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Abstract

A new approach to local nonlinear image restoration is described, based on ap-

proximating functions using a regular grid of points in a many-dimensional space.

Symmetry reductions and compression of the sparse grid make it feasible to work

with twelve-dimensional grids as large as 2212. Unlike polynomials and neural

networks whose filtering complexity per pixel is linear in the number of filter co-

efficients, grid filters have O(1) complexity per pixel. Grid filters require only a

single presentation of the training samples, are numerically stable, leave unusual

image features unchanged, and are a superset  of order statistic filters. Results are

presented for additive noise, blurring, and superresolution.
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Chapter 1

Introduction

1.1 Motivation and structure

Image restoration is the problem of recovering images which have been degraded

by blurring and noise. Since imaging devices are never perfect, there are many

applications for image restoration: astronomy, medical imaging, remote sensing,

and microscopy are but a few.

Techniques for image restoration can be loosely grouped into two categories:

local and global. Local filters restore an image one pixel at a time, using information

from surrounding pixels. In global restoration techniques, each pixel contributes to

the restoration of every other pixel. As a general rule (and there are exceptions),

local filters are fast but do not yield very good results; global filters are slow but

are capable of astonishingly good results.

In this thesis, a new approach to local image restoration is developed. This

method is based on approximating functions of many variables on a multidimen-

sional grid of points, hence the name Grid Filters. These filters generate excellent

restoration results and are comparatively fast.

1.1.1 Structure of this thesis

Chapter 1 covers background material which is assumed in subsequent chapters.

The origin of blurring and noise in imaging systems is briefly described, as are some

common mathematical models. Some popular local image restoration techniques

are explained in detail, and a few important global algorithms are mentioned. Com-

mon measures for comparing the quality of restored images are explained. The final

sections argue that local filters are adequate for image restoration in many common

scenarios.

1



CHAPTERl. INTRODUCTION 2

Chapter 2 describes the Grid Filter approach. The theory o f Local Minimum

Mean-Squared  Erro r (LMMSE) filter design is reviewed, and the major differences

between previous approaches and grid filters are pointed out. Grid filters are then

described in detail, with sections devoted to feature selection, the structure of the

grid, interpolation techniques, symmetry assumptions and training.

Chapter 3 presents results for additive noise and blurring (superresolution).

Two approaches for incorporating information from larger neighborhoods (foveated

footprints and hybrid filters) are compared. Several properties of grid filters, such

as passing outliers unchanged and filtering speed are illustrated. The amount o f

training data required for adequate filtering results is determined. The performance

of grid filters on several noise models is evaluated.

Chapter 4 summarizes the important properties and limitations o f grid filters,

and points out some areas for future research.

1.2 The image restoration problem

1.2.1 Common sources of blurring and noise

Blurring is present in any imaging system which uses electromagnetic radiation (for

example, visible light and X-rays). Diffraction limits the resolution o f an imaging

device to features on the order of the illuminating wavelength. Scattering of light

betw een the target object and imaging system (for example, by the atmosphere)

introduces additional blurring. Lenses and mirrors cause blurring because they have

limited spatial extent and optical imperfections. Discretization results in yet more

blurring because devices such as CCDs average illumination over regions rather

than sampling it at discrete points.

Noise is similarly omnipresent: any imaging device must use a finite exposure

(or integration) time, which introduces stochastic noise from the random arrival of

photons. Optical imperfections and instrumentation noise (for example, thermal

noise in CCD devices) result in more noise. Sampling causes noise due to aliasing

of high-frequency signal components, and digitization produces quantization errors.

Further noise can be introduced by communication errors and compression.

Blurring and noise processes can be accurately approximated by mathematical

models. The next sections review some common models for blurring and noise.
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1.2.2 The point-spread function (PSF) model of blurring

Most blurring processes can be approximated by convolution integrals, also known

as Fredholm integral equations of the first kind [4]. The blurring is characterized

by a Point-Spread Function (PSF) or impulse response. The PSF is the output of

the imaging system for an input point source. All the blurring processes considered

in this thesis are linear and have a spatially invariant PSF.

For discrete image processing, the convolution integral is replaced by a sum.

The blurry image x(n,m)  is obtained from the original image s(n,m)  by this con-

volution:

x(n,m) =  E E s(n+a,m+b)h(-a,-b)

c& =-co  b=-m
(1 1).

The function h(n, m) is the discrete Point Spread Function for the imaging system.

Also of interest is the Discrete Fourier Transform (DFT) representation of the

point-spread function, given by

N - l  M - l

foru= L-N/21+1,..., LN/2] and u = L-AI/2] +I,. . . , LAI/2].  H(u, u) gives a set

of coefficients for plane waves of various frequencies and orientations. These plane

waves, called spatial frequency components, reconstruct the PSF exactly when mul-

tiplied by the coefficients H(u, u) and summed. The function H(u, u) is referred to

as the transfer function, or system frequency response. By examining 1 H(u, u) 1, one

can quickly determine which spatial frequency components are passed or attenuated

by the imaging system.

As an example, consider this 3x3 mask which can be used to model small

amounts of blurring:

1

[

1

- 2
15

1

2

3

2

1

2

1 1 (13).

The DFT of this mask is:

H(u,u) = - 3 + 4~0sI’c, [ (F) +4cos (9 +4cos (29 COS (91 ( 1 . 4 )

Figure 1.1 shows a plot of IH(u,u)l. Near (u,u) G (O,O), the transfer function has
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0.8

Figure 1.1: IH( u, u)I for a 3x3 blurring mask, with N = A4 = 33

1 H(u, u) 1 G 1. This indicates that low -frequency components are passed. Near the

perimeter of the plot, I H(u, v)I G 0, meaning that high frequency components are

blocked.

1.2.3 Noise models

Noise in imaging systems is usually either additive or multiplicative. This thesis

deals only with additive noise which is zero-mean and white. White noise is spatially

uncorrelated: the noise for each pixel is independent and identically distributed

(iid). Common noise models are:

a Gaussian noise provides a good model of noise in many imaging systems

[5]. Its probability d ensity function (pdf) is:

1 r2- -
Pn(n>  = me u2 (15).

The Gaussian distribution has an important property: to  estimate the mean

of a stationary Gaussian random variable, one can’ t do  any better than the

linear average. This makes Gaussian noise a worst-case scenario for nonlinear

image restoration filters, in the sense that the improvement over linear filters

is least for Gaussian noise. To  improve on linear filtering results, nonlinear

filters can exploit only the non-Gaussianity of the signal distribution.

a Laplacian noise (also called biexponential) which has this pdf:
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0.8

0.7 -

0.6 -

I I

- Gaussian

El

- - Laplacian

Uniform

&0.5  -.C
E

S

pro.4  -

3

8
L 0.3-

0.2 -

0.1 -

0--
_ - - -

- 2 0 216 - 4 6

Figure 1.2: Probability density functions o f the Gaussian, Laplacian and Uniform

distributions

(16).

Nonlinear estimators can provide a much more accurate estimate of the mean

of a stationary Laplacian random variable than the linear average [6].

a Uniform noise is not often encountered in real-world imaging systems, but

provides a useful comparison w ith Gaussian noise. The linear average is a

comparatively poor estimator for the mean of a uniform distribution. This

implies that nonlinear filters should be better at removing uniform noise than

Gaussian noise. The Uniform pdf is given by:

{

--& forIn  < a&
PnCn> = o -

else

Figure 1.2 illustrates these PDFs for zero-mean, unit variance noise.

1.3 Literature review

(1 7).

Image restoration is difficult since it is an ill-posed inverse problem: there is not

enough information in the degraded image to determine the original image unam-

biguously. The problem has received steady attention since the 1960s and tech-

niques for its solution continue to be proposed. This section explains the popular
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local image restoration techniques in detail. A few important global techniques are

described briefly.

1.3.1 Order statistic filters

Given N observations X1, X2, . . . , XN o f a random variable X, the order statis-

tics are obtained by sorting the {Xi} in ascend ing o rder. This pro duces {Xc;)}

satisfying:

x(1) 5 x(2) 5 ... < X(N)- (18).

The {Xc,)}  are the order statistics of the N observations [8]. An O rder Statistic

Filter (OSF) is a estimator F(Xr,Xa,.  . . , XN)  of the mean of X which uses a linear

combination of order statistics:

F&,X2,  l l l ,xN) = %X(I)  + a2X(2)  + l l l + aNX(N) (19).

Order Statistic Filters have long been known to  statisticians as L-estimators, but

w ere re-christened and applied to  image processing problems by Bovik et. al. [6].

Some common filters which fit the order statistic filter framework are:

a The linear average, which has coefficients

a; = l/ N

a The median filter, which has coefficients

a; =
1 i = (N + 1)/2

0 o therw ise

(1.10)

(1.11)

For image processing applications, N is almost always odd, so the question of

how to handle even values of N is avoided.

a The trimmed mean filter. which has coefficients

a; =
l/M (N - M + 1)/2 < i < (N + M + 1)/a- -
0 otherwise

(1.12)

For any distribution, one can determine the optimal coefficients {a;} by minimizing

the criterion function
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Coefficient Gaussian Laplacian Uniform

a1 0.11111 -0.01899 0.50000

a2 0.11111 0.02904 0.00000

a3 0.11111 0.06965 0.00000

a4 0.11111 0.23795 0.00000

a5 0.11111 0.36469 0.00000

a6 0.11111 0.23795 0.00000

a7 0.11111 0.06965 0.00000

a8 0.11111 0.02904 0.00000

a9 0.11111 -0.01899 0.50000

Table 1.1: OSF filter coefficients for N = 9

J(a) = E [(aTX - P)~] (1.13)

where a is the vector of order statistic filter coefficients, X is the vector of order

statistics, and p is the mean of the random variable X. It turns out that the linear

average is optimal for the Gaussian distribution. Table 1.1 gives OSF coefficients

for Gaussian, Laplacian and Uniform noise, for the case N = 9. Bovik [6] lists

optimal coefficients for several other distributions.

An aspect of order statistic filters which turns out to be important for Grid

Filters is that they are @cewise  linear. The filter partitions RN into N! regions of

the form

xj, 5 xj, 5 . . . < XjN- (1.14)

where (jl,j2,  l l l ,jN) is a permutation of (1,2,. . . , N). Over each of these regions,

the filter output is a linear function (1.9).

To apply an order statistic filter to an image, one typically uses 3x3, 5x5 or

7x7 windows. For non-Gaussian noise, the optimal OSF is superior to taking a

local average for flat regions. The main problem with such filters is the underlying

stationarity assumption: the derivation of the OSF assumes that X is a stationary

point process, an assumption which is grossly violated if there is an edge, line, or

other strong signal activity in the window. Figure 1.3 illustrates this for a test

image degraded by additive white Gaussian noise with o2 = 400. The median

filter (lower left) preserves edges (the checkerboard and the bagel), but wipes out

fine details (the text and lines). The 3x3 average, which is the optimal OSF for

Gaussian noise, blurs too much.

These limitations motivated the development of the Adaptive Trimmed Mean
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Test image After adding white

Gaussian noise o2 = 400

After 3x3 median filtering After 3x3 average

Figure 1.3: Effect of local averages and median filters on fine details
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Filter [9], which makes the assumption that the signal is smoothly varying within

the local window. When the signal varies slowly within the window, the filter

behaves like a trimmed mean. When an abrupt transition is detected, the filter

behaves like a median, which preserves edges. Unfortunately, the median filter also

destroys fine details, as illustrated in Figure 1.3. Another extension of OSFs to the

nonstationary case, called a Permutation Filter or or p-filter [lo], has apparently

not yet been tested on image restoration problems.

1.3.2 Lee’s local statistics filter

The Lee filter [ll] is able to smooth away noise in flat regions, but leave fine details

(such as lines and text) unchanged. It uses small windows (3x3,5x5  or 7x7). Within

each window. the local mean and variance are estimated:

1 N
5x- x;

N Ix
i=1

1 N
2

ox = ~X(x; - q2

N - 1 i=l

(1.15)

In regions of no signal activity, the filter outputs the local mean (z). When signal

activity is detected, the filter passes the original signal through unchanged. This is

achieved by filters of the form

F(Xl,-, XN) = pxl + (1 - p)z (1.16)

where x1 is the central pixel in the window. The parameter /? ranges between 0 (for

flat regions) and 1 (for regions with high signal activity). For the additive noise

case, this formula for /? is used:

/?=max(““,“;O) (1.17)

where ai is an estimate of the noise variance.

The Lee filter senses when it is being applied to a region which is constant in

intensity, and responds by smoothing. In regions which contain signal activity (for

example, lines and edges), the Lee filter shuts down its smoothing. The Lee filter

can thus smooth in flat regions but still preserve sharp details. Its major drawback

is that it leaves noise in the vicinity of edges and lines (Figure 1.4). Variants of this

filter handle multiplicative noise and sharpening [ 111.
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Test image with AWGN After Lee filter with

O2 = 400 5x5 window. MSE=202

Figure 1.4: Lee filter example

1.3.3 The W iener filter

The Wiener filter is the MSE-optimal stationary linear filter for images degraded by

additive noise and blurring. Calculation of the Wiener filter requires the assumption

that the signal and noise processes are second-order stationary (in the random

process sense).’ For this description, only noise processes with zero mean will be

considered (this is without loss of generality).

Wiener filters are usually applied in the frequency domain. Given a degraded

image x(n,m),  one takes the Discrete Fourier Transform (DFT) to obtain X(u,u).

The original image spectrum is estimated by taking the product of X(u,u)  with

the Wiener filter G(u,u):

$(u, u) = G(u, u)X(u,  u) (1.18)

The inverse DFT is then used to obtain the image estimate from its spectrum. The

Wiener filter is defined in terms of these spectra:

H(u,u) Fourier transform of the point-spread function (PSF)

Ps(u, u) Power spectrum of the signal process, obtained by

taking the Fourier transform of the signal autocorrelation

P,(u, u) Power spectrum of the noise process, obtained by

taking the Fourier transform of the noise autocorrelation

The Wiener filter is:

‘A  random p recess is second-order stationary if the expected value of any quadratic function of

the process random variables is invariant under shifting. This guarantees that the autocorrelation

is well-defined.
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q-b +qu, u)
G(u7u’  = ~H(u,~)~~P,(u,u)  + p,(u,u)

Dividing through by P, makes its behaviour easier to explain:

H* (UT 4
G(u7u’ = IH(u,u)~~  + w?

11

(1.19)

(1.20)

The term P,IP,  can be interpreted as the reciprocal of the signal-to-noise ratio.

Where the signal is very strong relative to the noise, P,IP, G 0 and the Wiener

filter becomes H-'(u, u) - the inverse filter for the PSF. Where the signal is very

weak, P,IP, + 00 and G(u,u>  + 0.

For the case of additive white noise and no blurring, the Wiener filter simplifies

to ..

5 (UT 4
G(u7u) = Ps(u,u) + 0;

(1.21)

where ai is the noise variance.

Wiener filters are unable to reconstruct frequency components which have been

degraded by noise. They can only suppress them. Also, Wiener filters are unable

to restore components for which H(u,u) = 0. This means they are unable to

undo blurring caused by bandlimiting of H(u, u). Such bandlimiting occurs in any

real-world imaging system.

Obtaining P, can be problematic. One can assume that P, has a parametric

shape, for example exponential or Gaussian. Alternately, P, can be estimated

using images representative of the class of images being filtered. For Wiener results

presented in this thesis, P, was calculated from image to be filtered: P, was assumed

to be radially symmetric, i.e. Ps(u,u)  = Ps(p) and was estimated by averaging over

30 radial frequency bands. Linear interpolation was used to give P, a smooth shape.

Figure 1.5 shows a Wiener filter result. The small test image has very strong

high-frequency components, so the Wiener filter leaves lots of residual noise. If

the test image, which is 64x64, is centered in a 256x256 empty image, the relative

power of those high-frequency components is diminished by the large amounts of

empty space. The Wiener filter then elects to attenuate high-frequency components

to reduce noise in the empty regions. This results in blurring over the small 64x64

subimage  (Figure 1.6). Although the MSE over the 256x256 image is quite small,

the MSE over the 64x64 test region increases from 400 to 1232. This illustrates

an important point about using MSE as a criteria for global filtering: regions are

given priority for restoration according to how large they are, rather than their
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Test image with AWGN

o2 - 400
n-

After Wiener filtering

MSE=340

P’igure 1.5: Example or vv iener  filtering

Test image with AWGN After Wiener filtering

o2 - 400
n-

MSE=121  (256x256 image)

but centered inside a MSE=1232  (portion shown)

256x256 empty image

Figure 1.6: Another example of Wiener filtering

visual importance.

Wiener filters are comparatively slow to apply, since they require working in

the frequency domain. To speed up filtering, one can take the inverse FFT of the

Wiener filter G(u, u) to obtain an impulse response g(n,  m). This impulse response

can be truncated spatially to produce a convolution mask. The spatially truncated

Wiener filter is inferior to the frequency domain version, but may be much faster.

1.3.4 Global iterative approaches

Local filters use information from a local neighborhood to restore pixels one at a

time. In contrast, global filters use information from the entire image to restore

each pixel. To achieve this, there must be a mechanism for information to travel
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between every pair of pixels. Wiener filters achieve this by using the frequency

domain representation of the image, in which each Fourier coefficient is affected

by the value of almost every pixel. Most global filtering approaches achieve it

through iteration: at each step, information propagates locally. Many iterations

allow information to propagate globally.

A shortcoming of global iterative approaches is that they tend to be quite slow.

Some of the algorithms which generate impressive results require hours to filter a

single image. For this reason, parallel implementations of these algorithms have

been explored.

Most of the algorithms are quite complicated, which makes comparison with

them difficult. Implementing some of the newer approaches would be a worthy

thesis on its own. For this reason, the most successful global iterative approaches

are briefly described here and not mentioned again.

Adaptive filters extend the notion of linear filters by allowing for coefficients

which change according to local image properties. The most popular of these are

adaptive recursive filters [12,  13, 14, 15, 161 w ic are based on difference equationsh’ h

with adaptive coefficients. Such filters are able to smooth over very large regions,

but can adapt quickly to local signal characteristics. These approaches require many

iterations to converge to a solution of the difference equations. Some attempts have

been made to adapt multigrid techniques [17, 181 for image restoration. Multigrid

methods hold the promise of global algorithms which have complexity 0(N2)  for an

NxN image (i.e. linear in the number of pixels). Non-multigrid adaptive recursive

approaches generally have complexity with a lower bound of w( N3).2

Another family of image restoration techniques are based on Markov Random

Fields and “annealing” techniques [19, 20, 21, 221.  Annealing techniques are in-

spired by physical systems which settle into low-energy states as they cool. Loosely,

these techniques make small random changes to an image based on a gradually de-

creasing “temperature” parameter. At initial high temperatures, the changes are

very large. As the temperature is lowered, the changes become smaller. These

changes are directed toward maximizing an objective function. The objective func-

tion is based on the posterior probability and an assumed Markov Random Field

(MRF) model for the image. The image tends to settle into a “low energy state”

which corresponds to a mode of the MRF model. Quite astonishingly good results

have been achieved using these approaches, but they are extremely slow. Parallel

versions of these methods have been implemented in an attempt to reduce filtering

time [23, 241.

2This  is betause each iteration requires 0(N2)  operations, and at least O(N) iterations are

required for information to traverse the length of the image.



CHAPTER 1. INTRODUCTION 14

Re g u l ar i z ati o n  m e th o d s  [4, 25, 261 g dre ar image restoration as an ill-posed in-

verse problem. Such problems can not be solved by direct inversion, because the

solution is highly unstable. To stabilize the inversion, a stabilizing functional is in-

troduced. A typical restoration problem involves blurring and additive noise. This

process can be written in matrix form as:

x = H s + n (1.22)

where s is the original image, H is a matrix representation of the Point Spread Func-

tio n (PSF), n is the noise, and x is the observed signal. The matrix H is typically

ill-conditioned or singular, so that evaluating H-l x is problematic. In a regulariza-

tion approach, one introduces additional constraints based on assumptions about

the signal model. Some common approaches are:

a First-order (Tikhonov) regularization finds s to minimize

llHs - XII2 + Allsll2 (1.23)

This approach selects the solution with minimum energy. Replacing the term

llsl12 with more general terms of the form llLsl12 can introduce restrictions on

smoothness and other quantities of interest.

a Maximum entropy methods [27, 28, 291 which maximize functionals of

the form -sTZn(s) subject to

llHs - XII2 = llnl12 (1.24)

Maximum entropy methods have been particularly popular for medical image

reco nstructio n.

1.4 The importance of priors

A useful analogy may be drawn between lossless compression and image restoration.

In lossless compression, compression of some signals is achieved only at the expense

of making other signals longer. One has to design the algorithm so that commonly

occurring signals are compressed, and uncommon signals are lengthened. Similarly

in image restoration, improvement in some images is obtained by worsening others.

To ensure that typical images are improved, the image restoration scheme must

incorporate prior knowledge of the statistical properties of the target class of images.
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These priors are crucial to achieving a good restoration result. The success

of a filter depends primarily on the accuracy of its priors. Thus order statistic

filters, which make wildly unrealistic assumptions about the signal (namely, that

it consists entirely of flat regions) have comparatively poor performance. Wiener

filters, which implicitly assume Gaussian priors, generally do a bit better. Lee’s

filter assumes a mixture of flat and detail regions, which is more realistic. But

by far the best results are achieved by filters which learn the priors, rather than

assuming them. Such filters are able to exploit very detailed, accurate knowledge of

the signal statistical properties. Examples include Gauss-Markov Random Fields,

Vector Quantization, Neural Networks and the Grid Filters developed in this thesis.

1.5 Measures of image quality

Comparing restoration results requires a measure of image aualitv. Two commonly
I LJ I LJ I c!

used measures are Mean-Squared Error and Peak Signal-to-Noise

mean-squared error (MSE) between two images g(x,y) and i(x,y

Ratio [30]. The

~MSE = &  F F [i (n,m)  - g(n,m)12
n=l  m=l

One problem with mean-squared error is that it depends strong

(1.25)

y on the image

intensity scaling. A mean-squared error of 100.0 for an &bit  image (with pixel

values in the range O-255) looks dreadful; but a MSE of 100.0 for a lo-bit image

(pixel values in [0,1023])  is barely noticeable.

Peak Signal-to-Noise Ratio (PSNR) avoids this problem by scaling the MSE

according to the image range:

PSNR = -lOlog10 F (1.26)

where S is the maximum pixel value. PSNR is:neasured in decibels (dB). The

PSNR measure is also not ideal, but is in common use. Its main failing is that

the signal strength is estimated as S2, rather than the actual signal strength for

the image. PSNR is a good measure for comparing restoration results for the same

image, but between-image comparisons of PSNR are meaningless. One image with

20 dB PSNR may look much better than another image with 30 dB PSNR.

MSE and PSNR figures provided in this thesis were calculated after quantization

(i.e. after converting floating-point pixel values to integer), but before clipping of

the intensity range.
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PSNR = 40 dB PSNR = 30 dB PSNR = 20 dB

PSNR = 10 dB PSNR = 0 dB

Figure 1.7: Illustration of the PSNR measure

Frequency-domain SNR behaviour

PSNR reduces image quality to a single number. If the number is low, it offers

no information about what parts of the signal have been lost. To analyze the

restoration more carefully, it is useful to work in the frequency domain. Looking

at the signal-to-noise ratio as a function of spatial frequency gives a breakdown of

filter performance for features of various scales. One can immediately see whether

a filter has trouble with fine or large-scale features.

The Discrete Fourier Transform (DFT) representation of an image g(n,m) is

given by:

N - l  M - l

G(u,u) = x x g(n,m)em2”j(F+F) (1.27)
n=O m=O

For the purpose of looking at frequency-domain SNR behaviour, it is useful to lump

together the coefficients according to normalized spatial frequency, given by:

-x l J N2u2 + M2u2--
M2N2

(1.28)
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x-l- 0 1- .
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X-l = 0.25

Figure 1.8: Spatial frequency components of various wavelengths and orientations

The range of A-’ is [0, $1. The inverse of the normalized frequency (A) gives the

wavelength of the spatial frequency component. The DC component (or average)

of an image corresponds to A-’ = 0. Features on the scale of ten pixels would have
-

x l G 0.1 (A G lo), and very fine detailed features (on the scale of 2 pixels) have
-

x l G 0.5. The highest possible frequency is A-’ = 5 - this corresponds to a

checkerboard pattern. Figure 1.8 illustrates some spatial frequency components of

various wavelengths and orient ations.

Let s(n,m)  be the original image and x(n,m)  be a degraded version. To cal-

culate SNR as a function of spatial frequency, the first step is to calculate the

difference image:

d(n,m) = s(n,m)  - x(n,m) (1.29)

Then Fourier transforms of s(n,  m) and d(n,m) are taken, producing S(u,u) and

D( u, u). The frequency domain is then divided into nonoverlapping frequency bands

of the form B; = [A;’ , A$). Figure 1.9 illustrates this for a sample image. The

average band power Ps( B;) is calculated by averaging IS(u, u)12 over all (u, u) in the

band. The average power for the difference image, Pd(B;) is calculated similarly.

The signal-to-noise ratio for each band can then be calculated as:
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ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstvwxyz
1234567890-=’ !@#$ Y&&y>  +N[]\()l;  l:‘ry./<>?-

Test image: documents/palatinoMpt.vip

Fourier spectrum power, with band delimiters superimposed

Figure 1.9: Illustration of how the frequency domain is divided into nonoverlapping

bands

SNR(B;) = p,o
pd(B;)

(1.30)

This SNR ratio can be plotted as a function of normalized spatial frequency. Fig-

ure 1.10 shows such a plot for the image of Figure 1.9 degraded by additive white

Gaussian noise with o2 = 400. This plot illustrates that there is little difference

between the Wiener and Lee filter result for low frequencies (X-l G 0.1). However,

for higher frequencies (0.3 < X-- ’ < 0.7) the Lee filter has much better performance.-
These SNR plots can be somewhat deceptive, since they do not convey how

much noise is left in each band. From Figure 1.10, one might conclude that the

very high frequency bands (0.5 < X-l 5 0.7) need improvement the most, since

they have the lowest SNR. A better  approach is to look at how the total MSE is

distributed over frequency bands (Figure 1.11). The top plot shows how each band

contributes to the total MSE for the raw image. Since additive white noise has a

flat power spectrum, the contribution of each band is proportional to its area in the

frequency domain. From the bottom plot, it is clear that comparatively little noise

remains in the very high and very low frequency bands. The bands 0.1 < A-' < 0.5- -
need the most improvement.

The frequency-domain SNR still does not give a complete picture of the image

restoration result. For example, it does not distinguish between visually important

and unimportant features. For this reason, it is important to look at the images

themselves for a subjective estimate of image quality.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7
Normalized spatial frequency

Figure 1.10: Example signal-to-noise ratio plot

0.2 0.3 0.4 0.5 0.6 0.7
Spatial frequency band

After 3x3 Lee filter

I I I I I I

"0 0.1 0.2

Figure 1.11: Example plot showing

The top figure illustrates that noise

0.3 0.4
Spatial frequency band

0.5 0.6 0.7

how MSE is distributed over frequency bands.

power is proportional to band area.
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1.6 Are local filters good enough?

Most image degradations have global effects. For example, blurring caused by

optical limitations of an imaging system has a point-spread function which is (the-

oretically) infinite in extent: a single point of light gets smeared over the entire

image domain. The power spectrum of additive white noise covers the entire fre-

quency domain evenly: there are low, medium and high-frequency components to

the noise.

Given these observations. it is reasonable to wonder if local filters are sufficient

to restore an image. For the case of additive noise, a strong argument can be made

that local filters are sufficient.

1.6.1 Additive noise is primarily a local process

Consider an image degraded by zero-mean, Additive White Gaussian Noise (AWGN)

with variance ai. The power spectrum of the noise is:

P,(u,u) = 0; (1.31)

The noise has the same power (a:) everywhere in the frequency domain. One might

conclude from this that all spatial frequencies are affected equally by the noise, but

this is misleading.

Figure 1.12 illustrates the noise power spectrum. Low frequencies lie (roughly)

inside the circle X = 10 (A is the wavelength of the frequency component, in pixels).

The amount of noise power inside this circle can be approximated by comparing its

area to the area of the transform. The circle area is ~(l/lO)~  G 0.0314. The domain

of the transform is [-0.5, +0.512, which has area 1. So the fraction of noise which lies

at wavelengths above 10 pixels is only 0.0314, or about 3%. Similarly, only 12.6%

of the noise lies at wavelengths above 5 pixels. The signal strength is typically very

strong for wavelengths below 10 pixels, so the effect of the low-frequency noise on

the signal-to-noise ratio is minor.

From these arguments, one can conclude that additive white noise is primarily

a local phenomenon. This implies that the use of a local filter to remove additive

noise is reasonable.
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Figure 1.12: Frequency-domain view of additive noise



Chapter 2

Theory and Implementation

2.1 Local MMSE Nonlinear Filters

Local filters use pixels from a local neighborhood to restore an image one pixel at

a time. For simplicity, this chapter will work primarily with 3x3 neighborhoods of

pixels, labelled  according to this scheme:

A local filter restores the central pixel x0 using the values of the pixels x0, xl, . . . , x8:

s”o = F(x0, x 11 22, 23, 24, 25, 26, 27, x8> (2 1).

w here s^o  is an estimate o f the original central pixel (before degradation). Linear

functions F give poor results; to restore images well, a nonlinear function is needed.

This nonlinear function might be defined in terms of polynomials, neural networks,

or other function approximate schemes. To restore an entire image, the operator

is scanned across the image and each pixel is restored individually. To justify this

approach, one must assume that the processes generating the image, blurring and

noise are all stationary - in the random process sense that the probability o f a

particular behaviour does not depend on the image coordinates. This kind of sta-

tionarity is called strict sense stationarity. It is easy to find classes of images which

vio late this assumption - pictures of human faces, for example, are nonstationary

in this sense since one is more likely to see eyes in the top of the image than the

bottom. However, even images which violate this assumption will only do so mildly

on the scale of interest, namely small local windows.

22
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Random 3x3

Neighbourhood

Random

Degradation

(Blurring + Noise)

Local Nonlinear

Filter

Estimate of

Central Point

Figure 2.1: Model of the image degradation and restoration scheme.

Figure 2.1 shows the assumed model of the image degradation and restoration

scheme. Uncorrupted 3x3 windows are assumed to have some distribution p(s). A

particular 3x3 window s is drawn from this distribution. This 3x3 window is trans-

formed into a noisy and blurred version x according to some random degradation

p(xls).’  The local nonlinear filter takes the corrupted version x and attempts to

estimate the original central point of the window +&.

Is there an optimal function F? If one uses mean-squared error (MSE) as a

criterion, then there is an optimal F, and it is simply:

F( x0,x1,*-~ X8) =  45 [solx] (2 2).

Unf o rtu nate ly ,  the  M SE- o p tim al  F (2.2)  qre uires distribution functions for the

signal and degradation processes, involves many-dimensional convolutions, and (for

any realistic situation) has no readily expressible form.

The next best thing to finding the MSE-optimal F explicitly is to approximate

it: choose a representation for F (e.g. polynomials), and find the best coefficients.

This approximation w ill be called @. Explicitly minimizing the error betw een the

optimal F and approximation @ is not practical since the optimal F is so unwieldy.

How ever, minimizing the expected mean-squared error o f the approximate filter

also  minimizes the distance
2 
between the approximate filter and the optimal filter.

2.1.1 What sort of approximation should one use

Polynomials and neural networks have both been popular choices for

functio n @. These conventional methods (and their shortcomings)

for I+?

defining the

provide the

‘ Blurring of course relies on pixels which lie outside a local window. However, this does not

pose a problem: the dependence on other pixels can be integrated out. If the blurring depends

on a set of pixels s” which is a superset of s, it is simple to express p(xls) in terms of p(s*) and

p(xls*). Naturally, information from pixels outside the 3x3 window useful in restoring the central

pixel is lost.

2Measured  usi n expected squared differenceg
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motivation for a new approach based on finite element techniques.

Polynomials

In the context of signal processing, polynomial approaches are usually referred to

as (discrete) Volterra series [31]. V Ito erra series are an extension of the impulse

response model of linear systems to the nonlinear case. A first-order Volterra ap-

proximation to F is:

*

F( x0, Xl, l l l 1 x8) = al + @25% + a3x1 + l  l  l  + alOx (2 3).

where the (a;> are basis function coeficients.  Better approximations are obtained

by adding higher-order (quadratic, cubic) terms. The main problem with polyno-

mial bases is that evaluation complexity is linear in the number of basis functions.

Obtaining high-quality results can require thousands of basis functions; such fil-

ters are extremely slow, since restoring each pixel requires evaluating thousands of

polynomial terms. An rth order polynomial basis on N variables requires

basis functions. For example, a 5th-order basis for 9 inputs (a 3x3 window) requires

2002 basis functions. A 5th-order  basis for 25 inputs (a 5x5 window) requires

142506 basis functions. Some progress has been made in reducing the number of

basis functions using tensor-product bases [32] and adaptive polynomial filters [33].

Training polynomial filters is another challenge. Since the polynomial basis func-

tions are not orthogonal, a least-squares approach is not practical because it leads

to a dense system of equations.3 The least-squares equations for 10000 coefficients

of a polynomial basis would require roughly 1 Gb of RAM to store - unrealistic

for most workstations. Adding a single training sample to the least-squares equa-

tions would require updating every single element in this matrix, making training

prohibitively slow. One has to resort to an iterative approach, which means many

passes through the training data.

The use of MSE as a criterion function for polynomials leads to troubles: since

polynomial basis functions cover the entire domain of x, each filter coefficient affects

the performance of the filter for every kind of input signal. This tends to prioritize

3Note that although it is possible to create polynomials bases which are orthogonal under

uniform measure (e.g. Legendre polynomials), creating such bases which are orthogonal under an

unknown density function p$(x) is impossible.
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signal types according to their frequency in the training data, rather than their

visual importance. For example, a filter trained on outdoor scenes will tend to

do very well for flat regions (sky, water, surfaces), but comparatively poorly on

detailed areas which occur less frequently.

Another problem with polynomials is numerical stability. Consider a seventh

order polynomial approximation to @:

*

F( xo,xl,~~=~ X8> = a1+a2xo+a3x1+...

4 3 4 2
+a633592327  + a6336Ox3x7x8

+ . . . (2 4).

Adding first-order and seventh-order terms together can result in substantial nu-

merical errors, since they may differ by 14 orders of magnitude or more for a typical

image. Since floating-point numbers have limited precision, catastrophic cancella-

tions and precision loss result.

A further problem with polynomials is their response to outliers. Polynomial

approximations have wild oscillations and run off to 500 away from the regions

where their behaviour has been specified. When a polynomial filter encounters

something never seen in the training data, the result may be unpredictable (and

undesirable).

2.1.2 Neural Networks

It has been shown that neural networks with a single hidden layer are “universal

approximators”, in the sense that they can approximate any function to any desired

degree of accuracy, provided enough hidden units are used [34]. Local nonlinear

image restoration is essentially a problem of function approximation, so the feed-

forward network is a likely candidate. Neural networks are popular for higher-level

image processing tasks, such as segmentation and edge detection, but comparatively

little work has been done on local nonlinear image restoration [23, 35, 36, 371.  Feed-

forward neural networks share some of the shortcomings of polynomials:

a Evaluation time is linear in the number of coefficients (weights). Achieving

high quality results can require networks with tens of thousands of weights,

so processing an image using such a network is very slow.

a As with polynomials, the response of neural networks to outliers - unexpected

inputs not present in the training set - is unpredictable.
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a Training is very slow, requiring many passes through the training data. The

complexity of processing a single training sample is linear in the number of

network weights. A high-quality result might require tens of thousands of

weights, and training sets can contain millions of samples.4

a Unlike polynomials, neural networks do not have any guaranteed rate of con-

vergence. Although convergence to the optimal F might be guaranteed in the

limit as the number of weights approaches infinity, the rate of convergence

might be slow enough to make such a guarantee meaningless.

2.1.3 A new approach: grid filters

This thesis proposes a new approach to local nonlinear image restoration: the

function F is approximated on a grid of points in an 8 (or more) dimensional space.

These Grid Filters have some useful properties:
A A

Evaluation time is small and constant, regardless of the number of filter co-

efficient s. This means you can get arbitrarily close approximations to the

optimal F, without paying a substantial performance price.5

Unlike neural networks, which require many presentations of the training

samples, grid filters require only a single presentation. This results in faster

training times.

The basis functions used by grid filters affect only a small region of the domain

of fi. This means they do not suffer from the problem which polynomials do

when trained by MSE - signals are not prioritized by their frequency in the

training set.

When the filter encounters outliers (unexpected inputs), it passes them through

unchanged.

Grid filters contain order-statistic filters as a subset; as a consequence, perfor-

mance is guaranteed to be better or equivalent to the optimal order statistic

filter.

4A  typical image contains about 0.25 million pixels. It does not take many training images to

get millions of training samples.

5There  is a sIs‘ ght decrease in filtering time as the number of coefficients increases, due to cache

effects.
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Figure 2.2: Simple operator footprints

a Hybrid Grid filters (described later) contain Lee’s local statistics filter for

additive noise as a special case.

2.2 Feature selection

Images are restored one pixel at a time, using a nonlinear function of features

from the surrounding neighborhood. For this thesis, only very simple features have

been used: features are either single pixel values, or averages of several pixels. The

pattern of pixels used as features is referred to as the operator’s footprint. Figure 2.2

shows some footprints which use single pixel features.

The simple5x5  footprint of Figure 2.2 has 25 features, which means a 25-

dimensional function approximation. The smallest possible grid in 25 dimensions

(not counting symmetries, a 2x2x2x.  . .x2 grid) contains 33 million points - storing
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Number of Number of

Footprint name contributing pixels features

simple3x3 9 9

simplel3pt 13 13

simple2lpt 21 21

simple5x5 25 25

fovea5x5 21 9

fovea5x5b 25 10

fovea7x7 49

fovea7x7b 25

fovea7x7c 49

fovea7x7d 49

foveal5xl5b 225

foveal5xl5c 113

foveal5xl5d 113

10

13

14

17

16

15

21

fovea3lx31 481 17

.
I

Table 2.1: Summary of simple and foveated  operator footprmts

such a grid would require at least 128 Mb of memory. The grid size is exponential

in the number of features - so it is crucial to use as few features as possible.

However, restricting the footprint to a small area - say, 3x3 - will not work

either. Noise suppression requires a large footprint, since many pixels are needed

to get an accurate estimate of the local signal mean in flat regions. One solution

explored in this thesis is foueated footprints. Foveated  footprints use single-pixel

features near the centre of the footprint. Away from the centre, multiple pixels are

averaged to create single features.

Figure 2.2 shows some foveated  footprints. The larger ones cover a 7x7, 15x15

or even 31x31 area, but use only 10 to 21 features. The single-pixel inputs near

the centre of the footprint (the “fovea”) are useful for filtering around edges, lines,

and fine details. In flat regions, the multiple pixel features (the “periphery”) can

be used to accurately estimate the local signal mean.

Table 2.1 summarizes the simple and foveated  operator footprints.
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fovea5x5 fovea5x5b
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Figure 2.3: 5x5 and 7x7 foveated operator footprints.
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Figure 2.4: 15x15 foveated  operator footprints
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Figure 2.5: A 31x31 foveated  operator footprint
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2.3 Structure of the grid

The grids described in this thesis are all uniformly spaced: the spacing between

grid points is the same in all dimensions. Figure 2.6 illustrates a two-dimensional

grid which is used here to describe some terminology.

The grid elr;LenL is the number of grid points in each dimension. The extent of

the grid in Figure 2.6 is 9. The size of the grid is the nominal number of grid points;

the size of the grid in Figure 2.6 is g2. The exponent is the dimensionality of the

grid, and the base is the extent.

The grid is uniformly scaled so that it contains all (or almost all) of the domain

of the inputs. The width of the scaled grid is referred to as the grid length. The

grid has the same length in all dimensions.

2.4 Sparse Grid Representation

It turns out that most of the grid points are never needed. To illustrate this,

consider a very simple scenario: restoring completely empty images (all pixels set

to zero) degraded by additive, zero-mean iid Gaussian noise. For features, N single

pixel values from the local neighborhood will be used.

Each of the features will be zero-mean, iid Gaussian distributed. The grid
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Figure 2.7: Illustration of unnecessary grid points

domain w ill be [-R,+RIN, w ith R chosen so  that the probability o f a feature

being outside the hypersphere o f radius R is some very small value C. The grid

points outside the sphere, but inside the hypercube [-R, +RIN  w ill be required

w ith pro bability  much less than C, so  they can be safely discarded. Figure 2.7

illustrates this scenario  for the case N = 2. Grid points lying outside the circle

(marked by black dots) are not needed.

If the grid is reasonably fine (i.e. lots o f grid points), the proportion of grid

points needed can be found by comparing the area of the hypersphere to the area

of the bounding hypercube. The volume of the hypersphere is:

uol(sN)  =
,NPRN

I(iN  + 1)
(2 5).

and the volume of the hypercube is:

Their ratio is:
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Dimensions

2

8

12

16

20

24

Ratio

0.78539816339

0.01585434424

0.00032599188

0.00000359086

0.00000002461

0.00000000012

Table 2.2: Ratio of hypersphere volume to the bounding hypercube as the number

of dimensions increases

Table 2.2 lists the value of this ratio for several N. For a reasonable number of

inputs, the vast majority of grid points are unnecessary.

The ratio goes to zero for large N because I?( f N + 1) is asymptotically bounded

to (gp (by Stirling’s approximation). This grows much faster than the q
( >

N

term.”

For realistic images, a similar reasoning applies. Small windows drawn from

real images will form clusters in the N-dimensional space, corresponding to edges,

flat regions, lines and ramps. These clusters will most likely have hyperellipsoid (or

similar) shapes. The ratio of the volume of these clusters to the volume of the grid

domain will tend to zero as N gets large.

To exploit this property, a sparse representation of the grid is used. Each grid

point is stored in a hash table, keyed by integer grid coordinates. During training,

grid points not present in the hash table are created as needed. This is referred to

as dynamic node creation. Using this approach (plus some symmetry assumptions

described later), filters based on grids as large as 2P2 have been created, requiring

only 18000 coefficients.7

‘Approximating the number of grid points using the volume of the hypersphere works well for a

small number of dimensions. However, at a certain critical dimension, hyperspheres stop growing

in volume and start shrinking. This is because Zgvol(SN)  is 0 (-NZgN)  due to the I? term in the

denominator. However, the number of grid points does not shrink, but behaves asymptotically as

0 (IV), w here T = (L/ 2)2 and L is the extent of the grid in each dimension. This is still much

better than the full hypercube grid, in which the number of grid points behaves asymptotically

as 0 (LN).

7Without the sp arse representation and symmetry reductions, this filter would require

7355827511386641 (about 7~10~~) coefficients.
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Bounding hypercu be

’ Point at which to ev !aluate  ;

Figure 2.8: A point in the domain of the grid and its enclosing hypercube

2.5 Interpolation

Recall that the nonlinear function F is approximated by values on a regular grid of

points. To approximate F at points which do not coincide exactly with a grid point,

interpolation is necessary. In this section, two kinds of interpolation are described:

multilinear and piecew ise linear. The multilinear interpolant is in common use,

and is used to  point out how  conventional interpolation techniques break down

in many dimensions. Its failings motivate the development of the piecewise linear

erpolant.

2.5.1 Multilinear interpolation

Bilinear and trilinear interpolants are w ell-know n in finite element analysis [38]

and computer graphics [39]. M u  1 inearIt’1 interpolant s are a simple extension to the

multidimensional case.

For any given point in the domain o f a D-dimensional grid, one can find an

enclosing hypercube w hose corners co incide w ith grid points (Figure 2.5.1). Each

hypercube has 2D such corners. To  simplify the description, assume the hyper-

cube is over the region [0, l] ? The aim is to  interpolate the value o f @ at some

interior point x given its value at the corners. Assume the grid points of the hyper-

cube enclosing x are given by the set nodeset( and that node i has coordinates

(

. . .
x;, x;, xi, . . . , zb). The value of the function at node (grid point) i is f;.

In multilinear interpolation, the function values associated w ith all 2D grid

points o f the hypercube contribute to  every point in the interior. Over the unit

hypercube [0, llD, the interpolation is given by:
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1 f 6

Figure 2.9: Example of a small, two-dimensional grid.

*

F( >x = x f$(l-,Lj-z;i)
iEnodeset(x) j=l

(2 8).

Interpolating over an element which is not [0, llD requires some scaling factors.

Equation 2.8 is linear in the function values {f;>. This means that the interpolation

scheme for the entire grid can be written as:

k(x) = ~fWi(X) (2 9).

where w; is a basis function associated with grid point i. Figure 2.10 shows the

multilinear basis function associated with the grid point fs of Figure 2.9.

Interpolating a single value k(x) involves 2D function values f; - one function

value for each node in the enclosing element. For some of the filters described

later, D is 16 or higher. If this interpolation method were used, filtering a single

pixel would require a linear combination of more than 60000 function values! This

would be prohibitively slow, even on a very fast computer. The situation would be

even worse for training: as will be described later, training time is quadratic in the

number of function values which contribute to an interpolation. In 16 dimensions,

each pixel in a training image would require on the order of (216)2  floating point

operations.
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Figure 2.10: Multilinear interpolation basis function for the two dimensional case.

For these reasons, multilinear interpolation is impractical in many dimensions.

Spline interpolants are similarly impractical. What is needed is an interpolation

scheme with the fewest possible contributing grid points. Piecewise linear interpo-

lation turns out to be the best solution.

2.5.2 Piecewise linear interpolation

In piecewise linear interpolation, each hypercube is sliced into D! smaller regions.

These regions are simplexes (convex regions bounded by hyperplanes). The inter-

polation is linear over each simplex.

As before, only the unit hypercube [0, llD will be considered; the extension to the

general case requires some simple scaling factors. Visualization of this interpolation

scheme is difficult, so consider the two dimensional case: a unit square (Figure 2.11).

The value of k is specified at each of the nodes: k(O,O)  = fil F(l,O)  = fil

k(l,l) = fs, and fi(O, 1) = f4.

The diagonal line in Figure 2.11 partitions the square into two triangular regions:

the lower triangle is 0 < x- 2 5 x1 5 1, and the upper triangle is 0 5 x1 < x2 5 1.

In the lower triangle, the function F is approximated by the linear function

fi =  fi +  (f2  - f&l +  (f3  - f2)x2 (2.10)

And over the upper triangle, the interpolation is

fi = fi +  (f4  - f&2 +  (f3  - f&1 (2.11)
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Figure 2.11: Two-dimensional hypercube on [0, 112

It is easy to verify that (2.10) and (2.11) are linear and recover the values of F at

the corners.8

Note the pattern in (2.10) and (2.11): they start at node fil and trace out

a route from fi to f4 along the perimeter of the triangle, each time adding the

difference between consecutive node values (e.g. f4 - fi) multiplied by the position

of the point x in the dimension just travelled (e.g. 5~). This pattern extends to

the D-dimensional case: The path followed is determined by always moving along

the dimension associated with the largest remaining x;.

Here is an example to illustrate the procedure for three dimensions. Suppose

we want to interpolate over the hypercube [0, 113 for the point

XT
-- [ 0.2 0.6 0.3 ]

Figure 2.13 illustrates the hypercube and function values. For simplicity, the func-

tion values have been labelled  so that fi(i,  j, k) = f;jk. The path followed is deter-

mined by sorting the x; in ascending order: x2 2 x3 2 x1 for this situation. This

path is illustrated by the arrows in Figure 2.13. The interpolation formula is:

8The  keen reader will note that the division of the square into two triangles (Figure 2.11) can

be done in two ways; rather than drawing the diagonal line from fi to f3, it could be drawn from

fi to f4. This type of interpolation introduces an anisotropy: the basis functions have a definite

orientation to them. By sacrificing isotropy, substantial computational gains are made.
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Figure 2.12: Piecewise linear interpolation basis function for the two dimensional

case. This basis function corresponds to fs of Figure 2.9.

Figure 2.13: Three-dimensional interpolation example
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fi =  fooo +  (fo10 - f,oo)Q +  (fo11 - f,lO)Q +  ( f i l l  - f,ll>Q (2.12)

This interpo latio n is valid  o ver 1 > 5~2 2 5~3 2 ~1 2 0. N o te that the functio n-

v alues fooo, fOl0, forll and f111 are recovered exactly for appropriate choices of x.

Here is the interpolation procedure for D=5 to illustrate the general case.

a Let x f [0, 115  b e a point in the unit five-dimensional hypercube. The func-

tio n has g iven values f~~~~~,  f~~~~~,  f~~~~~,  . . ., fillll  at the 25 co rners o f the

hypercube. For example, at the corner (0, 1, l,O,  l), the function fi has value

fOllOl*

a Find the permutation 1) which puts the elements of x in descending order. The

permutatio n 1) maps each of the symbols x1,x2,x3,x4,x5  to  another symbol

from the same set. Denote by px; the image of x; under this mapping. The

permutation 1) is chosen so that

l>px1  >p22 >px3 >px4 > px5 >o- - - - - (2.13)

a Find the inverse permutation p-l (this is the permutation that puts the sorted

px back in its original order).

a The interpolation is then given by:

F = fp-1(00000) + (fp-1(10000)  - fp-yooooo))Pxl

+(fp-1(11000)  - fp-y10000))Px2

+(fp-l(11100) - fp-1(11000))PX3

+(fp-l(llllO)  - fp-1(11100))PX4

+(fp-l(lllll)  - fp-yllllo))Px5 (2.14)

w here p-l (abcde) means apply the inverse permutation p-l to the symbols

(abcde).

Note that this interpolation scheme involves only 6 function values, namely fP-~(~~~~~),

fp-y10000)~ l  l  ‘7 fp-yllllo), and fp-ylllll)* Figure 2.14 shows a pseudocode imple-

mentation for the general D-dimensional case. The interpolation requires D + 1

function values.
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PIECEWISELINEARINTERPOLATE(X)

Interpolate i+ for a point x using piecewise linear interpolation

Find the enclosing element and convert to [0, llD coordinates:

coord  is the integer grid coordinate corresponding

to the point (O,O, 0,. . . , 0) of the enclosing element.

t is the normalized [0, llD position inside the element.

L is the grid spacing.

doi=l,D

coord[i] + Lx;/L]

t; + (x; - coord[i] * L)/L

Find the permutation p which puts the t; in

descending order:  t,[l] 2 t+] 2 . . . 2 t,[D]

p + FINDPERMUTATION

Determine the set of nodes and interpolation coefficients:

nodes[l..D+l] contains the contributing node numbers

coeff[l..D+l] contains the interpolation coefficients

nodes[l] + FINDNODENUMBER(coord)

coeff[l] + 1.0

do i = l,D+l

j + PM
coeff[i] + coeff[i] - t [j]

coeff[i+l] + t[j]

coord[j] + coord[j] + 1

nodes[i+l] + FINDNODENUMBER(coord)

return [coord,coeff]

Figure 2.14: Piecewise linear interpolation algorithm
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2.5.3 Similarity to order-statistic filters

It turns out that grid filters with piecewise linear interpolation have a close rela-

tionship with order statistic filters. To interpolate for a given point x, piecewise

linear interpolation first finds a bounding hypercube whose corners coincide with

grid points. This hypercube is scaled into the unit hypercube [0, l]? Let x’ be the

point x after being scaled into the unit hypercube. The interpolation scheme slices

the hypercube into N! simplexes of the form:

0 < xi, < x! < < x! < 1- - $2 - . . . - $lJ - (2.15)

where (ir, &, . . . , in) is a permutation of (1 1 . . . 1 0). Over each simplex, the inter-

polation is linear and recovers the values of the grid points at the corners. Compare

this to order statistic filters, which are linear over regions of the form

xi1 5 xi2 5 . . . < XiD- (2.16)

Under certain conditions, the grid filter can be a strict superset  of the order statistic

filter:

a The grid must be centered about the origin (0, 0, . . . , 0).

a The grid spacing must be isotropic. That is, the spacing between grid points

is the same in all dimensions. This is true of all the grid filters described in

this thesis.

a The domain of the grid must contain the domain of the order statistic filter.

If these conditions are satisfied, the grid filter contains order statistic filters as a

subset. Consequently, the performance of the grid filter will be at least as good

as an OSF. If the signal and/or noise are not iid (which they are not for any

realistic image processing problem), the grid filter will be strictly better than an

order statistic filter.

2.6 Symmetry assumptions

The number of grid points can be further reduced by making some reasonable

symmetry assumptions.
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Figure 2.15: Eight orientations of a 3x3 window which should be treated the same

by a filter with orientation-invariance.

2.6.1 Orientation invariance

In many applications, the behaviour of the filter should be the same for different

orientations of the same 3x3 window. For example, an edge running up and down

should be processed the same as an edge running left and right. Figure 2.15 illus-

trates the 8 orientations of a 3x3 window which should be treated as equivalent (for

the purpose of restoring the central pixel).

Working with this type of symmetry is greatly simplified by some rudimentary

group theory[40].  A group is a set together with a binary operation which maps

ordered pairs of elements (a, b) t o another element, denoted ab. Simple examples of

groups are: the integers under addition; nonsingular real matrices under the matrix

product; and real functions under pointwise addition. There are some additional

restrictions which groups must satisfy.’ The symmetries illustrated in Figure 2.15

form a group. This group is called the dihedral group of order 8, and is given the

symbol Dd. The group D4 describes the ways a rigid square in the plane can be

transformed onto itself through reflections and rotations. The eight elements of

the group are rotation by O”, 90”,  HO”, 270”; and a flip followed by rotating O”,

90”,  180”,  270’. The group operation is transformation composition; for example,

‘These prop erties are

l A ssociativity: (ab)c = a(k)

l Identity: There is an identity element e such that ae = ea = a for all a.

l Inverses: For every element a, there is an inverse of a such that aa-’  = a% = e.

l Closure: For every a and b in the group, ab is also in the group.
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0

0
Figure 2.16: Depiction of Cauchy’s cycle notation

combining a rotation by 90” with a rotation by 180” produces a rotation by 270’.

Consider applying the members of this group to a 3x3 array of input pixels,

numbered according to this scheme:

Each member of the group produces a permutation of the elements 0, 1, . . . ,8. For

example, rotating the array 270’ clockwise (or equivalently, 90” counterclockwise)

results in:

This permutation can be written in “table form” as:

0 1 2 3 4 5 6 7 8

0 2 3 4 1 6 7 8 5 1 (2.17)

Each symbol in the first row gets replaced by the corresponding symbol in the

second row. The table form does not do a very good job of depicting how things

move around under the permutation. Cauchy’s cycle notation makes the motion

more apparent:

(0)(1234)(5678) (2.18)

Each set of symbols in parentheses cycles to the left; for example, 1 + 2, 2 + 3,

3 + 4 and 4 + 1. The cycles can be depicted as in Figure 2.16. It is common to

omit cycles with only a single element from the notation:

(0)(1234)(5678)  = (1234)(5678) (2.19)

When the 8 elements of the D4 group are applied to the 3x3 array of input

pixels, eight permutations are generated. These permutations form a special kind
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Figure 2.17: The orbits of a grid point under P

of group - a permutation group. This permutation group will be referred to as P

from now on.

It turns out that the whole group can be generated from two basic permutations.

One such pair is counterclockwise rotation by 90” degrees and a horizontal flip.

They can be written using cycle notation as:

a =  (1234)(5678)

P =  (13)(58)(67) (2.20)

Any member of the permutation group can be written as ai/?j where i f (0, 1,2,3}

and j f (0, l}.

What happens when k(x) is required to be invariant under this permutation

group? For any permutation 1) f P,

i+(x) = @lx) (2.21)

Suppose x is picked to coincide exactly with a grid point. Then k(x) is exactly

j-j, where j is the node number associated with grid point x. Similarly, fi(px) is

exactly fk, where /C is another node associated with px. Then from (2.21) j-j = fk.

If this exercise is repeated for each 1) f P, one finds the eight grid points (recall the

size of the permutation group is IPl = 8) whose function values are identical. These

eight grid points are the orbit of x under P, denoted orb?(x).  This is illustrated

by Figure 2.17.
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FINDNODENUMBER(coord)

Find the node number residing at the given coordinates

Apply each member of p to coord and look up the

permuted coordinates in the grid hash table.

do i = 0,3
l

do 3
-- 0 1

newcdord  + APPLYPERMUTATION(C@~,  coord)

N + GRIDLOOKUP(newcoord)

if N # (i) then break

if currently in training mode

N + CREATEGRIDPOINT(coord)

return N

Figure 2.18: FINDNODENUMBER  algorithm

Since the eight function grid points are identical, only one representative of

orb?(x)  need be stored. The routine FINDNODENUMBER(X)  which looks up nodes

in the grid can search the orbit of x under p to find this representative. Figure 2.18

shows a pseudocode implementation of this approach.

Each footprint has its own permutation group, but they are all isomorphic to

Dd, and can be represented by two generators a and /?. For example, Figure 2.19

shows the fovea7x7b  footprint. Its generators (corresponding to counterclockwise

rotation by 90” and horizontal flip) are:

a = (1,2,3,4)(5,6,7,8)(%  1~71~7  12)
P = (1,3)(5,8)(6,7)(% 11) (2.22)

2.6.2 Signal mean invariance

Another type of invariance common to image processing filters is signal mean in-

variance: the behaviour of the filter is not affected by shifts in the mean of the

signal. If an amount S is added to all the inputs, then the output should also shift

by 6. In symbols,
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Figure 2.19: The footprint fovea7x7b

@(x0 + 6, Xl + 6, l l l ,X,-l + S) = @(x0,  Xl,.  . . ,X,-l) + s (2.23)

This assumption is valid when the degradation process consists of signal-independent

additive noise and/ or a point spread function w ith unit DC gain. Many popular

image processing filters possess this property, including local linear filters, Wiener

f ilters,” order statistic filters, Lee’ s local statistics filter for additive noise, and

many adaptive recursive schemes which are designed to have unit DC gain.

To exploit this property, consider setting S = -x0. Then, by (2.23)

*

F( x0,x1,*-~ X,-l) = x0 + k(o,  Xl - X0, x2 - X0,. . . ,X,-l - x0) (2.24)

This property reduces the arguments of F by one, resulting in one fewer dimensions

for the problem of approximating F. Instead o f approximating a function F o v er

(for example) a nine-dimensional space, only eight dimensions are required. This

results in a useful reduction in the number of grid points.

Signal mean invariance also turns the function @ into an adjustment applied to

the central pixel value x0 (2.24). T his urns out to be crucial for numerical stabilityt

considerations, described in Section 2.7 (p. 52).

2.6.3 Reversed-intensity invariance

Another common type of invariance is reversed-intensity invariance. A reversed-

intensity version o f an image is akin to  a photographic negative: it is obtained

“Under the mild assumption that H(0, 0) B 1 for almost all applications
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by reversing the pixel values so that dark pixels become bright, and vice versa.

Suppose Z is an image, and denote by Z the reversed intensity image. A filter F

with the reversed-intensity invariance property satisfies:

FT=FI (2.25)

Filtering the reversed image gives the same result as reversing the filtered image.

Linear filters, Lee’s local statistics filter for additive noise, Wiener filters, and order

statistic filters” all possess this property.

To see the effect of this invariance on the grid, suppose the maximum pixel

intensity value is AI. Then the reversed-intensity inputs would be M - xl, M - x2,

. . . 1 M - x,. To have reversed-intensity invariance, @ must satisfy:

*

F( x0, Xl, l l l 1 x,_~) = M - i+(M - x0, M - x1,. . . , M - x,_~) (2.26)

Applying the mean-invariance property (2.24) eliminates M from the equation:

*

F( x0, Xl, l l l 1 X,-l) = x0 - iqo,xo - 21,x0 - x2,. .
l 1 x0 - X,-l > (2.27)

Compare this equation to (2.24) which states that

*

F( x0,x1,*-~ X,-l) = x0 + qo, Xl - X0, x2 - X0,. . . ,X,-l - x0) (2.28)

To exploit this relationship, it is necessary that the grid be centered about (0, 0, . . . , 0).

Then (2.27) ’ plrm ies that the grid possesses an anti- (or skew-) symmetry: for each

grid point with value f;l there is an antisymmetric grid point with value -f;.

Figure 2.20 illustrates this symmetry on a grid projected into two dimensions.

Due to orientation invariance, there are 8 grid points with value f; (solid circles,

upper right). Reverse-video invariance results in a skew symmetry through the

origin. There are another 8 grid points with value -f; (lower left).

Reverse-video invariance therefore halves the number of grid point values.
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Figure 2.20: Equivalent grid points under reverse-intensity and orientation invari-

ance.
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Figure 2.21: Number of grid points for a 3x3 filter
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2.6.4  Effect of symmetry reductions

Figure 2.21 shows the number of grid points required for a certain 3x3 filter using

various grid extents. The horizontal lines attached to  the vertical axis indicate

the maximum number o f grid points possible for typical computers (circa 1998).

Without any reductions in grid size, an 8x8x. . .x8 grid would require 8’  coefficients

(about 130 million). Training such a filter w ould tax the abilities o f a supercom-

puter with 32 Gb of memory. After applying symmetry reductions, the number of

coefficients drops to roughly 1 million, which would require a high-end computer

with about 1 Gb of memory to  train. Using a sparse representation for the grid

reduces the number of coefficients to a mere 23000. Such a filter can be trained in

ten minutes on a typical workstation with 64 Mb of memory.

In addition to reducing the number of filter coefficients, symmetry assumptions

help the filter to generalize. Without symmetry assumptions, exhaustive training

sets would be required, covering many possible illumination levels and orientations

of typical images. A filter with the symmetries described here is able to generalize

from a single training sample to similar training samples with varying illumination,

orientations, and reversed intensity.

2.7 Training

Training refers to determining the best grid point values {f;> for a class of images.

Recall that the MSE-optimal function F is given by

F(x) = E [solx] (2.29)

w here so is the original (noise-free) pixel value. To pick the coefficients {j-i}, w hy

not simply sample the optimal F at the grid points?

Unfortunately, (2.29) is a completely impractical equation. It requires that dis-

tribution functions for the signal and degradation processes be known. Unless one

is w illing to  make very unrealistic assumptions about the signal (e.g. Gaussian-

ity), such distributions are unavailable. Even if a distribution function were avail-

able, evaluating (2.29) for a single point x requires convolving functions in 8-24

dimensions (depending on footprint size). Such convolutions are computationally

impractical.

A practical alternative is to minimize the filter error over a training ensemble

w hich contains pairs o f degraded and pristine images. These images are used to

llFor  noise with symmetric distributions only
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provide training samples o f original pixels (so) and inputs (x) from the degraded

version.

Development of the training equations

Let the training ensemble be {s{, xj} for j = 1,. . . , N. The superscripts are not

exponents, but merely number the training samples. The grid consists of coefficients

{f;> and associated basis functions {w;(x)}, one for each grid point. For simplicity,

vector notation will be used: f for the coefficients, and w(x) for the basis functions.

The grid approximation o f F can then be written:

k(x) = LEO + fTW(X) (2.30)

The ~0 term is the pixel value in the centre o f the w indow , and fTw(x) is the

adjustment applied to  it by the grid filter. The squared-error over the training

ensemble is:

J(f) = ii: (20 + fTW(XQ - Sjo), (2.31)

j=l

This is a least-squares problem, so  the Hessian o f (2.31) is semi-positive definite.

Minimizatio n o f J is therefore achieved by f which satisfy g = 0. Applying this

to (2.31) results in:

[

$yW(Xj)WT(XQ  f = F(s:, - zjo)w(x~)1j=l j=l

This is a set of linear equations, and can be rewritten as Af = b, w ith

(2.32)

A = $y w(x~)wT(x~)
j=l

N

b -- E( sjo - z$w(xj)
j=l

A is a sum of rank-l updates.12 Since piecew ise linear interpolation is used, an

interp o latio n inv o lv es o nly  D + 1 function values f;. This means that w (x) is

12A rank-l update of a matrix A has the form A + A + wwT.
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TRAIN(X, so)

Add a training sample to the system of equations

Find the interpolation for this grid point

[coord,coeff]  =  PIECEWISELINEARINTERPOLATE(X)

Update the sparse matrix (A) and the rhs (b).

do n = l,D+l

b(coord[n])  + b(coord[n])  + (so - ~0)  * c o e f f [ n ]

do m = n,D+l

A(coord[n],coord[m]) + A(coord[n],coord[m]) + coeff[n]*coeff[m]

return

mostly zero; it has only D + 1 nonzero  entries. Each rank-l update is therefore

sparse, and it turns out that A is itself sparse. The right side b is a dense vector.

Creating the sparse matrix

For efficiency, the sparse matrix A is stored in a hash table during training. This

permits quick retrieval of elements, and greatly reduces solution and storage costs.13

Storage is also saved by only storing the lower-triangular portion of A, since it is a

symmetric matrix.

Regularization

In practice, the system of equations Af = b is singular o r ill-co nd itio ned . The

reason for this lies in the fact that (2.32) is actually a Monte-Carlo  approximation

to  the real MMSE equations:

E [wix,w’(x,]  f = E [(so - Q+)] (2.33)

That is, instead of forming the system of equations (2.33) by integrating over the

signal distributions, it is approximated through random sampling (the training

ensemble).

13Note:  the sy stem of equations is typically large enough that storing A as a dense matrix is

impossible. Some filters described consisted of 16000 grid points, which would require about 2

Gb of RAM were a dense matrix representation used. A sparse matrix representation of the same

matrix fits comfortably into 64 Mb of RAM.
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Since the grid points are used with highly variable probabilities, multiple grid

points may have equations which arise from a single rank-l update. This introduces

the singularities. The Monte-Carlo integration also leaves behind residual errors in

the matrix and right-hand side.

However, a justifiable stabilization exists. If the system of equations is singular,

this means that there are infinitely many choices of coefficients which will perform

equally w ell on the training data. The problem must be further constrained to

choose a specific set of coefficients.

The interpretation of the singular system of equations is that the training set is

not complete: there are some aspects of the filter’s behaviour which have not been

specified. A  reasonable approach is to  select from the equivalent filters the one

which makes the least change in the image - otherwise, when the filter encountered

something never seen in training, it might turn it into something unpredictable.14

Recall that when using the mean shift-invariance property, the filter has the form

(2.24):

- x0 = F(O,xl  - x0,. . . ,x~-~ - x0). T o

filter coefficients IIf 11 can be minimized.

I If I I results in a zero-order (or Tikhonov)

regularizatio n [4]. A constraint term of the form XI is added to the matrix A :

The change in the pixel value is just s^o

minimize this change, the norm of the

Choosing the so lution which minimizes

$$v(x”iw(x’)T  + XI f = F(sS - x;;)w(xj)1 (2.34)
j=l j=l

w here X is chosen to be just large enough to permit a numerically stable solution.

Fo r the filters described  in this thesis, X w as chosen to  be 0.01. This value o f

X is large enough to  ensure a stable so lution, but small enough to  not alter the

behaviour of the filter substantially.

Choosing this form of regularization drives unused grid coefficients to zero, which

permits use of the sparse grid representation.

Iterative solution

The next step is to solve the system of equations to find the coefficients {f;>. Since

the system is large and sparse, using a factorization (such as Cholesky, QR, PLU)

14This is what happ ens with polynomial filters and outliers: polynomial approximations can

have wild oscillations outside the region of training samples, and run off to plus or minus infinity.
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CONJUGATEGRADIENTSOLVE(A,  b)
Solve the sparse system Af = b using CG method

rj is the residual at iteration j

pj is the descent direction for f
qj is the descent direction for r

f” + 0 (initial solution guess)

I-O + b - MATRIXPRODUCT(A,~~)
for j=l,. . . until convergence

pj + DOT(r+,  r+)
if j = 1 (first iteration)

pj + rj-l

else
p + pqp+
pj + ppj-l + rj-l

gj + MATRIXPRODUCT(A,  pj)

a + pj/DOT(pj,  qj)
fj + fj-1 + QPj

rj + rj-l + aqii

return f

Figure 2.22: Conjugate Gradient algorithm

is not practical. Factorizations  cause too much fill - that is, the sparse system

becomes dense under factorization, resulting in impractical memory requirements.

To avoid this fill problem, many iterative solution techniques for sparse systems

have been developed [41]. For this project, Conjugate Gradient (CG) was selected.

It is suitable for symmetric, positive definite systems of equations. CG gets its name

from the fact that its consecutive descent directions are conjugate (orthogonal). CG

is fast and requires only a small amount of temporary working space. For efficiency,

the sparse matrix is converted from hash table storage to compressed row storage

(CW [421 Prior to CG solution.

Figure 2.7 gives an outline of the CG solution algorithm. Convergence was

determined by checking the change in the parameter vector f every 20 iterations.

The algorithm was halted when
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(2.35)

i.e. when the maximum coefficient change over 20 iterations was less than 10m4.

More precision is not useful, since the matrix A itself contains large residual er-

rors arising from the Monte-Carlo sampling process. Also, for filtered images, 4-5

accurate digits in the filter coefficients are more than sufficient.

A useful side effect of the first-order regularization is that the parameter X can

be used to speed convergence of the CG solution. Convergence behavior is closely

related to the condition number of the matrix A [41], which can be decreased

substantially by choosing a larger X. Some preliminary experiments indicated that

this can be done without measurable impact on the quality of the filter.

2.8 Hybrid filters

The “foveated” footprints were introduced to improve the performance of grid filters

in flat regions, where a large region of support is required for good noise suppression.

This section describes an alternate approach, in which a hybrid filter combines a

signal mean estimator for flat regions with a grid filter to handle detail regions.

The primary advantage of this approach is that a larger region of support can be

obtained without increasing the dimensionality of the grid.

The outputs from the two filters are mixed according to an indicator function

p(x). p(x) has range [O,l]: the value 0 indicates a flat region, and 1 indicates a

region with lots of detail. The filter has the form:

F = pFr + (I- /?) F2 (2.36)

where Fl is the detail filter, and F2 is the flat region filter. Fl is a grid filter with

signal mean invariance:

Fl = x0 +f% (2.37)

Since the grid filter only needs to handle detail regions, a foveated  footprint is

not necessary - the inputs can be single pixel values from the local window. The

footprints simple3x3  and simplel3pt are suitable.

The filter F2 is an estimator for the local signal mean. For Gaussian noise, the

best estimator is just a local average over a 5x5, 7x7 or 9x9 window. For other

noise models, this estimator might be an order statistic or polynomial estimator.

The training procedure is different from the plain grid filters, due to the presence

of the /? indicator function. As before, mean-squared error is used as a criterion:
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J
1

- E [(F
2- -

4 ]

1-- SE (b’(xo + fTw) + (1 - /3’)F2  - so)“] (2.38)

The optimal grid coefficients f are found by setting g = 0. This leads to:

E P ‘wwT]  f = E [/ ?w (so -  / ?zo -  (1 - j?) F2)] (2.39)

The expectation operators are approximated by summing over a set of training

samples {& xj}. This leads to a system of linear equations Af = b, with

A = ii: p2(x~)w(x~)wT(x~)
j=l

b = 5 / ?(xj)w(xj)  (s; -  / ?(xj)xjo -  (1 - / ?(xj))F2(xj)) (2.40)
j=l

The p2 term in A and the /? term in b weight the least-squares solution heavily

toward performance in detail regions. Since flat regions are handled by F2, the

grid filter can “concentrate its attention” on performing well in detail regions. The

presence of the (1 - /?) F2 t b  

How to vary /??

The formula for p(x) has been borrowed from the Lee filter [ 111.  Given a noise

estimate ai, the local mean and variance are estimated over the pixels in a window:

2 1
OX =  ~

N - l
X(x; - 2)2 (2.41)

When a: >> ai, this indicates a detail region and /? + 1 is desired. When a: G ai,

the region is flat and /? + 0 is needed to turn on the smoothing filter. These

behaviours are achieved by setting
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Neighborhood N Increase in SNR for flat regions

3x3 9 + 9.5 dB

5x5 25 + 14.0 dB

7 X 7 49 + 16.9 dB

9x9 81 + 19.1 dB

11x11 121 + 20.8 dB

Table 2.3: SNR
11 l

increase for flat regions achieved by linear smoothing

/?=max(““,“;O) (2.42)

A useful side-effect of this choice for /? is that it makes Lee’s local statistics filter

for additive noise a special case of the hybrid grid filter: choosing f = 0 recovers

the Lee filter exactly. This implies that hybrid grid filters will be at least as good

as Lee’s filter for additive noise.

How large a window should be used for F2?

Consider the case of zero-mean, additive white Gaussian noise (AWGN). Assume

that the smoothing filter Fz takes a simple average of N pixels. In flat regions, this

will result in residual variance with an average of:

2 o2n
0residual =

N

After smoothing, the signal-to-noise ratio for flat regions (in decibels) is:

(2.43)

SNRxnoothed  = lOlOgl0

(2.44)

where P, is the signal power, and SNR,,isy is the signal-to-noise ratio for flat regions

in the noisy image. The (decibel) increase in SNR is independent of the amount of

noise in the image.

Table 2.3 shows the SNR increase provided by windows of various sizes. Al-

though larger windows mean a greater noise reduction in flat regions, there is a
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o2
n

100 6

200 12

400 24

800 48

1600 98

3200 195

N for 30 dB PSNR

in flat regions

Recommended window

size

3x3

5x5

5x5

7 7X

11x11

13x13

Table 2.4: Recommended window sizes for +30 dB gain in flat regions, assuming

Ps- 128 2

tradeoff: using too large a window forces the grid filter to do more smoothing,

which may decrease its effectiveness at filtering details. The safest approach is to

use a window which is just large enough to adequately smooth flat regions.

Solving (2.44) for N, and assuming a desired SNR of 30 dB in flat regions, the

proper window size is given by:

o2
N =lOOOf (2.45)

s

Table 2.4 lists recommended window sizes based on this equation.



Chapter 3

Results

3.1 Training data sets

This section describes the images sets used for training and testing the filters.

3.1.1 Synthetic images

Figure 3.1 shows the synthetic image set. The circles image (upper left) contains

solid circles with varying foreground and background intensity. This image is useful

because it provides edges of varying orientations and contrasts. The diamonds and

squares images are similar, but provide diagonal, horizontal and vertical edges of

varying contrast. The lines image contains lines of various orientations. The lines

are on a grey background, and vary linearly in intensity from black in the middle

to white at the perimeter of the circle. The synthetic images are 8 bit greyscale.

3.1.2 Document images

The document image set contains seven images of typefaces. Four of these (for

the fonts Helvetica, Times-Roman, Courier, and Palatino-Roman) are shown in

Figure 3.2. An additional three images were created by sampling the typefaces

Helvetica, Times-Roman and Courier at twice the resolution. The images are 8 bit

greyscale, with white (255) backg round and black (0) text. Table 3.1 summarizes

the image sizes.

59
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synthetic/ circles 384x384 synthetic/ diamonds 384x384
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synthetic/ lines 384x384 synthetic/ squares 384x384

Figure 3.1: Synthetic images
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ABCDEFGHI  JKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890 ~@#$%*&*I)-='_t-O~~1;':",.~<>?

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstwwxyz
1234567890-=‘!@#$%h&*()  +-o\{}I;‘:“,./<>?-

documents/ helvl8pt  86x381 documents/ romanl8pt  86x371

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghi  j klmnopqr s tuvwxyz AEKDEFGHIJKLMNQPQRSTUVWXYZ
1234567890!@#$%“&*()  +-‘=-\I  [ { } I- abcdefghijklmnopqrstwwxyz
J . . rr
J’ #’ /?,C 123456789G=‘!@#$%YNF()  ++]\{]I;‘:“,./<>?-

documents/ courierl8pt  96x376 documents/ palatino24pt  101x526

Figure 3.2: Document images

Image name

documents/ helvl8pt

documents/ helvl8ptX2

documents/ romanl8pt

documents/ romanl8ptX2

documents/ courierl8pt

documents/ courierl8ptX2

documents/ palatino24pt

Size

86x381

151x741

86x371

151x721

96x376

171x731

101x526

Table 3.1: Document images
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3.1.3 Face images

The face image set contains three images of faces. The images were acquired using

a 35 mm camera, developing to film and digitized using a good quality flatbed

scanner.

3.2 Which footprints are best for additive noise?

As discussed earlier, removing substantial amounts of noise from images requires

large footprints. Unfortunately, memory limitations have so far prevented the cre-

ation of grid filters with more than 14 dimensions. Two techniques have been

described for achieving large footprints without increasing the dimensionality of

the grid substantially: foveated  footprints (2.2) and hybrid filters (2.8).

To determine which of these approaches are better for removing additive noise,

a variety of filters were trained on images of text with o2 = 400 additive white

Gaussian noise. Filters based on all of the footprints described in (2.2) were trained.

Hybrid filters based on the simple3x3  and simplel3pt footprints, and using 5x5

linear averagers for & were also trained.

The training data set consisted of images of Courier, Times-Roman and Hel-

vetica text at 18 point and 36 point size. The filters were tested on images of

Palatino text at 24 point size.

Each filter was trained on a variety of grid sizes from 2N to V. For many of

these filters, there was insufficient memory available to construct the least-squares

equations.

Of the foveated  footprints, only the footprints fovea5x5,  fovea5x5b,  and fovea7x7

were successfully trained for a large grid size. The other foveated  footprints resulted

in too many dimensions for the grid; in some cases, it was not even possible to create

a 2N grid for the filter.

Figure 3.4 shows results for the four best filters. Over the range of grid sizes,

the hybrid filter based on the simple3x3  footprint was superior to the simple3x3,

fovea5x5  and fovea5x5b  filters.

Within current memory restrictions, it appears that hybrid grid filters art

perior for removing substantial amounts of additive noise. However, it turns out

that for undoing blurring, foveated  grid filters are better than hybrid filters; t hese

results are described in a later section.
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faces/arm-mallory 212x228 faces/christopher 178x132

faces/elise 217x163

Figure 3.3: Face images
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Figure 3.4: PSNR results for selected filters trained to remove o2 = 400 AWGN

from text images

3 . 3 Synthetic images with additive noise

Synthetic images allow the behaviour of filters to be studied for typical “building

blocks” of images, such as lines and edges. This section compares the performance

of a hybrid grid filter to Lee and Wiener filters, for edges and lines under additive

noise. The hybrid filter used a 3x3 grid filter for Fr and a 7x7 linear average for &.

The grid size used was 128. The filter was trained on all the synthetic test images

(Figure 3.1). Each test image was repeated 8 times, each time with a different

noise field, for a total of 4.6 million training samples. While this was an extreme

amount of training data, it excluded the possibility of artifacts or poor results due

to undertraining.

Four filters were trained for additive white Gaussian noise with o2 = 100, 200,

400 and 800. Training times were 26 to 77 minutes (including CG iteration time).

Filtering rates were 3600 pels/s to 6200 pels/s. The filters are summarized by Table

3 2. .

Table 3.3 shows MSE results for the circles image. The hybrid grid filter per-

formed substantially better than both the Wiener and Lee filters for all noise levels.

The Lee filter results shown are for the best window size, which was 5x5 for all noise

amounts. Figure 3.5 plots output versus input PSNR for the four filters. The hybrid
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1 VarEzf:  1 Grid points Matrix entries Trai;ingtz$z;  1 Filteri(ng;;i;:  1

100 6987 178437 25:49 6170

200 10925 307987 32: 10 5771

400 21247 638769 46:40 5101

800 48540 1497491 76:55 3665

Table 3.2: Summary of filters for removing AWGN from synthetic images

Noise Variance M S E

Grid filter Wiener filter Best Lee filter

100 8 3 67.6 24.6 (5x5)

200 15’9 106.7 44.1 (5x5)

400 31’3 156.8 77.0 (5x5)

800 60’7 . 217.5 131.5 (5x5)

Table 3.3: Results for the synthetic circles image with AWGN

grid filter was able to consistently increase the PSNR by +ll dB. This corresponds

to decreasing the noise power by a factor of 12-13.

Figures 3.6 and 3.7 show excerpts of the circles restoration for o2 = 100 and

o2 - 800- 1 respectively. In these excerpts, the circle edge in the upper right corner

is high contrast. The circle edge in the lower left corner is low contrast. The upper

left and lower right circle edges are medium contrast. The residual noise left by the

Lee filter around edges is apparent in both figures. The hybrid grid filter does well

on the high and medium contrast edges, but the low contrast edge in Figure 3.7 is

smudged. This is because the noise variance is quite large compared to the edge

strength; the grid filter is unable to localize the edge accurately. In Figure 3.6, the

Wiener filter leaves lots of noise behind; in Figure 3.7, it smoothes the noise at the

expense of blurring the edges.

Table 3.3 shows MSE results for the lines image. Again, the grid filter was

much better than both the Wiener and Lee filters for all noise levels. These results

are summarized by Figure 3.8, which plots the output versus input PSNR for the

filters.

Figures 3.9 and 3.10 show excerpts of the lines restoration for o2 = 100 and

o2 - 800- 1 respectively. The grid filter successfully smoothes around the lines,

although in Figure 3.10 some noise remains. Note that portions of the lines are

missing in the grid filter result of Figure 3.10. This is likely because there is

insufficient contrast to distinguish the lines from noise within a 3x3 window. A
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Figure 3.5: Input/Output PSNR plot for the synthetic circles image with AWGN

Noise Variance MSE

Grid filter Wiener filter Best Lee filter

100 9 5 55.6 19.7 (5x5)

200 17’0 77.6 34.5 (7x7)

400 30’7 98.6 56.6 (7x7)

800 60’5 . 115.6 88.1 (9x9)

Table 3.4: Results for the synthetic lines image with AWGN
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Original AWGN o2 = 100

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ::::::::::::::::::::::::::::.


Grid filter

MSE=8.3 PSNR=39.0 dB

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::, ,‘,’:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~

5x5 Lee filter

MSE=24.6  PSNR=34.2 dB

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.:.:.:.:.:.:.:.:.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.:.:.:.:.:.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~~~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Wiener filter

MSE=67.6  PSNR=29.8 dB

Figure 3.6: Results for the synthetic circles image with AWGN o2 = 100
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Original AWGN o2 = 800

Grid filter

MSE=60.7  PSNR=30.3  dB
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5x5 Lee filter

MSE=131.5  PSNR=26.9  dB

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Wiener filter

MSE=217.5  PSNR=24.8  dB

Figure 3.7: Results for the synthetic circles image with AWGN o2 = 800
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Figure 3.8: Input/Output PSNR plot for the synthetic lines image with AWGN

larger footprint (e.g. simple13pt)  might solve this problem. The Lee filter leaves

substantial noise surrounding the lines. The Wiener filter smoothes out the noise

in flat regions at the expense of the lines; this is most apparent in Figure 3.10.

3.4 Text with additive noise

One of the properties of a grid filter is that the filtering rate is (theoretically)

independent of the number of grid coefficients. To illustrate this property, a hybrid

filter with a 3x3 grid filter for Fr and 7x7 linear average for & was trained on images

of text using various grid sizes. The text images were synthetically generated, and

contained samples of Helvetica, Courier and Times-Roman at 18 and 36 point

resolution (Figure 3.2). Filters using grid sizes from 2’ up to 8’ were trained. The

degradation model was Additive White Gaussian Noise with o2 = 400.

The filters were tested on a synthetically generated sample of Palatino font at

24 point resolution. Note that both the typeface and size were different from the

training data. This testing data verifies that the filter does not just memorize those

particular fonts, and is able to generalize to a different type face.

Table 3.5 summarizes the training and testing results for the filters. Note that

the training rates exclude CG solution time. Both training rates (excluding CG

iteration time) and testing rates are in theory independent of the number of grid

points, but in practice cache effects causes a gradual drop-off. This is illustrated in

Figure 3.11. Note that a neural network or polynomial has training and filtering
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Original

Grid filter

MSE=9.6 PSNR=38.3 dB

70

AWGN o2 = 100

5x5 Lee filter

MSE=19.7  PSNR=35.2 dB

Wiener filter

MSE=25.8  PSNR=34.0 dB

Figure 3.9: Results for the synthetic lines image with AWGN o2 = 100
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Original

Grid filter

MSE=60.5  PSNR=30.3  dB

71

AWGN o2 = 800

9x9 Lee filter

MSE=88.1  PSNR=28.7 dB

Wiener filter

MSE=115.6  PSNR=27.5  dB

Figure 3.10: Results for the synthetic lines image with AWGN o2 = 800
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Grid extent Grid Matrix

points entries

32 336

93 2210

1076 53703

2052 133171

8968 240866

20545 748607

22922 601530

Table 3.5: 1  I I lTraining ana testing

Training rate Testing rate MSE PSNR

(PW) (PW) (dB)
4229 6793 186.4 25.4

3728 6575 124.6 27.2

3541 6149 73.7 29.4

3353 6051 70.3 29.8

3733 5982 28.4 33.6

2785 5432 30.9 33.4

3259 5870 27.5 33.9

results for text degraded by AWGN o2 = 400

rates which are inversely proportional to the number of coefficients. If plotted on

Figure 3.11, the rates of these filters would behave as O(N-l), with N is the number

of coefficients.

Figure 3.12 shows excerpts from the text image restored by filters with varying

grid extents. The change in quality of the restoration result is obvious as the size of

the grid is increased. It is clear from these results that the filter is able to generalize

from the training data to typefaces not seen in training.

Figure 3.13 shows how the PSNR of the restored Palatino text image changed

as a function of grid extent. For grids larger than 28, the restoration result was

superior to both the best Lee filter (3x3) and the Wiener filter. The similarity

of PSNR for the last three filters suggests that the results are as good as can be

obtained.

Figure 3.14 shows the SNR as a function of spatial frequency for various grid

extents. In the higher frequency bands, the hybrid grid filter is able to boost the

SNR by up to +25 dB. This is possible because of the tightly constrained statistical

properties of text images. The grid filter acquires extensive prior knowledge of what

text ought to look like during training; it is able to apply these priors to excellent

effect when filtering.

Figure 3.15 shows how MSE is distributed over spatial frequency bands in the

noisy image (top) and the image restored by the 8’ hybrid grid filter. What error

remains is concentrated around X-l G 0.1. One explanation for this is that the grid

filter is able to exploit its knowledge of the priors only on the scale of a 3x3 window.

This results in excellent noise reduction in the high frequency bands. However, it

is not able to apply knowledge of priors for features on the scale of X-l G 0.1.

Another possible explanation is that the residual noise can be attributed to the

fact that the image is very similar to the training data on the small scale. At the

scale of X-l % 0.1, the test image is quite different from the training data, because
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Figure 3.11: Training and filtering rates as a function of grid extent

the text is 24 point (whereas the training data consisted of 18 and 36 pt text).

3.5 Faces with additive noise

Images of faces are harder to restore than text or synthetic images, because they

contain gentle gradients and large scale features. To test grid filters on images of

faces, a hybrid filter with a V1 grid filter for Fr and a 5x5 linear averager for &

was trained on images of faces degraded by AWGN. The training set consisted of 8

repetitions of the images Christopher and ann-mallory (Figure 3.3). Each repetition

used a different noise field, for a total of 550912 training samples. Four filters were

trained, using noise variances of o2 = 100, 200, 400 and 800. Table 3.6 summarizes

the training results.

The filters were tested on the elise image (Figure 3.3). Table 3.5 summarizes

the results. The grid filter outperformed the Wiener filter and the best Lee filter.

Figure 3.16 plots input and output PSNR based on the data of Table 3.5.

Figures 3.17 and 3.18 show extracts of the restoration results for o2 = 100 and

o2 - 800- 1 respectively. Occasional bright pixels are noticeable in the grid filter

results. These are artifacts due to missing grid points. A larger training data set
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Original

MSE=l86.4,  PSNR=25.4

Grid size 6’

MSE=28.4,  PSNR=33.6

74

Noisy: AWGN o2 = 400

MSE=400,  PSNR=22.2

MSE=73.7,  PSNR=29.5

Grid size 8’

MSE=27.5,  PSNR=33.8

Figure 3.12: Restoration results for 24 pt Palatino text using varying grid extents
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Figure 3.13: Restoration quality for 24 pt Palatino text using varying grid extents

1 VarEzz  1 Grid points Matrix entries Trai;.;iz;  1 Filteri(ng;;i;  1

100 4471 123340 4:22 6690

200 5770 163480 5:06 6450

400 8556 248314 6:21 6010

800 15170 460491 8:15 5170

Table 3.6: Summary of filters for removing AWGN from face images

Noise Variance M S E

Grid filter Wiener filter Best Lee filter

100 36.4 58.4 45.2 (3x3)

200 56.3 93.5 76.3 (3x3)

400 88.4 142.4 129.3 (3x3)

800 139.2 208.8 208.2 (5x5)

Table 3.7: Results for the elise image with AWGN
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Figure 3.14: Signal to noise ratio
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Figure 3.15: How  various frequency bands contribute to  total MSE
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Figure 3.16: Input/Output PSNR plot for the faces/elise image with AWGN

would likely avoid this problem. The residual noise left by the Lee filter is quite

distracting, especially in the o2 = 800 case (Figure 3.18). The Wiener filter leaves

the skin with a blotchy appearance.

3.6 Response to unusual features

One of the benefits of grid filters is that they tend to pass unusual inputs (outliers)

unchanged. This is in contrast to polynomials and neural networks, which can have

unpredictable (and possibly undesirable) responses to unusual inputs.

To illustrate this property, a grid filter with footprint simplel3pt (Figure 2.2)

was trained on images of circles (Figure 3.1) degraded by additive white Gaussian

noise with o2 = 100. The filter was then tested on an image of lines of varying

contrast (Figure 3.1). The training set (circle image) contained flat regions, but no

lines.

The grid filter had 37433 coefficients, and filtered at a rate of 1260 pixels/s.

When tested on the circle image, the filter increased the PSNR from 28.2 to 37.8

dB. Figure 3.19 shows an excerpt from this image for low-contrast circles. The

smudging of the lower-left circle in the filtered image of Figure 3.19 illustrates a



CHAPTER 3. RESULTS 79

:z

:,:, k

::::
::::
$

Original AWGN o2 = 100

Grid filter

MSE=36.4  PSNR=32.5 dB

3x3 Lee filter

MSE=45.2  PSNR=31.6 dB
::::

Wiener filter

MSE=58.4  PSNR=30.5 dB

Figure 3.17: Results for the elise image with AWGN o2 = 100
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Wiener filter

MSE=208.8  PSNR=25.0  dB

Figure 3.18: Results for the elise image with AWGN o2 = 800
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consequence of using Mean-Squared Error (MSE) as the training criterion: where

the signal is ambiguous, the filter tends to average over possibilities. In the smudged

regions, the noise makes it difficult for the filter to determine exactly where the edge

should be, so the possibilities are averaged together. It is debatable whether this

behaviour is desirable or not. Maximum-likelihood filters, in contrast, would boldly

choose one of the possibilities. This would result in a crisp (but possibly incorrect)

location for the edge.

When the filt er was tested on the lines image, the PSNR increased from 28.1 to

33.9 dB (Figure 3.20). The 1ines, which were unlike anything the filter had seen in

the training set, were passed through mostly unchanged. Some noise surrounding

the lines was amplified.

Passing outliers unchanged is very important for some applications. The danger

is that when a filter encounters something unexpected, it will either react unpre-

dictably, or erase the unusual feature by trying to make it look more like the training

data. For example, a filter trained on images of spiral galaxies might try to make

everything look like a spiral galaxy; when it saw something highly unusual (and for

an astronomer, perhaps significant), the filter might erase (or obscure) the unusual

feature. Grid filters avoid this problem.

Another interesting ability of grid filters is that they can detect unusual features.

During training, points are added to the grid as required. If a missing grid point

is encountered during filtering, this suggests that the local neighborhood contains

an unusual feature unlike anything seen in training. Figure 3.21 shows the result

of flagging unusual features in the lines image. The high-contrast portions of the

lines are unlike anything seen in training, and are flagged.

Note that this “unusual feature detector” only works for features which are

unusual on the scale of the filter footprint. Large-scale unusual features which are

comprised of small, typical features would not be detected.

The count of missing grid points serves as a useful indicator. When a filter is

applied to an image typical of its training set, none or very few missing grid points

are encountered. If the number of missing grid points is large, this indicates that

the training data was inadequate to handle the image being filtered. For example,

when the “circles” filter was applied to the circles image, 3345 missing grid points

(about 0.17%) were encountered. When it was applied to the “lines” image, the

number of missing grid points jumped to 44514 (about 2.3%) indicating that the

image was not typical of the training set.
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Original

Filtered

MSE=10.9  PSNR=37.8  dB

With AWGN, o2 = 100

Difference image

, 1. 1 , I1 I 1 I  l I  l 1

Figure 3.19: Result for simplel3pt filter trained  and tested on synthetic/circles

with AWGN, o2 = 100
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Original

Filtered

MSE=26.6  PSNR=33.9  dB

With AWGN, o2 = 100

MSE=400  PSNR=28.1 dB

Difference image

Figure 3.20: Result for simplel3pt filter trained on synthetic/circles with AWGN

o2 = 100 but tested on synthetic/lines
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Figure 3.21: Neighborhoods which the grid filter marked as containing unusual

features

3.7 How much training is necessary?

An important question about grid filters is the quantity of training required. Based

on experience gained so far, the following observations seem to be true:

a The training set must be large enough to be representative of the image class.

a For little or moderate noise, a single presentation of the training images is

sufficient. For extreme amounts of noise, it is sometimes necessary to present

the training set several times, each time with a different noise pattern.

a The amount of training data required increases rapidly if the dimensionality

of the grid is increased. For example, filters based on the footprint simplel3pt

(12 dimensions) require more training data than comparable filters based on

the foot print simple3x3  (8 dimensions).

a If additive noise is used, the number of grid points (and matrix entries) in-

creases as a function of the number of training samples. If trained using a very

large number of training samples, eventually every possible point in the grid

would be used, since the noise distributions used are all long-tailed. However,

only a small number of grid points contribute appreciably to the restoration
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Repetitions

1 I ml

Training Testing

Training

Samples

Grid Matrix Missing MSE PSNR

Points Entries grid points (dB)
3600 12830 172812 18.4% 111.9 27.6

7200 25471 299939 11.3% 98.9 28.2

10800 37833 408996 7.5% 87.5 28.7

14400 49532 511480 5.5% 91.4 28.5

18000 61354 618117 4.5% 87.1 28.7

Table 3.8: Results for simplel3pt and 02=400

.
result. ‘l’here is a aenmte  aavantage  to using small, representative training

sets, because they generate fewer grid points.

To illustrate these ideas quantitatively, grid filters were trained and tested on a

synthetic test image (Figure 1.3) with varying amounts of AWGN (a2 = 400, o2 =

200 and a2=100). Two kinds of filters were tested: an 812 grid filter using the

simplel3pt footprint, and a 8’ hybrid grid filter. The test image size was 64x64

and contained 3600 training samples. The filters were trained using a variable

number of repetitions of the test image. Each repetition had a different noise field.

The filters were evaluated by testing on the same image used in training.

3.7.1 Results for the simplel3pt  filter

Table 3.8 summarizes the results for o2 = 400. Five filters were trained, using 1 to

5 repetitions of the image (with different noise fields). It was not possible to use

more than 5 repetitions, because the size of the least-squares equations exceeded

available memory. The filters were then tested on the same image. The missing

grid points column shows the percentage of grid points which were required during

testing but not present in the grid. Note that after approximately 10000 training

samples, there was no increase in PSNR, but the number of grid points and matrix

entries continued to grow. When additive noise is used, the number of grid points

continues to grow as the training set is enlarged. If the noise distribution is long-

tailed, eventually every possible grid point would be required. For this filter, the

number of possible grid points is approximately 27 million. However, only a small

number of grid points contribute appreciably to reducing the MSE.

To illustrate this point, the last filter in Table 3.8 was used to filter the training

image many times using different noise fields. The frequency with which each grid

point was used was tabulated, and used to approximate the probability of the
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Figure 3.22: Cumulative Probability distribution o f grid points

grid point being used. The grid points were then sorted in descending order o f

probability, and the cumulative sum was taken (Figure 3.22). From this graph, one

can determine that 343 grid points account for 50% of the probability. About 4350

grid points account for 80% of the probability (Table 3.9).

From this data, it is apparent that the probability distribution o f grid points

is highly non-uniform. The data also  suggest that it should be possible to  delete

large numbers o f grid points w ithout appreciably affecting the MSE of the filter.

A two-pass training approach would be able to take advantage of this nonuniform

distribution:

a During the first pass through the training data, grid points would be created

as required. The frequency with which each grid point was used would be

tabulated . Ho w ever, the least-squares matrix w o uld  no t be co nstructed  -

training data would be used only to determine the probability distribution of

the grid points.

a Grid points would then be sorted according to frequency of occurrence, and

only the first (say) 95% of the grid points (by cumulative frequency) would

be kept. The remainder would be deleted.
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Repetitions

Cumulative Number of

Probability Grid Points

05 . 343

06 . 749

07 . 1818

08 . 4350

0.95 09 22450 12250

Table 3.9: Key data points from Figure 3.22

Training Testing

Training Grid Matrix Missing MSE PSNR

Samples Points Entries grid points (dB)
3600 11054 154219 14.9% 52.7 30.9

7200 21063 261487 8.8% 45.7 31.5

10800 30453 350191 5.8% 37.6 32.4

14400 39148 432797 4.0% 39.1 32.2

18000 47676 517295 3.2% 35.6 32.6

21600 55516 585352 2.6% 37.0 32.5

Table 3.10: Results for simplel3pt and 02=200

a In the second pass of training, the least-squares matrix would be constructed.

No new grid points would be added during this pass.

This approach would circumvent the problem illustrated in Table 3.8 in which

the number of grid points grows as the size of the training data set is increased.

This approach has not yet been implemented.

Tables 3.10 and 3.11 give results for AWGN with o2 = 200 and o2 = 100. Similar

behaviour is apparent for these results: after about 10000 training samples, the

PSNR is fairly stable, but the number of grid points and matrix entries continues

to increase. Note that this number of training samples is quite small compared

to the size of a typical training image, which contains hundreds of thousands of

training samples.

3.7.2 Results for the Hybrid grid filter

The Hybrid filter used an 8’ grid filter with footprint simple3x3  for Fr and a 5x5

linear average for &. Unlike the simplel3pt filter described in the previous section,
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Repetitions

Repetitions

1 3600 2666 34316

2 7200 3642 53938

3 10800 4282 69310

4 14400 4767 81551

5 18000 5152 92119

10 36000 6485 133850

100 360000 11621 371019

Training Testing

Training Grid Matrix Missing MSE PSNR

Samples Points Entries grid points (dB)
3600 9819 142124 12.5% 28.6 33.6

7200 17985 233906 7.2% 23.5 34.4

10800 25743 312259 4.7% 19.4 35.2

14400 32686 378599 3.1% 19.7 35.2

18000 39408 447198 2.4% 18.3 35.5

21600 45463 503281 20% 19.2 35.3

Table 3.11: Results for simple13pt and 02=100
A

Training

Training

Samples

Grid Matrix

Points Entries

1000 1 3600000 17812 791986

Testing

Missing MSE PSNR

grid points (dB)
2.517% 201.7 25.1

1.590% 182.3 25.5

1.175% 173.9 25.7

0.897% 169.1 25.9

0.774% 167.9 25.9

0.423% 151.2 26.3

0.019% 134.8 26.8

0.010% 132.3 26.9

Table 3.12: Results for simple3x3  and a2=800

which used a 12-dimensional grid, this filter used an 8-dimensional  grid. The smaller

number of dimensions allowed the use of very large training sets (up to 3.6 million

training samples) and a noise variance of o2 = 800.

Tables 3.12 and 3.13 show results for AWGN with o2 = 800 and o2 = 100,

respectively (results for o2 = 200 and o2 = 400 are not given in table form). The

number of grid points required grew quite slowly as the size of the training set

was increased. In theory, this grid filter would reach about 1 million grid points,

assuming an extremely large training set. However, even with 3.6 million training

samples, the filter for o2 = 800 required only 17812 grid points. The percent of

missing grid points was much lower than the simplel3pt filters; when 3.6 million

training samples were used, the percentage of missing grid points was 0.01% for the

o2 = 800 filter and exactly 0% for the o2 = 100 filter.

Figure 3.23 shows how the MSE of the filters changed as the training set size was
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Repetitions

1

2

3

4

5

10

100

1000

increased. Some rough guidelines for training set size can be extracted from this

Training Testing

Training Grid Matrix Missing MSE PSNR

Samples Points Entries grid points (dB)
3600 1441 17101 1.015% 23.2 34.5

7200 1833 24210 0.613% 20.8 35.0

10800 2079 29673 0.415% 19.8 35.2

14400 2209 33339 0.331% 19.7 35.2

18000 2344 36872 0.252% 19.6 35.2

36000 2690 47687 0.130% 18.9 35.4

360000 3641 89266 0.002% 17.9 35.6

3600000 4483 128423 0.000% 17.7 35.6

Table 3.13: Results for simple3x3  and 02=100

graph. For o2 = 100 and o2 = 200, about 10000 training samples were sufficient

to train the filter. Larger training sets did not significantly reduce the MSE. Note

that most training images contain far more pixels than this, so for small amounts

of noise, a single pass through the training data appears sufficient. For o2 = 400,

about lo5 training samples were sufficient. The largest noise amount, o2 = 800

required roughly lo6 training samples.

3.8 Performance for different noise types

As described in an earlier section (1.2.3)  G aussian noise is a worst-case for nonlinear

image restoration filters, in the sense that improvement over linear filters is least for

Gaussian noise. For non-Gaussian noise models, nonlinear filters should perform

better than linear filters.

To verify this, a grid filter was trained on Gaussian, Laplacian, and Uniform

noise. The grid filter used a 812 grid and the simple3x3  footprint (Figure 2.2). The

filters were trained on the synthetic squares image (Figure 3.1). This image was

chosen because it consists largely of flat regions.

Training consisted of 1.5 million training samples (10 repetitions of the syn-

thetic/squares image, each time with a different noise field). Training time averaged

7-10 minutes for each filter (including CG iteration time). Results were compared

to the Wiener filter and optimal 3x3 Order Statistic Filters (with coefficients as in

Table 1.1).

Table 3.14 shows results for o2 = 100 noise. Note that using a linear average,
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Figure 3.23: Effect of training set size on MSE for a hybrid 8’ grid filter

MSE

Noise model Grid filter Wiener filter Optimal OSF

Gaussian 12.53 59.3 155.3

Laplacian 10.18 59.4 32.0

Uniform 8.02 59.9 314.0

Table 3.14: MSE results for various noise models. o2 = 100

the MSE for a mean estimate of 9 observations of a stationary R.V. is 11.11. The

grid filter does slightly worse than this for Gaussian noise because it has to cope

with edges. For all noise types, the grid filter outperforms both the Wiener filter

and the optimal OSF filter. Note that for Gaussian and Uniform noise, the OSF

filters ix~rease  the noise amount. This is because OSF filters are derived assuming

a stationary point process, which the squares image is not.

Table 3.15 shows results for o2 = 800 noise. The theoretical best a 3x3 linear

average can do is an MSE of 88.89 for a stationary signal.’ The grid filter is

able to do better than this for both Laplacian and Uniform noise, despite the

‘ This is betause a 3x3 window contains 9 observations; the residual variance is therefore

800/ 9 = 88.89.
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MSE

Noise model Grid filter Wiener filter Optimal 3x3 OSF

Gaussian 106.7 206.8 232.6

Laplacian 80.9 203.5 109.2

Uniform 64.3 205.0 328.4

Table 3.15: MSE results for various noise models, o2 = 800

nonstationarity of the signal.

3.9 Superresolution

All imaging systems have an upper limit on resolution. These limitations can arise

in several ways:

a Diffraction of light limits resolution to the wavelength of the illuminating

1 ghti .

a Lenses in optical imaging systems truncate the image spectrum in the fre-

quency domain [44].

a Sampling of images limits the maximum spatial frequency to a fraction of

the sampling rate.

Superresolution refers to reconstructing frequency components which lie above the

cutoff frequency of the imaging system. Grid filters, which learn statistical proper-

ties of an image class, are able to exploit their prior knowledge to perform super-

resolution. This section explores two scenarios: coherent (laser) illumination, and

incoherent (non-laser) illumination. Images of text are used as a test case, since

they have tightly constrained structural properties.

Coherent imaging systems

A coherent imaging system with a circular exit pupil acts as an ideal low-pass filter

[44]. The frequency-domain representation of such a filter is a disc (Figure 3.24):

all frequency components inside the disc are passed, and components outside the

disc are blocked. To simulate such a system, images were Fourier transformed and

all frequency components X-l 2 f were zeroed. A mild amount of noise (AWGN,

a2=10)  was added.
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Figure 3.24: Frequency-domain representation of an ideal low-pass filter

Coherent imaging systems are subject to a noise process known as spec&, which

can be approximated by multiplicative exponential noise [45]. Speckle only appears

when the surface being imaged has roughness at the scale of the illuminating wave-

length. Its omission here implies an assumption that the object being imaged is

smooth at that scale.

A hybrid filter with a 13-point detail filter for Fr and 5x5 averager for & was

trained on images of Times-Roman, Helvetica and Courier text at 18 and 36 point

size. Due to memory restrictions, the largest possible grid was 712. Figure 3.25

shows sample results for 24 pt Palatino text (not in the training set). The grid filter

was able to reconstruct missing high-frequency components based on information

in medium-frequency bands and its own knowledge of the structure of text images.

It was also able to suppress “ringing” around edges which is caused by abrupt

truncation in the frequency domain.

Figure 3.26 shows the signal-to-noise ratio for the raw and filtered images. Al-

though there is no signal power present for X-l 2 f , the grid filter is able to

reconstruct the missing components to the 4-7 dB level. This reconstruction comes

at the cost of decreasing the SNR for lower frequencies. However, the actual con-

tribution to MSE from the low frequency bands is comparatively low (Figure 3.27).

The decreased SNR for low frequencies could be repaired by combining the filtered

and raw images in the frequency domain to get the best of both signals.
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Original

Restoration

MSE=359.3  PSNR=22.6  dB

After low-pass filtering

Absolute difference *4

Figure 3.25: Superresolution for a simulated coherent imaging system
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Figure 3.26: Signal-to-noise ratio for superresolution on a simulated coherent imag-
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Figure 3.27: Distribution of MSE over spatial frequency bands, before and after

filtering
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Figure 3.28: Optical Transfer Function for a diffraction-limited, incoherent imaging

system

Incoherent imaging systems

Changing from coherent to incoherent illumination changes the blurring process

substantially. A coherent imaging system has an abrupt cut-off in the frequency

domain, which results in “ringing” around edges. Incoherent illumination produces

a smooth drop-off in the frequency domain which blurs edges gradually.

The Optical Transfer Function (OTF) for a diffraction-limited incoherent imag-

ing system is radially symmetric. It can be written as X(p),  where p is the radial

frequency (X-l) [44] :

(3 1).

for p < 2~0.  The parameter po is a cutoff frequency: frequencies greater than 2~0

have G(p) = 0. Between 0 and 2p 0, frequencies are gradually attenuated.

To simulate an incoherent imaging system, the OTF of (3.1) was applied to

images, and noise was added (AWGN, o2 = 10). Two values of po were used: 0.2

and 0.125. For po = 0.2, 50% of the spectrum (by area) is completely removed.

For po = 0.125, 80% ofthe spectrum is removed. A plot of the OTFs is shown in

Figure 3.28.

A filter with a 13pt grid filter for Fr and 5x5 averager for & was trained on

images of 36 point Helvetica, Times-Roman and Courier text. The filter was tested

on 36 point Palatino text. The severe amount of blurring rendered smaller text

indecipherable. Figures 3.29 and 3.30 show results for po = 0.2. Although all signal
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Figure 3.29: Results for p. = 0.2

components beyond p > 0.4 are completely eliminated by the OTF, the grid filter-
is able to reconstruct the missing components based on information in the medium

frequency bands. Note that any linear filter would be unable to achieve a positive

SNR for any frequencies above this limit.

Figures 3.31 and 3.32 show results for po = 0.125. Experimentation revealed

that the footprint foveal5xl5c  did better than the hybrid filters. The grid size was

1314, but only 8772 grid points were used. The OTF for po = 0.125 eliminates all

components beyond p > 0.25. This means that there are no signal components with-
wavelength 4 pixels or less; about 80% of the spectrum is missing. The grid filter

is able to partially reconstruct missing components in the range 0.25 < p < 0.5.- -
This means the filter is able to double the resolution of the image from Xmin = 4 to
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Figure 3.30: Signal-to-noise ratio for p. = 0.2
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Figure 3.31: Results for po = 0.125

xmin = 2. The term resolution is used here to mean the smallest wavelength with

positive SNR.
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Chapter 4

Summary, Limitations and Future

Work

4.1 Summary

Grid filters are a new type of filter for local nonlinear image processing. They

have many properties which make them appealing; this section reviews the most

important of these.

The evaluation time of grid filters is small and roughly constant, regardless of the

number of filter coefficients. Arbitrarily close approximations to the optimal local

nonlinear filter can be obtained without paying a significant performance price.

This is in contrast to neural networks and polynomials, whose evaluation time

is linear in the number of coefficients. Unlike many global approaches to image

restoration which require iteration, grid filters restore images in a single pass.

Symmetry assumptions allow grid filters to generalize from training images to

similar images with different orientations, illuminations, and reversed intensity val-

ues. These symmetry assumptions reduce both the number of filter coefficients and

the amount of training data required. Unlike neural networks, grid filters require

only a single presentation of the training data set.

When grid filters encounter unusual inputs, they tend to pass them unchanged.

Grid filters can detect and flag regions of images which are unlike the training

images.

Certain types of grid filters contain order statistic filters as a subset. Hybrid

grid filters contain Lee’s local statistics filter for additive noise as a special case. In

practice, the performance of grid filters is superior to order statistic filters, Lee’s

filter, and the global Wiener filter.

101
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Preliminary results are tantalizingly good. Grid filters are able to exploit struc-

tural characteristics of images to achieve excellent results for both noise suppression

and superresolution.

4.2 Limitations

Grid filters are limited to a small number of inputs (roughly 13 if a typical work-

station is used for training). We have had success with footprints as large as 15x15,

with feature selection used to reduce the number of inputs.

Unlike Wiener, Lee, and order statistic filters, grid filters need to be trained for

a target class of images. Training grid filters requires pairs of pristine and degraded

images. These training pairs can be acquired experimentally (for example, pairing

low-quality images with those acquired by a high-fidelity imaging system). If the

degradation process is well understood, degraded images can be simulated using

appropriate synthetic images. Grid filters are not suitable for blind deconvolution.

Grid filters are good at removing local degradations, for example small amounts

of blurring and white noise. They are not suitable for removing large-scale blurring

or low-frequency noise, although they might prove useful for cleaning up after a

global inverse filter.

They perform best when the image class and degradation is tightly constrained.

For example, a filter trained on document images with a specific amount of noise

will perform much better than a filter trained to handle a wide variety of image

types and degradations.

4.3 Future work

4.3.1 Improvements to the filter design

Feature selection

In the current implementation, features (inputs to the grid filter) are limited to sin-

gle pixel values, or averages of pixel values from the local region. It may be possible

to improve the performance of grid filters by using different kinds of features:

Principle components (or Karhunen-Loeve  transformation) of the local neigh-

borhood might allow larger window sizes to be used, while still using a small

number of features. A shortcoming of principle components for this appli-

cation is that they provide an optimal basis for reconstructing the entire
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neighborhood, rather than a basis which gives maximal information about

the central pixel. For this reason, a feature selection technique based on

information theoretic principles might yield better results.

Features which incorporate information from larger scales might solve the

problem of smoothing over large regions in the presence of extreme noise.

Features based on IIR filters or wavelets  might serve this purpose.

Currently filters must be specific to a particular degradation model. It might

be possible to create filters which handle a variety of degradations by including

parameter estimates for the degradation model as filter inputs. For example.

a filter for additive noise could take an estimate of the noise variance as an

input. The filter could then be trained on a variety of noise variances. This

would effectively make the filter coefficients a function of the noise variance

estimate. For blurring, one could include an estimate of the width of the

point-spread function as a filter input.

Hybrid grid filters make use of the variance and mean from a large neighbor-

hood to switch between the grid filter and a point estimator. Better results

might be obtained if the variance and mean estimates were fed into the grid

filter as inputs. The grid filter could then turn itself on and off in an optimal

fashion.

Grid design

a Currently the grid has explicit spatial bounds, and grid spacing is an integer

fraction of the grid length. With the sparse representation, there is no need

to have a limit on the spatial length of the grid. It might be useful to throw

away this notion, and make the grid spacing a real-valued parameter which

could be continuously varied.

a In several of the results, it is clear that there is a dramatic difference between

grid spacings which are an even and odd fraction of the total grid length. This

can be seen as an oscillation in PSNR in (for example) Figure 3.4 (p. 64).

It likely relates to whether grid points coincide with the origin or are spaced

symmetrically around it. It appears that grids which are spaced symmetrically

around the origin perform better. The reasons for this should be investigated.

a The current grids are highly anisotropic. Staggered grids [46] might overcome

this problem, and produce better results with fewer grid points. In two di-

mensions, staggered grids are hexagonal, and this geometry extends nicely to



CHAPTER 4. SUMMARY. LIMITATIONS AND FUTURE W ORK 104

many dimensions. On a staggered grid, the linear interpolation described in

Section 2.5.2 (p. 37) b ecomes more closely isotropic. Staggered grids are also

easy to implement: mapping from a staggered grid to a regular grid requires

a simple linear transformation.

The anisotropy of regular grids is a substantial problem: the resolution of the

grid is dN times as large in certain directions as in others. For N = 2 this

is not much of a problem, so it is ignored. But for N = 16, it means that in

certain directions the grid has 4 times the resolution as in other directions.

By developing grids which are more closely isotropic, there are reasons to

believe that the complexity of many-dimensional function approximation will

go from being exponential to polynomial in N.

Many of the nodes in a highly-trained filter do not contribute much to reduc-

tion of the MSE. As described in Section 3.7.1 (p. 87) it may be beneficial to

implement a two-pass training approach. The first pass would identify impor-

tant grid points, and the second pass would form the least-squares equations

to determine their value.

There may be useful insights to be gained from regarding many-dimensional

function approximation using grids as a compression problem. For example,

throwing away unimportant grid points is reminiscent of rate-distortion ideas

from coding theory.

It is possible to train a grid filter to not only estimate the central pixel, but

also the variance of that estimate. This would allow grid filters to place rough

confidence intervals on filtering results. For example, in regions where there is

insufficient information to localize an edge, for example in Figure 3.7 (p. 68),

the grid filter might be able to  indicate that there w as information lost in

that region.

Better results might be obtained if the grid spacing w ere able to  differ in

each dimension. For example, one might use a very fine grid spacing for di-

mensions corresponding to nearby pixels, and a coarse spacing for dimensions

corresponding to pixels fart her away.

Symmetries o f the grid are based primarily on the group Dd. This group is

related to the symmetries of a rigid square in the plane. It can be written as

the direct product of two subgroups: a reflection group and a cyclic rotation

group. The cyclic rotation group is actually an approximation to the continu-

ous rotation group SO( 2) on the image sampling grid. With larger windows,
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it may be possible to devise groups larger than D4 which more closely ap-

proximate SO(2). Constructing larger symmetry groups would reduce the

number of grid points. It may be useful to drop the group requirement, and

work instead with sets or trees of permutations.

Training

It may be possible to train grid filters without solving least-squares equations.

The approach is akin to sampling the optimal function F on the grid points.

The training equations which accomplish this are:

fi-
c .i w;(xqsjo - xi>

where X is a regularization parameter, and the other sYm

for (2.32, p. 51). This approach works marvelously well

test functions. Unfortunately, it appears to not work at a

filtering problems in 8 or 12 dimensions. No reasonable

failure has yet been found.

(4 1).

101s are as described

for two-dimensional

1 for practical image

explanation for this

The time required to solve the least-squares equations using Conjugate Gra-

dient might be reduced by the use of a preconditioner  (see for example [41]).

A detailed analysis of the effect of the regularization parameter X on filter

performance and convergence time of CG is needed. It is possible that some

of the noise surrounding outlying data points

(p. 83) might be due to too small a parameter
1

for ex

x .

ample in Figure 3.20

It may be possible to adopt multigrid methods (see for example [47]) to solve

the least-squares equations. Multigrid methods are generally much faster than

CG for large problems.

Convergence of the CG method might be quicker if a succession of regular-

ization parameters X were used, starting with large values and ending with

small values. Larger values of the parameter X reduce the spectral condition

of the least-squares equations, which speeds convergence. Starting with a

large value of X would allow quick convergence to an approximate solution,

with subsequent values of X used to refine the solution.

Instead of stopping convergence by looking at residuals or changes in the solu-

tion vector, it should be possible to explicitly compute the criterion function
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J(f) from the least-squares system. This would provide a better measure

of when iteration should be stopped. It might also provide a good way of

determining how large X can be without affecting MSE substantially.

a The computational resources required by grid filters are far greater for training

than filtering. Filters which require (for example) 100 Mb of RAM for train-

ing require less than 10 Mb of RAM for filtering. It may be useful to port

the training software to a supercomputer, so that very large filter training

problems can be tackled. Although such filters would require a supercom-

puter to train, they would still fit comfortably into a workstation’s memory

for filtering .

a Rather than explicitly constructing the least-squares equations, it might be

useful to adopt a neural-network style of training. This would greatly reduce

memory requirements at the expense of longer training times.

4.3.2  Speed improvements

The current implementation is written in the C++ language using a framework

which was designed for flexibility rather than speed. It should be possible to sub-

stantially increase filtering speeds by making the code more efficient:

a Profiling of the current implementation has revealed that most of the filtering

time is spent in isomorph selection (i.e. handling permutation group symme-

tries). The current implementation of isomorph selection is grossly inefficient.

It should be possible to devise a faster method to handle these symmetries.

a Selection of the interpolation nodes (the routine FINDPERMUTATION  of Fig-

ure 2.14 (p. 41)) is currently implemented using selection sort. This is highly

inefficient, and should be replaced with a fast sorting network.

a Better use of cache memory might be obtained by implementing tiling [48, 491

of the image.

a It might be useful to implement a filter compiler which would take the fil-

ter specification generated by the current implementation, and turn it into

highly optimized C-language code. This would permit specialization of crit-

ical algorithms, which has been shown to have a large effect on performance

WI .
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a For hybrid grid filters, there are large regions of the image where the output

of the grid filter is not used at all, because the parameter /? is zero (for the

explanation of this parameter, see Section 2.8 on p. 55). It may be possible

to speed up the performance of these filters by first testing the parameter /?.

If it is sufficiently close to zero, evaluation of the grid filter can be avoided.

4.3.3  Applications

In this thesis, grid filters were evaluated for their ability to undo additive noise and

blurring (superresolution). It is reasonable to expect that grid filters may do well

variety of other problems:

Grid filters could be adapted for multiplicative noise. In this scenario, the

signal mean invariance assumption (Section 2.6.2, p. 46) would have to be

discarded. The grid filter would still be designed as an adjustment to the

original pixel value, but a dimension would not be eliminated from the grid.

Grid filters could be trained for robust edge detection. This would require

paired samples of images and the desired edge detection image.

Grid filters should be capable of edge enhancement (sharpening) in the pres-

ence of noise. Training data could be synthesized by sharpening an image,

and training a grid filter on the noisy version.

Binary Tree Predictive Coding (BTPC) [51] uses a multilevel approach to

image compression. Each level is used to predict the representation of the

image at the next finer level. Grid filters can be trained to do this type of

prediction, and it is possible that they will outperform current prediction

techniques.

Grid filters could be trained to remove artifacts left by compression algorithms

such as JPEG. Preliminary tests using BTPC have shown roughly a +3dB

gain when heavily compressed images were passed through a grid filter.

It may be useful in some situations to train a cascade of grid filters. The

first filter would do

filter would clean up

the restoration. Unfclrtunately

first filtersimult aneously. The

filter training can be started.

the best i

after the

t could to undo the degradation. The second

first filter, and contribute its own thoughts to

‘, it will not be possible to train such a cascade

will have to be fully trained befor be the second
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a Grid filters might be useful for audio signal processing. Their ability to sup-

press noise, extrapolate missing frequency components and undo compression

artifacts might be useful for telephony.

a The ideas behind grid filters extend nicely to supervised pattern recognition

problems in a moderate number o f dimensions. They might be appropriate

for image segmentation, texture recognition, and general pattern classification

problems.
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