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Gridded daily weather data for 
North America with comprehensive 
uncertainty quantification
Peter E. Thornton   ✉, Rupesh Shrestha  , Michele Thornton   ✉, Shih-Chieh Kao  ,  

Yaxing Wei   & Bruce E. Wilson  

Access to daily high-resolution gridded surface weather data based on direct observations and over long 

time periods is essential for many studies and applications including vegetation, wildlife, soil health, 

hydrological modelling, and as driver data in Earth system models. We present Daymet V4, a 40-year 
daily meteorological dataset on a 1 km grid for North America, Hawaii, and Puerto Rico, providing 
temperature, precipitation, shortwave radiation, vapor pressure, snow water equivalent, and day 

length. The dataset includes an objective quantification of uncertainty based on strict cross-validation 
analysis for temperature and precipitation results. The dataset represents several improvements from 

a previous version, and this data descriptor provides complete documentation for updated methods. 

Improvements include: reductions in the timing bias of input reporting weather station measurements; 

improvement to the three-dimensional regression model techniques in the core algorithm; and a novel 

approach to handling high elevation temperature measurement biases. We show cross-validation 

analyses with the underlying weather station data to demonstrate the technical validity of new dataset 

generation methods, and to quantify improved accuracy.

Background & Summary
Gridded weather products are important historical references to support ecological, agricultural, water resources 
management, and climate change studies, particularly in regions with sparse weather stations and/or intermit-
tent historical meteorological observations. �e gridded products provide a spatially and temporally consistent 
approach to assimilate available weather station data, taking into account the changes in temperature, precipita-
tion, downwelling radiation, and humidity caused by factors such as elevation, prevailing winds, storm tracks, and 
proximity to large water bodies. Daymet (https://daymet.ornl.gov) is one such gridded weather product, which 
provides daily minimum and maximum temperature (Tmin and Tmax), precipitation (Prcp), vapor pressure 
(VP), shortwave radiation (Srad), snow water equivalent (SWE), and day length on a 1 km × 1 km gridded surface 
for North America and Hawaii from 1980–2019, and for Puerto Rico for 1950–2019. Maintained by the Oak 
Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC), Daymet is presently updated 
annually, as the previous year’s weather station data become available and reach a status of archive quality.

Daymet was �rst developed as a research project to provide daily weather driver data for terrestrial biogeo-
chemical modelling applications. �e intermountain West in the Conterminous US (CONUS) was used as the 
study area to develop and test the gridded data product1. A CONUS data product (Daymet V1) was developed 
from that early model and subsequent algorithm improvements2,3. �e multi-agency North American Carbon 
Program (NACP) later supported an update of Daymet V24 which included more years and a larger spatial extent. 
Due to data and algorithm limitations at the time, Daymet V2 was only available for CONUS, Hawaii, Puerto 
Rico, Mexico, and southern Canada up to 52 degrees North. With the inclusion of additional weather stations 
and further algorithm enhancement, the spatial coverage of Daymet V35 was expanded to include all of North 
America.

�e new Daymet V4 dataset6 presented here provides e�ective solutions to known issues while taking advan-
tage of the latest station observation datasets. Biases in station observations are identi�ed and corrected, includ-
ing inconsistencies among stations in time of observation for both temperature and precipitation, and errors 
related to temperature sensor bias. Independent validation with radar-based precipitation estimates are used to 

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. ✉e-mail: thorntonpe@ornl.gov;  
thorntonmm@ornl.gov

DATA DESCRIPTOR

OPEN

https://doi.org/10.1038/s41597-021-00973-0
http://orcid.org/0000-0002-4759-5158
http://orcid.org/0000-0002-3140-6623
http://orcid.org/0000-0002-6533-6328
http://orcid.org/0000-0002-3207-5328
http://orcid.org/0000-0001-6924-0078
http://orcid.org/0000-0002-1421-1728
https://daymet.ornl.gov
mailto:thorntonpe@ornl.gov
mailto:thorntonmm@ornl.gov
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-00973-0&domain=pdf


2SCIENTIFIC DATA |           (2021) 8:190  | https://doi.org/10.1038/s41597-021-00973-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

examine the timing of Daymet V4 precipitation. Cross validation analysis is used to quantify and correct biases 
related to temperature sensors at high elevation stations. Algorithm improvements address issues of out-of-range 
regression estimates in both temperature and precipitation, and provide increased accuracy and precision in the 
gridded data products.

Methods
Overview. �e work�ow which results in �nal Daymet V4 data records consists of �ve main steps:

 1. collection and �ltering of input weather station observations and gridded terrain data,
 2. generation of primary output variables,
 3. generation of secondary output variables,
 4. generation of cross-validation statistics, and
 5. data �le standardization for archiving and data service.

Each of these work�ow steps is described in its own section below. While many steps and sub-steps include 
automated or code-based work�ows, there are also signi�cant human interventions between steps, designed for 
quality assurance/quality control (QA/QC).

Daymet input data. Daily weather stations – source and general methods. �e primary Daymet inputs are 
daily observations of near-surface maximum and minimum air temperature and daily total precipitation from 
weather stations. Before Daymet V3, it was necessary to retrieve and combine observations from multiple pri-
mary data sources. Since Daymet V4, all weather station inputs can now be acquired from the National Centers 
for Environment Information Global Historical Climate Network Daily database (GHCNd7). �is simpli�ed 
work�ow was possible due to the large expansion of GHCNd to cover multiple networks in the US, Canada, and 
Mexico with consistent QA/QC across all input weather stations8. We used GHCNd V3.26, released in April 2019 
in Daymet V4.

A preliminary screening of GHCNd is performed to identify all available stations in the North American 
domain. �e screening was conducted at each station for each of the primary input variables (Tmax, Tmin, and 
Prcp) in each year. A station-year is removed if more than 180 days of data are missing within a calendar year for 
a given variable. A station-year removed for one variable might still be included for other variables if the missing 
days threshold is not exceeded for those variables. Data with reported GHCNd quality �ags were also considered 
as missing. For a few stations with identical locations but di�erent station identi�ers, duplicates were removed. 
�e total number of stations remaining a�er this screening is higher for Prcp than for Tmax and Tmin over the 
period 1980–2019 (Fig. 1a), with increases in the Prcp station count a�er year 2000 due to the growth of the 
Community Collaborative Rain, Hail and Snow (CoCoRaHs) network, and decreasing number of temperature 
stations in the recent decade due to a sharp drop in stations from networks in Mexico as well as a decline in the 
number of stations in the US Cooperative Observer Program (COOP) network. In terms of the frequency dis-
tribution of number of missing days per station (Fig. 1b), most of the station-years have low numbers of missing 
days, with secondary peaks at intervals associated with a pattern of whole months being marked as missing within 
a station-year (Fig. 1b). �e fraction of station-year records with no missing data is higher for Prcp (about 40%) 
than for Tmax or Tmin (about 30%), while 90% of station-years have fewer than 80 or few than 62 missing days 
for Prcp and Tmax/Tmin, respectively (Fig. 1c).

�e density of stations varies greatly over the geographic domain, and changes in station networks over time 
cause shi�ing patterns of station density (Fig. 2). A primary challenge for the Daymet algorithm is to accommo-
date spatial and temporal shi�s in station density while maintaining as much estimation accuracy as possible 
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Fig. 1 (a) Number of stations included in Daymet V4 by year, (b) frequency distribution of number of missing 
days per station-year, and (c) cumulative frequency of station-years with increasing numbers of missing days. 
Frequency distributions are shown as aggregated for all years. In all plots the solid line is for Tmax and the 
dashed line is for Prcp. �e Tmax and Tmin data are nearly indistinguishable in these plots, so for clarity only 
Tmax is plotted.

https://doi.org/10.1038/s41597-021-00973-0


3SCIENTIFIC DATA |           (2021) 8:190  | https://doi.org/10.1038/s41597-021-00973-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

across the spatial and temporal domain. Given the geographic separation among North America, Hawaii and 
Puerto Rico, these three sub-domains were processed independently, using identical methods for each region.

Time-of-observation bias corrections. �e issue of time-of-observation (TOO) arises from inconsistent report 
timing among stations. Our objective with Daymet V4 is to standardize the data values for a given calendar day 
to represent the 24-hour period from midnight to midnight, local time. For some stations, automated sub-daily 
readings are aggregated to a midnight-to-midnight time frame. Most stations, such as those in the COOP and 
CoCoRaHS networks, report at some time other than midnight. Combining stations with di�erent reporting 
times to make estimates at an unmeasured location can lead to estimation biases. �ese biases are likely to 
a�ect the estimation of Tmax since an observation time before noon will usually assign Tmax from the previous 
24 hours to the current calendar day. Daily minimum temperature is less likely to be shi�ed by an observation 
time before noon since most daily minimum temperature values occur between midnight and sunrise. Daily total 
precipitation presents a more di�cult challenge since any observation period other than midnight-to-midnight 
will result in misplacement of some amount of precipitation between days. While this timing bias does not a�ect 
the overall distribution and long-term climatology and was not explored in earlier versions of Daymet, it may 
create issues for more time-sensitive applications such as �ood and heat wave analysis. �erefore, in Daymet 
V4 we assessed TOO for each station, as recorded in GHCNd or inferred from other network metadata records. 
Corrections to the station-level inputs for TOO biases are performed for Tmax and Prcp

Maximum daily temperature (Tmax). For Tmax, we posited that a bias exists in the actual day of maximum 
temperature for readings that have a TOO before local noon9. Previous studies10,11 have demonstrated that a bias 
exists due to the discrepancy in the observation time and actual occurrence of the daily maximum temperature. It 
is conceivable that for most days, a maximum temperature recorded in the morning is likely the maximum tem-
perature from the previous day. To correct this bias, for GHCNd stations (such as most COOP) that have a TOO 
prior to noon local standard time (LST), we shi�ed the daily Tmax values to the previous day. Although TOO is 
not available for Canadian GHCNd stations, Mekis et al.12 describe that the majority of manual Canadian climate 
stations dataset (called the ordinary climate stations) typically have a morning reporting time at 0700 LST and the 
recorded values have been assigned to the previous calendar day10 before the data are incorporated in GHCNd. 
We therefore did not apply additional TOO bias corrections to the Canadian stations. In addition, all other sta-
tions without reported TOO, including stations from Mexican networks, were not adjusted.

To determine if the time adjustment improved Tmax estimates, we compared the cross-validation estimates of 
the adjusted maximum temperature values to estimates generated from the same V4 algorithm, but with the input 
observed maximum temperature value day unaltered. We found that shi�ing the maximum temperature data in 
this way resulted in substantial reductions in cross-validation error for the daily estimates, and therefore adopted 
the approach for Daymet V4 processing. See the Technical Validation section for detailed results of this analysis.

Daily total precipitation (Prcp). Similar to Tmax, observations of precipitation that are taken once per day but 
that are not reporting from midnight-to-midnight LST can result in all or part of a precipitation event being 
attributed to the wrong calendar day. However, unlike Tmax, there is no obvious way to correct the timing issue 
of Prcp. Our objective was to improve the overall timing of daily precipitation amounts without compromising 
the frequency of daily precipitation occurrence. We explored two alternative TOO corrections for Prcp, assessing 
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Fig. 2 Spatial distribution of annual station data for years 1988 and 2015 based on GHCNd de�ned station-level 
Network Code. Further source information is available within the daily data �les where embedded �ags provide 
information at the individual station level. �e SFLAG1, the source �ag, provides up to 30 di�erent values. Most 
Canadian stations, labeled here as ‘Unspeci�ed’ have an SFLAG1 identifying the source as Environment Canada.
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error and bias in estimated precipitation amount and errors in the estimated frequency of wet and dry days 
for the two approaches. �e �rst method was to move a fraction of the observed daily total precipitation to the 
previous calendar day, based on TOO at each station. �e second method was to shi� the entire daily precipita-
tion amount to the previous calendar day based on TOO (same with Tmax). For the �rst method, the fraction 
shi�ed to the previous day was given by the fraction of the 24-hour day elapsed between TOO and the subse-
quent midnight. �e precipitation value of the next calendar day would receive the same treatment in which any 
fractional amount from this calendar day would be added to the shi�ed value. For the second method, the total 
recorded precipitation amount was shi�ed back one day for weather stations with TOO earlier than noon LST. 
We obtained TOO information from the metadata of GHCNd, which is available for a majority of stations in 
the US COOP, Weather-Bureau-Army-Navy (WBAN), Remote Automatic Weather Stations (RAWS), and Snow 
Telemetry (SNOTEL) networks. Although TOO is not carried into GHCNd distribution for CoCoRaHS stations, 
the CoCoRaHS training material13 indicates that most CoCoRaHS stations have a morning TOO, with 84% of 
stations recording at 0700 LST. We hence included all CoCoRaHS stations in the TOO adjustment. Given the 
same reason with Tmax, we did not apply correction to Canadian and Mexican stations, as well as those US sta-
tions without TOO information.

We found that the �rst method (splitting precipitation totals across days) gave the lowest daily errors for pre-
cipitation amount but resulted in a large increase in over-prediction of wet-day frequency. �e second method 
(moving entire daily amounts across days) gave an improved daily error for recent years compared to the uncor-
rected data, and maintained the very low bias in wet-day frequency estimation characteristic of the Daymet 
methods applied to station data without TOO biases. We therefore selected the second method for Prcp TOO bias 
correction. Detailed results supporting this choice are provided in the Technical Validation section.

High-elevation temperature sensor bias correction. Since Daymet V1, gridded estimates of temperature and pre-
cipitation in mountainous regions have been aided by the inclusion of the SNOTEL network of high elevation 
autonomous stations14. A data quality issue associated with replacement of temperature sensors beginning in the 
mid-1990s has been reported15–17. �e di�erence between old and new sensors has been shown to be related to the 
observation temperature, with the new sensors recording higher temperature than the old sensors under colder 
conditions, and the new sensors recording lower temperature than the old sensors under warmer conditions16. 
Oyler et al.17 used pair-wise comparisons to perform homogenization of temperature records before and a�er 
sensor updates, based on methods by Menne and Williams18.

We used the existing Daymet cross-validation framework (described in the Daymet Algorithms section, below) 
to assess patterns of estimation bias in the SNOTEL network before and a�er the installation of new sensors, using 
the date of sensor updates for each station from17. We found that the pattern of bias was in qualitative agreement 
with the expected bias patterns previously described. We derived a quantitative relationship between observed 
temperature and sensor bias using data aggregated across the entire SNOTEL network, and applied that relation-
ship to the observations from older sensors to reduce bias and improve temporal and spatial network homoge-
neity. �e bias correction takes the form of a piece-wise linear function of original temperature measurement 
(Toriginal), and is applied uniformly to Tmax and Tmin observations for the period prior to sensor update for each 
SNOTEL station, as follows:
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Detailed results leading to this correction are provided in the Technical Validation section.

Additional gridded surface data inputs and geographic projection. Additional Daymet inputs are a gridded 
digital elevation model (DEM) and a corresponding land/water mask de�ning the Daymet domain. �e DEM 
used in Daymet is processed from the National Aeronautics and Space Administration (NASA) Shuttle Radar 
Topography Mission (SRTM) near-global 30 arc second DEM V2.1. �e SRTM DEM was �rst projected from 
a geographic coordinate system (GCS_WGS_84) to a Lambert Conformal Conic projection (see6 for Daymet 
projection parameters) and resampled to each 1 km × 1 km Daymet grid. �e resampling method used a cubic 
convolution interpolation with a 1,000 m output cell size. Slope and aspect grids are derived from the DEM within 
the Daymet algorithm. Horizon �les used for radiation estimation were generated separately with the r.horizon 
model using the GRASS GIS so�ware19.

�e land/water mask was derived from the MODIS 250 m Land-Water Mask MOD44W_v220. Similar to the DEM, 
the 250 m MODIS land/water mask was reprojected and resampled to the 1 km × 1 km Daymet grid. Inland water 
bodies are considered as land in the Daymet domain, retaining only the coastline as the Daymet land/water interface.

Daymet algorithms. A. Spatial and temporal interpolation. �e main algorithm to estimate primary 
Daymet variables (Tmax, Tmin, and Prcp) at each Daymet grid is based on a combination of interpolation and 
extrapolation, using inputs from multiple weather stations and weights that re�ect the spatial and temporal 
relationships between a Daymet gridcell (measured from its center) and the surrounding weather stations. �e 
approximate number of weather stations used at each Daymet gridcell is de�ned as a parameter for each Daymet 
variable. In Daymet V1 this parameter (average number of stations, or ANS) was used as an input to an iterative 
station density estimation algorithm, which produced a search radius that was speci�c to each gridcell1. A�er a 
series of algorithm modi�cations intended to improve robustness in regions of very low weather station density, 
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the Daymet V4 algorithm replaces the iterative station density calculation with a pre-calculated search radius 
(rsearch) at each gridcell which is sized to capture ANS based on arrays of station distance. In regions with relatively 
high station density, such as most of the CONUS, the search radius approach is nearly identical to the iterative 
station density approach. In regions with very sparse observation networks, for example in the Arctic regions of 
Alaska and Canada, the modi�ed approach eliminates artifacts associated with iterations in the previous density 
calculation, improving the stability of Daymet estimates and reducing mean cross-validation error.

At each Daymet gridcell, a truncated Gaussian convolution kernel is used to assign weights for all surrounding 
stations identi�ed by rsearch. �ese weights are held constant until the station list changes, which can happen at the 
beginning of each year due to weather station data availability. �e shape of the Gaussian kernel is de�ned by a 
single parameter (the Gaussian shape parameter, or GSP). �e normalized weight for a given station (with index i)  
in the input weather station list (wi) is given as:
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where di is the horizontal distance from a Daymet gridcell to the station. Normalization here ensures that the 
weights for all stations in the station list for a Daymet gridcell sum to 1.

Because the number and distribution of observations can di�er signi�cantly for di�erent meteorological var-
iables, and because the optimal interpolation parameters (ANS and GSP) can di�er among variables1, we specify 
a unique pair of ANS and GSP parameters for each of the primary variables (Tmax, Tmin, and Prcp). Station lists 
and associated weights are calculated at each Daymet gridcell in each year, and for each primary variable. �ese 
lists and weights are accessed as inputs to the subsequent work�ow steps.

Because the horizontal location information recorded for some stations is not precise enough to assign unique 
locations within the 1 km grid, we allow for automatic adjustment of station location within +/− 1 km to mini-
mize di�erence between recorded station elevation and gridded terrain data, as detailed in �ornton et al.1.

Generation of primary output variables. Given the pre-processed weather station inputs and pre-calculated sta-
tion lists and weights at each Daymet gridcell, two separate work�ows are used to produce the primary Daymet 
output variables: one for Tmax and Tmin and another for Prcp.

Daily temperature estimation. Since the work�ows for Tmax and Tmin are identical, here we describe them 
using a generic daily temperature variable T. First, the horizontal coordinates (meters from the origin) at the 
center of each Daymet gridcell are calculated from the Daymet projected coordinate system6. �e vertical coor-
dinate, or elevation, (meters above mean sea level) of a target gridcell is obtained from the pre-processed DEM. 
Horizontal coordinates and elevation of stations are derived from station metadata records for all selected weather 
stations. Based on the identi�ed weather station list at each Daymet gridcell, the distance (km) and elevation dif-
ference (m) between Daymet gridcells and weather stations are calculated.

�e estimation of temperature is based on a weighted multivariate regression model which uses the available 
observations to estimate spatial gradients in the observed temperature in three orthogonal spatial dimensions: 
two horizontal, and one vertical. �is is a modi�cation from the univariate regression adopted in Daymet V11, 
which included estimates only for the vertical gradient in observations (in this case the temperature lapse rate). By 
including both horizontal and vertical gradients in a multivariate regression framework, we may obtain additional 
information about horizontal gradients due to short-term events such as the passage of frontal systems, and due to 
persistent geographic features, such as nearby water bodies, urban areas, and interaction with large-scale terrain 
features and prevailing wind directions. Accounting for horizontal gradients removes some aliasing of these e�ects 
onto the vertical gradient estimates and improves predictions in regions of both �at and complex terrain.

Because the realization of horizontal and vertical temperature gradients can vary over time, we estimate the 
gradients separately for each day. To maximize the use of information about spatial gradients provided by the sta-
tion observations, we use a paired-di�erence approach as described by1 to form the inputs for regressions at each 
Daymet gridcell. We use a weighted regression model that considers the interpolation weights for each station 
in the paired di�erence. Because the paired-di�erence approach is designed to have a near-zero intercept for the 
resulting regression equations, we do not include the intercept term in the formulation. Detailed implementation 
at a single Daymet gridcell is given by the following series of equations.
Paired di�erences in the station horizontal and vertical positions are given as:
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where p is an index from 1 to np, with np as the number of unique station pairings possible given the station list at 
each Daymet gridcell, and np = (ANS2-ANS)/2. �e variables dx, dy, and dz are the di�erences in horizontal dis-
tances (x and y) and vertical distance (z) between the pair of stations, and the subscripts i and j denote the index 
values of each station in the unique pairing from the full station list at each Daymet gridcell. To avoid bias in the 
mean values of dx, dy, and dz which can occur if the stations in the list have non-random order with respect to 
their x, y, and z coordinates, the variable sp is introduced, with a value of either 1 or −1 for a given unique pairing 
p, and that value alternating between the two values for each value of p from 1 to np. As a further guard against 
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biased mean di�erences, the initial value of sp for n = 1 is switched between 1 and −1. �e arrays dx, dy, and dz 
form the matrix of independent variables in the multivariate regression model. Since the station list is �xed for all 
days in a given year, these independent variables are calculated once per year.
At each Daymet gridcell, the regression weight associated with each unique pairing, rwp, is calculated as:

=rw w w (4)p i j

where wi and wj are the interpolation weights at the estimation point for the two stations making up the unique 
pairing, from Eq. (2).

Given these regression components, which are the same for each day in a given year at a given Daymet grid-
cell, temperature di�erence is calculated for each day as:

= −dT s T T( ) (5)p d p i d j d, , ,

where Ti,d and Tj,d are the daily temperature measurements (either Tmax or Tmin) for two stations (i and j) in a 
unique pairing, for a given day, d.

Based on the inputs de�ned in Eqs. (2–5), the vector of least squares regression parameters is given in the 
standard matrix representation for multivariate regression21:

X WX X Wy( ) (6)
1ɵβ = ′ ′−

where the four elements of column vector ɵβ  represent the regression intercept (β0) and the regression coe�cients 
for two orthogonal horizontal temperature gradients (β1 and β2 for gradients in the x and y directions, respec-
tively) and one vertical (z direction) temperature gradient (β3). X in Eq. (6) is the (np × 4) matrix of independent 
variables, given as:
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y is the column vector (np × 1) of dependent variables for a given day d, given as:
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W is the (np × np) diagonal weighting matrix constructed from the weights in Eq. (4), as:
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X′ is the transpose of X, and ()−1 indicates the inverse matrix.
Finally, the temperature at the Daymet gridcell location and for the given day d, Test,d, is given as:

T w T x x y y z z( ( ) ( ) ( )) (10)est d i

ANS
i i d est i est i est i, 1 , 1 2 3∑ β β β= + − + − + −

=

where xest and yest are the Daymet gridcell coordinates and zest is the Daymet gridcell elevation. All geographic 
units are expressed in meters from map origin or meters above mean sea level, and temperatures are expressed 
in degrees Celsius.

Two constraints are placed on the estimations generated by Eq. (10). First, β3 (the vertical temperature gradi-
ent) is restricted to the range (−0.012 to 0.001) °C/m. �is means that normal temperature lapse rates are limited 
to at most a 12 °C decrease and 1 °C increase in temperature per 1000 m elevation di�erence. �is constraint 
reduces spurious estimations in regions of strong topographic relief and very sparse station networks, especially 
in the far northern extent of the Canadian Rocky Mountains. �e second constraint caps any daily temperature 
estimate from Eq. (10) to no more than 10 °C warmer than the warmest observed temperature in the station list 
for the given day. �is constraint prevents spurious horizontal temperature gradients from causing excessively 
warm temperatures in regions with very sparse and horizontally skewed station distributions, for example on the 
southern extremity of the Baja peninsula.

Daily precipitation estimation. For Prcp, we also started by calculating the coordinates and distance of all 
selected weather stations. Since the interpolation parameters ANS and GSP are di�erent for temperature and pre-
cipitation, the list of selected stations by Eq. (2) can be di�erent. All daily precipitation observations and gridded 
estimates are described here in water equivalent units of mm/day.

�e precipitation estimation for a given location on a given day is performed in two steps. First, an estimation 
is made for daily precipitation occurrence (wet vs. dry). Next, for wet days an estimation is made for daily pre-
cipitation total. Estimated precipitation occurrence for a given day d (POest,d) is calculated as a binomial variable 
following �ornton et al.:1

POP w PO (11)est d i

ANS
i i d, 1 ,∑= =
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,
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where POPest,d is the estimated probability (range 0 to 1) of precipitation occurrence at a given estimation location 
on a given day, wi is the station interpolation weight given by Eq. (2), POi,d is the observed precipitation occur-
rence for a given station i in the station list on day d, Pi,d is the observed precipitation amount for that same station 
and day, and POPcrit is a threshold parameter for occurrence estimation.

Contingent on POest,d = 1, the weighted multivariate regression framework of Eq. (6) is used to estimate hori-
zontal and vertical gradients in precipitation. For the purpose of estimating spatial precipitation gradients, a 
temporal smoothing �lter is applied to the daily precipitation observations at each station. �e �lter has a width 
of 5 days and is centered on the day of estimation with relative �lter weights from days d−2 to d + 2 as [1, 2, 3, 
2, 1]. Only wet days (and weights associated with those days) within the �lter time window are included in the 
smoothed value at day d. For example, the smoothed value for a �lter window with daily precipitation values 
given by [0, 0.1, 0.2, 2.3, 0.5] would be (2*0.1 + 3*0.2 + 2*2.3 + 1*0.5)/(2 + 3 + 2 + 1) = 0.7375. �e �lter win-
dow width is truncated when the day of estimation is within the �rst or last two days of the year. Note that the 
smoothed precipitation values are used to estimate gradients, but �nal daily precipitation predictions are based 
on the un-smoothed station observations.

Compared to the regression matrices for temperature gradients, there are two di�erences for precipitation gra-
dients. First, the regression weight for a unique pairing of stations is set to zero if either or both of the smoothed 
precipitation inputs for that day are zero:

=






>
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w w PS and PS

otherwise

; 0

0; (14)
p

i j i d j d, ,

where PSi,d and PSj,d are the smoothed precipitation values at stations i and j on day d. Second, the column vector 
y is made up of di�erences in these unique pairs of �ltered precipitation observations as follows:

=



















y

dPS

dPS (15)

d

np d

1,

,

⋮

=






− >
dPS

s PS PS PS and PS

otherwise

( ) ; 0

0; (16)
i d

p i d j d i d j d
,

, , , ,

where sp is the sign switching mechanism as described for Eq. (3).
Still contingent on POest,d = 1, the daily total precipitation Pest,d at a Daymet gridcell and day d is estimated 

using the weighted sum of wet stations as:

∑
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=
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where wsum,d is the sum of all wi for wet stations on day d.
�e daily precipitation estimates from Eq. (17) are subject to several constraints. First, the gradients esti-

mated from weighted regression can sometimes result in Pest,d < 0, and those cases are truncated to 0. Second, 
if Pest,d is more than twice the highest measured precipitation value from the station list for day d, those values 
are truncated at two times of the max measured precipitation value. �ird, constraints are placed on the spatial 
gradients as estimated from Eq. (17), with β1 and β2 (the horizontal components of spatial precipitation gradi-
ent) constrained to the range (−0.001, 0.001) mm/day/m and β3 constrained to the range (0, 0.02) mm/day/m. 
�ese constraints were determined empirically by examining histograms of calculated gradients and their joint 
distributions with anomalous precipitation outputs from Eq. (17). Fourth and �nally, if precipitation occurrence 
(via Eq. 12) is recorded for three or fewer stations in the list for a given gridcell on a given day (suggesting a more 
localized storm), then all values of β1, β2, and β3 are forced to zero. �is �nal constraint prevents some spurious 
extrapolations near the edges of localized daily precipitation events.

Daymet V3 included an additional constraint limiting precipitation to a maximum of 200 mm/day. �is con-
straint was related in part to limitation imposed by the data storage approach used for earlier Daymet versions to 
reduce data volumes, and in part to uncertainty on what the legitimate upper boundaries for daily total precipita-
tion should be. We found that, with the other constraints described above, we could remove this arti�cial upper 
limit and improve representation of extreme precipitation events without causing spurious high estimations. An 
example of the impact of this change is provided in the Technical Validation section.
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Generation of secondary output variables. In addition to Tmax, Tmin, and Prcp, Daymet also includes estimates of 
other important meteorological variables that are not routinely observed, or are only available at a small fraction of 
weather stations. �ese secondary variables include daylight average shortwave radiation (Srad), daily average water 
vapor pressure (VP), duration of the daylight period (daylength), and a simple estimate of accumulated snowpack, 
measured as snowpack water equivalent (SWE). �e daylength estimate is based on geographic location and time 
of year. Estimates of other secondary variables (Srad, VP, and SWE) are derived from the primary variables (Tmax, 
Tmin, and Prcp) based on atmospheric theory and empirical relationships, as described below.

The detailed equations for joint estimation of Srad and VP based on Tmax, Tmin, and Prcp inputs are 
described in �ornton and Running2,22 with modi�cations as given in �ornton et al.3. Here we provide a sum-
mary of the theory and work�ow. Based on the observed positive relationship between diurnal temperature range 
and daily total atmospheric transmittance originally described by Bristow and Campbell23 and further developed 
by Running et al.24 and Hungerford et al.22, daily Daymet Tmax and Tmin are used to estimate daily total trans-
mittance of shortwave radiation at each Daymet gridcell and each day. �e parameterization of this empirical 
relationship is sensitive to regional and seasonal variation in mean diurnal temperature range, to variation in 
atmospheric attenuation due to decreased overlying air mass with increasing terrain height, diurnal variation in 
optical thickness due to solar angle, reduction in transmittance with increased humidity, and observed variation 
in empirical relationships on days with and without precipitation.

In addition to these factors in�uencing atmospheric transmittance, the fraction of clear-sky transmittance 
realized on any day is also used to estimate the fraction of incoming radiation received as direct vs. di�use radi-
ation. �e direct beam component is used in conjunction with terrain slope, aspect, and local horizon angles to 
estimate beam-slope geometry for land surface in �at or complex terrain, including the variation of this geometry 
over the course of each day on ten-minute time steps. Digital terrain data are also used to estimate the fraction of 
unobstructed sky visible at each estimation location, to estimate attenuation of incoming di�use radiation. �e 
in�uence of snow cover is also considered, as snow-covered land surface interacts with cloud cover to enhance 
incident radiation through multiple re�ection and absorption pathways.

Estimation of water vapor pressure (VP) is based on the observed correspondence between night-time min-
imum temperature and dewpoint temperature for many climate regimes22,24 with improvements to that rela-
tionship for arid and semi-arid climates as described by Kimball et al.25. Because aridity correction requires an 
estimate of potential evapotranspiration (PET) and PET requires an estimate of incoming shortwave radiation, we 
use an iterative approach to jointly estimate radiation and humidity, as described in �ornton et al.3.

Estimated snow water equivalent (SWE) is based on a very simple temperature driven model of snow accu-
mulation and snowmelt, as described in �ornton et al.3. �e sole purpose of the SWE calculation is to provide 
an approximate control on Srad through the multiple re�ection mechanism. We make SWE data available as 
part of Daymet V4 so that users can accurately diagnose the in�uence of this snow correction on Srad estimates. 
We encourage researchers who require a more accurate estimate of snowpack dynamics to use the temperature, 
precipitation, and potentially radiation and humidity variables from Daymet v4 to drive a more capable and 
sophisticated snow process model.

Generation of cross-validation error estimates. Since the �rst public release of Daymet, results from a compre-
hensive cross-validation analysis have accompanied each release of the gridded daily surface weather products. 
�e purpose of the cross-validation analysis is to provide users with details needed to evaluate the �tness of 
Daymet for each unique application.

�e cross-validation analysis treats each variable-station-year of data from the input station lists as a unique 
record. �is means that each primary variable (Tmax, Tmin, and Prcp) is handled separately at each station loca-
tion and each year. For each such record, estimates of the primary variable are made by dropping that record from 
the input station list and using the exact estimation methods described above to make estimates for the primary 
variable on each day of the year. Since each station in the input list can have missing days where the primary vari-
able is not recorded, only days with non-missing data for the cross-validation station record are used to calculate 
error statistics for that record. �e number of missing days in each record is used to provide appropriate weights 
when reporting multi-station averages or time series summaries for the cross-validation results.

A complete record of the primary variable estimates for each day with non-missing data, for each station and 
each year, together with the corresponding daily observed values, are made available for user download (citation 
below). �ese cross-validation records include all of the relevant meta-data associated with each station, to allow 
users to assess patterns of error in relation to station location, observation type, station network, year of observa-
tion, seasonal patterns, or other analyses as deemed appropriate by the users.

Many di�erent summary statistics can be computed from these paired daily observations and estimates, such 
as mean absolute error, root mean squared error, or bias. Di�erent time periods can also be evaluated, according 
to the user needs. In the Technical Validation section below, we focus on mean absolute error and bias for daily 
and annual time periods. Further details of the Daymet V4 station-level cross-validation results is provided by 
�ornton et al.26.

Data Records
�e Daymet V4 data6 are available from the NASA-sponsored ORNL DAAC. �e data are available in CF com-
pliant netCDF �le format for the time period 1980–2019 for the separate spatial extents of Continental North 
America and Hawaii, and from 1950–2019 for the Puerto Rico/Virgin Islands spatial extent. Data are geolo-
cated in a projected coordinate system, the Lambert Conformal Conic projection, with a spatial resolution of 
1 km × 1 km. Data are updated on an annual schedule.
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Daymet cross-validation data are also made available through the ORNL DAAC26. Each data �le contains the 
daily observations extracted from GHCNd and associated Daymet model predicted primary variables (Tmax, 
Tmin, and Prcp), based on the cross-validation methods described above, for all input stations across the entire 
period. Also included are the corresponding station metadata �les for each variable and year, including station 
name, station identi�er, latitude, longitude, and elevation.

�e Daymet V4 data are available by direct data download as well as specialized tools and services that focus on 
open, interoperable, and programable access of the Daymet data are shared from the web site https://daymet.ornl.gov/.

Technical Validation
We provide technical validation details supporting all bias corrections applied to input data from the weather sta-
tion networks, followed by results from the Daymet V4 cross-validation analysis. We also provide some examples 
illustrating the Daymet V4 data products.

Time-of-observation bias corrections. Assessing maximum temperature time-of-observation bias correc-
tion. To evaluate the in�uence of a TOO bias on estimates of Tmax, we examined data records from six years: 
three in the earlier part of the Daymet period (1988, 1989, and 1990) and three from the later part (2015, 2016, 
and 2017). As described above, we focused on the US COOP network for this analysis, since we have TOO meta-
data records available for most stations in that network. Among all COOP stations, about 50% of Tmax records 
in early years and about 75% of Tmax records in later years have TOO before noon LST (Table 1). Given that a 
signi�cant number of stations are exposed to this source of bias, we expected that the bias correction would have 
an important and positive impact on the quality of daily Tmax estimates throughout the Daymet period of record.

We used the Daymet V4 temperature prediction and cross-validation algorithms as described above to com-
pare cross-validation errors for the six analysis years with and without the TOO bias correction. We found that 
with the TOO bias correction, mean absolute error (MAE) for daily Tmax estimates dropped signi�cantly in all 
six years. For the early years the average daily error was 1.81 °C without correction and 1.65 °C with correction 
and for the later years the same error was 1.62 °C without correction and 1.23 °C with correction, for about a 9% 
reduction in error for the early years and about a 24% reduction for the later years. Because this TOO bias correc-
tion moves observations in the input station dataset by at most one day, we did not expect a signi�cant impact of 
this TOO bias correction on cross-validation errors based on longer averaging periods such as annual mean Tmax 
derived from daily estimates. �is expectation was correct: MAE for annual mean Tmax was the same with and 
without the TOO bias correction, at 0.79 °C for the earlier years and 0.55 °C for the later years. �e bias in Tmax 
estimates as determined by daily cross-validation analysis is very small, and is not a�ected by TOO correction, 
with Daymet underestimating Tmax on a daily basis by 0.020 °C for the earlier years, and by 0.005 °C for the later 
years. Cross-validation results for individual years for this evaluation are shown in Table 2.

Assessing precipitation time-of-observation bias correction. We performed a similar cross-validation analysis to 
evaluate the in�uence of TOO bias on estimates of Prcp, examining the same six years and comparing error sta-
tistics with and without correction. Among all US GHCNd stations, about 56% of Prcp records in early years and 
about 84% of Prcp records in later years have TOO before noon LST (Table 1). Given that a signi�cant number 
of stations are exposed to this source of bias, we expected that the bias correction would have an important and 
positive impact on the quality of daily Prcp estimates throughout the Daymet period of record.

As described in the Methods section, we tested two correction approaches; one shi�ed fractions of daily pre-
cipitation totals and another moved the entire daily total to the previous day. While the fractional shi� method 
produced the lowest daily MAE in cross-validation analysis, it also caused a signi�cant increase in precipitation 
bias and a small increase in annual total precipitation MAE (Table 3). Daily MAE for the fractional shi� approach 
averaged 1.6 mm/day for earlier years, and 1.2 mm/day for later years, compared to 1.7 mm/day and 1.5 mm/day 
for the uncorrected data in those two periods, respectively. �is represents about an 8% and 18% reduction in 
daily MAE for the earlier and later years, respectively, using the fractional shi� approach. Bias for the fractional 
shi� approach averaged +0.08 mm/day and +0.10 mm/day for the earlier and later years, respectively, compared 
to +0.04 mm/day and +0.08 mm/day for those same periods using the uncorrected data. �is represents an 
increase in bias of about 76% and 24% for the earlier and later periods, respectively. �e whole-day shi� correc-
tion method daily MAE from cross-validation was 0.18 mm/day and 0.13 mm/day for earlier years and later years, 

year

maximum temperature* precipitation

station days %TOO before noon % nodata station days %TOO before noon % nodata

1988 1,729,277 49.53 2.26 2,914,822 56.70 11.90

1989 1,742,252 50.46 2.61 2,942,135 56.94 12.42

1990 1,746,314 51.24 2.91 2,937,209 57.26 12.89

2015 1,693,990 74.90 2.03 6,877,546 83.57 5.50

2016 1,676,722 74.90 2.23 6,860,087 84.68 7.87

2017 1,63,5940 74.90 2.40 6,892,927 84.38 7.40

Table 1. Summary of TOO available from GHCNd during the six years of analysis. Only US stations are shown 
here to illustrate percentages due to widely missing Canadian and Mexican TOO information. �e percent of 
station-days with missing data is given for each variable and each year (% nodata). *US COOP Network Only.
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respectively. �is represents an increase in daily MAE of about 3% for the earlier years, and a decrease of about 
9% for later years, compared to the use of uncorrected data. �e bias statistics for the whole-day shi� approach 
were + 0.05 mm/day and + 0.09 mm/day for the earlier and later years, respectively. �is represents an increase 
in bias of about 5% and 6% for the two periods, respectively. As expected, and similar to the results for maximum 
temperature, cross-validation MAE for estimates of annual total precipitation derived from daily estimates was 
not signi�cantly in�uenced by TOO bias correction, assessed at about 0.3 mm/day for all cases (uncorrected and 
both bias correction methods).

�is analysis suggests that the two bias correction methods represent a compromise, with the fractional 
shi� approach representing a more realistic transfer of precipitation between days, but requiring some addi-
tional information to prevent an increase in number of wet days and precipitation bias when a single wet day is 
split across the daily measurement boundary. By not splitting daily events, the frequency of wet and dry days is 
retained from the original data (results not shown) and the growth in bias is mitigated, but the improvements in 
daily estimates are smaller and inconsistent in time. We decided to use the whole day shi�ing approach to avoid 
shi�ing the precipitation frequency distributions and increasing bias.

To provide further con�dence that the time shi�ing approach for precipitation was warranted, we performed a 
correlation analysis of the timing of Daymet results with and without time-shi�ing correction using the radar-based 
Stage IV Quantitative Precipitation Estimate (ST427). �e ST4 data merges raw radar-based precipitation estimates 
with automatic hourly rainfall gauge observations and is further quality controlled by several National Oceanic and 
Atmospheric Administration (NOAA) River Forecasting Centers (RFCs). ST4 is available at hourly time step in 
4-km horizontal resolution since 2002. An evaluation performed by Gourley et al.28 suggests that ST4 has the high-
est correlation coe�cient with gauge observations among various gridded precipitation products. By aggregating 
24-hour ST4 at di�erent starting time, we try to identify when the highest correlation coe�cient between Daymet 
and ST4 can be reached and use it to indirectly assess the actual timing of daily precipitation estimates from the 
Daymet algorithm. �is analysis goes beyond the cross-validation approach, by using the full gridded Daymet 
outputs as opposed to only the Daymet predictions at individual surface observing stations. We used the Daymet 
V3 outputs5 to assess timing of precipitation without TOO bias correction, and the Daymet V4 outputs (using 
whole-day shi�ing approach) to assess timing of precipitation with TOO bias correction.

year

Maximum daily temperature (Tmax)

%change mean dayMAE %change mean porMAE Mean Total nstns Avg good days/stn

1988 −8.9482 −0.5013 10,666 344.13

1989 −8.8567 −0.3006 10,644 345.03

1990 −9.4025 −0.1938 10,721 345.61

2015 −24.0978 −0.2892 9,124 350.70

2016 −23.6063 −0.2885 8,968 349.75

2017 −24.6029 0.5235 8,712 350.08

Table 2. �e percent change in weighted average daily MAE (dayMAE) and period of record MAE (porMAE) 
for maximum daily temperature during the selected six years evaluated with the Daymet V4 algorithm through 
two runs; time-adjusted vs not adjusted input values.

year

Precipitation (Prcp): Total daily value shi�

%change mean dayMAE %change mean porMAE %change bias Mean Total nstns Avg good days/stn

1988 2.8483 0.6154 0.0000 13,235 349.22

1989 3.2680 0.9585 4.1667 13,048 351.25

1990 3.9652 0.8721 4.6512 12,918 351.77

2015 −8.3990 0.0000 4.5455 20,476 329.20

2016 −7.9365 0.3861 8.0000 20,263 330.39

2017 −9.2350 −0.3774 5.1282 20,340 329.83

year
Precipitation (Prcp): Fractional daily value shi�

%change mean dayMAE %change mean porMAE %change bias Mean Total nstns Avg good days/stn

1988 −7.6780 2.4615 87.1795 13,235 349.24

1989 −8.4967 3.1949 64.5833 13,045 351.29

1990 −8.0391 2.9070 81.3953 12,918 351.79

2015 −19.0945 2.6515 14.7727 20,467 329.22

2016 −17.8744 3.8610 32.0000 20,265 330.37

2017 −19.2281 2.6415 25.6410 20,338 329.86

Table 3. �e percent change in weighted average daily MAE (dayMAE), period of record MAE (porMAE), and 
bias for precipitation during the selected six years evaluated with the Daymet V4 algorithm through two runs; 
time-adjusted vs not adjusted input values. �e upper section of the table shows results for shi�ing entire daily 
precipitation totals, while the lower section shows results for shi�ing fractions of daily precipitation.
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At each Daymet grid point, the nearest ST4 grid point was �rst identi�ed. �e 24-hour ST4 was then aggre-
gated from t = −23, −22, …, 23, in which t represents the starting hour before (positive) or a�er (negative) 
midnight LST. For instance, t = 17 indicates that the 24-hour ST4 is calculated from 7AM previous day to 7AM 
current day, which is the reporting time for most GHCNd stations. To avoid further complicating the problem, 
daylight saving adjustment is not considered.

Figure 3(a) shows the correlation coe�cient between Daymet V3 and 24-hour ST4 aggregated from midnight 
to midnight LST. Clearly, since most of the daily stations do not report from midnight to midnight, the correlation 
coe�cient is weak and less than 0.5 for most grid points. By testing di�erent ST4 aggregation timing, Fig. 3(c) 
shows the maximum correlation coe�cient between Daymet V3 and 24-hour ST4, and Fig. 3(e) shows the corre-
sponding timing. In terms of the maximum correlation, it is greater than 0.9 in the majority of the eastern US. �e 
correlation declines in the western US where we have serious radar blockage issues. It also shows low correlation 
in Mexico and above the Great Lakes where we may not have high quality gauges records for both Daymet and 
ST4. Figure 3(e) suggests that the timing of Daymet V3 daily precipitation is mostly earlier than midnight and 
peak at t = 17, which is consistent with the timing of most GHCNd stations.

By repeating the analysis using Daymet V4, the corresponding results are showed in Fig. 3(b,d,f). In terms of 
maximum correlation, the results of Fig. 3(d) are similar to Fig. 3(c), with some slight improvement. Except for 
some parts of the western US and Mexico, the timing of Daymet V4 daily precipitation is later than midnight and 
peak at t = 7. Since the daily timing is now pushed closer to midnight, stronger correlation is shown in Fig. 3(b), 
as expected. �is analysis corroborates that the whole-day shi�ing approach has improved the timing bias, mov-
ing the Daymet results closer to a local midnight-to-midnight measurement, albeit shi�ing from a large early 
bias to a smaller late bias. �e fact that this compromise is an overall improvement in timing is supported by the 
generally higher correlations shown for V4 than for V3, comparing Fig. 3(b) with Fig. 3(a).

Fig. 3 Analysis of Daymet precipitation timing by 2010–2019 hourly ST4 data. Panel (a) shows the correlation 
coe�cient (rho) between Daymet V3 and 24-hour ST4 aggregated from local midnight to midnight. By testing 
di�erent ST4 aggregation timing, panel (c) shows the maximum correlation coe�cient between Daymet V3 and 
24-hour ST4, and panel (e) shows the corresponding timing. Panels (b), (d), and (f) are similar to (a), (c), and 
(e) but calculated by Daymet V4.
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Assessment of SNOTEL temperature sensor correction. We used the Daymet cross-validation 
framework to quantify the relationship between observed temperatures before and a�er sensor replacement in 
the SNOTEL network of high-elevation stations, and to estimate any empirical relationship between those tem-
perature di�erences and observed temperature. We examined the di�erence in cross-validation prediction bias 
at each SNOTEL station before and a�er sensor replacement, as a function of observed temperature. �e theory 
of this analysis depends on the existence of a large number of stations outside the SNOTEL network (mainly 
the US COOP stations) but within the same geographic region. We assume that the instrumentation within the 
non-SNOTEL networks is consistent over time, and that the cross-validation estimates at each SNOTEL station 
location will be signi�cantly in�uenced by the presence of the non-SNOTEL network stations. Comparing esti-
mates so derived with the SNOTEL station observations (as per the cross-validation protocol) will result in a 
characteristic pattern of bias at the SNOTEL measurement site. If the change in SNOTEL instrumentation causes 
a systematic shi� in the observed temperature at the station, then this pattern of cross-validation bias should 
shi� accordingly when examined before and a�er the sensor change. Furthermore, since one sensor is used for 
measurement of minimum and maximum temperature at the SNOTEL station, we expect that the di�erences in 
cross-validation bias patterns, such as exist, should overlap for the part of the temperature range with signi�cant 
overlap in the measurement temperatures.

We aggregated cross-validation results from all SNOTEL stations and binned them by measurement temper-
ature and found that there are distinguishable patterns of cross-validation bias for both Tmax and Tmin observa-
tions. Examining the di�erences in bias before and a�er sensor replacement at each station, we found a coherent 
and nearly linear pattern of bias di�erences in both Tmax and Tmin cross-validation results over the range of 
observed temperature from about −5 °C to 30 °C (Fig. 4). �e same linear pattern extended down to observed 
temperatures of −15 °C for Tmax, but not for Tmin (Fig. 4). Based on these results, we estimated bias corrections 
using one piece-wise regression �t for observed values from 30 °C down to a break-point at −5.3 °C, and a second 
�t for values from −5.3 °C to −20 °C (Fig. 4). For values above 30 °C and below −20 °C, we held the bias correc-
tion constant as given by the relevant piece-wise �t at those values.

Fig. 4 Piece-wise linear regressions based on combined Tmax and Tmin bias di�erences. Each symbol 
represents the di�erence between daily cross-validation bias values a�er vs. before sensor replacement, for a 
single variable (Tmax or Tmin) and for a binned sample of observed temperatures taken across all SNOTEL 
stations. Observed temperature bins are 0.5 °C wide. Solid lines show the piece-wise regression �ts, and dashed 
line shows the piece-wise break-point at −5.3 °C.

Fig. 5 Annual timeseries of daily cross-validation mean absolute error (MAE), averaged over all station days 
for each year, comparing results for Daymet V4 and Daymet V3. (a) MAE for estimation of daily maximum 
temperature. (b) MAE for estimation of daily total precipitation.
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We used a synthetic analysis of station data from a cold region outside the SNOTEL domain to assess whether 
our approach can provide a bias correction for a known (synthetic) imposed bias in a subset of the station data. 
We found that the cross-validation bias method gave a reliable estimate of the known synthetic bias pattern 
(results not shown).

Summary of Daymet V4 cross-validation results. Complete cross-validation results for Tmax, Tmin, 
and Prcp are provided with the Daymet V4 data release, for every input weather station and every estimation 
day over the 40-year period. Users are encouraged to consult the cross-validation data to assess suitability of the 
results for the region, period, and variables of interest for di�erent data applications. Here we provide high-level 
summaries of some of the key cross-validation metrics, focusing on daily MAE for temperature and precipitation. 
Many other metrics can be calculated from the raw cross-validation results provided in the dataset, according to 
user needs.

�e mean daily MAE of Tmin averaged over the 40-year period is about 1.78 °C, and does not show strong 
trends over time. �is is very similar to the same metric for the Daymet V3 database, which is expected since 
Tmin processing is unchanged from V3 except for di�erences in the input weather stations. �e same daily MAE 
metric for Tmax is signi�cantly improved compared to V3 (1.52 °C for V4 compared to 1.75 °C for V3), and shows 
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Fig. 6 Cross-validation results for all stations, showing daily mean absolute error (MAE) averaged over all days 
in a single year (2017) and mapped using a nearest-neighbor interpolation to objectively display the in�uence 
of varying station density and other factors on data accuracy. Results from the previous version of the Daymet 
dataset (V3) are shown alongside the latest (V4) results to highlight spatial patterns of improvement based on 
the new methods described here. (a) Annual mean of daily MAE for Tmax, V3. (b) Annual mean of daily MAE 
for Tmax, V4. (c) Annual mean of daily MAE for Prcp, V3. (d) Annual mean of daily MAE for Prcp, V4.
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greater improvement in recent years (Fig. 5a). �ese results are consistent with improvements related to TOO bias 
correction for Tmax.

Mean daily MAE of Prcp is signi�cantly lower in recent years compared to the early part of the record, consist-
ent with the expansion of the CoCoRaHS network. V4 daily MAE of Prcp is similar to or slightly higher than V3 
through about year 2000, a�er which V4 shows some improvement (lower MAE) compared to V3 (Fig. 5b). �is 
pattern is consistent with the TOO bias correction analysis presented above.

Variation in station density, terrain, and large-scale atmospheric patterns all contribute to spatial heterogene-
ity in cross-validation statistics. Introduction of TOO bias correction reduces cross-validation error in regions 
where different TOO protocols occur in close proximity, such as across the US-Canada border (Fig. 6a,b). 
Improvements in Prcp cross-validation error are more localized, and are most noticeable in the Great Lakes 
region and across parts of the eastern seaboard and southeastern US (Fig. 6c,d).

To help evaluate the dataset for the presence of obvious spatial discontinuities or other similar anomalies, we 
provide a sample of Daymet V4 daily data aggregated to annual climatologies and mapped for 2019, for Tmax, 
Tmin, Prcp, and the secondary output variable vapor pressure (Fig. 7). �ese climatologies include the separately 
generated subregions for Hawaii and Puerto Rico. �e climatologies show both large and small-scale features, and 
visual inspection indicates that there are not obvious spurious patterns or discontinuities.

One consequence of changes in the Daymet algorithm for V4 is that hard upper limits on daily precipitation 
amounts have been removed. �is is important in resolving extreme events where more than 200 mm of precipita-
tion might be observed in a day (200 mm/day being the V3 hard limit). We show an example of how removing the 
upper limit for daily precipitation leads to signi�cantly higher daily precipitation estimates during two days in late 
August 2017 as Hurricane Harvey was making landfall on the Gulf coast (Fig. 8). �e higher daily rainfall totals 
in V4 are re�ective of measurements made, for example, by the local National Weather Service o�ce in Houston, 

Fig. 7 Annual Daymet V4 climatologies for 2019, for Tmax (upper right), Tmin (upper le�), Prcp (lower le�), 
and vapor pressure (lower right).
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Texas, which showed 370 mm of rainfall on August 26, an all-time record for that station which was broken the 
following day with 408 mm on August 27.

Usage Notes
�e Daymet project website (https://daymet.ornl.gov) provides links to all of the methods for obtaining Daymet 
data through the ORNL DAAC. �e data are available for direct download through the dataset landing pages 
pointed to by the dataset DOIs https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=32. �e data are also available 
through di�erent services, including:

•	 �ematic Real-time Environmental Distributed Data Services (THREDDS) Data Server (TDS) at https://
thredds.daac.ornl.gov/thredds/catalogs/ornldaac/Regional_and_Global_Data/DAYMET_COLLECTIONS/
DAYMET_COLLECTIONS.html provides the ability to obtain subsets of Daymet daily surface weather data, 
monthly climatology, and annual climatology data sets. Instructions for using the THREDDS netCDF subset-
ting web service can be found at https://daymet.ornl.gov/web_services.html.

•	 �e ORNL DAAC’s Spatial Data Access Tool (SDAT) at https://webmap.ornl.gov/ogc provides visualization 
and Open Geospatial Consortium (OGC)-compliant web services for the monthly and annual climatologies.

•	 �e Daymet Single Pixel Extraction tool at https://daymet.ornl.gov/single-pixel/ provides a graphical user 
interface and web services for extracting a time series of Daymet daily surface weather data at a speci�c 
location.

•	 �e Daymet Tile Selection Tool at https://daymet.ornl.gov/gridded/ provides a method for getting the daily 
surface weather data in gridded 2 degree by 2 degree tiles.

Fig. 8 Daily total precipitation for a sub-region that shows landfall of Hurricane Harvey in late August 2017. 
Panels a) and b) show two days from the Daymet V4 dataset. Panels c) and d) show the corresponding days from 
the V3 dataset. Inset in panel d) shows the location of detailed region. Note that time-of-observation shi�ing for 
precipitation estimates means that August 27 from V3 corresponds best with August 26 from V4, and likewise 
August 28 in V3 corresponds best with August 27 in V4.
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•	 The ORNL DAAC’s Fixed Sites Subsetting Tool at https://modis.ornl.gov/sites/ provides pre-computed 
time-series visualizations and data downloads (csv and JSON) for approximately 1400 sites in North America 
which are part of one or more ecological research networks.

All Daymet data are publicly available, without restriction, according to the NASA Earth Observing System 
Data and Information System (EOSDIS) Data Use Policy at https://earthdata.nasa.gov/earth-observation-data/
data-use-policy. A NASA Earthdata Login account is generally needed to download data, available through 
https://urs.earthdata.nasa.gov. Any person can get an Earthdata Login account through an automated process.

Code availability
�e source code implementing the core Daymet algorithms (Eq. 2 through 17 and associated text) is available at 
https://doi.org/10.5281/zenodo.473757329.
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