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Gri-ding with continuous curvature splines in tension 

W. H. F. Smith* and P. Wessel* 

ABSTRACT 

A gridding method commonly called minimum cur- 

vature is widely used in the earth sciences. The 

method interpolates the data to be gridded with a 

surface having continuous second derivatives and min- 

imal total squared curvature. The minimum-curvature 

surface has an analogy in elastic plate flexure and 

approximates the shape adopted by a thin plate flexed 

to pass through the data points. Minimum-curvature 

surfaces may have large oscillations and extraneous 

inflection points which make them unsuitable for grid- 

ding in many of the applications where they are 

commonly used. These extraneous inflection points 

can be eliminated by adding tension to the elastic-plate 

flexure equation. It is straightforward to generalize 

minimum-curvature gridding algorithms to include a 

tension parameter; the same system of equations must 

be solved in either case and only the relative weights 

of the coefficients change. Therefore, solutions under 

tension require no more computational effort than 

minimum-curvature solutions, and any algorithm 

which can solve the minimum-curvature equations can 

solve the more general system. We give common 

geologic examples where minimum-curvature gridding 

produces erroneous results but gridding with tension 

yields a good solution. We also outline how to improve 

the convergence of an iterative method of solution for 

the gridding equations. 

INTRODUCTION 

A wide variety of numerical procedures in the earth 

sciences require data on a regularly spaced lattice, including 

Fourier analysis and many map-drawing algorithms. In con- 

trast, most geologic data are acquired at individual observa- 

tion points or along traverses. It is therefore necessary to 

construct estimates of the value of a function on a grid, given 

observations of the value of the function at arbitrary loca- 

tions in the x, y plane. This operation is called gridding. 

There are three areas of concern in evaluating a gridding 

algorithm. The relative importance of each depends on the 

intended application. The first concern involves the global 

properties of the solution. Some procedures construct an 

interpolant of a priori known functional form. The second 

concern involves honoring data constraints; e.g. deciding 

whether the data are fit exactly or approximately. The third 

concern involves the method of interpolation or extrapola- 

tion in poorly constrained regions. It is in this last area that 

gridding algorithms differ most and where global properties 

strongly affect the solution. 

In general, all gridding algorithms share these underlying 

assumptions: (a) the function to be gridded is single-valued 

at any point: (b) the function is continuous within the region 

to be gridded; and (c) the function is positively autocorre- 

lated over some length scale at least as large as the typical 

spacing between observation points (Harbaugh et al., 1977; 

Davis, 1986). Nearly all methods estimate values at grid 

nodes from weighted averages of nearby data points, a 

procedure justified by assumption (c) in particular. Although 

rarely pointed out, some methods also require that the 

control data not contain information at wavelengths shorter 

than twice the grid spacing in order that spatial aliasing will 

not occur. Later in this paper we discuss prefiltering the data 

to avoid this problem. 

Weighted-average schemes differ in how they assign 

weights to the constraining values. The simplest methods 

use a polynomial or power law in distance; most other 

methods use some sort of minimum-norm principle (Weg- 

man and Wright, 1983). We divide these into two groups 

which we call statistical methods and integral methods. 

Statistical methods minimize the variance of the grid-value 

estimator by selecting weights based on the data autocorre- 

lation. The kriging methods used in economic geology (Olea, 

1974; Clark, 1979) belong to this class. An advantage of these 

methods is that they can yield confidence limits for the grid 

values; a possible disadvantage is that global properties of 
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the surface such as high-order continuity cannot be assured 

a priori. Integral methods begin with the requirement that 

the surface should minimize some global norm over some set 

of functions of the data; the weights are then determined to 

satisfy this constraint while fitting the data. The advantage of 

these methods is that they assure a solution with the desired 

properties; their disadvantage is that they do not easily yield 

confidence limits. 

The method we present here is a generalization of a 

popular integral method called “minimum curvature.” In the 

minimum-curvature method, an interpolant with continuous 

second derivatives is constructed sttch that !he -dunred 

curvature integrated over the entire surface is minimized. 

Briggs (1974) derived the equations and suggested their 

solution by iteration of finite-difference expressions; Swain 

(1976) gave a Fortran algorithm based on Briggs’ method: 

and Sandwell (1987) solved the same equations by a matrix 

method. Variations on the Swain algorithm (e.g.. the U.S. 

Navy’s SuperMISP) are in widespread use in the earth- 

science community. For example, the gravity and magnetic 

anomaly maps of North America (GSA Map Committees, 

1987), and the Digital Bathymetric Data Base of the U.S. 

Navy (Van Wyckhouse, 1973: NGDC. 1988) are prepared by 

the minimum-curvature method. The heavy solid lines in 

Figures la and lb are profiles through minimum-curvature 

surfaces. They honor the data at constrained points, but 

have large oscillations between these points. This behavior 

in unconstrained regions may be undesirable in some appli- 

cations. 

In one dimension, the function with continuous second 

derivatives that interpolates the data constraints exactly and 

minimizes total curvature is called the interpolating natural 

cubic spline (~5. de Boor, 1978; Lancaster and Salkauskas, 

1986). It may have the large oscillations between constraints 

shown in Figure la. Two modifications to this spline have 

been used to avoid these oscillations. The first (type I) 

modification relaxes the requirement that the data be inter- 

polated exactly; a compromise is made between the misfit to 

\ 

the data and the curvature of the solution. Solutions of type 

I are called smoothing splines (cf., de Boor, 1978; Lancaster 

and Salkauskas, 1986). The second (type 2) modification, in 

contrast to the first, interpolates the data exactly but relaxes 

the constraint that the total curvature must be minimized. 

One class of type 2 solutions is splines in tension (Sch- 

weikert, 1966). The oscillation of the natural cubic spline can 

result in extraneous inflection points; Schweikert (1966) 

showed that a spline in tension eliminates these inflections. 

Note in Figure 1 b that the control data can be interpolated 

with a function which is everywhere concave down (e.g., the 

thin :&lid !ine). ,_. rrp+ the minimum-curvatl-re solution (heavy 

solid line) changes concavity. Sp%th (1973) has given 

Schweikert’s (1966) equations in a strictly diagonally domi- 

nant tridiagonal matrix form, and Cline (1974) has adapted 

Schweikert’s spline to curves in the (x, y) plane. 

In two dimensions, the minimum-curvature interpolant is 

the natural bicubic spline which can have the same oscilla- 

tions and extraneous inflection points as in the one-dimen- 

sional ( 1 -D) case. Again the same methods may be used to 

suppress these features. Inoue (1986) has given a type 1 

modification in which the damping of first and second 

derivatives is traded off against the data misfit under a 

least-squares norm. This is essentially a two-dimensional 

(2-D) smoothing spline which does not fit the data exactly. In 

this paper we present a type 2 modification. We show how 

the minimum-curvature gridding method (Briggs, 1974; 

Swain, 1976; Sandwell, 1987) can be generalized to include 

tension in the interior and boundary equations, and we show 

common geologic examples where minimum curvature pro- 

duces undesirable results but the introduction of tension 

significantly improves the solution. Our method produces a 

suite of surfaces with continuous second derivatives of 

which the minimum-curvature surface is one end member. 

Increasing the tension parameter relaxes the global mini- 

mum-curvature constraint by moving toward a solution with 

curvature localized at the control data points; at the same 

time the surface fits the data exactly. Adjustable tension 
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FIG. 1. (a) Cross-sections through surfaces produced with splines in tension. The black squares are data constraints. 
The heavy line is the minimum-curvature end member, the thin line is the harmonic end member, and the dashed 
line is an intermediate case using some tension. Note that all solutions honor the data points. (b) Cross-section 
through a continental shelf and slope. The black squares represent the intersection between the measured 
bathymetry (dashed line) and 100 m isobath contours. These intersections (contour coordinates) were then gridded 
using minimum curvature (heavy solid line) and some tension (thin solid line). The minimum-curvature method 
introduces an extraneous inflection point and exceeds the - 100 m level, although we know that bathymetry in this 
region is bounded by the -200 m and -100 m levels. The surface produced with tension gives a much better 
approximation since it suppresses local maxima and minima between data constraints. 
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permits the gridding of data of varying roughness and allows 

the user to satisfy his own criteria for a good solution. All the 

lines in Figure la and the solid lines in Figure lb are profiles 

through surfaces produced by our method. 

Swain (1976) gave a method for iterative solution of the 

finite-difference equations of minimum curvature (Briggs, 

1974). We show that including tension in these equations 

results merely Inca change in coefficients, and therefore any 

minimum-curvature algorithm based on Swain’s method can 

easily be modified to solve our equation. We also discuss 

how the convergence can be improved to achieve an order of 

magnitude reduction in run time of the original Swain 

algorithm. A C language program which incorporates all the 

features of our method and the sample data gridded in the 

examples in this paper are available from the authors on 

request. 

MINlMUM CURVATURE, ELASTIC PLATE 

FLEXURE, AND TENSION 

Gridding equations and physical analogs 

Minimum-curvature gridding algorithms use the norm 

c= II (V2z)’ dx dy. (1) 

Equation (1) is a valid approximation for the total curvature 

of z when 1 Vz 1 is small. Briggs (1974) showed that minimizing 

equation (I) leads to the differential equation 

V2(V2Z) = 2 J; 6(X - Xj . J’ - Ui). (2) 

where (Xi, yi, zi) are constraining data. Thef, must be chosen 

such that z + z; as (s, y) + (si, yi), and the boundary 

conditions are 

and 

a’z 
an2 = 0 (3) 

& (VZZ) = 0 (4) 

along edges, where aian indicates a derivative normal to an 

edge, and 

a’zzo 
ax ay 

at the corners. Equations (3). (4), and (5) are called free-edge 

conditions; and with these conditions, equation (2) has a 

unique solution with continuous second derivatives called 

the natural bicubic spline. The nomenclature comes from an 

analogy with elastic-plate flexure. Small displacements z of a 

thin elastic plate of constant flexural rigidity D, subject to a 

vertical normal stress q and constant horizontal forces per 

unit vertical length of T,,.X, T’,,. , and T ,,,, , approximately 

satisfy 

(Love, 1927). The minimum-curvature gridding equation (2) 

is a special case of equation (6) when horizontal forces are 

zero, and the boundary conditions represent zero bending 

moment on the edges [equation (3)], zero vertical shear 

stress on the edges [equation (4)], and zero twisting moment 

at the corners [equation (_5)] (Timoshenko and Woinowsky- 

Krieger, 1968). Physically, thef, represent the strengths q/D 

of point loads on the elastic plate: mathematically, they are 

coefficients in a solution which is composed of a linear 

cornbinatiorl~ of Green’s frrnctions for -plate fiexure due to 

unit point loads. 

The total stored elastic strain energy in the flexed plate is 

approximately proportional to the curvature (1); of all twice- 

ditferentiable surfaces interpolating the data, the minimum- 

curvature surface stores the least strain energy. If one 

imagines bending an elastic plate to interpolate the data, then 

extra work must be done on the plate to create any interpo- 

lant other than the minimum-curvature solution. The mini- 

mum-curvature solution may seem to be the “natural” way 

to estimate poorly constrained grid values. It is clear from 

Figure I, however, that the minimum-curvature constraint 

may create extraneous oscillations. 

We derived our equation by investigating the role of a 

uniform isotropic tensile stress T in equation (6). Suppose 

that T,., = T,,. = T and T,,, = 0. Then equation (6) becomes 

L)V?(V$) - TV’z = q. (7) 

When 7‘ = 0, equation (7) is equivalent to equation (2); but 

for arbitrarily large T, the solution is dominated by the 

second term. Here 7’ has units of force per unit length and 

the T required to adjust the solution scales with D and cl: we 

avoided this by writing 

(I - T/)V’(V2~) - T,V’Z = C f; 6(X - Xi, y - yi), (8) 

I 

where T, is a tension parameter and the I subscript indicates 

internal tension. (We specify tension on the boundaries 

independently of T, .) Now we may vary TI from 0 to 1, with 

0 and I giving the end-member cases shown as solid lines in 

Figure la. When T, = 0, equation (8) reduces to equation (2); 

and therefore the minimum-curvature solution is one end- 

mernlrer case of equation (VI. Wltcrr T, = i , ihe first term ilr 

equation (8) vanishes; and the solution is harmonic between 

constraining points. In the elastic analogy, T, = 1 represents 

infinite tension; since infinite tension is not physically mean- 

ingful, one may prefer to think of this end member as 

representing the steady-state temperature field in a conduct- 

ing plate with heat sources or sinks at the data points. An 

important property of this solution is that it cannot have 

local maxima or minima except at constraining data points 

(this follows from the interior mean value theorem for 

harmonic functions; e.g., Berg and McGregor, 1966). Note 

that for any T, in 0 5 T, < I, equation (8) gives a solution 

with continuous curvature, although it does not minimize 

equation (I) except when T, = 0. 

We implemented boundary tension with conditions (4) and 

(5) above but replacing condition (3) by 

(I-T,)++Tg;=O (9) 
l?n- an ’ 

where T, is a tension parameter for the boundary which also 

varies between 0 and 1. The free-edge condition corresponds 
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to Ts = 0; T, = I forces the solution to flatten at the edge 

(see Figure 1). This flattening is sometimes desired, as when 

gridding potential anomalies which should decay toward a 

regional background field away from the source region. 

Tension as a weighted minimum-norm solution 

Rayleigh’s theorem (Bracewell. 1978) may be applied to 

the curvature norm (1) to show that squares of Fourier 

components of; are integrated with weights proportional to 

the fourth power of their wavenumber; short wavelengths in 

z contribute much more to C than long wavelengths. Mini- 

mizing C yields a solution with power concentrated at long 

wavelengths and is suitable for gridding data which vary 

slowly with distance. The tension parameter in equation (8) 

effectively defines a weighted minimum-norm problem re- 

lated to the direct minimum-norm solution (2); when T, = I, 

the weights are proportional to the square of the wavenum- 

ber. This weighting increases curvature locally near the 

constraining data and yields a solution with more short- 

wavelength power. Tension relaxes the global minimum- 

norm constraint in order to find a solution with more local 

variation and is suitable for gridding data which vary more 

rapidly with distance. 

CONSTRUCTION OF A SOLU’HON 

Regional fields 

Nearly all minimum-norm gridding equations operate on 

perturbations from a regional trend. For example, statistical 

methods require that a regional field be removed from the 

data so as to make the residuals stationary; and the grid 

estimates are then constructed as estimates of the local 

departure from this regional trend. In the integral method 

above, the complete solution to equation (2) or equation (8) 

consists of a linear combination of Green’s functions for 

plate flexure by point loads, plus an additional function 

which is a solution to the homogeneous equation related to 

equations (2) or (8). This additional function we call a 

“regional field.” 

Swain (1976) and Sandwell (1987) did not include a re- 

gional field in their solutions to equation (2). Ignoring the 

regional field means that the true regional function is approx- 

imated by a linear combination of Green’s functions for plate 

flexure. We have found that this approximation is not 

numerically efficient, and the stability and convergence of 

solutions to equation (2) or equation (8) are enhanced by 

including a regional field model. In our algorithm, the 

regional trend is approximated by removing a least-squares 

plane from the data before solving equation (8). We add the 

plane back into the grid values after equation (8j is solved. 

This procedure has the additional effect that the boundary 

tension 7, drives the solution toward the regional plane 

rather than toward a horizontal plane. 

Finite-difierence approach 

There are many ways to solve equations (2) or (8). The 

most direct approach (Sandwell. 1987) is to express Z(S, y) as 

a linear combination of Green’s functions for equation (2) or 

equation (8) and to construct a matrix equation Gf = d, 

where G is a matrix of Green’s functions (the data kernel. in 

geophysical parlance), f is a vector of unknown coefficients 

,f). and d is a vector of known data constraints z(.xi, yi) = zi. 

This matrix equation is solved for the fi, and then the z 

values on the grid nodes are found from the linear combina- 

tion of Green’s functions given by theseJi. Unfortunately, 

this approach often yields a system which is nearly singular, 

because the ratio of the distances between the farthest pair 

and closest pair of data points is large (this is always true for 

data collected along traverses or tracks), and therefore some 

column vectors of the Green’s matrix G are nearly parallel. 

Alternatively, one could write the finite-difference expres- 

sions for equation (2) or equation (8) in terms of the values at 

the grid nodes and solve this system. I-D splines are usually 

constructed by writing these difference equations in matrix~ 

form. generally resulting in a band-diagonal system which is 

easily solved. However, if the same is done for a 2-D grid, a 

large and sparse matrix results. 

The near-singularity of the Green’s matrix and the large 

and sparse nature of the finite-difference matrix make these 

matrix methods unstable, and solutions must be found by 

iterative refinement and possibly also smoothing by zeroing 

small eigenvalues. We therefore fellow the suggestion of 

Briggs (1974) and solve equation (8) directly by iteration of 

the difference equations among the grid values (see the 

Appendix). This procedure is always stable and allows us to 

control the path taken in interactive refinement of the 

solution. The numerical solution is path-dependent and so 

this flexibility is important. 

Because equation (8) has one more term than equation (2), 

it may seem that it is more complicated to solve equation (8). 

However, when either equation (2) or equation (8) is approx- 

imated in terms of central finite differences among grid 

values, a linear equation among the points shown in Figure 2 

results. The Laptacian of the surface at the square involves 

the four shaded circles: the biharmonic of the surface thus 

requires all twelve circles. At grid nodes unconstrained by 

data, the value of the surface at the square is given by a 

weighted average of the values at the circles. Adjusting the 

tension parameter T, in equation (8) determines the weight of 

the shaded circles relative to the unshaded ones; however, 

for any value of T, (except the limiting case T, = I), the same 

linear system relating the twelve circles to the square must 

be solved, and only the relative weights (coefficients) 

change. Thus, solving equation (8) requires no more compu- 

tational effort than solving equation (2). and a program which 

solves equation (2) can be trivially modified to solve equa- 

tion (8). In fact, because increasing tension gives more 

weight to the shaded circles in Figure 2 and leads to a more 

local solution. the solution with tension actually converges 

faster than the minimum-curvature solution. 

Implementing data constraints 

Once the user has chosen a discrete grid with lattice 

spacing (&. Ay), the information content of Z(X, y) is 

effectively limited; :(x, y) now has a Nyquist wavelength, 

and only a limited number of data constraints can be fit 

exactly. In our algorithm, we assign each datum to its 

nearest grid node. In Figure 2, the dashed square surrounds 

all points in the (s, y) plane nearest the grid node indicated 

with a black square. Data in this dashed region are assigned 
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to this node. If we have at most one data point nearest each 

grid node, we can fit these data exactly: but if more than one 

data value constrains a given node, the surface is locally 

overdetermined and some sort of smoothing or data decima- 

tion is required. Swain (1976) uses the datum nearest the 

node and ignores the others. We do not recommend this 

procedure, since it can alias information at wavelengths 

shorter than the Nyquist wavelength of the grid. To make 

use of all the data, one might solve equation (8) separately 

for each datum in turn and then average the solutions. 

However, because the system is linear, it is equivalent to 

solve equation (8) with one representative constraining 

value. which is an average of the original data. This method 

requires only one fourth-order solution for each node: and if 

it is done outside the gridding process, it reduces the number 

of data points that need to be stored in the gridding pro- 

gram’s memory. Because spatial filtering procedures are 

generally useful apart from gridding and the best filtering 

method is application-dependent, we have decoupled the 

averaging process from the gridding process. That is, our 

algorithm does not include any provision for smoothing or 

averaging data at overdetermined nodes; we expect that the 

data have been preprocessed to give only one filtered value 

per grid node, which we then interpolate exactly. Often our 

preprocessing consists simply of finding the mean or median 

0 
(0 2) 

0 
(-I I) @co l, o,, ,, 

0 
(0 -2) 

FE. 2. When either equation (2) or equation (8) is expressed 
in central finite differences among the grid nodes, the esti- 
mate at one node (the black square) is given by a weighted 
average of the values at I2 nearby nodes (circles). Increasing 
the tension in equation (8) increases the weight of the shaded 
circles relative to the unshaded ones, producing a more local 
solution. In any case the same linear system must be solved 
and only the weights change; thus any minimum-curvature 
algorithm can be easily modified to include tension. Data 
constraints are assigned to their nearest grid node; a datum 
inside the dashed box is used to constrain the grid value at 
the square. Subscripts in parentheses illustrate the indexing 
scheme used in the difference equations in the Appendix. 

value at the mean or median position in each block of area 

nearest each node. 

Briggs (1974) gave an approximation for V’z at a grid node 

in terms of other nearby grid values and one off-grid data 

constraint. The expression uses a second-order finite-dif- 

ference Taylor series expansion to predict the value of the 

interpolating surface away from grid nodes. Since both 

equations (8) and (2) are equations in V*z, we can implement 

data constraints in equation (8) by modifying Briggs’ method 

(see the Appendix). Using this approach, the constraining 

datum enters the local difference equation through the Tay- 

lor expansion: and we do not need to solve for-J) explicitly. 

If the difference equations were to converge exactly, then 

the surface would fit the data exactly, in the sense that the 

Taylor series expansion would match the data constraints 

with zero prediction error. Because the solution is found to 

finite precision, the fit is not perfect; the user enters a 

tolerance for numerical convergence, and the prediction 

error is of this order. We have found empirically that the 

mean prediction error is always nearly zero (thus the method 

is unbiased), and convergence to maximum absolute error of 

one part in IO” can be achieved in short run times (the 

meaning of “short” is relative to the number of nodes in the 

lattice). One important feature of the Taylor series method 

for fitting the data is that it honors a datum exactly when that 

datum falls on the lattice; if the (x, y) coordinates of the 

datum match those of a grid node, the value of that grid node 

is set equal to the datum value. 

Convergence 

The gridding equations (4), (5). (8). and (9) have a unique 

solution which we may call the true solution. Because we 

solve these equations iteratively with finite precision, we do 

not reach the true solution; and our result depends not only 

on the convergence limit of the iterations but also on the path 

taken toward the solution. Optimization of this path is 

important not only to achieve convergence in only a few 

iterations, but also because optimization yields a solution 

closer to the true solution. Convergence in computation is 

not the same as convergence in mathematics. We consider 

our iterations “converged” to limit e when the maximum 

absolute change at any node during one iteration is less than 

E. This does not mean that the result is within E of the true 

solution; it means that further improvements in the result 

will be smaller than E for each iteration and are therefore not 

worth the effort. 

Details of our solution strategy are given in the Appendix. 

We generally follow the method of Swain (1976), but we 

include the tension parameters T, and TB and an additional 

parameter for grid anisotropy 01. Users of gridding algo- 

rithms often grid data in map coordinates; at high latitudes 

the anisotropy in distance on a latitude-longitude grid can be 

significant. We have included an aspect ratio 01 in our 

algorithm. where the grid dimensions are such that dq’ = 

Mcu, and an nth difference in 4’ is scaled by u” to accom- 

modate the anisotropy. Ifs = longitude and 4’ = latitude, 

then o! = cosine (latitude). We also generalized the regional 

grid strategy of Swain (1976) and included successive over- 

relaxation to accelerate convergence. With these improve- 

ments, our algorithm solves the isotropic minimum-curva- 



ture problem in one-tenth the time required by Swain’s 

algorithm; applications using tension converge even more 

rapidly because of the more local nature of the solution in 

tension. 

GEOLOGIC EXAMPLES AND THE USE OF TENSION 

The “questionable dipole” example 

For this example we use shipboard gravity measurements 

from offshore Mauritania which are in the Lamont-Doherty 

a) 
25 

24"30 

24 

23 

b) 
25 

24'30 

.5 

marine geophysical data base. The data were cross-over 

error corrected (Wessel and Watts, 1988; Wessel, 1989) and 

then 5 by 5 minute block mean values were computed. These 

mean values were input to our gridding algorithm. In Figure 

3 we show two contour maps prepared from these data. 

Figure 3a was prepared using TI = 0 in equation (S), 

corresponding to the minimum-curvature method. Figure 3b 

shows the same data gridded with TI = 0.3 in equation (8); 

i.e., with some tension in the gridding surface. The locations 

of the input data values are shown as squares. Both maps 

c) 

FIG. 3. 10 mGal contour maps of the gravity field from offshore Mauritania. Locations of control data are indicated 
by biack squares. A positive anomaly of -i-T5 mGai was registered aiong the northeast trending track, while the 
other tracks measured values near zero. (a) The surface produced by the minimum-curvature method has an 
unconstrained low south of the constrained high. (b) The surface produced with some tension (T, = 0.3) looks very 
similar to (a), except that the unconstrained low has been reduced significantly. (c) A perspective view of the 
shaded region in (a) from a vantage point above and northeast of the high. The oscillatory nature of the 
minimum-curvature surface is exemplified in the unconstrained low. (d) The same perspective view as in (c) of the 
surface produced with tension. Tension suppresses the oscillations found in (a) and (c) and reduces the magnitude 
of the unconstrained low to less than 10 mGal. 
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show a feature with a 175 mGal high which was observed 

along the northeasterly ship track. Other tracks near this 

feature recorded gravity values near zero. The most signifi- 

cant difference between the two maps is at the unconstrained 

low to the south of the constrained high. The minimum- 

curvature map suggests a dipole anomaly; there is a -25 

mGal low to the south of the 175 mGal high in Figure 3a. 

Gridding with tension reduces this low to less than IO mGal 

(Figure 3b). Note that there are no data at all in the region of 

the dipole low; we cannot say whether this low exists or not. 

By increasing T, in equation (8), this low can be made to 

disappear. The user must decide whether he wants this low 

in the map or not. For example, if the data in Figure 3 were 

magnetic-intensity measurements, a high-low dipole might 

be expected; while if the data were bathymetric soundings. 

the low might be considered spurious; and in gravity data a 

flexural moat around a seamount high is sometimes reported 

(e.g., Watts, 1978). The point is that with our method the 

result may be adjusted as is geologically appropriate. 

In Figures 3c and 3d we show perspective views of the 

shaded portions of the gridding surfaces of Figures 3a and 

3b. In these views we have “cut away” the data east and 

north of the center of the high and are looking at the 

remaining region from a vantage point above and northeast 

of the high. These views illustrate the oscillatory flexure of 

the surface obtained by minimum-curvature gridding. Note 

in Figure 3d that tension results in a much sharper transition 

in the unconstrained area between the constrained high and 

the constrained flat regions. 

In this “questionable dipole” example, it is not obvious 

that minimum-curvature gridding has done anything wrong; 

the validity of the low anomaly is a subjective decision. A 

lesson to be drawn from Figure 3 is that we should always 

plot the locations of constraining data on our contour maps. 

In the next two examples, we show that the minimum- 

curvature surface produces clearly undesired results. 

The “shelf-break bulge” 

Figure lb contains a vertical cross-section through an 

actual bathymetric data profile over a continental shelf and 

slope (dashed line) and two attempts to reproduce this 

bathymetric surface by gridding the coordinates of isobaths 

(squares). The heavy solid line is a section through the 

minimum-curvature solution, and the thin solid line is a 

section through a solution produced with some tension. The 

heavy line displays a “shelf-break bulge” which occurs 

where an unconstrained area lies between two areas con- 

strained to have different gradients, a situation very similar 

to the one that produced the “questionable dipole.” How- 

ever, while the dipole may or may not be real, the shelf- 

break bulge is a clear case of extraneous inflection points. 

In this example we did not use the actual ship’s bathym- 

etry (dashed line) to constrain the gridding; instead, we 

found the locations of 100 m contours of the ship data and 

used the coordinates of these contours as the controlling 

data points. This situation is quite different from the “ques- 

tionable dipole” example. What we are illustrating here is 

that attempts to grid surfaces using the coordinates of 

isopleths of the data suffer from a peculiar lack of informa- 

tion. The shelf-break bulge occurs where there is a large 

distance between constraining isopleths. When two contours 

are separated by a large distance, we know that the average 

gradient in that region is probably small; certainly, the 

surface is of bounded variation on that interval. However, 

the gridding algorithm only sees an unconstrained region. 

The minimum-curvature solution is clearly wrong in this 

application. If the surface had a bulge as shown by the heavy 

solid line in Figure lb, then there would have been another 

100 m contour value somewhere as the bulge turned down to 

the continental slope. Including tension in the solution works 

very well (thin solid line). There are two reasons for this 

success. The first is that the bulge results from an extraneous 

inflection point, and tension has been shown to eliminate 

these inflections (Schweikert, 1966). The second is that 

increasing the tension moves the solution toward the har- 

monic end member, which can have no local maxima or 

minima between data points. This feature is well suited to 

gridding isopleth data, of course. 

Shelf-break bulges are common features in the U.S. Na- 

vy’s Digital Bathymetric Data Base (Van Wyckhouse, 1973; 

NGDC, 1988). In Figure 4a we have contoured this data set 

and shaded regions with elevations above -15 m, i.e., 

shallower than I5 m below sea level. The shading reveals 

a) 
JO 

45 

so 

FE. 4. (a) Map of U.S. Navy DBDB-5 bathymetry con- 
toured at 1000 m intervals. Regions shallower than 15 m 
below sea level are shaded, revealing “shelf-break bulges.” 
Heavy line indicates ship track of R/V Vema cruise 17-11. (b) 
Profile along the Vema 17-l I track. Thin line: actual bathym- 
etry observed by R/v Vrma. Heavy line: DBDB-5 data set 
sampled along the Vema 17-l 1 track. 
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prominent bulges in the continental shelf offshore South 

America. Figure 4b shows a profile along the line in Figure 

4a. The thin line in Figure 4b is the actual bathymetry 

observed by R/V Vemu cruise 17-11; the heavy line shows 

the DBDB-5 depths along the Vema track. We believe that 

the Navy has gridded contours of the original data, resulting 

in bulges which then have been truncated ad hoc to a - 10 m 

level. In the next example we grid bathymetry data directly; 

minimum curvature produces a bulge in this example as well. 

Bathymetric map of Broken Ridge 

Figure 5a is a bathymetric contour map of Broken Ridge in 

the southern Indian Ocean (Driscoll et al., 1989). This map 

was hand contoured by a marine geologist at Lamont- 

92” 93” 94” 95” 96” 

Doherty using bathymetric soundings from the Lamont data 

base and additional data from the Defense Mapping Agency 

which are not in our digital data base. In Figures 5b and 5c 

we have tried to approximate the hand-drawn map by 

machine gridding and contouring the Lamont data only. 

Figure 5b is made with minimum curvature; and Figure 5c, 

with TI = 0.75. 

While Figure 5c cannot match the hand-drawn map ex- 

actly, the major features are quite similar. There are local 

differences, and we do not know how much the geologist was 

influenced by the DMA data which are not included in our 

map. The differences between Figures 5a and 5c and the 

minimum-curvature map (Figure 5b) are quite clear. In the 

unconstrained areas near the boundaries of the map, the 

b) 
92~’ 93” 94” 95‘ 

29” 

32” 
92” 93” 94 95” 

92” 93 94” 95” 96- 
29” 29‘ 

32 32” 
92’ 93” 94” 95’ 96” 

FIG. 5. Bathymetric maps of Broken Ridge in the southern Indian Ocean. (a) This map was hand contoured by a 
marine geologist using bathymetry from the Lamont-Doherty data base and additional data not available to us 
(Driscoll et al., 1989). (b) and (c) are generated by machine gridding of only the data in the Lamont-Doherty data 
base (locations shown as black squares). Both machine-drawn maps are in general agreement with the hand-drawn 
map in the regions well constrained by data. The major differences occur in regions of interpolation and 
extrapolation. The minimum-curvature solution (b) has large oscillations and a “false island” rising 900 m above 
sea level (gray shaded area). A solution using T, = 0.75 (c) shows good agreement with the human interpretation 
(a) in the unconstrained regions. 
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minimum-curvature solution has large undulations and actu- 

ally rises above sea level for a considerable portion (shaded 

area in Figure 5b). This “island” is certainly an unaccept- 

able feature of this map. 

DISCUSSION 

It should now be clear that minimum curvature is not the 

ideal gridding method for all applications, something one 

might have expected from the start. Gridding with tension is 

an improvement because it adds a degree of freedom and 

relaxes the minimum-curvature constraint. We realize that 

there is no physical reason for using a plate-flexure equation 

to grid data such as gravity or topography measurements. 

Integral gridding methods can be designed for the physics of 

the particular application, such as the norms on harmonic 

splines used by Shure et al. (1982) for magnetic data. 

However, it is common for scientists to become familiar with 

one method of solution and use it in a variety of applications. 

Also, in the interpretation of potential field anomalies, the 

geophysicist must usually relate the anomaly to the topog- 

raphy of the source region; and he or she often wants to treat 

the potential field data and the topography data with the 

same procedure. A general gridding procedure is therefore a 

practical necessity. 

The minimum-curvature method was advocated by Briggs 

(1974) for its smoothness properties, and Briggs (1974), 

Swain (1976), and Sandwell (1987) have all used it for 

potential-field data, which are expected to define relatively 

smooth analytic functions. The smoothest possible twice- 

differentiable surface should not approximate topography 

very well; our examples show that minimum curvature 

makes very poor bathymetric maps. It may be that kriging is 

a better approach, since topography data seem to be well 

suited to stochastic descriptions such as fractals and ARIMA 

models (e.g., Malinverno and Gilbert, 1989). However, the 

complete spatial autocorrelation of data given only along 

ship tracks is very difficult to compute and include in a 

simple kriging procedure. We feel that gridding with tension 

is an acceptable method for topography data: it is a more 

local scheme than minimum curvature and better reflects the 

nature of the autocovariance of topography data. 

Isopleth data are a challenge for any algorithm. Obviously, 

one should not grid isopleth coordinates if the original data 

are available; but frequently gridded values are needed, and 

a contour map is the only published form of the data. 

Sometimes it is necessary to grid data which are intrinsically 

isopleths, such as when one makes a gridded age data set 

from the locations of magnetic isochrons of the sea floor. 

Isopleth coordinates contain some information about the 

locations of values of a function, but, more important, they 

define regions of bounded variation. We have shown that 

gridding with tension works well for isopleth data because 

the end member T, = T in equation (8) cannot have iocai 

maxima or minima between constrained points. We do not 

know how kriging would work on isopleth data. The notion 

of the autocovariance of sets of equal values seems rather 

problematic. 

The minimum-curvature gridding method has been widely 

applied to bathymetry and other data for which it is not well 

suited. We have shown that in some applications minimum 

curvature gives undesired results, and that including tension 

in the solution overcomes these difficulties. Since it is 

straightforward to modify a minimum-curvature algorithm to 

include variable tension, we suggest that earth scientists who 

already use minimum-curvature algorithms should include 

this feature. We do not claim that our method is ideal in all 

applications. However, we feel that continuous curvature 

gridding with adjustable tension provides the flexibility to 

handle many cases which arise in the earth sciences. 
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APPENDIX 

SOLUTION BY ITERATION OF FINITE-DIFFERENCE EQUATIONS 

Difference expression for the homogeneous equation Using the finite-difference approximations (A-l) and (A-2), 

the homogeneous equation 
Our notation is shown in Figure 2. For convenience we 

use subscripts to refer to the relative position of a grid node (1 - TI)V”(V2z) - T/ V*z = 0 (A-3) 
with respect to a local origin. Thus zoo refers to the current 

zij, and zt-, appearing in an equation with ztKI refers to 

zi+rj_ I _ We approximate derivatives by central finite differ- 
may be solved for zoo: 

zoo = -[(h + 8a2 + &x4)(1 - T,) + 2(1 + a2)Tr]-' 
(1-T,)[z2o+z_~,~+~4(z~~2+z~_2)+2~2(z,,+z_11+z1~1+z~I~1)] 

-~4~~+~‘~~~-~~~+~,IE~,,~+~-,“+~2~~o, +zo-1)l 1. 

(A-4) 

ences, e.g., 

d2Z ZlO - 2zoo + z 10 
&?- 

(Ax)~ ’ 

We normalize the length of the grid by assuming Ax = 1. We 

allow for anisotropy with an aspect ratio CY = Ay/k. Then 

d2Z 

--a!*[zol -2zof) +z”_l] 
dY2 

and 

v*z=zr,j +z_lo+cX*(Z,,, +z&1)-2(1+C12)z”,J. 

(A-1) 

Similarly, 

We use this expression at those grid nodes Z~ which are not 

constrained by data. In the particular case of minimum 

curvature (T = 0) on an isotropic grid (CI = l), this expression 

reduces to the difference expression given by Briggs (1974) 

as his equation (12). 

Difference expression including a constraining datum 

Briggs (1974) gave an expression for V’z at a grid point in 

terms of an off-grid constraining point. Since our equations 

may be expressed in V2z, we used his approach, but modi- 

fied it for our anisotropic grids. To find V*z at zoo, we 

construct a second-order Taylor series expansion frorn~,,~ to 

a point zk: 

+ (6 + 8a2 + 6a4)zoo. 
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We do this at five distinct points (Sk, Q), k = 1, 5. Then we The above matrix expression is easily solved to yield 

multiply each expansion by a real number bk and sum the 

five expressions: 
2(1 + cC2) 

b5 = 
(5 + c4(l + E + 4’ 

c bkzk =zoo c bk + 1 bk Sk 2 

+%rlkE +;&d$ 
d2Z 

+ c bktkrlk - +1 c b&$$. 
axay 2 

If the bk are chosen such that 

c bk<k = c bk% = 2 bktkllk =o and 

c b&= c &I;=2 

b3 = aq(l + s)bs - 2b4, (A-6) 

b2 = 41 + Sh - b3, and 

b, = [b5 + b4 - bz . 
For a constraining datum in other quadrants, analogous 

expressions may be obtained. 

The constraint is implemented by substituting equation 

(A-5) into equation (A-3) and solving for zoo: 

Zoo = {T, c bk-2(1-T,)[(1+a4)-(l+a’) c bk]}-’ (1 - T,) 

then 

v2Z = c bkZk -Zoo c bk . (A-5) 

While any five points which yield a nonsingular expression 

for the bk may be chosen, it is convenient to use four nearby 

grid node values and one off-grid constraint. For example, 

suppose that zoo is the location at the square in Figure A-l, 

and that we wish to implement the datum at E in Figure A-l 

as a constraint. Let us assign k = 1, 4 to other points on the 

grid (A-D in Figure A-l), and k = 5 to the point E. Then we 

seek bk satisfying 

where we have used the fact that the grid dimensions have 

been normalized by b and (Y is the anisotropy; here .$ and crq 

represent fractional distances on the grid, 

5= 
(x.5 -x00) 

Ax ’ 

(YE -Yoo) 
eiq = 

AY 

or 

q = (YE -Yoo) 

Ax ’ 

z20 +zp20 +a4(zo2 +zo-2) 

+2&z,t +zt_t +z_tt +z-t-1 

-2(1 + a*)[z,o + z _ to + a2(zol + ZO- ,) + Cbkzk] 

-TI c bkzk 

(A-7) 

r-----------7 

I 

I 

I 
*E j 

I I 

FIG. A-l. The grid node indicated by the black square is to be 
constrained by the datum at E. A Taylor series expansion is 
made from the node to the five points (A-Ej. Since fomof 
these are “known” (they are other points on the grid which 
are solved in se arate steps), they are used to eliminate 
terms in the Tay or series, leading to an expression for the P 
Laplacian at the node which includes point E as a constraint 
[equation (A-5)]. When point E is in the first quadrant, A-D 
may be chosen as shown to yield equation (A-6). For E in 
another quadrant,, A-D may be chosen by rotating this figure 
appropriately; this will modify the system for equation (A-6). 
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If the constraining datum (E in Figure A-l) lies exactly on 

the grid node, then SE and nE are both zero and the above 

matrix is singular. However, in this case the grid node value 

zoo may simply be replaced by zE without using equation 

(A-7). In this way, the gridded surface always interpolates 

the constraining datum to second order in the Taylor series. 

Difference expressions for boundary conditions 

Application of equations (A-4) and (A-7) throughout the 

desired domain of (x, y) requires two additional outside rows 

or columns of auxiliary points (Figure A-2). We express the 

boundary conditions at an x edge here; the expression for the 

y edges are analogous. 

We set the first outside points using boundary condition 

equation (9): 

2(l - TsI)zoo - 

z-to = 

(1 - $+(I 

(I - +) . tA-*) 

After equation (A-S) has been applied, we use boundary 

condition equation (5) to set the auxiliary “corner” point: 

z-i-i ‘ii~i +Z~lI-Zi]. (A-9) 

The second outside points may then be set using boundary 

condition equation (4): 

FIG. A-2. Implementing boundary conditions. Points in the 
lower left corner of the desired grid are represented by the 
black circles. The array containing the desired grid is aug- 
mented by two additional rows and columns surrounding 
each boundary. These exterior points allow application of 
equation (A-4) or equation (A-7) at every interior point. 
During each iteration, equation (A-8) is used to set the values 
of the white triangles, (A-9) the corner point (circle and cross 
symbol). and (A-10) the white diamonds. The grey triangles 
and diamonds on the y boundaries are set using analogous 
expressions but includmg the anisotropy factor 01. Only one 
corner of the array is shown here but the entire boundary is 
set in a similar manner. 

z-1_lJ = ZZ() + cL2(Zl 1 + ZI -1 - Z-I 1 - Z-I -I) 

-2(l+oc3(zi~, - 7 ) <.-IO . (A-IO) 

Solution by successive overrelaxation 

We solve equations (A-4), (A-7), (A-8), (A-9), and (A-IO) 

iteratively. One iteration consists of one application of the 

appropriate equation at each position zij to update each 

value. The updating is done immediately so that typically 

half of the points in the equation are “new” values and half 

are “old” values (Gauss-Seidel method; e.g., Press et al., 

1986). For programming convenience, we visit these points 

in sequence in loops over the i and j indices. A nonunity 

anisotropy factor (Y effectively “couples” the equations 

more strongly in one dimension, and the convergence is 

more efficient if the loops are nested so that the strongly 

coupled direction is looped first. 

The coefficients on the I2 points of Figure 2 are deter- 

mined from equation (A-4) or equation (A-7) and are con- 

stant during the iteration process; only the z+ change. We 

therefore compute arrays of these coefficients once, prior to 

entering the iteration loop. This prior step includes sorting 

the constraining data into the order in which they will be 

needed in the interaction loop, and computing and storing 

the hi used with each constraint. 

In the iteration loop itself, we use an overrelaxation 

parameter I < w < 2 to accelerate convergence. The 

difference equation is used to compute a new value for zij, 

and the change in zij is increased by the overrelaxation 

factor: 

This method is called successive overrelaxation or simulta- 

neous overrelaxation and is well known (Richardson, 1910; 

Young, 19.54; Roache, 1982; Press et al., 1986). Spectral 

analysis of the iteration operator may, in theory, yield an 

optimal value for w. In our application the best o depends on 

the tension used; we have determined empirically that 

w = I .4 works well for T = 0, and o may be increased as T 

is increased. The system is considered “converged” to the 

limit F when 

max I z,TW - z;‘“l < F. 

Multiple grid strategy 

We use a system of grids of various mesh sizes to enhance 

the efficiency of convergence of the system (A-4) and (A-7). 

We derived our method by a generalization of a technique in 

the minimum-curvature algorithm of Swain (1976). Our 

method shares some similarities with the multigrid methods 

developed for the second-order equations of fluid dynamics 

(Hackbush and Trottenberg, 1982; Brandt, 1984; Fulton et 

al., 1986). 

In the iterative solution, the array z starts with some initial 

values which are then changed by an amount hz when 

convergence is achieved. From equations (A-4) and (A-7) 

and Figure 2, it can be seen that in each iteration the new 

value computed for each zij is a weighted average of twelve 

neighboring values. The iteration operator is a local smooth- 

ing process. and as a consequence short-wavelength compo- 
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nents of AZ are found quickly. Conversely. iteration does not 

efficiently propagate the effects of data constraints to long 

wavelengths. For this reason our algorithm does not begin 

iteration on the array which is ultimately desired; instead, 

we first find a long-wavelength solution on a coarser mesh 

consisting of every Nth point in the x and y dimensions of the 

final (desired) array. We begin with the largest N which 

divides both grid dimensions (and leaves at least four points 

in each direction so that some work needs to be done). The 

above system is solved to convergence on this sparse lattice. 

Then we divide N by its largest prime factor, exposing new 

nodes in a finer mesh. These new points are initialized by 

interpolation from the previous mesh, and then the system of 

equations on this new mesh is again iterated to convergence. 

We continue this cycle until N = I and the full system has 

been solved. 

Multigrid techniques (Hackbush and Trottenberg. 1982; 

Brandt. 1984; Fulton et al., 1986) include both coarsening 

and fining mesh transfers in sequences called V-cycles. We 

use the simpler approach of starting with the coarsest 

convenient grid and successively fining (one half of one 

V-cycle). It can be shown (Ahlberg et al., 1967) that a 

coarsemesh spline is the best estimator of a fine-mesh 

spline; in this sense we are starting with optimal initial values 

at each successive stage, since only short-wavelength per- 

turbations to the solution need to be found. These local 

corrections are exactly what iteration of equations (A-4) and 

(A-7) performs efficiently. The computing time spent on the 

coarse meshes is small because the number of points in each 

lattice is only l/N’ of the final number of points; the use of 

a series of meshes results in fewer iterations on the final 

(N = I) stage and less total run time than if the solution had 

begun directly on the final grid. The coarse stages run so fast 

that we actuaily use &iN as the convergence iimit at each 

stage, where E is the convergence limit set by the user for the 

final stage. This allows the user to choose a reasonable limit 

to be used on the final grid when the iterations are slow, but 

makes a better approximation of the long-wavelength com- 

ponents without much increase in total run time

Equation (A-7) is constructed from the condition that the 

grid must interpolate the data constraints exactly (to second 

order in the Taylor series), and thus the prediction error of 

the surface would be zero if the equations could converge to 

F = 0. In practice, we have observed that this sequence of 

coarse grids with division of N by its largest prime factor at 

each stage results in a smaller prediction error than any other 

solution strategies we tried. The muumum-curvature solver 

of Swain (1976) uses a similar sequence of coarse grids, 

except that his sequence of grid mesh N values is limited to 

powers of two and the initial N must be chosen by the user. 

Our algorithm allows any N and finds the initial N automat- 

ically. In map applications using a latitude-longitude mesh in 

minutes of arc, the grid dimensions commonly have factors 

of 3 and 5 as well as 2; and in these cases our mesh system 

goes through more intermediate stages than Swain’s algo- 

rithm. We find that these extra states result in faster total run 

time smaller prediction error, and better overall visual 

quality of the sur&~ce 

With the use of multiple grids, each lattice is initialized by 

an interpolation from the previous stage, and therefore only 

the first (coarsest) lattice needs to be seeded with initial 

values prior to iteration. In Swain’s (1976) algorithm, this is 

done by a weighted average of points inside a user-specified 

radius. We have retained this feature as an option to be used 

when the grid dimensions have few common factors and the 

coarseness factor N starts near I. However, because we 

have removed a planar trend from the data prior to iteration, 

we find that in most cases involving several regional grid 

si-dgcs if is- acteqwdk iu ‘begm \ly’ith then coarse-iattice values 

initialized to zero. 


