

Grid Harvest Service: A System for Long-term, Application-level Task Scheduling

Xian-He Sun, Ming Wu

Department of Computer Science
Illinois Institute of Technology
Chicago, Illinois 60616, USA

{sun, wuming}@iit.edu

Abstract
With the emergence of grid computing environment,
performance measurement, analysis and prediction of
non-dedicated distributed systems have become
increasingly important. In this study, we put forward a
novel performance model for non-dedicated network
computing. Based on this model, a performance prediction
and task scheduling system called Grid Harvest Service
(GHS), has been designed and implemented. GHS consists
of a performance measurement component, a prediction
component and a scheduling component. Different
scheduling algorithms are proposed for different
situations. Experimental results show that the GHS system
provides satisfactory solution for performance prediction
and scheduling of large applications and that GHS has a
real potential.

Keywords: performance prediction and measurement,
task scheduling, resources sharing, grid computing,
performance modeling

1. Introduction

Performance evaluation has always been an important
issue in computer science, especially in the field of high
performance computing. Many factors, including
computer architecture, network latency, compiler
techniques and application algorithms, affect application
performance in a high performance computing
environment. In the early 1990’s, inspired by the success
of Internet technology, a pervasive computational
environment composed of a large number of
heterogeneous and dynamic network resources was
conceived and constructed. While this new complex
environment provides the potential computing power, it
also introduces a big challenge in task allocation and
scheduling [1]. How to partition and where to allocate
tasks in such a large, available but shared system still
elude the researchers. The key to reach an optimal

scheduling in such an environment is performance
prediction.

In this study, we present a performance prediction and
task scheduling system, the Grid Harvest Service (GHS)
system, which provides long-term application-level
performance prediction based on a newly proposed
performance model. Early work in performance modeling
was mostly focused on dedicated systems. The study of
usage patterns of non-dedicated workstations is relatively
recent. Mutka and Livny [2] reported that the distribution
of available time intervals on workstations could be
characterized as combination of several hyper-exponential
distributions. Harchol-Balter and Downey estimated the
process execution time [3]. Based on their experimental
observation, they claimed that the median remaining life
of a process is equal to its current age. These work is
observational in nature. Leutenegger and Sun [4] put
forward an analytical performance model to investigate the
effect of a remote task on the local jobs of the workstation
owner and vice versa. An effective prediction formula was
derived for homogeneous non-dedicated systems. Most
recently, Gong, Sun, and Watson have introduced a more
general model for heterogeneous non-dedicated network
computing [5]. This model was derived from a
combination of rigorous mathematical analysis and
intensive simulation to make it generic and practically
useful. The effects of machine utilization, computing
power, local job service and task allocation on the
completion time of remote task are individually identified.
Formulas to distinguish the impact of different factors are
derived in the model analysis, which provide us the
guildline for performance optimization.

There are several on-going projects on performance
evaluation in parallel or distributed programming
environment. However, there is still no adequate solution
for general enterprise network environments. Paradyn
Parallel Performance Tools [6] is a known performance
evaluation system. The technical features of Paradyn are
dynamic instrumentation, W3 (why, when, and where)
search model and uniform data abstraction. Paradyn
measures the performance of an application. But it does

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

not provide performance analysis and prediction based on
resource usage pattern. TAU (Tuning and Analysis
Utilities) [7] was developed at the University of Oregon.
Its salient features are instrumentation at the source code
level, message trace and visualization, standard format for
performance files and further analysis based on the
recompilation and rerun of the application with different
profile statistics option of the library. It is a post-execution
performance analysis system. These systems focus on
application performance in a dedicated parallel system
instead of a non-dedicated distributed environment. The
Network Weather Service [8] monitors and forecasts
resource performance on-line. It provides system
performance sensors, various simple forecasting methods,
dynamic predictor selection and web-based visualization
interfaces. In RPS (Resource Prediction System) Toolkit
[9], Dinda predicts the CPU availability of a Unix system
over a small time range with the time series techniques.
Their work is for non-dedicated environments. However,
their work only predicts the availability of non-dedicated
resources. There is no application-level performance
analysis or prediction. Furthermore, their prediction
focuses on short-term performance.

The experience in the development of the GrADS
project and other grid projects has demonstrated that the
integration of performance evaluation mechanism with
application is pivotal to the success of grid environments
[10]. Currently, the scheduling algorithm in the APPLES
[11] project is supported by the short-term system
prediction provided by NWS services. In this study, we
present the prototype development of the GHS system for
long-term application-level performance prediction and
task scheduling. We discuss the modeling foundations,
introduce the measurement mechanisms, derive scheduling
schemes, and present initial experimental testing results.
Analytical and empirical results show that the prototype
GHS system provides satisfactory solution for
performance prediction and task scheduling of grid
computing and that it has real potential.

2. Performance modeling and analysis

Our system is based on the modeling results derived in
[5]. The model assumes that the local tasks have high
priorities. For the development of GHS, we have extended
the results for equal priority competition. That is the
distributed task has priority equal to local tasks in
competing for resources. This extension is appropriate for
a grid environment where different remote users may
compete for resources under the same priority. The
analysis of equal priority competition shows for large
remote tasks, competing for resources gives a little gain
for the remote task but leads to a noticeable impact on the
local jobs.

To distinguish the grid task under scheduling with other
user’s competing jobs, we call the grid task the remote
task and the other competing jobs the local (sequential)
jobs. We assume that a grid task can be divided into
independent sub-tasks for parallel processing and the
arrival of the local jobs at machine k follows a Poisson
distribution with

kλ . The service time of local jobs at

machine k follows a general distribution with mean
kµ/1

and standard deviation
kσ . Based on our assumption, the

owner job process is a M/G/1 queuing system. These
assumptions are used in [5] and are based on the
observations of machine usage patterns reported by
researchers in Wisconsin-Madison, Berkeley, Maryland
and et al [12]. We assume that the remote task is
composed of one single parallel phase and a final
synchronization phase.

2.1. Completion time of a remote task

The remote task is given a lower priority than the local
job so that the remote task is less intrusive. The total work
demand of the remote task is W. Each machine k

(mk ≤≤1) has a sub-task work
kw and speed kτ . The

completion time of the sub-task on machine k can be
expressed as:

kkSkkkkk YYYwT ++++= .../ 21τ (1)

)1(kki SiY ≤≤ is the computing time consumed by

sequential jobs and
kS is the number of interruption due to

local job arrivals on machine k. By defining

>+++
=

=
0,...

0,0
)(

21 kkSkk

k

k SifYYY

Sif
SU

k

 (2)

We can obtain the distribution of kT as

≥
>−≤−+

=≤

−−

otherwise

wtif

SwtSUee

tT kk

kkkk
ww kkkkkk

,0

/

0|/)(Pr()1(

)Pr(

//

τ
ττλτλ

 (3)

If the distribution of)0|)(Pr(>≤ kk SuSU can be

identified, we can calculate the distribution of sub-task
completion time. Using the well-known result in queuing
theory, we can get the mean and variance of sub-task
completion time [5]. The mean and variance of)(kSU

given 0>kS are thus calculated as:

k

k
wkk

w

e
SSUE

τρλ −−
=> − 1

1

1

1
)0|)(((4)

k

k

k

k

k

k
wkk

w

e
SSUV

kk τµ
θ

ρ
ρ

λ
)1(

)1(1

1
)0|)((

2

3

+
−−

=> −
 (5)

where
kkk µλρ /= is the machine utilization and

kkk µσθ = is the coefficient of variation of service.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

The completion time of a remote task is the maximum
of each sub-task completion time. After the distribution of
the completion time of sub-task

kw is identified, the

cumulative distribution function of the remote parallel task
completion time can be calculated as:

≥

>−≤−+

=≤

∏
=

−−

otherwise

wtif

SwtSUee

tT

m

k
kkkk

ww kkkkkk

,0

)]0|/)(Pr()1([

)Pr(max

1

// ττλτλ

 (6)

where)/{max kkwMaxw τ= .

Simulation results indicate that Gamma, Lognormal or
Weibull are among the best-fit distributions to describe the

)0|)(Pr(>≤ kk SuSU . When the machine utilization is

less than 15%, the Gamma distribution is the best. The
Weibull distribution favors)0|)(Pr(>≤ kk SuSU when

machine utilization is medium. If the utilization is higher
than 50%, the Lognormal distribution may be the best
choice. In general, the Gamma distribution is appropriate
for the calculation of)0|)(Pr(>≤ kk SuSU .

By evaluating the mean and coefficient of the task
completion time on a group of available machines, the task
can be assigned to the most appropriate resources. How to
define selection criteria with the mean and coefficient of
variation is determined by application requirements. In
GHS, we choose the machine set with the smallest

)).(1)((TCoeTE + .

2.2. Remote task partition and allocation

If the sub-task demand kw is given to machine k, we

can calculate the mean and variance of the parallel
completion time using formula (6). The question here is
how to partition a task and allocate sub-tasks to machines
so that we can achieve an optimal performance for a given
number of machines. A natural strategy is that machine k
will be assigned a sub-task

kw so that the mean sub-task

completion time is the same at different machines.
Suppose the mean sub-task completion time is α , we get
the sub-task demand

kkkw τρα)1(−= since

k

k
k

w
TE

k τρ−= 1
1)(. And because ∑

=

=
m

k
kwW

1

, the sub-

task workload can be expressed as

kkm

k
kk

k

W
w τρ

τρ
)1(

)1(
1

−
−

=
∑

=

 (7)

By comparing the remote task completion times on
different sets of machines with formula (6), we can
identify the best set of machines for running the remote
task.

3. The design of the Grid Harvest Service

system

The general performance model has been verified via
intensive simulation testing. The next question is how to
apply the model in a general grid environment, how to
measure the needed parameters in a general grid
environment, how to measure them in a least intrusive
way, and how to use the prediction for performance
optimization. The measurement methodology and task
allocation issues are discussed in this section.

3.1. Measurement methodology

According to the model, parameters
kλ ,

kρ ,
kσ and

kτ

should be measured in order to calculate the mean and
coefficient of variance of the remote task completion time,
where

kλ is the local job arrival rate on machine k,
kρ is

the machine utilization,
kσ is the standard deviation of

service time and
kτ is the computing capacity of machine

k .
kτ can be obtained by running computation intensive

benchmarks. We focus on the measurement of
kλ ,

kρ and

kσ .

Suppose parameter x has a population with a mean
and a standard deviation and we have a sample

},...,,{ 21 nxxx , the smallest sample size with a desired

confidence interval and a required accuracy r is given by
22/1)

100
(

xr

dz
n α−= [13]. The desired accuracy of r

percent means that the confidence interval is
))100/1(,100/1((rxrx +− . If the confidence interval is 95%

and accuracy is 5, then we get
 2)(64.1536

x

d
ns = (8)

where the sample mean is ∑
=

=
n

i
ix

n
x

1

1 and sample

standard deviation is

∑
=

−
−

=
n

i
i xx

n
d

1

2)(
1

1 (9)

In our experiment, we assume that parameter x is a
random variable with a fixed mean and a fixed standard
deviation during a continuous 24-hour period on each

machine. Parameter x is measured in sn time intervals

during 24 hours. The average of x is viewed as a sample
of x over 24 hours. A prediction of x for the next 24
hours is based on the history of sample x . Here we use a
dynamic method to adjust the number of time intervals. x

and s over the previous 24 hours are used to calculate sn

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

with formula (8) at the end of each hour to adapt the

possible variance of x . A number (
24

sn) of ix will be

measured for the next hour. The average of x taken at
time t over previous 24 hours is calculated with the
following formula:

∑ ∑
∑

−=

Χ

=

−=

Χ
=

t

ti j
ijt

ti
i

t

xtxavgAdapt
23

||

1

23

||

1
),(_ (10)

where
iΧ means the set of ijx measured in the ith hour.

Now the problem is how to measure parameter x over a
time interval

ervalTint
.

The Unix utility vmstat is used to measure
kρ . It

accesses performance statistical data, which is collected
and maintained by the kernel system. The system
resources occupied by vmstat are negligible. In our
experiment, we take each process as a job. The Unix
utilities ps and lastcomm are used to obtain process
execution information at the beginning and the ending of

ervalTint
 to calculate

kρ . ps shows the active processes

information while lastcomm presents the previous
executed processes information. We define

1tJ as

processes existing in the beginning of
ervalTint

,
betweenJ as

processes started and finished in
ervalTint

,
arrivalJ as

processes started but not finished in
ervalTint

 and
2tJ as

processes existing in the end of
ervalTint

. So we get:

erval

startbetween

erval

arrival
i T

JJ

T

J

intint

+
==λ

betweenJ will be given by comparing the output of lastcomm

utility in the beginning with that at the end of
ervalTint

.

Since }|{ 12 titiistart JJbutJJJJ ∉∈= , we can identify
startJ by

looking into
1tJ and

2tJ .

To get
iσ , the standard deviation of service time, we

need to measure each service time. During each time
interval, we use lastcomm utility to get the executed
processes service time and then calculate the average as a
sample of service rate.

In our experiment, we calculate the number of
measurements for the next hour according to the system
history over the previous 24 hours. This method can
dynamically adjust the measurement number to reduce the
measurement cost. The GHS measurement system
consumes very little CPU resource (less than 1%).

3.2. System integration and task scheduling

After parameters
kλ ,

kρ ,
kσ and

kτ of each machine

are measured and estimated, the completion time of a
remote task can be predicted by using formula (6). The
relation between the major components of the GHS system
(shaded areas) and other grid services is shown in Figure
1. The task manager, which is responsible for task
management, is located in the Application layer. It sends a
request to the Scheduling component in the Collective
layer for resource allocation. The Scheduling component
contacts the Directory Service (DS) to locate the potential
available resources. It then executes the task scheduling
algorithm to identify the best set of resources by sending
possible choices to the Prediction component and
collecting the evaluation results. The Prediction
component can also serve the grid-enabled programming
systems and workload management systems in a grid
runtime system. The Prediction component accesses the
performance data to estimate the task completion time.
The Performance Communication Manager (PCM)
component is used to collect performance data, which is
exchanged through the proposed performance data
protocol (PDP) based on the communication mechanism
provided by the GSI service in the Connectivity layer. The
Performance Data Manager (PDM) component on each
resource is responsible for measuring system and
application information by using various sensors.

As shown in Figure 1, in addition to prediction,
scheduling is also a primary component of GHS. A
partition schema, called “equal-mean” partition, is given in
equation (7). A set of scheduling algorithms have been
derived and used in GHS. Figure 2 gives the scheduling
algorithm for optimal parallel processing. If we have m
idle machines, for the optimal algorithm, we need to check

m2 possible solutions. This is too costly when m is large. .
A heuristic task scheduling algorithm is given in Figure 3
to find an acceptable solution with a reasonable cost. The
basic idea is that machines with higher

kk τρ)1(− are

selected with higher priority. In Figure 3, w is the grid
task demand, µ′ is the average of the mean demand of
local machines’ tasks. Leutenegger and Sun [4] show that
the task ratio, the ratio of the remote task demand to the
mean demand of machine’s local tasks, should be large
enough to achieve acceptable efficiency. Here we choose
it to be at least 4.

Figure 2 is a scheduling algorithm for parallel
processing. Scheduling of parallel task is considered more
challenging in a grid environment. Current scheduling
algorithms used in grid environment are min-min [11]
based algorithms for multiple independent remote tasks.
Though not listed here, with)).(1)((kk TCoeTE + as the

evaluation criteria, the optimal parallel processing
scheduling algorithm can be extended for multi-
independent task scheduling.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

4. Experimental results

We have developed a prototype GHS system and
conducted experimental testing on machines at the
Argonne and Oak Ridge national laboratories, as well as at
IIT. The prediction precision of our analytical model is
examined in both a simulation environment and an actual
grid environment to verify the accuracy and feasibility of
the GHS system. We have evaluated three allocation
methods on a network of machines to examine our task
partition strategy. The completion time of a remote task
over different number of machines with different
scheduling methods are compared. Finally, we investigate
the relationship between the number of intervals measured
in each hour and the variance of system utilization to test
the efficiency of our dynamic measuring methodology in
reducing the measurement cost. In our experiment, we
choose NAS Serial Benchmarks (BT, CG, LU, MG, IS and
SP) as the remote task. The class type of these benchmarks
is “A” or “W”.

4.1. Prediction error

Assumption: a grid task can be partitioned into any
number of sub-tasks. Each sub-task will be assigned to a
machine respectively.
Objective: Scheduling a grid task with an optimal
partition and allocation
Begin
List a set of idle machines that are lightly loaded over an
observed time period, },,,{ 21 qmmmM h= ;

1=′p , 1=′k ;

1=p ;

While qp <

List all the possible sets of machines,
},...,,{ 21

p
z

ppp SSSS = , MS p
i ⊂ and pS p

i =|| ;

For each machine set p
kS)1(zk ≤≤ ,

Use the formula (4) to partition sub-tasks to
each machine in p

kS ;

Use the formula (3) to calculate
)).(1)((p

k
p

k SS
TCoeTE + .

If)).(1)((p
k

p
k SS

TCoeTE ′
′

′
′

+ >

)).(1)((p
k

p
k SS

TCoeTE +

then pp =′ ; kk =′ ;

 End If
 End For
 1+= pp ;

End While
Assign parallel task to the machine set p

kS ′
′ ;

End

Figure 2. Optimal task scheduling algorithm

Assumption: a grid task can be partitioned into any size
of sub-tasks. Each sub-task will be assigned to a machine
respectively.
Objective: Scheduling a grid task heuristically to reach a
semi-optimal performance
Begin
List a set of idle machines that are lightly loaded over an
observed time period, },...,,{ 21 qmmmM = ;

Sort the list of idle machines in a decreasing order with

kk τρ)1(− , },...,,{' 21 qcccM = ;

}
/1*4

|,min{|,1
µ′

′== w
Mba ;

Repeat
 2/)(bac +=

 /*)(xf denotes)).(1)(()()(xCxC TCoeTE +

where },...,,{)(21 xcccxC = */

 If)}(),(),(min{)(cfbfafaf = then b=c

 Else If)}(),(),(min{)(cfbfafbf = then a=c

 Else If)1()(+< cfcf then b=c

 Else a=c
Until (a+1=b)
If)()(bfaf < then

 Assign parallel task to the machine set)(aC ;

Else Assign parallel task to the machine set)(bC ;

End

Figure 3. Heuristic task scheduling algorithm

Figure.1 Integration of GHS components
with other grid services

Resource Layer

Internet GSI

PDM DS

Sensor Sensor Sensor

PCM PDM DS

Sensor Sensor Sensor

Connectivity

Fabric Layer

Scheduling

Performance Prediction Directory Service

PCM

Application Layer

Collective Layer

Task Manager

GEPS PSE

GRIP

PCM

PDP

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

To evaluate the accuracy of our prediction model, we
define our prediction error as

|
Pr

|
tMeasuremen

tMeasuremenediction period − . Figure 4 shows the

expectation and variance of the prediction error of the
remote task completion time with different job lengths
(from 0.5 to 8 hours) on a Sun workstation. The workload
is simulated based on observations from the SDSC
Paragon logs and the CTC SP2 logs [14]. We can see that
with increase in job length, the expectation and variance of
the prediction error get smaller. When a remote task’s
workload is more than 8 hours, the expectation of the
predication error of the task run time is less than 10%. We
also investigated the prediction error for completion time
of remote parallel task.

We conducted our experiment six times in a Sun
ComputFarm cluster, named Sunwulf, at IIT. The
expectation and variance of the prediction error on the
parallel task completion time with different task demands
(from 4 to 256 hours sequential processing time) on 32
nodes of the Sunwulf are given in Figure 5. We find that
the prediction error reduces more quickly than that on a
single workstation. This is due to the property of
probability modeling: with more processors and more
samples, the predicted results are more accurate.

We have evaluated our prediction model on an actual
grid environment with a practical workload. Figure 5
shows the expectation and variance of the prediction error
of a remote parallel task completion time on pitcairn, a
productive machine at Argonne National Laboratory.
Pitcairn is a multiprocessor with 8 250MHz UltrasparcII
processors and 1GB of shared memory. It is a grid node
shared by many users. The result again shows that the
expectation and variance of the prediction error get
smaller as the demand of remote task increases. When the
demand of remote parallel task is 16 hours, i.e. average
two hours workload is for each processor. The expectation
of the prediction error is about 4.18%. The prediction error

with 8 hours remote task demand is about 9.31%. Also we
find that the prediction error reduces more quickly than
that on a single workstation. Our experiment shows that
our method can work even better on a virtual organization,
which has its own local schedulers.

4.2. Task partition and scheduling

In our experiment, we compared the performance of
mean-time partition with two other partition approaches.
One is the equal-load partition, where the remote task
workload is divided into equal sub-workloads and then
assigned to each machine. Another is the heterogeneous
equal-load partition, which allocates among each machine
the sub-workload matching its theoretical computing
power.

We tested the efficiency of these partition approaches
in two workstations. Workstation A has an average
utilization of 50% while workstation B has an average
utilization of 20%. The local jobs arrive with a Poisson
distribution and are served with a Log-uniform
distribution. The machines are with a speed ratio of 1.33:1.
Figure 7 shows the remote task completion time with these

Figure 4. Expectation and variance of
prediction error of remote task

completion time on single machine

-10

0

10

20

30

40

50

60

70

1 2 4 8 16 24

r e m o te tas k e xe cu tion
tim e (h o ur s)

p
re

d
ic

ti
o

n
 e

rr
o

r
(%

)

expec tation +
v ariation

expec tation

expec tation -
v ar iation

0

5

10

15

20

4 8 16

parallel task
execution time

p
re

d
ic

ti
o

n
 e

rr
o

r(
%

)

expectation+variation

expectation

expectation-variation

Figure 6. Expectation and variance of
prediction error on multiple-cpu machine

Figure 5. Expectation and variance of
prediction error of remote task

completion time on parallel machine

0

10

20

30

40

50

0.250.5 1 2 4 8

parallel task demand
(hours)

pr
ed
ic
ti
on
 e
rr
or
 (
%)

expectation

variance

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

three partition approaches on two machines. The parallel
workload is increased from 1 hour to 8 hours. Result
shows that the mean-time partition is the best. The time
saved by the mean-time allocation algorithm is 20%-25%
for large jobs. The difference is significant. The detailed
completion time of the parallel sub-task on machine A and
machine B respectively show that the difference between
the parallel sub-task completion time on machine A and
machine B is the least with mean-time partition method.
So the remote task completion time, the maximum of each
sub-task completion time, is the least for mean-time
allocation.

The task partition algorithm is used to identify how
much workload of a grid task is assigned to each machine
in a given set of machines while the task scheduling
algorithm aims to find the best set of machines from a list
of available machines. Task partition is another factor
distinguishing GHS from other existing grid scheduling
systems where partition is either not considered or equal-
load partition is used. In section 3.2, we have discussed
various scheduling algorithms. The heuristic task
scheduling is proposed because of the high computing cost
of the optimal task scheduling algorithms.

We conducted experiments to compare the performance
of the two scheduling algorithms, optimal and heuristic
task scheduling discussed in Section 3.2 in Sunwulf. The
workload is simulated based on tracefiles from the SDSC
Paragon logs and the CTC SP2 log [14]. The system
parameters such as utilization, job arrival rate and service
rate were varied at each node. The experiment was
executed 10 times over different number of nodes, 10, 15
and 20. In each case, besides the optimal and heuristic task
scheduling methods, we also selected a subset of machines
for task allocation in random. The average run times of a
remote task with different scheduling algorithms were
compared. Our results demonstrate that the run time of the
remote task and the number of utilized machines of
heuristic task scheduling are close to those of optimal task
scheduling. When scheduling task among 20 available
machines, 14 machines were identified for optimal
scheduling and 13 machines were used for heuristic
scheduling. The average run time is 464.9 seconds for
optimal scheduling and 486.4 seconds for heuristic
scheduling. However, the computing cost of optimal task
scheduling is increased from 3.16 seconds to 6558.75
seconds while the computing cost of heuristic task
scheduling increased from 0.07 seconds to 0.25 seconds.
When the number of available machines was 15, 11 and 9
machines were used for optimal scheduling and heuristic
scheduling respectively. The same set of 8 machines was
identified by optimal scheduling algorithm and heuristic
algorithm when 10 machines were available. Table 1
shows the average run time of remote task with different
scheduling strategies.

nR means a number of n machines

are randomly selected for task allocation and scheduling

and
m20 means that all of 20 machines are used in task

scheduling.

Table 1. Average execution time of remote task

with different scheduling strategies

NM
5R

10R
15R

m20 Optimal Heuristic

10 1587.9 901.2 792.4 792.4
15 1421.9 855.1 631.3 523.5 548.4
20 1329.5 798.4 619.2 600.4 464.9 486.1

4.3. Run-time cost

In our experiment, we calculate the number of
measurement for the next hour according to the system
history over the previous 24 hours. Our program can
dynamically adjust the number of measurements to reduce
the measurement cost. Figure 8 shows an example of the
fluctuation of the number of intervals measured during
each hour when the machines are becoming steady. It
indicates that the number of measurements decreases when
the machine utilization remains at a certain level. We also
measured the execution time of our prediction program.
The experimental results show that the run-time cost of
our prediction component is 0.66 seconds when the
number of machines is 1024. Compared to the potential
gain from task scheduling, the run-time cost is negligible.

5. Conclusion and future work

In this paper, performance prediction and task
scheduling of large parallel or sequential tasks in a grid
environment are studied. First, a new modeling result is
identified and enhanced. Next, measurement methods and
mechanisms are developed to measure the needed system
parameters, and task partition and scheduling algorithms
are introduced. A performance measurement and
prediction system, the Grid Harvest Service (GHS)
system, is then developed for grid computing. Finally,

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

ex
ec

u
ti

o
n

 t
im

e
(m

)

1 2 4 8

t a s k d e m a n d (h o u r s)

e q u a l- lo a d
(h e te r o g e n e o u s)

m e a n - t im e

e q u a l- lo a d

Figure 7. Comparison of the
three partition approaches

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

initial experimental testing was conducted. Experimental
results show that GHS adequately captures the dynamic
nature of grid computing. For large jobs (eight hours
sequential runtime or more), its prediction error is less
than 10%. Its mean-time partition approach can reduce the
computation time by 20% to 30% compared to partition
without considering resource sharing. In addition, GHS is
both non-intrusive and efficient. Its run-time cost is always
less than 1%. Though our current experimental testing is
preliminary, every indication shows GHS has a real
potential in grid computing.

GHS is a long-term, application-level performance
prediction and task scheduling tool for non-dedicated grid
computing. It is a complement of existing performance
tools. It can be integrated into existing toolkits for better
service. For instance, NWS or RPS toolkits can be used to
provide the performance measurement for GHS, or they
can be combined with GHS to provide both short-term and
long-term prediction. GHS can be combined with
APPLES for general application-level scheduling. Like
most existing performance systems, the current
implementation of GHS has its limitations. For instance,
GHS only considers the workload in distributed systems
but not the communication and synchronization costs. The
current prototype implementation only demonstrates the
feasibility and potential of the GHS approach. More work
is needed to integrate GHS seamlessly into the grid
system.

Acknowledgments

This research was supported in part by national science
foundation under NSF grant EIA-0130673, ANI-0123930,
and by Army Research Office under ARO grant
DAAD19-01-1-0432.

We would like to thank Dr. Gregor von Laszewski at
Argonne National Laboratory and Dr. Kasidit Chanchio at
Oak Ridge National Laboratory for their help in collecting
the performance data. Dr. Von Laszewski is supported by
the Mathematical, Information, and Computational

Science Division subprogram of the Office of Advanced
Scientific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38. DARPA,
DOE, and NSF support Globus Project research and
development.

References:

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, ISBN 1-55860-475-8, Morgan
Kaufmann Publishers, San Francisco, CA, July 1998.
[2] M. Mutka and M. Livny, The Available Capacity of a
Privately Owned Machine Environment, Performance
Evaluation, Vol. 12, No 4, pages 269-284, 1991.
[3] M. Harchol-Balter and A. B. Downey, Exploiting Process
Lifetime Distributions for Dynamic Load Balancing, Proc.
SIGMETRICS, pages 13-24, May 1996.
[4] S. T. Leutenegger and X. H. Sun, Limitations of Cycle
Stealing of Parallel Processing on a Network of Homogeneous
Machines, Journal of Parallel and Distributed Computing, Vol.
43, No. 3, pages 169-178, June 1997.
[5] L. Gong, X. H. Sun, and E. F. Waston, Performance
Modeling and Prediction of Non-Dedicated Network Computing,
IEEE Trans. on Computer, Vol. 51, No 9, September, 2002.
[6] B. P. Miller and A. Tamches, Fine-grained dynamic
instrumentation of commodity operating system kernels, Third
Symposium on Operating Systems Design and Implementation
(OSDI'99), New Orleans, pages 117-130, February 1999.
[7] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman
and S. Karmesin, Portable Profiling and Tracing for
Parallel Scientific Applications using C++, Proceedings of
SPDT'98: ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, pages 134-145, August 1998.
[8] R. Wolski, N. T. Spring, and J. Hayes, The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing, Journal of Future Generation
Computing Systems, Vol. 15, No. 5-6, pages 757-768, October,
1999.
[9] P. Dinda and D. O'Hallaron, An Extensible Toolkit for
Resource Prediction In Distributed Systems, Technical Report
CMU-CS-99-138, School of Computer Science, Carnegie Mellon
University, July, 1999.
[10] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D.
Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-
Crummey, D. Reed, L. Torczon, and R. Wolski, The GrADS
Project: Software Support for High-Level Grid Application
Development, International Journal of High Performance
Computing Applications, Vol. 15, No. 4, pages. 327-344, 2001.
[11] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The
AppLeS Parameter Sweep Template: User-Level Middleware for
the Grid, Proceedings of Super Computer 2000, November 2000.
[12] A. Acharya, G. Edjlali, and J. Saltz, The Utility of Exploiting
Idle Workstations for Parallel Computation, Proc.
SIGMETRICS, pages 225-236, June 1997.
[13] R. Jain, The Art of Computer Systems Performance Analysis,
John Wiey & Sons, Inc, New York, 1992.
[14] A. B. Downey, A Parallel Workload Model and Its
Implications for Processor Allocation, 6th Intl. Symp. High
Performance Distributed Computing, pages 112-123, Aug 1997.

0

5

10

15

20

1 6 11 16

time period (hours)

m
ea

su
re

d
 n

u
m

b
er

number of
measurment per
hour

Figure 8. Decreasing of measurement when
the system is steady

0-7695-1926-1/03/$17.00 (C) 2003 IEEE

