

GridFlow: Workflow Management for Grid Computing

Junwei Cao*, Stephen A. Jarvis†, Subhash Saini‡ and Graham R. Nudd†
*C&C Research Laboratories, NEC Europe Ltd., Sankt Augustin, Germany

†Department of Computer Science, University of Warwick, Coventry, UK
‡NASA Ames Research Centre, Moffett Field, California, USA

Corresponding email: cao@ccrl-nece.de

Abstract

Grid computing is becoming a mainstream technology
for large-scale distributed resource sharing and system
integration. Workflow management is emerging as one of
the most important grid services. In this work, a
workflow management system for grid computing, called
GridFlow, is presented, including a user portal and
services of both global grid workflow management and
local grid sub-workflow scheduling. Simulation,
execution and monitoring functionalities are provided at
the global grid level, which work on top of an existing
agent-based grid resource management system. At each
local grid, sub-workflow scheduling and conflict
management are processed on top of an existing
performance prediction based task scheduling system. A
fuzzy timing technique is applied to address new
challenges of workflow management in a cross-domain
and highly dynamic grid environment. A case study is
given and corresponding results indicate that local and
global grid workflow management can coordinate with
each other to optimise workflow execution time and solve
conflicts of interest.

1. Introduction

Grid computing originated from a new computing
infrastructure for scientific research and cooperation [11]
and is becoming a mainstream technology for large-scale
resource sharing and distributed system integration [12].
Essential grid services include information services,
resource management, data transfer, security, and so on.

In this work, another important grid service -
workflow management - is proposed; it includes an
initial development of a framework and supporting
algorithms, a so-called GridFlow system. An initial
implementation of a GridFlow user portal is introduced.
A two-tier service framework is presented with both
global grid workflow management and local grid sub-
workflow scheduling. The main functionalities of grid

workflow management include workflow construction,
simulation, scheduling, execution, monitoring, conflict
solving, and so on.

This work is based on our previous work on grid
resource management. An agent-based methodology is
developed for global grid resource management using
resource advertisement and discovery capabilities [5, 7].
A system implementation, ARMS [8], is also integrated
with a local grid resource scheduling system, Titan [23].
Titan utilises an iterative heuristic algorithm to
dynamically minimise the makespan and idle time of a
particular grid resource without destroying user
contracts. The functionalities of both ARMS and Titan
are based on application performance prediction
capabilities provided by the PACE system [20]. While
our previous work assumes that users submit tasks
individually to the grid, this work aims to enable grid
users to construct, simulate, execute and monitor new
grid applications that consist of flows of multiple tasks.

Workflow techniques have been developed for over
ten years. A great deal of work has been carried out with
regard to defining and implementing standards for
workflow management systems [10]. While these are
established research areas in other contexts, a grid
environment presents a number of new challenges:

• Cross-domain: The process of a grid workflow
encompasses multiple administrative domains
(organisations). The lack of central ownership and
control results in incomplete information and many
other uncertain factors.

• Dynamism: Since grid resources are not entirely
dedicated to the environment, computational and
networking capabilities can vary significantly over
time. Application performance prediction becomes
difficult and real-time resource information update
within a large-scale global grid becomes impossible.

In this work, a fuzzy timing technique [19] is applied
to address the challenges when workflow scheduling and
conflict management is processed. Workflow or task
execution times are represented using fuzzy timestamps

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

and calculated via fuzzy enabling times and combined
possibility distributions when conflicts occur. This
method is illustrated using a case study and the results
indicate that the use of fuzzy concepts is feasible
especially when multi-site scheduling is involved [22].

There is a limited amount of work related to grid
workflow issues in the grid computing community.
Pioneering work includes WebFlow [2], a visual
programming paradigm for the development of high
performance distributed computing applications; this is
however no longer an active project. A complementary
concept to workflow is a component. The CCA (Common
Component Architecture) and its XML implementation
[14] have been developed for grid programming.
Symphony [18] is a framework for combining existing
codes to meta-programs without changes to the code,
which is simpler and focuses more on security issues. In
the work described in [13], CXML (Component XML) is
used for component specification and further issues such
as performance optimisation and implementation
selection are addressed for component-based grid
applications. Another XML based grid workflow
specification is documented in [3] and used in the ASCI
(Accelerated Strategic Computing Initiative) grid
infrastructure. As mentioned in this work, the WfMC
(Workflow Management Coalition) standard, WPDL
(Workflow Process Definition Language) [10], is
sophisticated and perhaps too generalised for grid
computing. With the integration of grid technologies
with Web Services protocols, WSFL (Web Services Flow
Language) [17] alternately has potential as a grid
workflow language. Other grid projects such Condor [1]
and UNICORE [21] provide similar functionalities but
require specific infrastructures.

A good summary of the above work can be found in
[16], which refers to grid programming environments
and models. The key issue that differentiates our work
from these is that we focus more on service-level support,
workflow management and scheduling, as opposed to
workflow and component specifications, standards, or
communication protocols at the programming level. The
fuzzy timing method introduced here is suitable and
straightforward when applied to the scheduling scenarios
described in this work. The goal is not to necessarily
provide the best scheduling solution. Another advantage
of this approach is that the fuzzy time functions can be
computed very fast and are suitable for scheduling of
time-critical grid applications.

The rest of the paper is organised as follows: Section 2
provides an overview of our previous work on grid
resource management; a workflow management
framework and the supporting scheduling algorithms are
described in detail in Section 3; a simple case study is
included in Section 4 to illustrate the fuzzy timing

method; and the paper concludes in Section 5 with
proposed future work.

2. Grid Resource Management

Our previous work on grid resource management is
based on two grid services: information and performance
services. The Globus MDS [9] is adopted to provide grid
resource information and indexing services and the
PACE toolkit [20] is utilised to provide performance
modelling and prediction capabilities for parallel
programs. The implementation of grid resource
management is carried out at multiple layers:

• Grid Resource: A particular grid resource is a high-
end computing or storage resource that can be
accessed remotely. These can be multiprocessors, or
clusters of workstations or PCs with large disk storage
space. Titan [23] is designed as a grid resource
manager that schedules the execution of multiple
parallel tasks with maximum resource utilisation.

• Local Grid: A local grid consists of multiple grid
resources that belong to one organisation. These
resources are usually connected with high speed
networks. In our previous work, each local grid is
managed using an agent [8].

• Global Grid: The global grid includes all grid
resources that belong to different organisations within
a virtual organisation. ARMS is developed as an
agent-based resource management system for grid
computing, in which multiple agents are organised in
a hierarchical way [8].

2.1. PACE

Prediction-based grid resource management is
provided using a system of application performance
modelling and evaluation. The PACE toolkit [20] is used
to provide this capability for both the local schedulers
[23] and the grid agents [6]. Figure 1 illustrates the main
components of the PACE toolkit.

Figure 1. The PACE Toolkit

Application Tools

Evaluation Engine

Performance Prediction On-the-fly Analysis

Application Model

Evaluation Results

Resource Model

Resource Tools

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

The PACE evaluation engine is able to combine
application and resource models at run time to produce
performance data (such as total execution time). PACE
has been validated using ASCI high performance
computing applications [4, 15]. The validation results
show that a high level of accuracy can be obtained, cross-
platform comparisons can be easily undertaken, and the
process benefits from a rapid evaluation time. These
features allow PACE predictive data to be used on the fly
for grid resource management and scheduling.

The prediction capabilities of PACE have been
developed for scientific computing tasks (e.g. parallel
programs in MPI or PVM) that are computationally
intensive (rather than data intensive); this work is
therefore based in this domain. It is also the case that
grid resources are only considered to be providers of high
performance computing power as opposed to large-scale
data storage facilities.

2.2. Titan

The Titan system [23] has been developed as a grid
resource manager. By coupling application performance
data with iterative heuristic algorithms, the system is able
to dynamically balance the processes of minimising
makespan of multiple tasks and idle time of
multiprocessors, whilst adhering to deadlines
requirements. Figure 2 illustrates the main components
of the Titan system.

Figure 2. The Titan System

Requests are passed to the task management module

where they queue for scheduling and execution. Resource
monitoring is responsible for gathering statistics
concerning the processors of a grid resource on which
tasks may execute. The scheduling process uses heuristic
algorithms to search for near-optimal schedules for the
current task queue. This allows makespan and processor
idle time to be minimised. When there are free resources
available, tasks are submitted for execution. This is
supported by the PACE performance predictive data. A
Titan system also acts as a grid resource information
provider in the Globus MDS implementation.

2.3. ARMS

Agents comprise the main components of ARMS [8].
Each agent is viewed as a representative of a local grid at
a global level of grid resource management. Agents are
organised into a hierarchy, which provides a high level
view of grid resources. An illustration of ARMS,
integrated with a number of Titan resource managers, is
given in Figure 3.

Figure 3. The ARMS Architecture

An agent utilises the Globus MDS for storing local

grid resource information and those advertised from
other agents. Agents also cooperate with each other to
discover available resources for task execution requests
submitted by grid users. The discovery processes utilise
the Globus MDS protocols to lookup available grid
resources. The PACE performance service is also
accessed to provide an estimation of the task execution
time so that appropriate resources can be allocated.
Different strategies are used to optimise agent
performance, which is controlled using a simulation-
based performance monitor and advisor (PMA).

3. Grid Workflow Management

While our previous work assumes that grid users
submit tasks individually to the ARMS agents, this work
aims to provide additional services to enable
management of flows of tasks submitted by grid users.
The context of grid workflow management is illustrated
in Figure 4.

While this work focuses more on service-level support
such as grid workflow management and scheduling, a
GridFlow user portal is also developed that provides a
graphical user interface (GUI) to facilitate the
composition of grid workflow elements and the access to
additional grid services. The system is designed so that
workflow management follows the same layered
framework as that of resource management, including
global grid workflow management and local grid sub-
workflow scheduling. The implementation of grid
workflow management is carried out at multiple layers:

Agent

Agent Agent

Agent Agent

Titan Titan

Titan

Titan

Titan

PMA

Users

Task Management

Scheduling (Using Iterative Heuristic Algorithms)

PACE Evaluation Engine

Task Info.

Evaluation Results

Schedule Info.

Task Execution Resource Monitoring

Resource Info.

Application Models Resource Models

Results Resource Info. Request Info.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

• Task: Tasks are the smallest elements in a grid
workflow. In general, grid workflow tasks are MPI &
PVM jobs running on multiple processors, data
transfers to visualisation servers, or archiving of large
data sets to mass storage. In this work, only MPI &
PVM jobs are considered. Task scheduling is
implemented using Titan, and as stated, this work
focuses more on the sub-workflow and workflow
levels of management and scheduling.

• Sub-workflow: A sub-workflow is a flow of closely
related tasks that is to be executed in a predefined
sequence on grid resources of a local grid (within one
organisation). Conflicts occur when tasks from
different sub-workflows require the same resource
simultaneously.

• Workflow: A grid application can be represented as a
flow of several different activities, each activity
represented by a sub-workflow. These activities are
loosely coupled and may require multi-sited grid
resources. Simulation, execution and monitoring
services can be provided.

Figure 4. GridFlow in Context

The grey parts of Figure 4 are introduced in detail in

the following sections. Corresponding scheduling
algorithms are included and a supporting case study is
provided in Section 4.

3.1. GridFlow User Portal

The GridFlow portal is an integrated environment that
enables users to construct a grid workflow and access
grid services. An initial Java implementation is
illustrated in Figure 5.

To construct a grid workflow, a user needs to define
properties of each sub-workflow and task and their
execution sequences. In general, a sub-workflow or a task

can have several pre- and post- activities. These are
represented using an XML specification. If the user
knows where a sub-workflow or a task will be executed,
he can define this within the portal, which will contact
the local grid agent or Titan directly. The portal also
provides direct user interfaces to the information and
performance services. However, if the user does not know
anything about the available grid services and resources,
he can submit the workflow to the global workflow
management system, which will provide the services
automatically. This work focuses on this situation.

Figure 5. The GridFlow Portal

3.2. Global Grid Workflow Management

The global grid workflow management system
receives requests from the GridFlow portal with XML
specifications of grid workflows, and provides three main
functionalities:

• Simulation: Simulation takes place before a grid
workflow is actually executed, during which time a
workflow schedule is achieved. The simulation results
can be returned to the GridFlow portal for user
agreement or passed directly to the execution engine.

• Execution: A grid workflow is executed according to
the simulated schedule. Due to the dynamic nature of
the grid environment, the schedule may not be
executed accordingly. When large delays of some sub-
workflows occur, the rest or whole of the workflow
may be sent back to the simulation engine and
rescheduled.

• Monitoring: Global grid workflow management also
provides interfaces that provide access to real-time
status reports of task or sub-workflow execution.

A workflow W can be defined as a set of sub-
workflows Si (i=1,……,n), including two checkpoints, S1

Global Grid

GridFlow User Portal

Grid Resources

Workflow Management

Resource Management
(ARMS)

In
fo

rm
at

io
n

Se
rv

ic
es

(G

lo
bu

s
M

D
S)

Local Grid

Sub-workflow scheduling

Resource Scheduling
(Titan)

Perform
ance Services

(PA
C

E
 …

)

Grid Users

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

and Sn, that indicate the starting and ending points
respectively. Let pi be the number of the pre- sub-
workflows of Si, and qi be the number of the post- sub-
workflows of Si. Suppose that the global grid G is a set
of local grids Lj (j=1,……,m). The main purpose of
workflow management is to find a near optimal (in terms
of the execution time) schedule Λ, which is a set of tri-
tuples, ��s

� �
e
� ζ�i, where �s

i, �
e
i, and ζi are defined as the

start time, the end time, and the allocated local grid of
the sub-workflow Si, respectively. The simulation is
processed one sub-workflow at a time according to the
algorithm GGWM described in Figure 6.

GGWM:
 // Initialisation
 FOR i=1 TO i=n DO
 �si=NULL; �

e
i=NULL; ζi=NULL; κi=FALSE;

 ENDDO
�
s
1=�

e
1=CurrentTime(); κ1=TRUE;

 // Scheduling
 FOR lp=2 TO lp=n DO
 // Searching an schedulable Si
 FOR i=1 TO i=n DO
 IF κi=FALSE AND ALL κip=TRUE (p=1,……,pi)
 BREAK;
 ENDIF
 ENDDO
 // Scheduling via ARMS
 �si=latest{�

e
ip|p=1,……,pi};

 IF i=n �ei=�
s
i;

 ELSE (�ei�ζi)=earliest{LGSSj(Si��
s
i)|j=1,……,m};

 ENDIF
 κi=TRUE;
 ENDDO
 // Adjustment
 FOR i=2 TO i=n-1 DO
 �ei=earliest{�

s
iq|q=1,……,qi};

 ENDDO
END

Figure 6. The GGWM Algorithm

The process is started with all the properties of each
sub-workflow initialised (as null). An additional
parameter κ is used to signify whether a sub-workflow
has been scheduled. The scheduling process starts by
looking for a schedulable sub-workflow, the pre- sub-
workflows of which have all been scheduled. The start
time of the chosen sub-workflow is configured with the
latest end time of its pre- sub-workflows. The details of
the sub-workflow as well as the start time are then
submitted to an ARMS agent. ARMS agents work
together to discover an available local grid that can finish
the sub-workflow execution at the earliest time. These are
illustrated in Figure 6 as calls to local grid sub-workflow
scheduling functions LGSSj, which are introduced in the
next section. In an actual situation, not all of local grids
have to be tried. Firstly, agents can filter the local grid
resource information (from the information service)
according to other properties and judge its applicability
before a local grid is actually contacted; Secondly, if
there are a large number of local grids in the

environment, a discovery scope can be defined to
optimise the agent discovery performance. The
scheduling ends when the end checkpoint is reached. In
general, there is an additional adjustment or rescheduling
procedure after scheduling. As shown in Figure 6, the
adjustment is processed if the end time of a sub-workflow
is earlier than the start times of its post- sub-workflows,
so that the required deadlines of the sub-workflows are
made less critical without increasing the scheduled
execution time of the whole workflow. Another process
can also be considered for rescheduling the less critical
sub-workflows via ARMS. This is required when the cost
and the execution time of the workflow have both to be
considered. In this situation, less critical sub-workflows
can be allocated to less powerful resources whose
compute cost is less. This is not documented in Figure 6,
as in this work we focus on the single metrics of
workflow execution time.

The global grid workflow management introduced in
this section relies heavily on the simulation results of
local grid sub-workflow scheduling.

3.3. Local Grid Sub-workflow Scheduling

Scheduling a flow of tasks onto grid resources within
a local grid is very similar to the process that schedules a
workflow onto different local grids introduced above.
One important difference is that the local grid sub-
workflow scheduling has to deal with multiple tasks that
may belong to different sub-workflows. The execution
time has to be estimated with the extra consideration of
conflicts, which may occur when multiple tasks require
the same grid resource at the same time.

A sub-workflow can be defined as a set of tasks Tk
(k=1,……,l). Each task requires a specific grid resource
Rk. Again, let �s

k and �e
k be the start time and end time of

task Tk. When there are resource conflicts, a task
enabling time �a

k is also defined that is different from the
actual start time �s

k of the task Tk. Two possible end
times �e1

k and �e2
k are also defined that can be used to

calculate the final end time of the task Tk. In the case
where no conflicts exist, a task enabling time is
equivalent to the start time, and the two possible end
times are not used. The Titan system located on each grid
resource is responsible for allocating processors to the
task, and providing predictive task execution time, �d

k,
using the PACE functions. Suppose that Tc is a task from
a different sub-workflow that has resource conflict with
the task Tk. Assuming that T0 is the start point of the task
flow, the LGSS algorithm aims to provide an estimation
of the end time of the last task, �e

l, to the GGWM
function, given a sub-workflow S and the start time �s.
This is described in Figure 7.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

LGSS:
 // Initialisation
 FOR k=1 TO k=l DO
 �sk=NULL; �

e
k=NULL; κk=FALSE;

 ENDDO
 �s0=�

e
0=�

s; κ0=TRUE;
 // Scheduling
 FOR lp=1 TO lp=l DO
 // Searching an schedulable Tk
 FOR k=1 TO k=l DO
 IF κk=FALSE AND ALL κkp=TRUE (p=1,……,pk)
 BREAK;
 ENDIF
 ENDDO
 // Scheduling via Titan
 IF Rk=Rc
 // Conflict occurs
 // Calculating enabling times
 �ak=latest{�

e
kp|p=1,……,pk};

 �ac=latest{�
e
cp|p=1,……,pc};

 // Calculating start times
 �sk=min{�

a
k,earliest{�

a
k,�

a
c}};

 �sc=min{�
a
c,earliest{�

a
k,�

a
c}};

 // Calculating end times
 // If Tk occurs first
 �e1k=sum{�

s
k,�

d
k};

 �e1c=sum{latest{�
s
c,�

e1
k},�

d
c};

 // If Tc occurs first
 �e2c=sum{�

s
c,�

d
c};

 �e2k=sum{latest{�
s
k,�

e2
c},�

d
k};

 // Combining two possibilities
 �ec=max{�

e1
c,�

e2
c};

 �ek=max{�
e1

k,�
e2

k};
 ELSE
 // No conflict
 �sk=latest{�

e
kp|p=1,……,pk};

 �ek=sum{�
s
k,�

d
k};

 ENDIF
 κk=TRUE;
 ENDDO
 // Adjustment
 FOR k=1 TO k=l-1 DO
 �ek=earliest{�

s
kq|q=1,……,qk};

 ENDDO
END

Figure 7. The LGSS Algorithm

Local grid sub-workflow scheduling is composed of
both forward and backward processes. The difference
from the GGWM algorithm is that resource conflicts
exist. In this case, the start time of the chosen task cannot
be configured with the latest end time of its pre-tasks
directly, since another task exists that may use the same
resource at the same time. A first-come possibly-first-
serve policy is adopted in the algorithm described in
Figure 7 that gives a higher priority to a possibly earlier
enabled task. This does not order the conflictive tasks
explicitly, but adds some information on degrees of
possibilities of task start times. There may be other
policies that are justifiable for particular application
domains. For example, a sub-workflow can be predefined
with a priority value according to its importance levels
among those sub-workflows in its workflow, and also
within the local grid. When two tasks conflict on
resource allocation, the task with the higher priority can

be executed first. In Figure 7, two possible start
sequences are considered and are combined to provide an
estimation of the end time. There may be more than two
tasks that are enabled simultaneously, which is not
included in the algorithm but can be solved using a
similar method. A more detailed introduction to the
method can be found in [19].

It is a difficult task to provide an accurate prediction
on the workflow start, execution and end times. The time
parameters � used in Figures 6 and 7 are actually fuzzy
time functions and corresponding operations, latest,
earliest, min and max and sum, are also defined in detail
in the following case study.

4. A Case Study

The algorithms introduced in the above section are
implemented using fuzzy timing techniques. In this
section, the detailed definitions of fuzzy time functions
are included and illustrated using an example grid
workflow management scenario.

4.1. Fuzzy Time Operations

A fuzzy time function �(τ) gives the numerical
estimate of the possibility that an event arrives at time τ,
which is often described in the trapezoidal or triangular
possibility distribution specified by the 4-tuple (�1, �2, �3,
�4). Two fuzzy time functions, �1(τ)=0.5(0,2,6,7) and
�2(τ)=(2,4,4,6), and corresponding operation results are
illustrated in Figure 8.

Figure 8. Fuzzy Time Functions and Operations

�

���

�

� � � � � � � 	

a

�

���

�

� � � � � � � 	

b

�

���

�

� � � � � � � 	

c

�

���

�

� � � � � � � 	

d

�

���

�

� � � � � � � 	

e

0

0.5

1

0 4 8 12

f

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

In Figure 8a, the trapezoidal and triangular possibility
distributions of �1(τ) and �2(τ) are described. Figure 8b
illustrates the operator latest that picks the latest arrival
distribution of �1(τ) and �2(τ). A complementary operator
earliest is also introduced in Figure 8c that picks up the
earliest enabling time. The operator min performs the
intersection of the two fuzzy time functions (see Figure
8d) and the operator max is opposite (see Figure 8e). The
sum of the two fuzzy time functions is processed as
follows: min{0.5,1}(0+2,2+4,6+4,7+6)=0.5(2,6,10,13),
which is also illustrated in Figure 8f. The applications of
these operations are given below.

4.2. An Example Scenario

As an example scenario, we consider a case where two
workflows are involved, W1 and W2, as shown in Figure
9. In the local grid L1, the task A2 of sub-workflow S3
from W1 is being executed (grey in Figure 9) and S3 from
W2 is to be scheduled (shadowed in Figure 9). Suppose
that a resource conflict exists between A3 and A4. The
schedule aims to find the �e

5(τ).

Figure 9. An Example Scenario

The task enabling times can be concluded from pre-

task end times and task execution times can be obtained
from the Titan system supported by the PACE functions.
Suppose that these are all pre-defined as:

�
a

3(τ)=(3,5,5,7); �
d

3(τ)=(5,6,7,8);
�

a
4(τ)=(0,3,3,5); �

d
4(τ)=(10,12,14,16);

 �
d

5(τ)=(2,5,6,9).

According to the algorithm described in Figure 7, the
sub-workflow S3 from W2 can be scheduled at the local
grid L1 as follows:

�
s
3(τ) = min{(3,5,5,7), earliest{(3,5,5,7), (0,3,3,5)}}

 = min{(3,5,5,7), (0,3,3,5)}
 = 0.5(3,4,4,5)

�
s
4(τ) = min{(0,3,3,5), earliest{(3,5,5,7), (0,3,3,5)}}

 = min{(0,3,3,5), (0,3,3,5)}
 = (0,3,3,5)

�
e1

3(τ) = sum{0.5(3,4,4,5), (5,6,7,8)}

 = 0.5(8,10,11,13)
�

e1
4(τ) = sum{latest{0.5(8,10,11,13), (0,3,3,5)}, (10,12,14,16)}

 = sum{0.5(8,10,11,13), (10,12,14,16)}
 = 0.5(18,22,25,29)

�
e2

4(τ) = sum{0,3,3,5}, (10,12,14,16)}
 = (10,15,17,21)

�
e2

3(τ) = sum{latest{(10,15,17,21), 0.5(3,4,4,5)}, (5,6,7,8)}
 = sum{0.5(10,12.5,19,21), (5,6,7,8)}
 = 0.5(15,18.5,26,29)

�
e
4(τ) = max{ 0.5(18,22,25,29), (10,15,17,21)}

 � �����5,17,29) // See Figure 10
�

e
5(τ) = sum{(10,15,17,29), (2,5,6,9)}

 = (12,20,23,38)

The calculation concludes that S3 from W2 will
complete on the local grid L1 most likely between time 20
and 23. This data can be submitted so that the global grid
workflow management system is able to decide whether
the local grid L1 should be allocated the sub-workflow S3
from W2. Note that in order to simplify the calculation,
the combined possibility distribution of the end time of
the task A4 is represented approximately using a
trapezoidal instead of the complicated original result
provided by the max operation. This is also illustrated in
Figure 10.

�

���

�

� �� �� �� �� ��

Figure 10. Combined Possibility Distribution

and its Approximation

This fuzzy timing technique provides a good solution
to the conflict solving problem arising from grid
workflow management issues. This method is especially
useful in highly dynamic grid environments, where large
network latencies exist and application performance is
difficult to predict accurately.

5. Conclusions

A grid workflow management system, GridFlow, is
introduced in this work. It has been developed at
Warwick based on previous work on performance
prediction and grid resource management. The GridFlow
user portal is described together with the service support
of both global grid workflow management and local grid
sub-workflow scheduling. Corresponding algorithms are
included and a fuzzy timing method is applied and
illustrated using a case study.

A grid performance service is under development that
comprises the PACE performance prediction capability
with a new application response measurement technique
[24], which can be used to enable prediction-based

 S1

S3

S2

S4 S5 S1

S3

S2

S4 S5

A1 A2 A3

A4 A5

B1
B2

B4

B5
B6 B8

B3

B7

 W1 W2

 L1 L2

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

scheduling as well as response-based scheduling. New
OGSA [12] standards and protocols are to be applied to
the whole system implementation. Grid workflow
management also brings new challenges on issues like
security, as it requires more flexible cooperation among
different grid services and components. These will be
addressed when the GridFlow system become mature.

Acknowledgements

This work is sponsored by grants from the NASA
AMES Research Centre (administered by USARDSG,
contract No. N68171-01-C-9012), the EPSRC (contract
No. GR/R47424/01), the EPSRC e-Science Core
Programme (contract No. GR/S03058/01), and the NEC.

References

[1] J. Basney, and M. Livny, “Deploying a High Throughput

Computing Cluster”, High Performance Cluster
Computing, Vol. 1, Chapter 5, Prentice Hall, 1999.

[2] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W.
Furmanski, and G. Premchandran, “WebFlow – a Visual
Programming Paradigm for Web/Java Based Coarse Grain
Distributed Computing”, Concurrency: Practice and
Experience, Vol. 9, No. 6, pp. 555-577, 1997.

[3] H. P. Bivens, “Grid Workflow”, Grid Computing
Environments Working Group, Global Grid Forum, 2001.

[4] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd,
“Performance Modelling of Parallel and Distributed
Computing Using PACE”, in Proc. of 19th IEEE Int.
Performance, Computing and Communication Conf.,
Phoenix, AZ, USA, pp. 485-492, 2000.

[5] J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance
Evaluation of an Agent-Based Resource Management
Infrastructure for Grid Computing”, in Proc. of 1st
IEEE/ACM Int. Symp. on Cluster Computing and the
Grid, Brisbane, Australia, pp. 311-318, 2001.

[6] J. Cao, S. A. Jarvis, D. P. Spooner, J. D. Turner, D. J.
Kerbyson, and G. R. Nudd, “Performance Prediction
Technology for Agent-based Resource Management in
Grid Environments”, in Proc. of 11th IEEE Heterogeneous
Computing Workshop, Fort Lauderdale, FL, USA, 2002.

[7] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J.
Kerbyson, S. Saini, and G. R. Nudd, “Agent-based
Resource Management for Grid Computing”, in Proc. of
2nd IEEE/ACM Int. Symp. on Cluster Computing and the
Grid, Berlin, Germany, pp. 350-351, 2002. (short paper)

[8] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R.
Nudd, “ARMS: an Agent-based Resource Management
System for Grid Computing”, Scientific Programming,
Special Issue on Grid Computing, Vol. 10, No. 2, pp. 135 -
148, 2002.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, an d C. Kesselman,
“Grid Information Services for Distributed Resource
Sharing”, in Proc. of 10th IEEE Int. Symp. on High

Performance Distributed Computing, San Francisco, CA,
USA, 2001.

[10] L. Fisher (eds.), Workflow Handbook, Workflow
Management Coalition, 2002.

[11] I. Foster, and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufmann, 1998.

[12] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid
Services for Distributed System Integration”, IEEE
Computer, Vol. 35, No. 6, pp. 37-46, 2002.

[13] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T.
Field, and J. Darlington, “Optimisation of Component-
based Applications within a Grid Environment”, in Proc.
of Supercomputing 2001.

[14] D. Gannon, R. Bramley, G. Fox, et. al., “Programming the
Grid: Distributed Software Components, P2P and Grid
Web Services for Scientific Applications”, Cluster
Computing, Vol. 5, pp. 325-336, 2002.

[15] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings, “Predictive Performance and
Scalability Modelling of a Large-Scale Application”, in
Proc. of Supercomputing 2001.

[16] C. Lee, S. Matsuoka, D. Talia, A. Sussman, M. Mueller,
G. Allen, and J. Saltz, “A Grid Programming Primer”,
Advanced Programming Models Research Group, Global
Grid Forum, 2002.

[17] F. Leymann, “Web Services Flow Language (WSFL 1.0)”,
IBM Software Group, 2001.

[18] M. Lorch, and D. Kafura, “Symphony – A Java-based
Composition and Manipulation Framework for
Computational Grids”, in Proc. of 2nd IEEE/ACM Int.
Symp. on Cluster Computing and the Grid, Berlin,
Germany, pp. 136-143, 2002.

[19] T. Murata, “Temporal Uncertainty and Fuzzy-Timing
High-Level Petri Nets”, invited paper in Proc. of
Application and Theory of Petri Nets, LNCS 1091, pp. 11-
28, 1996.

[20] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C.
Perry, J. S. Harper, and D. V. Wilcox, “PACE – A Toolset
for the Performance Prediction of Parallel and Distributed
Systems”, Int. J. High Performance Computing
Applications, Special Issues on Performance Modelling –
Part I, Vol. 14, No. 3, pp. 228-251, 2000.

[21] M. Romberg, “The UNICORE Grid Infrastructure”,
Scientific Programming, Special Issue on Grid Computing,
Vol. 10, No. 2, pp. 149-157, 2002.

[22] J. Sauer, G. Suelmann, and H. Apelrath, “Multi-site
Scheduling with Fuzzy Concepts”, Int. J. Approximate
Reasoning, Vol. 19, pp. 145-160, 1998.

[23] D. P. Spooner, J. Cao, J. D. Turner, H. N. Lin Choi
Keung, S. A. Jarvis, and G. R. Nudd, “Localised Workload
Management Using Performance Prediction and QoS
Contracts”, in Proc. of 18th Annual UK Performance
Engineering Workshop, Glasgow, UK, pp. 69-80, 2002.

[24] J. D. Turner, D. P. Spooner, J. Cao, S. A. Jarvis, D. N.
Dillenberger, and G. R. Nudd, “A Transaction Definition
Language for Java Application Response Measurement”, J.
Computer Resource Management, Vol. 105, pp. 55-65,
2002.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

