such a replication model.

2.1. Distributed data production in CMS

The preparations of distributed data production have

been going on for a couple of years. A data transfer

production system based on Perl scripts, HTTP and se-

cure shell copy transfers has been put in place [17]. The

purpose of these scripts is to allow a user to see the con-

tents of an Objectivity’s federated database catalogue

from anywhere with WWW access, without the need

to run any part of the Objectivity software locally. Fur-

thermore, the script software allows for data transfer of

not only Objectivity but any kind of file, for instance

HEP specific Zebra-fz or Root files. These Perl scripts

have been the initial input for the architecture and de-

sign of GDMP. The idea was to extend the functionality

by introducing a security environment and providing a

fully automated replication mechanism based on a Grid

infrastructure using Globus. Originally, GDMP was a

Grid-enabled successor of these Perl scripts but then

has been extended with several replication features,

preliminary mass storage management and meta-data

management for replicated files.

Since October 2000, the first versions of GDMP are

in use in the CMS production environment. We have

proven that Data Grid tools can be used efficiently in a

production environment and thus have made a pioneer

step towards the vision of a Data Grid. What is more,

GDMP is now a generic file replication tool and avail-

able in the DataGrid software to serve the HEP, Bio

Informatics and Earth Observation communities.

2.2. A basic usage scenario

GDMP’s new name1 derived from the fact that the

original status of a pilot project has been extended and

now better identifies the functionality of the replication
service.

The core functionality of the software system is to

(partly) mirror one data repository to remote sites in a

Data Grid. When new files are added at one site, tools
have to detect which files are new in the repository and

notify other sites about the availability and location of

a set of new files. Figure 1 depicts a simple replication

(mirroring) scenario in a Data Grid with four sites.
For instance, at Fermilab a set of three new files is

created and should be made available to remote sites.

A user at CERN shall now have an automatic tool that

finds out about newly created files, transfers them to
a specific storage location and then possibly updates

local file catalogues (as it is the case for Objectivity

files). Since Objectivity provides an internal catalogue

for all local files, newly created files can be easily iden-
tified. For files of other data formats, a site catalogue

is required which holds all files that are stored within

a site and should be published to remote sites in the

Grid. At each site, files normally reside on disks but

may be partially available also on tapes and accessible
via mass storage systems.

GDMP works as follows. A site produces a set of

files locally and another site wants to obtain replicas of

these files. In the case of Objectivity files, each site is
running the Objectivity database management system

locally that has a catalogue of database files internally.

However, the local Objectivity database management

system does not know about other sites and a replication
mechanism is required that can notify other sites about

new files, efficiently transfer the files to the remote

site, and integrate the filenames into the Objectivity

internal file catalogue. An additional server needs to
be available at each site to handle replication requests

and to trigger file transfers, notification messages, and

updates of local catalogue information. Simply put,

this is done by a GDMP server running at each site
where files are produced and possibly replicated.

1Grid Data Mirroring Package instead of Grid Data Management

Pilot

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 123

file1.dbf

file1.dbf

CERN

France

wide-area network links

Fermilab Italy

file1.dbf
file2.dbf
file3.dbf

event_hit1.db
event_hit2.db
event_hit3.db

new files produced at Fermilab
 - ready for replication

Fig. 1. A sample Data Grid with 4 sites where new data is produced and replicated.

2.3. Directories and file replication

GDMP manages files stored in a particular storage

root directory on a local disk or mounted disk pool. It

requires all physical files to be stored in this directory

structure which can be configured for each GDMP in-

stallation and thus for each storage system. Note that

we distinguish between “flat files”2 (this can be any

arbitrary file format like ROOT, ZEBRA, etc.) and Ob-

jectivity files which require particular replication steps.

GDMP also requires two different storage root directo-

ries for these two file formats.

We start with an example. We assume that a large

disk pool is mounted on a host host1.cern.ch.

Files are stored in the directory /data/run1/. In

the directory run1 several subdirectories can exist and

a possible directory layout is as follows:

/data/run1/day1/file1

/data/run1/day1/file2

/data/run1/day1/file3

/data/run1/day2/fileA

/data/run1/day2/fileB

GDMP requires a common root path for the directory

structure since it manages several files in the replication

process. In our example the common directory and thus

the storage root directory for flat files is /data/run1.

2Note that the term flat file is used to distinguish between a generic

file and an Objectivity file and does not say anything about the struc-

ture within the file.

The main task of GDMP is to mirror the directory
structure of one storage system (called Storage Ele-

ment in DataGrid terminology) to another. Thus, a
storage root directory is required on both sites that
participate in the mirroring process. Note that the
storage root directory does not have to be identical
on all Storage Elements but can be chosen and con-
figured based on the local directory structure. If we
now assume that all the files above need to be repli-
cated to a Storage Element at Fermilab, the desti-
nation host first needs to set up a storage root di-
rectory. For example, on host1.fnal.gov (at
Fermilab), the storage root directory has the value
/largedisk/cms/production/run1. The
GDMP replication process now can replicate files from
the storage root directory on the source machine to the
one on the destination machine.

2.4. Filenames

When files are replicated, identical files (replicas)
exist at multiple locations and need to be identified
uniquely. A set of identical replicas is assigned a logical

filename (LFN) and each single physical file is assigned
a physical filename (PFN). In [12] we also include a
transfer filename (TFN) but we do not discuss it further
and we will assume that all PFNs have the complete
paths used by the Storage Element’s file system to refer
to files resident on disk. The PFN also contains the host
name i.e. the domain name of the Storage Element [12]
where the file is located and accessible via a Grid file
transfer tool such as a GridFTP [1] server.

A typical example of a physical filename under the
above assumptions is as follows:

124 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

pfn://host1.cern.ch/data/run1/day1

/file1

We observe that when PFNs are used with GDMP,

the prefix “pfn://” is not required. Once the file is

created and the PFN is available, it can be inserted to

a replica catalogue that provides a global name space

for file replicas. Note that for this GDMP version we

use a single replica catalogue located at a single host

(rather than a distributed replica catalogue as presented

in [12]). In addition to the PFN, a logical filename must

be assigned to the physical file. In the current version

of the Globus replica catalogue [1], the LFN is equal

to the last component of the PFN, i.e., to the file name

including parts of the directory structure. This is a cur-

rent restriction that will be removed in future versions.

Thus, the logical filename is created automatically by

GDMP from the physical filename complying with the

implicit mapping enforced by the replica catalogue and

for the physical filename in the example above it looks

as follows day1/file1.

2.5. The file replication process

The entire file replication process does not only con-

tain a simple file copying from one site to another but

contains several steps and requires to keep track of file-

names and locations. The latter is achieved through

a replica catalogue service. Based on the file type or

format (Objectivity file, Oracle file, plain text file, etc.)

a successful file replication process consists of the fol-

lowing steps:

– pre-processing: This step is specific to file formats

and might even be skipped in certain cases. This

step prepares the destination site for replication,

for example by creating an Objectivity federation

at the destination site or introducing new schema

in a database management system so that the files

that are to be replicated can be integrated easily

into the existing Objectivity federation.

– actual file transfer: This has to be done in a secure

and efficient fashion; fast file transfer mechanisms

are required.

– post-processing: The post-processing step is again

file type specific and might not be needed for all

file types. In the case of Objectivity, one post-

processing step is to attach a database file to a

local federation and thus insert it to an internal file

catalogue.

Communication

Control Request
Manager

GDMP application

Database
Manager Mover

Data Replica

Catalogue

Storage

Manager

Security Layer

Fig. 2. The layered GDMP architecture.

– insert the file entry into a replica catalogue: This

step also includes the assignment of logical and

physical filenames to a file (replica). This step

makes the file (replica) visible to the Grid.

The GDMP replication process is based on the

producer-consumer model: each data production site

(producer) publishes a set of newly created files to a

set of one or more consumer sites, and GDMP ensures

that the necessary data transfer operations (including

all the steps mentioned above) complete successfully.

These services are implemented by a set of interacting

servers, one per site, participating in the data replication

process.

3. Architecture

We now give details on the architecture, the compo-

nents used by GDMP and some design considerations.

In principle, the GDMP software consists of several

modules that in turn can use established Grid services

like a replica catalogue service or a file transfer service.

GDMP has a layered architecture model (see Fig. 2)

and uses several Globus libraries. The boxes represent

single modules that are explained in more detail in

the following subsections. Each of the GDMP client

applications (command lines tools for publishing site

catalogues, replicating files, etc.) as well as the GDMP

server use several of the modules.

3.1. Control communication

This module takes care of the control communication

between the clients and the servers, and uses the Globus

IO library [5] as the middle-ware and builds high level

functionality on top. It takes care of the intricacies

related to socket communication over the wide area

between nodes with heterogeneous architectures. The

functionality includes starting and stopping the server,

connecting and disconnecting the client to and from the

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 125

server and sending and receiving messages at both the

client and server ends. This module provides services

to other modules.

Globus IO is a thin layer on top of basic socket

communication and provides APIs for easily managing

sockets over TCP or UDP. The Globus Data Conversion

library [5] is used for providing high level interfaces

that are similar to RPC calls.

3.2. Request manager

Every client-server system has to have a way to gen-

erate requests on the client side and interpret these re-

quests on the server side. The Request Manager mod-

ule does exactly that. It contains several request gen-

erator/handler pairs and more can be added for cus-

tomised use. This module is based on the Globus Data

Conversion library which provides methods to convert

data between different formats supported by variable

machine architectures. The requests are generated on

the client side by filling a buffer with the appropriate

function handler, which is to be called on the server

end, and any arguments required by that function. On

the server side this buffer is unfolded and the data types

are converted according to the local architecture. Fi-

nally, the respective function is called with the given

arguments. The Request Manager Module basically

mimics a limited Remote Procedure Call (RPC) func-

tionality with the advantage of being light-weight and

extensible.

3.3. Security layer

Security is one of the main concerns in a Grid. Al-

lowing people from outside one’s domain to use the re-

sources is a big issue for most organisations. Sensitiv-

ity of data and unauthorised use of network bandwidth

to transfer huge files are the main security issues we

are dealing with. This is done by the security layer. It

is based on the Grid Security Infrastructure (GSI) [6]

which is an implementation of the Generic Security

Service (GSS) API. It uses the Public Key Infrastruc-

ture as the underlying mechanism. The security module

provides methods to acquire credentials, initiate con-

text establishment on the client side and accept context

establishment requests on the server side (context is es-

tablished to authenticate the client), encrypting and de-

crypting messages and client authorisation. The server

authenticates and authorises any client before process-

ing its request, hence, the software protects a site from

any unwanted file transfers and blocks any unautho-

rised requests. Consequently, every client server com-

munication is done via secure communication. This

also applies for the file transfer itself. However, data

encryption for file transfer is not used.

3.4. Database manager

This module interacts with the actual database man-

agement system if database files are replicated. The

module relies on the APIs provided by the particular

data storage system being used. In our case the DBMS

of choice is Objectivity/DB, hence we use Objectivity’s

command line tools to implement this module. If a new

data type, i.e. a new database management system, is

used, this is the only module which has to be swapped

by the one which can interact with the specific DBMS.

The functionality includes

– create Objectivity federation (including database

schema)

– schema upgrade based on schema of a remote Ob-

jectivity federation

– retrieve the database catalogue (or file catalogue),

containing information about the files currently

present in the database,

– attach files to the DBMS once they arrive on the

client side where they are validated.

3.5. Data Mover

The main purpose of GDMP is to replicate files over

a wide-area network in an automatic, efficient and fault

tolerant way. This module is responsible for the actual

transfer of files from one location to another.

The Data Mover uses the GridFTP client library of

Globus [1]for file transfer and relies on GridFTP servers

(based on the WU-FTP server with Globus modifica-

tions for GridFTP). Since GridFTP uses the Grid Se-

curity Infrastructure (GSI), we have the same security

mechanism for both the Control Communication and

the Data Mover. The functionality includes client au-

thentication and authorisation before the transfer starts,

transferring files to and from the server, validating the

transferred files using the file size and checksum infor-

mation, resuming the file transfer from the latest check-

point after a network failure,3 using a progress meter

3In an early version of GDMP we have used a different GSI enabled

FTP client library that provided this feature. It is also available in

GridFTP and we plan to use it as soon as it is a public release.

126 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

to output the progress during a file transfer and finally

logging all file transfers that have been completed.

Point-to-point replication is on of the major per-

formance criteria for a large Data Grid. We require

high-performance data transfer tools which is the tar-

get of the Globus Data Grid toolkit’s GridFTP [1] sys-

tem. GridFTP allows for parallel and striped trans-

fer streams, TCP tuning and is based on GSI. In [14]

we present the results of detailed performance studies

conducted with the an early alpha GridFTP release.

The GDMP Data Mover service has a layered, mod-

ular architecture so that its high-level functions are im-

plemented via calls to lower-level services that perform

the actual data manipulation operations. In this case,

the lower-level services in question are the data transfer

services available at each site for movement of data to

other Grid sites.

3.6. Replica catalogue

GDMP uses the Globus replica catalogue service [1]

to maintain a global file name space of replicas. GDMP

provides a high-level replica catalogue interface and

currently uses the Globus replica catalogue as the un-

derlying implementation. An end-user who produces

new files uses GDMP to publish information into the

replica catalogue. This information includes the logi-

cal file names, logical file attributes (such as file size

and modify time-stamps) and the physical location of

the file. In detail, when a site publishes its files:

– These files (and the corresponding file attributes)

are added to the replica catalogue.

– The subscribers are notified of the existence of

new files (more details on the subscription model

are given below).

The replica catalogue module also ensures a global

name space by making sure that all logical file names

are unique in the catalogue (this is achieved through the

Globus Replica Catalogue library). GDMP supports

both the automatic generation and user selection of new

logical file names. User-selected logical file names are

verified to be unique before adding them to the replica

catalogue but we need to map the logical filenames to

the ones accepted by the Globus Replica Catalogue.

Race conditions on the replica catalogue are currently

not dealt with.

Client sites interested in a new file can query the

replica catalogue to obtain the information required to

replicate the file. Users can specify filters to obtain

the exact information that they require; information

is returned only about those logical files that satisfy

the filter criteria. The information returned contains

the meta-information about the logical file and all the

physical instances of the logical file. This information

can then be used as a basis for replica selection based

on cost functions.

The current Globus replica catalogue implementa-

tion uses the LDAP protocol to interface with the

database backend. We do not currently distribute or

replicate the replica catalogue but instead, for simplic-

ity, use a central replica catalogue and a single LDAP

server for the replica catalogue service. In the future,

we will explore both distribution and replication of the

replica catalogue.

The GDMP replica catalogue module is a higher-

level object-oriented wrapper in C++ to the underly-

ing Globus replica catalogue library in C. This wrap-

per hides some Globus API details and also introduces

additional functionality such as search filters, sanity

checks on input parameters, and automatic creation of

required entries if they do not already exist. The high-

level API is also easier to use and requires fewer method

calls to add, delete, or search files in the catalogue.

3.7. Storage manager

In order to interface to Mass Storage Systems (MSS),

the GDMP server uses external tools for staging files.

For each type of Mass Storage System, tools for staging

files to and from a local disk pool have to be provided

externally. We assume that each site has a disk pool

that can be regarded as a data transfer cache for the Grid

and that, in addition, a Mass Storage System is avail-

able at the same site but does not manage the local disk

pool directly. The staging to a local cache is necessary

because the MSS is mostly shared with other admin-

istrative domains, which makes it difficult to manage

the MSS’s internal cache with any efficiency. Thus,

GDMP needs to trigger file staging requests explicitly.

This is our current environment, which might change

slightly in the future.

A file staging facility is necessary if disk space is

limited and many users request files concurrently. If a

remote site requests a replica from another remote site

where the file is not available in the disk pool, GDMP

initialises the staging process from tape to disk. The

GDMP server then informs the remote site when the

file is present locally on disk and at that time performs

automatically the disk-to-disk file transfer.

In the replica catalogue, physical file locations are

stored and contain file locations on disk. Thus, by

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 127

default a file is first looked for on its disk location

and if it is not there, it is assumed to be available in

the Mass Storage System. Consequently, a file stage

request is issued and the MSS transfers the file to the

disk location stored in the replica catalogue. Note that

Objectivity has an interface to HPSS [11] and the file

naming convention is the same: the default location

is a disk location. Some other storage management

systems have a tape location as a default file location.

Note that more sophisticated space management

mechanisms such as reservation of disk space are cur-

rently not available but are easy to add [7]. In particu-

lar, the underlying storage system needs to provide an

API for storage allocation,e.g.,allocate storage

(datasize). In this case, the file replication transfer

might be started only if the requested storage space can

be allocated.

4. The data replication process and policies

We present the data replication process and also in-

troduce some GDMP client applications which are then

described in more detail in the next section.

4.1. File catalogues

GDMP uses a few catalogues that are used for in-

ternal book keeping and monitoring of the replication

process. We elaborate on how GDMP manages the

file transfer and illustrate the data flow by a producer-

consumer example. The producer is the site where one

or several files are written, and the consumer is the

site that wants to replicate (receive) these files locally.

Once the producer has finished writing a set of files (or

just a single file), every single file needs to be regis-

tered in a local file catalogue which only contains files

that are available at the local Storage Element. The

catalogue contains the physical filename and logical

file attributes like logical filename, file size, creation

time, CRC checksum, file type. The local file cata-

logue is hidden from outside users and is thus only vis-

ible to the local GDMP server. The client application

gdmp register local file is used for inserting

files to this catalogue.

At a certain point in time, the producer can de-

cide to publish its local files to other Grid sites us-

ing gdmp publish catalogue. In detail, all file

entries of the local file catalogue are written into the

replica catalogue4 and also sent to subscribed con-

sumers at remote sites. A list of all newly published

files and their related information is written to a local

export catalogue. The consumer creates an import cat-

alogue where it lists all the files that are published by

the producer and have not yet been transfered to the

consumer site. The import catalogue holds the host

name of the FTP server and all related physical and

logical file information for each file. Figure 3 illus-

trates this model graphically and shows that a GDMP

installation (including client and server applications)

is required on each Storage Element taking part in the

data replication process.

When files are published, all required file informa-

tion is read from the local file catalogue. Since the

catalogue holds file attributes like size, during the exe-

cution of the publish command the files to be published

do not need to reside on their physical location on disk

but can already have been staged to a mass storage

system. Note that files have to be at the disk location

when gdmp register local file is called since

file size and CRC check sum are automatically created

by GDMP and then stored in the local file catalogue.

4.2. Subscription and replication model

Although replica information is available in the

replica catalogue, one GDMP site can subscribe to a

remote site in order to get notified when new files are

created. Thus, a site keeps a host list catalogue (see

Fig. 3) where all hosts are listed that are subscribed to

newly created local files.

The currently implemented replication policy is an

asynchronous replication mechanism with a subscrip-

tion model. A producer can choose at what time new

files are written into the export catalogue and thus made

publicly available for consumers. Hence, the producer

can decide the degree of data consistency by delaying

the publication of new files. In the example above we

only have one consumer for demonstration purpose. In

reality, the number of consumers can be large and de-

pends on the number of sites in the Grid. The subscrip-

tion model enables that the subscribed consumers get

informed immediately when new files are published in

the export catalogue. Each consumer that wants be be

notified about changes in the producer’s export cata-

logue, subscribes to a producer. Depending on the de-

gree of interest in a producer’s data, consumers might

4An insertion to the replica catalogue can also be disabled.

128 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

 (producer_information)

 (producer_information)

local file catalogue local file catalogue

consumerproducer
w

id
ea

re
a

n
et

w
o
rk

file 1

file 2

file 3

export catalogue

file 2

file 3

import catalogue

file 1 (producer_information)

(GDMP) (GDMP)

host list host list

Globus Replica Catalogue

Fig. 3. The role of the local file, export, import catalogues.

want to subscribe to only some of the producers in the

Grid.

Since the data exchange has to be done in a controlled

and secure way, a consumer first has to be a “registered

Grid user” at the producer site, i.e. the user has to be

added to the grid-mapfiles5 of the producer sites. These

files contain all the users who are allowed to talk to

GDMP servers running on a site. Thus, a producer has

total control over who subscribes to and transfers files

from its site. Once this is done, a consumer is allowed

to subscribe to the producer site. The producer then

adds the new consumer and its related information in

the host list catalogue.

The consumer can decide when to start the file trans-

fer from the producer to the consumer site with the tool

gdmp replicate get. The tool reads the import

catalogue and starts FTP sessions and interactions with

remote GDMP servers to get the necessary file.

In our example above we distinguish between a pro-

ducer and a consumer site in order to illustrate the data

flow. However, each site in a Data Grid can produce

new files and get files from other sites, i.e. a site can

be producer and a consumer. Thus, each site manages

an import catalogue where it stores available file infor-

mation from other sites, and an export catalogue where

it publishes files created by itself.

5Globus specific file which is used for user authentication.

4.3. Notification system

GDMP provides a powerful notification mechanism

which can be used to monitor the replication process

as well as the publishing of new information. Con-

figurable scripts are used for interfacing user specific
applications.

When a user publishes a local file catalogue with

gdmp publish catalogue, a remote server gets

notified and calls a configurable script which can then
be used by external programs to start a data transfer

request. In principle, gdmp replicate get can be

executed and a fully automatic replication process can

be set up. On the other hand, a similar notification
script is called at the producer site when a consumer has

successfully replicated a file. Thus, producers can keep

track of consumers requesting and replicating files and
can delete files again if local storage space is required.

4.4. System states for file replication process

In the entire replication process, we distinguish sev-

eral system states which can be used to check the cur-

rent status of a file transfer and discover possible prob-

lems. The following file transfer states can be distin-
guished:

– ongoing file transfer

– file transfer has succeeded

– file has been validated (CRC checksum)

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 129

– file has been registered to the local file catalogue.

– a remote site has been notified about the correct

file transfer (including validation and registration).

In addition to the successful states, we also have a

few error states:

– file validation failed

– file is not registered to the local file catalogue

– file notification failed

– error during the attachment of Objectivity files

4.5. Partial replication: Filtering files

GDMP allows a partial-replication model where not

all the available files in a federation are replicated. In

other words, one or several filter criteria can be applied

to the import and/or export catalogue in order to sieve

out certain files. For instance, a site only wants to make

files publicly available that contain the word “Muon”

in the filename. Hence, the export catalogue, which

contains all the files that a site wants to publish, has to

be filtered and files that do not contain the filter criterion

are deleted. A site that wants to get files from other

sites can as well choose which files it wants to get.

In this case the filter has to be applied on the import

catalogue. This allows for a partial replication model

where the producer as well as the consumer can limit

the amount of files to be replicated.

4.6. Fault tolerance and failure recovery

In a distributed system we can identify several

sources for errors. On the one hand, there are hardware

errors like a physically broken network cable, a broken

network card, processor or any other piece of hardware.

On the other hand, a part of the software system can

have a failure. For instance, the FTP server dies, the file

system crashes or some other part of the GDMP soft-

ware does not work properly. In any of these cases the

connection between the distributed clients and servers

is broken. We refer to such a failure as the connection

is broken and do not distinguish between the different

reasons for this failure. We emphasise that the com-

munication is broken and the message or control flow

cannot be continued. For instance, in case of a broken

connection anywhere between site A and site B, site A

cannot publish its catalogue to site B.

In the current version of GDMP, each site is itself

responsible for getting the latest information from any

other site. This is also expressed by the subscription

system, where a site has to explicitly subscribe to an-

other site in order to get the file catalogue. Further-

more, when a site recognises a local error which has

caused the broken connection, this site has to request

the required information from the peer site. A site

which publishes information to a subscribed site does

not re-send information nor logs that a site could not

receive the information. A site can retry to send the

message again to the destination site within a particular

time frame which can be set by a timeout parameter.

If the re-sending fails again, the sending site stops try-

ing to contact the sites and hands over the responsibil-

ity to the destination site to recover from the broken

connection.

To sum up, the policy is the following. Each site has

to be aware of its state (connection okay or broken).

Then it has to search for the origin of the broken con-

nection. If it detects that the error is on the local site, it

has to recover otherwise the peer site is responsible for

failure recovery.

A site can be unavailable for several hours or even

days. Meanwhile several producers can have cre-

ated and published files, and the entries in the ex-

port catalogues may already have been overwritten.

However, published replica information is also avail-

able in the replica catalogue. A consumer can re-

cover from the site failure by issuing the command

gdmp get catalogue. Once a producer site has

published its catalogue, the catalogue is available to be

transferred to any subscribed consumer. GDMP at the

consumer site then compares the consumer and pro-

ducer catalogue and creates the necessary information

in the consumer’s import catalogue. Possible multiple

appearances of files are deleted in order to keep the

import catalogue’s entries unique.

Only the file which is currently been sent when the

network connection breaks has to be resent. Since the

FTP client has a “resume transfer” feature, not even

the whole file has to be transfered but only the part of

the file that is still missing since the last check point

in the file. This allows for an optimal utilisation of the

bandwidth in case of network errors.

Other possible errors: A site may publish a file sev-

eral times and export it to other sites. In order to have

files only uniquely transferred, each site checks auto-

matically if the file in the local import catalogue does

not already appear in the federation catalogue. Fur-

thermore, several sites can publish the same file to a

specific site two times. Consequently, on creation of

the import catalogue, the system checks if the file to be

entered is unique. Only if this is the case, a new file is

inserted into the import catalogue.

130 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

5. GDMP applications and interfaces

In this section we go into more details on concrete

GDMP tools and their usage. The client-server soft-

ware consists of a GDMP server that needs to be in-

stalled and running on each site taking part in the data

replication process and several client applications.

5.1. GDMP server

The GDMP server needs to run constantly and serve

several user requests from GDMP client applications.

We do not expect a very high load on the server (less

than three requests per second) and thus do not require

a high performance server, but it needs to be robust.

Currently, a GDMP server is configured to run via the

Internet daemon (inetd) and can be started on any user

defined port. Simply put, the inetd provides Internet

service management for a network. It listens on certain

ports and calls other servers or daemons for serving the

request. As regards GDMP, we register a certain port,

e.g. port 2000, with the Internet daemon and when

a GDMP client connects to the machine via a socket

connection, the Internet daemon takes the request on

port 2000, starts the GDMP server and passes all the

socket information to the GDMP server. The GDMP

server in turn handles the client request. By default,

GDMP servers are supposed to run on port 2000 but

can be configured to run on any other port that is not

hidden by a firewall.

All interactions between GDMP clients, the GDMP

server and the underlying FTP server are done via GSI.

In detail, every client request that comes over a socket

first needs to be authorised and authenticated (the lo-

cal grid-mapfile is used for that) and then the Request

Manager module serves the client request. Like any

client application using Globus, also a server requires

a security proxy to be running. The server uses a dedi-

cated server certificate which is included in the GDMP

software distribution. Thus, when a server is started,

the required Grid proxy is gained automatically. Any

output or error message from the server is logged in a

corresponding log file.

5.2. GDMP client applications

GDMP offers a set of client applications to register

new files to a local catalogue, publish a set of newly

created files to subscribed hosts, start the actual file

replication process, and subscribe to a remote GDMP

server. In addition, the software package contains a

few other administration tools. We describe briefly

the basic functionality and refer to the GDMP User

Guide [16] for further details. We illustrate the se-

quence of client operations that is necessary for the

replication process:

1. All GDMP client applications need to use GSI

and thus require a X.509 certificate issued by a

trusted certificate authority (either Globus, Data-

Grid or any national authority). Before any client

application can be started, a client has to have a

Globus proxy running6 in order to start the au-

thentication process handled by the GDMP secu-

rity module internally. We use Globus’ single lo-

gin procedure: once a client has successfully got

the proxy on one machine, requests can be sent

to any GDMP server (given that the X.509 distin-

guished name is included in the remote server’s

grid-mapfile) without any further password to be

entered.

2. Once the proxy is gained, the GDMP sites need

to subscribe to each other. With a subscription,

one site expresses its interest to get notified about

newly created files. The following client appli-

cation gdmp host subscribe has to be used

providing remote host name as well as the remote

port name as parameters. In order to be sure that

a remote server is running and listening on the

correct port, the tool gdmp ping can be used to

probe the remote server.

3. In the next step, files need to be registered

in the local file catalogue using the command

gdmp register local file which regis-

ters either individual files or entire directories.

4. Once files are registered locally, they can be

published to all subscribed sites with the tool

gdmp publish catalogue. Note that this

does not include any file transfer but only replica

and location information are exchanged.

5. At the remote site, a server receives a notifica-

tion message about all new files and can also fur-

ther call a script locally. In principle, once a re-

mote server is notified, the file transfer process

can be started with gdmp replicate get and

all files from the import catalogue are requested

from remote sites and transferred to the local site.

All transfer information like file size and network

utilisation is logged in a log file. Several parallel

6A proxy can be gained via the Globus tool grid-proxy-

init.

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 131

clients can be started too in order to optimise net-

work traffic for un-tuned network connections. 7

For all the client commands filters can be ap-

plied and one has to distinguish between flat files

and Objectivity database files. Filters on import

and export catalogues can be assigned with the tool

gdmp filter catalogue.

6. Performance considerations and results

There are several ways to evaluate a file replication

system and we just mention a few of them: does it

satisfy the user requirements? Is it secure enough and

can one trust users at distributed sites in the Data Grid?

Is the performance okay? In the development process

of GDMP we first put emphasis on functionality. Since

Grid tools are still rather new, this question is reason-

able and we showed that Grid tools can be used for

file replication and at the same time satisfy basic user

needs. Once the file transfer works correctly, one can

start to optimise the actual transfer of data over the

network.

GDMP is designed to replicate a set of files to a

remote site. In principle, there are two basic methods

to optimise file transfer for several files in a multi-user

environment with data traffic over the Internet:

– Optimise the transfer of a single file and get as

much network bandwidth as possible: This is

achieved by using several parallel streams for a

single file transfer and optimised TCP buffer sizes.

We report on details of TCP buffer size tuning

in [14]. It has the advantage that a single file gets

transferred fast by using a large percentage of the

possible throughput of a network link but has the

disadvantage that other, concurrent network trans-

fers get lower bandwidth rates.

– Parallel client transfers: This is the conventional

and easier way to transfer a set of files efficiently.

Our experience has shown that 5 to 10 parallel

client transfers (using gdmp replica get) can also

saturate the throughput of a network link. As our

results indicate, this is true for wide-area connec-

tions but not really significant for local-area trans-

fers.

7An un-tuned network connection is a data transfer link where

default or non-optimal buffer sizes are used.

Here, we only report on performance results of the

parallel clients and refer the to [1,14] for GridFTP per-

formance results for parallel streams within a single

client transfer.

GDMP 2.0 has been developed and tested on Linux

RedHat 6.1 and 6.2 using the C++ compilers gcc-

2.91.66 and gcc-2.95.2. We measured the latency for

the whole replication process of a number of files on

local as well as the wide-area networks. Note that the

file replication process consists of several steps like

CRC check sum calculation, registration of files in cat-

alogues and notification of remote sites and thus has

a small overhead compared to the raw transfer of the

file. Our performance results here focus on the entire

replication process.

For the LAN tests within CERN’s computer centre

we used two Linux PCs (RedHat 6.2, kernel 2.2.19-

6.2.7), 800 MHz, 100 Mbps network). We transferred

files with the size of 273 MB and compared the transfer

speed for a single client and for two parallel clients.

We obtain the following result. Note that all the tests

are done with default configurations of the GridFTP

servers and buffer sizes on all machines.

single file transfer 2 parallel clients

transfer speed in s [91–134] [220–240]

transfer in MB/s [2–3] [2.2–2.4]

validation time in s 50 150

registr./notific. in s 1 1

During the tests the machine was in use by a few

users who used parts of the CPU time temporarily.

This is a valid assumption also for a Grid with several

users. We did several tests and the transfer results

are in the span given in brackets. We can derive that

for fast network connections (over the LAN) there is

hardly any performance gain for parallel clients since

a single client utilises already much of the network

link as well as of the disk I/O rate. The maximum

theoretical throughput of the disk on both machines is

about 4.4 MB/s. Furthermore, the GDMP client uses a

rather high amount of CPU (between 10 to 40 percent)

as compared to WAN tests (see below) with about 2 to

4 percent CPU time.

The WAN test was done with one of the above CERN

machines (Geneva, Switzerland) and a Linux PC (Red-

hat 6.1, kernel 2.2.16-3,Pentium III, 863 MHz,512 MB

RAM, 100 Mbps Ethernet network card) in Fermilab,

near Chicago, USA. The network link to Chicago has

a theoretical maximum throughput of 45Mbps. We

tested several single and parallel clients in order to get

maximum throughput from the network link for a set

132 H. Stockinger et al. / Grid Data Mirroring Package (GDMP)

1 2 3 4 5 6 7 8 9 10
200

400

600

800

1000

1200

1400

1600

Clients

T
h
ro

u
g
h
p
u
t
 [
K

B
/s

e
c
]

raw FTP
GDMP

Fig. 4. Comparison of several parallel clients transferring 200 MB files over the transatlantic link Chicago-Geneva. Note that the 10 parallel

clients transferred data in the morning (European time) while all other transfers were in the evening (European time). This shows again the

fluctuation of network throughput. The two graphs correspond to the raw FTP transfer time (FTP) and the aggregated replication process (GDMP)

including validation, registration, etc. A single GSI-FTP stream gave between 220 tp 260 KBs depending on the day time.

of files. Figure 4 shows the pure FTP rates as well as

the aggregated GDMP transfer rates including valida-

tion, registration and notification of files. The graph

shows that with increasing number of parallel clients

the throughput of a single client decreases whereas

the aggregated throughput for several parallel clients

approaches to a maximum bandwidth utilisation with

about 8 to 10 parallel clients. With a higher number of

parallel clients, the gained throughput is only marginal.

Our results show with checksum caching and smart

dummy attach methods (a common trick to attach files

to an Objectivity federation), we get almost the same

aggregate throughput with GDMP as with plain, sin-

gle GSI-FTP transfer stream. Hence, GDMP provides

much more automated and reliable replication with tol-

erable overhead.

To conclude, GDMP’s data mover module and thus

the overall transfer performance of GDMP client trans-

fers depends on the underlying file transfer implemen-

tation, the network topology and the tuning of the net-

work. Thus, performance tuning is not a real issue for

GDMP and thus we claim that network performance

needs to be provided by underling Grid tools (e.g. a file

transfer service). GDMP’s responsibility is to interface
with a given service.

7. Conclusion and future work

GDMP is now part of the official DataGrid soft-
ware system and will be used in first DataGrid testbed
in the last quarter of 2001. Furthermore, GDMP has
been in production use at several sites (CERN, Cal-
tech (Pasadena, CA), Fermilab (Chicago, IL), Pisa,
Moscow, San Diego, Wisconsin) in the CMS experi-
ment to transfer almost a Terabyte of data in total.

Our experience has shown that new technology like
Grid tools can be combined and used efficiently for
data replication in a wide-area distributed environment.
The work on GDMP is continuing and we will add
more fault tolerance and failure recovery to our future
releases.

Acknowledgement

Several people have contributed with useful discus-
sions, comments and help to the success of GDMP. In

H. Stockinger et al. / Grid Data Mirroring Package (GDMP) 133

particular we want to thank our colleagues in the CMS

experiment in Europe and in the US, our colleagues in

the DataGrid project and in particular the Data Man-

agement work package and also our colleagues in the

PPDG project as well as in the Globus team. Thank

you to Andrea Domenici and James Amundson for their

contribution to the software.

References

[1] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C.
Kesselman, S. Meder, V. Nefedova, D. Quesnel and S. Tuecke,

Secure, Efficient Data Transport and Replica Management

for High-Performance Data-Intensive Computing, 18th IEEE

Symposium on Mass Storage Systems and 9th NASA Goddard

Conference on Mass Storage Systems and Technologies, San

Diego, April 17–20, 2001.

[2] B. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salis-

bury and S. Tuecke, The Data Grid: Towards an Architecture
for the Distribute Management and Analysis of Large Scien-

tific Datasets, Journal of Network and Computer Applications:

Special Issue on Network-Based Storage Services 23(3) (July

2000), 187–200.

[3] European DataGrid Project: http://www.eu-datagrid.org.

[4] Data Management Work Package in EDG: http://grid-data-

management.web.cern.ch/grid-data-management.
[5] The Globus Project(tm), http://www.globus.org.

[6] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A Security

Architecture for Computational Grids, 5th ACM conference

on Computer and Communications Security, San Francisco,

California, November 2–5, 1998.

[7] I. Foster, A. Roy and V. Sander, A Quality of Service Archi-

tecture that Combines Resource Reservation and Application

Adaptation, 8th International Workshop on Quality of Service,
Pittsburgh, June 5–7, 2000.

[8] J. Gray, P. Helland, P. O’Neil and D. Shasha, The Dangers

of Replication and a Solution, ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec,

Canada, June 4–6, 1996.

[9] Particle Physics Data Grid project (PPDG): http://www.ppdg.

net.

[10] M. Hafeez, A. Samar and H. Stockinger, A Data Grid Pro-

totype for Distributed Data Production in CMS, VII Interna-

tional Workshop on Advanced Computing and Analysis Tech-

niques in Physics Research (ACAT2000), Chicago, Illinois,

October 2000.

[11] A. Hanushevsky, Obejectivity/DB Advanced Multi-threaded

Server (AMS) www.slac.stanford.edu/∼abh/objy.html, April

2000.

[12] W. Hoschek, J. Jean-Martinez, P. Kunszt, B. Segal, H.

Stockinger, K. Stockinger and B. Tierney, Data Management
(WP2) Architecture Report – Design, Requirements and Val-

uation Criteria, DataGrid-02-D2.2-0103-1 2, http://grid-data-

management.web.cern.ch/grid-data-

management/docs/DataGrid-02-D2.2-0103-1 2.pdf, Geneva,

Sept 19, 2001.

[13] A. Samar and H. Stockinger, Grid Data Management Pilot

(GDMP): A Tool for Wide Area Replication, IASTED Inter-

national Conference on Applied Informatics (AI2001), Inns-
bruck, Austria, February 19–22, 2001.

[14] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman

and B. Tierney, File and Object Replication in Data Grids, 10th

IEEE International Symposium on High Performance and Dis-

tributed Computing (HPDC-10), San Francisco, California,

August 7–9, 2001.

[15] H. Stockinger and A. Hanushevsky, HTTP Redirection for

Replica Catalogue Lookups in Data Grids, to appear in ACM

Symposium on Applied Computing (SAC2002), Madrid, Spain,

March 10–14, 2001.

[16] H. Stockinger, A. Samar, S. Muzaffar, F. Donno and A.

Domenici, Grid Data Mirroring Package (GDMP): User Guide

for GDMP 2.0, http://cmsdoc.cern.ch/cms/grid, October 2001.

[17] T. Wildish, Accessing Objectivity catalogues via the web,

http://wildish.home.cern.ch/wildish/Objectivity/scripts.html.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

