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Biedl et al. 1 presented an algorithm for unfolding orthostacks into one piece without
overlap by using arbitrary cuts along the surface. They conjectured that orthostacks
could be unfolded using cuts that lie in a plane orthogonal to a coordinate axis and
containing a vertex of the orthostack. We prove the existence of a vertex unfolding using
only such cuts.
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1. Introduction

A long-standing open question is whether every convex polyhedron can be edge
unfolded—cut along some of its edges and unfolded into a single planar piece with-
out overlap 12,11,7,10. A related open question asks whether every polyhedrona (not

∗A preliminary version of this paper appeared in Revised Selected Papers from the Japan Con-
ference on Discrete and Computational Geometry, Tokyo, Oct. 2004, LNCS 3742, 2005, pages
76–82.
†Research supported in part by NSF grants CCF-0347776, OISE-0334653, and CCF-0430849, and
by DOE grant DE-FG02-04ER25647.
‡Research supported in part by NSF grants OISE-0334653 and CCF-0430849.
§Chercheur qualifié du FNRS.
aA polyhedron (without boundary) is an embedded connected polyhedral complex without bound-
ary, i.e., a connected set of polygons in Euclidean 3-space such that (1) every two polygons meet
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Fig. 1. These orthostacks are not edge-unfoldable 1. The first one is also not vertex-unfoldable.

necessarily convex but forming a closed surface) can be generally unfolded—cut
along its surface (not just along edges) and unfolded into a single planar piece with-
out overlap. Biedl et al. 1 made partial progress on both of these problems in the
context of orthostacks. An orthostack is an orthogonal polyhedronb of which every
horizontal planar slice not including a horizontal face is a single simple (orthog-
onal) polygon. Biedl et al. showed that not all orthostacks can be edge unfolded
(see Figure 1), but that all orthostacks can be generally unfolded. In their general
unfoldings, all cuts are parallel to coordinate axes, but many of the cuts do not
lie in coordinate planes that contain polyhedron vertices. Given the lack of pure
edge unfoldings, the closest analog we can hope for with (nonconvex) orthostacks
is to find grid unfoldings in which every cut is in a coordinate plane that contains
a polyhedron vertex. In other words, a grid unfolding is an edge unfolding of the
refined (“gridded”) polyhedron in which we slice along every coordinate plane con-
taining a polyhedron vertex. Biedl et al. 1 asked whether all orthostacks can be grid
unfolded.

We make partial progress on this problem by showing that every orthostack can
be grid vertex-unfolded, i.e., cut along some of the grid lines and unfolded into a
vertex-connected planar piece without overlap. Vertex unfoldings were introduced
in 8,9; the difference from edge unfoldings is that faces can remain connected along
single points (vertices) instead of having to be connected along whole edges. As
before, a vertex unfolding must be a single planar piece without overlap. In fact,
our vertex unfoldings consist of a single path of polygons, with consecutive polygons
connected together at common vertices. Furthermore, as argued in 8,9, connections

at either a common vertex, a common edge, or not at all; (2) every edge is incident to exactly
two polygons; and (3) every vertex is incident to exactly a topological disk of polygons, with
only cyclically adjacent polygons sharing an edge. Note that a polyhedron is treated as a surface
throughout this paper.
bAn orthogonal polyhedron is a polyhedron (without boundary) in which every face is perpendic-
ular to a coordinate axis. This definition implies that every face is an orthogonal polygon.
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through a vertex never need to cross: for four incident faces A,B, C, D in cyclic
order around a vertex v if a vertex unfolding connects A to C and B to D both
via v, we can uncross the connection and keep the unfolding a single path by making
different connections through v. Our unfolding places faces orthogonally into the
plane: all edges of the unfolded faces are parallel to a coordinate axis. (This property
is not forced by gridness in vertex unfoldings.) Our unfolding may, however, place
faces so as to touch along boundary edges; we guarantee nonoverlap only of polygon
interiors.

Our use of grid refinement seems to be necessary for vertex-unfolding, because
the box-on-box example in Figure 1(left) has no vertex-unfolding if we are allowed
to cut only along edges. It remains open whether there is such an example re-
quiring grid cuts for a vertex-unfolding, but where every face has no holes (i.e., is
homeomorphic to a disk).

Since the conference version of this paper, Damian et al. 5 generalized our tech-
niques to grid vertex-unfold all orthogonal polyhedra of genus zero. Also, by further
axis-parallel refinement of an orthogonal polyhedron beyond the grid, they have
shown how to edge-unfold “orthostacks with orthogonally convex slabs” 6, “Man-
hattan towers” 3, “well-separated orthotrees” 2, and general orthogonal polyhedra 4.
The last case requires an exponential amount of refinement, making the two special
cases of interest.

2. Grid Vertex Unfolding

Given an orthostack K, let z0 < z1 < · · · < zn be the distinct z coordinates of
vertices of K. Refer to Figure 2. Subdivide the faces of K by cutting along every
plane perpendicular to a coordinate axis that passes through a vertex of K. This
subdivision rectangulates K We use the term rectangle to refer to one element of
this facial subdivision, while face refers to a maximal edge-connected set of coplanar
rectangles. (Thus faces can have holes, but at most one in an orthostack.) We use
up and down to refer to the z dimension, and use left and right to refer to the x

dimension.

2.1. Rectangle Categorization

We partition the rectangles of K into several categories. After this categorization,
the description of the unfolding layout is not difficult.

For i = 0, 1, . . . , n − 1, define the i-band to be the set of vertical rectangles
(i.e., that lie in an xz plane or in a yz plane) whose z coordinates are between zi

and zi+1. By the definition of rectangles, all of the rectangles of an i-band have the
same extent in the z dimension, namely, [zi, zi+1]. By the definition of an orthostack,
each i-band is connected, forming the boundary of an extruded simple orthogonal
polygon.

For i = 0, 1, . . . , n, we define the i-faces to be the faces of K in the horizontal
plane z = zi. As we have defined them, an i-face has several properties. It may
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Fig. 2. Top-left: A rectangulated orthostack K with three distinct z coordinates z0, z1, z2. Top-
right: Categorization into i-band rectangles (light), i-über rectangles (medium), and i-connecting
rectangles (dark); and the tour visiting i-band and i-connecting rectangles. Bottom: The resulting
unfolding.

have the interior of K above or below it (but not both). The perimeter of the i-
face (both perimeters if the i-face has a hole) has a nonempty intersection with the
(i − 1)-band, provided i > 0, and with the i-band, provided i < n. (If an i-face
f is incident to only the i-band, then all edges of f must be incident to vertical
faces above z = zi, which form a cycle of faces in the i-band, so by connectivity of
the i-band no other i-face can be incident to the i-band; also, by connectivity of
the polyhedron, there cannot be another i-face meeting only the (i− 1)-band; so f

must be the bottom face of the polyhedron. Similarly, an i-face incident to only the
(i− 1)-band must be the top face of the polyhedron.)

We also need the notions of the “begin rectangle” and “end rectangle” of the
i-band. Choose the 0-band begin rectangle to be an arbitrary rectangle of the 0-
band. For i ≥ 0, define the i-band end rectangle to be the rectangle of the i-band
that is adjacent to the i-band begin rectangle in the clockwise direction as viewed
from +z. For i ≥ 1, define the i-connecting face to be the i-face that shares an edge
with the (i − 1)-band end rectangle, if such a face exists. Thus, the i-connecting
face does not exist if and only if the (i− 1)-band end rectangle shares an edge with
the i-band. For i ≥ 1, choose the i-band begin rectangle to be one of the rectangles
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of the i-band that shares an edge with the i-connecting face, if it exists, or else the
rectangle of the i-band that shares an edge with the (i−1)-band end rectangle. The
i-band interior rectangles are rectangles of the i-band that are neither the begin
rectangle nor the end rectangle.

Define the i-connecting sequence to be an arbitrarily chosen edge-connected
sequence of rectangles in the i-connecting face, if it exists, starting at the rectangle
that shares an edge with the (i−1)-band end rectangle and ending at the rectangle
that shares an edge with the i-band begin rectangle. This sequence is chosen to
contain the fewest rectangles possible (a shortest path in the dual graph on the
rectangles in the i-connecting face), in order to prevent the path from looping around
an island and thereby isolating interior portions of the i-face. If the i-connecting
face does not exist, the i-connecting sequence is the empty sequence. The rectangles
in the i-connecting sequence are called i-connecting rectangles; all other rectangles
of the i-faces are called normal rectangles.

We now merge all normal rectangles with their normal neighbors in the x di-
mension. Call the resultant rectangular regions über-rectangles. Thus i-faces are
partitioned into the i-connecting rectangles and the i-über-rectangles. Every i-über-
rectangle is connected to the perimeter of an i-face; otherwise, the rectangles that
compose it could be used to construct a shorter i-connecting path. Thus, every i-
über-rectangle shares an edge with either the (i− 1)-band or the i-band (or both).
Define an i-up-über-rectangle to be an über-rectangle that is incident to the i-band
and an i-down-über-rectangle to be an über-rectangle that is incident to the (i−1)-
band. If an über-rectangle is incident to both, we classify it arbitrarily.

Thus we have partitioned K into i-band begin rectangles, i-band end rectan-
gles, i-band interior rectangles, i-up-über-rectangles, i-down-über-rectangles, and
i-connecting rectangles. We now proceed to a description of the unfolding.

2.2. Unfolding Algorithm

Our unfolding of an orthostack consists of several components strung together at
distinguished rectangles called anchors. Specifically, there are two types of compo-
nents, i-main components and i-connecting components, both of which are anchored
at two rectangles, a begin rectangle and an end rectangle. The i-main component
consists of the entire i-band (the i-band begin rectangle, the i-band interior rect-
angles, and the i-band end rectangle), the (i + 1)-down-über-rectangles, and the
i-up-über-rectangles. The i-connecting component consists of the (i − 1)-band end
rectangle, the i-connecting rectangles (if any), and the i-band begin rectangle. It
serves to connect the (i − 1)-main component and the i-main component (at the
(i− 1)-band end rectangle and the i-band begin rectangle, respectively).

To ensure that components do not overlap each other, we enforce that the com-
ponents are anchored in the following sense. A component is anchored at anchor
rectangles R and S if, in the unfolded layout of the component, no rectangles are
in the hatched region of Figure 3. More precisely, every rectangle is strictly right of
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Fig. 3. A component anchored at R and S must avoid the hatched regions, remaining within the
shaded region.

R and strictly left of S, or directly above R, or directly below S.
We can combine two anchored components with a common anchor while avoiding

overlap. More precisely, given a component C anchored at anchors R and S, and
another component C ′ anchored at S and T with the same orientation of S, we
can combine the two unfolded layouts by translating C ′ so that the two copies of
S coincide (with matching orientations). The conditions on the rectangles in the
two components C and C ′ guarantee nonoverlap of the combined unfolded layout.
To guarantee the matching orientations of anchors, we enforce that the positive z

direction of every vertical (i-band) rectangle becomes the positive y direction in the
planar unfolding.

We edge-unfold the i-main component by leaving one edge attached between
the über-rectangles of the component (arbitrarily, if there is a choice), and cutting
along all of the other edges of the über-rectangles. As shown in Figure 4, the layout
induced by this edge unfolding consists of a central horizontal rectangular strip,
which contains all i-band rectangles, and has the (i + 1)-down-über-rectangles con-
nected to the top of this strip, and the i-up-über-rectangles connected to the bottom
of this strip. The leftmost rectangle of this strip is the i-band begin rectangle, and
the rightmost rectangle of the strip is the i-band end rectangle. There is nothing
below the leftmost rectangle or above the rightmost rectangle because these vacant
locations are where the connecting rectangles are attached, and connecting rectan-
gles are not über-rectangles. (In the special cases i = 0 and i = n, there can be
an über-rectangle below the leftmost rectangle and above the rightmost rectangle,
respectively, but in these cases, we can choose to attach the über-rectangle at its
opposite edge.) Therefore the edge unfolding of the i-main component is anchored
at the i-band begin and end rectangles.

We vertex-unfold the i-connecting component by a sequence of modifications to
the edge-unfolding of the rectangles in the component. Let R0, R1, . . . , Rk denote
these rectangles in connected order, where R0 is the (i− 1)-band end rectangle and
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Fig. 4. An example of an unfolded i-main component. The dark rectangles are the i-band begin
rectangle (left) and i-band end rectangle (right). They are connected by the remainder of the
i-band (light). Above the i-band are the (i+1)-down-über-rectangles and below are the i-up-über-
rectangles (medium). This example is a possible outcome for the 0-main component of Figure 2.

Rk is the i-band begin rectangle. The i-connecting rectangles R1, R2, . . . , Rk−1 all
come from an i-face, so they were planar even before the edge unfolding. The (i−1)-
band end rectangle R0 is adjacent to R1 along the edge originally in the positive
z direction; we rotate the edge-unfolding so that this edge is the top edge of R0,
with R1 stacked above. Now for 2 ≤ j < k, assume that R0, R1, . . . , Rj−1 have been
placed, and Rj−1 and Rj remain connected at a common edge which is not the
left edge of Rj−1. There are three cases, depending on whether Rj shares the top,
bottom, or right edge of Rj−1; see Figure 5. In the third case, we do nothing; in the
first two cases, we vertex-unfold Rj by 90◦ around the right endpoint of the shared
edge. After this step, Rj+1 lies in one of the dark shaded squares, sharing Rj ’s
top, bottom, or right edge, so the induction proceeds. We handle the i-band begin
rectangle Rk differently to guarantee the proper orientation. Again there are three
cases, depending on whether Rk shares the top, bottom, or right edge of Rk−1; see
Figure 6. The shared edge corresponds the edge of Rk in the negative z direction, so
in each case we vertex-unfold if necessary to make that edge the bottom edge in the
unfolding. In the end, each rectangle Rj is strictly right of the previous rectangles,
except Rk which might be on top of Rk−1. Thus, the anchored unfolding of the
i-connecting component does not self-intersect.

By combining the anchored unfoldings of the 0-main component, the 1-
connecting component, the 1-main component, etc., the (n − 1)-main component,
the (n−1)-connecting component, and the n-main component, we obtain the desired
vertex unfolding:

Theorem 1. Every orthostack can be grid vertex-unfolded.
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Fig. 5. How to vertex-unfold Ri after R0, R1, . . . , Ri−1 have been placed (all but the last of which
are in the hatched region). There are three cases, from left to right: Ri above, Ri below, and Ri

to the right. In all cases, Ri+1 is in one of the dark shaded regions, which is never left of Ri after
vertex-unfolding. The illustrated unfoldings work no matter what are the sizes of the rectangles.
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Fig. 6. How to vertex-unfold the last rectangle Rk after R0, R1, . . . , Rk−1 have been placed (all
but the last of which are in the hatched region). There are three cases, from left to right: Rk

above, Rk below, and Rk to the right. In all cases, we must orient Rk so that the edge opposite
Rk−1 is on top. The illustrated unfoldings work no matter what are the sizes of the rectangles.
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The construction leads to an algorithm whose running time is linear in the
number of rectangles, which is at most quadratic in the combinatorial complexity
of the polyhedron.
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