
GridFTP and Parallel TCP Support in NaradaBrokering

Sang Boem Lim
1
, Geoffrey Fox

2
, Ali Kaplan

2
, Shrideep Pallickara

2
 and Marlon

Pierce
2

1 Supercomputing Application Technology Department at

Korea Institute of Science and Technology Information (KISTI)
P.O. Box 122, Yuseong, Daejeon, Republic of Korea

slim@kisti.re.kr

2
 Community Grid Labs, Indiana University

501 N. Morton St. Suite 224

Bloomington, IN 47404, USA

{gcf, alikapla, spallick, marpierc}@indiana.edu

Abstract. Many of the key features of file transfer mechanisms like reli-

able file transfers and parallel transfers are developed as part of the origi-

nal system. This makes it makes very hard to re-use the same code for

different systems. We address this disadvantage by decoupling useful

features of file transfer mechanisms from the implementation of the ser-

vice and protocol, and instead place these features into the messaging

substrate. This will allow us to provide file-transfer capabilities to tools

that do not have these features.

1 Introduction

Today’s network environments require to people downloading many things daily

bases. Especially new technologies developed recently, like Grid environments, re-

quire reliable, secure high performance file transfer as the most important services.

GridFTP [1] [17] is the one of the most common data transfer services for the Grid

and is a key feature of Data Grids [2]. This protocol provides secure, efficient data

movement in Grid environments by extending the standard FTP protocol. In addition

to the standard FTP features, the GridFTP protocol supports various features offered

by the Grid storage systems currently in use.

Even though GridFTP has good features of file recovery technologies, it has some

weaknesses. Since many interesting features of GridFTP are tied to its protocol and

implementation. Providing these features to other file transfer services (such as those

based on Web Services, for instance) requires reimplementation and re-engineering.

These shortcomings may be addressed by inserting a reliable, high performance mes-

saging substrate between the client and service. This addresses specific problems in

GridFTP client lifetimes, but more generally will allow us to extend GridFTP-like

features to other services without extensive reimplementation. Also GridFTP has a

restriction that the client needs to remain active at all the times until the transfer fin-

ishes. This in turn implies that we cannot use the rich set of recovery features of

GridFTP when the client state has been lost. In the event of client state loss, transfer

has to restart from scratch.

In this report we present our work that has addressed the client-active-at-all-times

constraint. The remainder of this report is organized as follows. In section 2 we pre-

sent an overview of related work. In section 3 we present a overview of the NaradaB-

rokering system and the services within NaradaBrokering. In section 4 we provide

details regarding our work. In section 5 we present some benchmark results and its

analysis. Finally in section 6 we present our conclusions and future work.

2 Related Works

We are using many different file transfer mechanisms on daily bases. One of the most

commonly used file transfer mechanism is File Transfer Protocol (FTP) [5]. This is

the simplest way to exchange filesbetween computers. FTP is an application protocol

that uses the TCP/IP protocols. A more secure replacement for the common FTP,

protocol is Secure Copy (SCP), which uses the Secure Shell (SSH) as the lower-level

communication protocol. From the popularities of World Wide Web, we are also

commonly using Hypertext Transfer Protocol (HTTP) as mechanism for transferring

files. Even though some of file transfer mechanisms are quite reliable, these mecha-

nisms do not provide guaranteed, reliable file transfer features like automatic recov-

ery from failures.

Issues about reliable file transfer mechanism are more actively discussed and devel-

oped from the Grid community recently. More relevant service to our project is Reli-

able File Transfer (RFT) [3] [4] service developed by the Globus. RFT service pro-

vides reliable file transfer mechanisms like automatic failure recovery. In the next

section we will discuss more about behaviors of RFT.

2.1 Comparison with Reliable File Transfer

The RFT is developed with automatic failure recovery while overcoming the limita-

tion of its predecessor technology, GridFTP by the Globus. Most important idea

added to the RFT service is automatic failure recovery mechanism when any prob-

lems are occurred during file transfer like dropped connections and temporary net-

work outage. The RFT is dealing with problem by performing a retry until the prob-

lem is resolved. The RFT also will inherit all the features that GridFTP has since it is

built on top of existing GridFTP. The RFT will inherit most of the automatic recovery

features like restart support and remote problems of the RFT service and it also will

not lose performance of GridFTP.

The RFT service resolved a strict restriction of its predecessor GridFTP. The client of

GridFTP needs to remain active at all the times until the transfer finishes. However,

the RFT no longer requires this restriction. The RFT introduced a non-user-based

service. This service will store the transfer state in a persistent manner and this state

will be used to recover transfer from the last marker recorded for that transfer when

failure occurs including the client state failure.

The RFT service itself has significant features to make reliable data transfer. However,

the RFT service is not portable to any other systems. Once again our main goal of

decoupling reliable features from the implementation is to make a portable system

that can be deployed into any file transfer mechanisms and make that mechanism

reliable by using NaradaBrokering as a middleware.

3 NaradaBrokering

NaradaBrokering [7] [8] is messaging middleware designed to run on a large network

of cooperating broker nodes (we avoid the use of the term servers to distinguish it

clearly from the application servers that would be among the sources/sinks to mes-

sages processed within the system). Communication within NaradaBrokering is asyn-

chronous and the system can support large client configurations publishing messages

at a very high rate. The system places no restrictions on the number, rate and size of

messages issued by clients. NaradaBrokering imposes a cluster-based structure on the

broker network. Clusters comprise strongly connected brokers with multiple links to

brokers in other clusters, ensuring alternate communication routes during failures.

This distributed cluster architecture allows NaradaBrokering to support large hetero-

geneous client configurations that scale to a very large size. NaradaBrokering pro-

vides support for a wide variety of event driven interactions – from P2P interactions

to audio-video conferencing applications.

In NaradaBrokering entities can also specify constraints on the Quality-of-Service

(QoS) related to the delivery of messages. Among these services is the reliable deliv-

ery service, which facilitates delivery of events to interested entities in the presence of

node and link failures. Furthermore, entities are able to retrieve any events that were

issued during an entity’s absence (either due to failures or an intentional disconnect).

The scheme can also ensure guaranteed exactly-once ordered delivery.

Another service, relevant to this paper, is NaradaBrokering’s Fragmenta-

tion/Coalescing service. This service splits large files into manageable fragments and

proceeds to publish individual fragments. Upon receipt at a consuming entity these

fragments are stored into a temporary area. Once it has been determined (by the coa-

lescing service) that all the fragments for a certain file have received these fragments

are coalesced into one large file and a notification is issued to the consuming entity

regarding the successful receipt of the large file.

The fragmentation/reliable delivery service combination can be used to facilitate

transfer of large files reliably. Access to these capabilities is available to entities

through the use of QoS constraints that can be specified. This facilitates exploiting

these capabilities with systems such as GridFTP.

We emphasize here that NaradaBrokering software is a message routing system

which provides QoS capabilities to any messages it sends. The NaradaBrokering sys-

tem may be the messaging middle layer between many different applications, such as

Audio/Video [11]. The QoS features provided by the NaradaBrokering system are

independent of the implementation details of the endpoint applications that use it for

messaging. Thus applications do not need to implement (for example) reliable mes-

saging. They just use NaradaBrokering for communication and acquire reliability

through NaradaBrokering.

Furthermore, NaradaBrokering provides capabilities for communicating through a

wide variety of firewalls and authenticating proxies while supporting different au-

thenticating-challenge-response schemes such as Basic, Digest and NTLM (a proprie-

tary Microsoft authenticating scheme).

Support for the Web Service Reliable Messaging Framework (WS-RM) is currently

being incorporated into NaradaBrokering. NaradaBrokering is quite resilient to fail-

ures since it is based on a distributed broker network and can sustain losses of one or

more broker nodes.

Figure 1 (a) Traditional GridFTP (b) GridFTP with NaradaBrokering

4 Enhancing GridFTP

On the previous papers ([9] [12]) we already described enhancing mechanisms. In this

paper we will describe briefly describe enhancing GridFTP with NaradaBrokering.

And we will more focus on how reliable mechanism works in the NaradaBerokering.

GridFTP and other file transfer mechanisms may already incorporate a number of

reliability features on there implementation of service and protocol. However, the

most important weakness of these architectures is all the great features can not be

used outside of its own architecture. This means whenever people want develop new

file transfer mechanism and if they want existing features of other mechanisms, they

have to re-develop same features. It is our goal to show that these reliability features

can be decoupled from the implementation of the service and protocol, and instead

placed into the messaging substrate. This will allow us to provide file transfer quality

of service comparable to GridFTP in other file transfer tools (such as normal FTP,

SCP, HTTP uploads, and similar mechanisms).

Figure 1 is present the basic architecture of integration between GridFTP and Na-

radaBrokering. For initial testing we developed the router approach even though

proxy approach is the more preferred method. Main difference of those two ap-

proaches is usage of NaradaBrokering Agent A. The router approach will use Narad-

Brokering Agent A as simple router to transfer requests to the remote server. Key to

the proxy approach is the remote GridFTP server is simulated by the NaradaBroker-

ing Agent A. Since NaradaBrokering Agent A is a simple router on the router ap-

proach, it is easier than the proxy approach to implement. However, the router ap-

proach also has disadvantages like we have to change the user application, even

though change is minor and also requires some minor extensions to FTP/GridFTP

client codes to communicate with NaradaBrokering Agent A. The client and server

communicate solely with the agents on the edge of the broker cloud. For the GridFTP

client stand point of view NaradaBrokering Agent A is a server and NaradaBrokering

Agent B is a client for GridFTP server point of view. The proxy approach is the pre-

ferred method since the GridFTP client code and user application do not have to

change. All existing GridFTP code and user application can be used in our architec-

ture without any changes once this method is implemented. Disadvantage of this ap-

proach is it is harder to implement and time consuming process since we have to cre-

ate GridFTP server from the scratch.

Currently, we have completed development of the uploading functionality of

GridFTP with NaradBrokering using simple router approach. Connection between the

GridFTP client and NaradaBrokering Agent A; and NaradaBrokering Agent B and

GridFTP server are connected with a highspeed, reliable, possibly local, connection.

This connection is needed because if connection between Grid FTP client and the

NaradaBrokering Agent A is lost, we cannot recover from this failure. Recovering

from this failure is out of scope (GridFTP designed in this way). All the data will be

first transferred and stored into the temporary local space of NaradaBrokering Agent

A. This temporary data will be used when any failure is occurred inside of NaradaB-

rokering. Once all the data is stored locally in the NaradaBrokering Agent A, even if

connection between GridFTP client and NaradaBrokering Agent A is lost, transferring

to the server is guaranteed by NaradaBrokering. This feature is not on the current

GridFTP system. In the current GridFTP system, if a client fails, the client has to

begin uploading again from the start. NB Agent B also store data into the temporary

local space. This temporary data will be used when any failure is occurred to the

GridFTP server.

4.1 Reliable Mechanism in NaradaBrokering

We will describe in depth about how reliable mechanism of NaradaBrokering works.

As we mentioned earlier we assumed that any of our architecture nodes could be go

down during transfer except GridFTP server. Achieve this idea we are using ac-

knowledgements and database. As we can see from Figure 2, the first step is that we

divide large file into small pieces (a1, a2 … an-1, an) of same size except last piece that

may truncated. Once NaradaBrokering get a piece from NaradaBrokering Agent A, It

stores the piece into the database for ant failure cases meanwhile NaradaBrokering is

also sending same file to NaradaBrokering Agent B. An acknowledgment of receiving

a piece on the NaradaBrokering from NaradaBrokering Agent A is taking place when

NaradaBrokering is finished store piece into the database. Also, there is an acknowl-

edgment to NaradaBrokering after NaradaBrokering Agent B received and stored a

piece into the temporary local directory. Those acknowledgments will be stored in the

local file system and will be used when any failures are occurred during transferring a

file. Once failure is fixed NaradaBrokering Agent A, and/or NaradaBrokering is look-

ing for acknowledgment file and figure out the start point of resume transmission. For

example, we have a machine failure on NaradaBrokering Agent A during sending a7

with a6 on acknowledgment file. After machine is re-started, NaradaBrokering Agent

A is looking in the acknowledgment file and fined start point as a7 since there are

receive acknowledgment until a6. This is goes to same between NaradaBrokering and

NaradaBrokering Agent B.

Figure 2 Reliable Mechanisms in NaradaBrokering

Database on the NaradaBrokering will be used as storage of small pieces of files. In

this way we can transfer file from NaradaBrokering Agent A to NaradaBrokering

without any guarantee of NaradaBrokering Agent B running and it is true for sending

file form NaradaBrokering to NaradaBrokering Agent B. Even NaradaBrokering

server itself can be go down. NaradaBrokering server is smart enough to know resum-

ing point to NaradaBrokering Agent B after recovered from failure.

4.2 Multiple Stream Transfer Mechanism in NaradaBrokering

Advancement in network technologies is providing increasing data rates, but current

TCP implementation prevents us to use maximum bandwidth across high-

performance networks. This problem becomes very clear especially when transferring

data happens on a high-speed wide area network. Either increasing the TCP window

size by tuning network settings or using multiple TCP streams in parallel can be used

to overcome this problem and achieve optimal TCP performance. The main reason

why we chose multiple parallel TCP streams to achieve maximum bandwidth usage is

that because lack of automatic network tuning and tuning network settings is different

in each every operating system, it cannot be considered as cross platform solution and

we will describe in depth about our implementation in this section.

Our idea of multiple parallel TCP streams consists of splitting data into sub small

packets at sender side and sending them over the network by using multiple Java TCP

socket streams in parallel. Although the default socket buffer size is not set to value

of the bandwidth delay product, using multiple parallel TCP streams gives better

transfer rate by aggregating each socket bandwidth.

Figure 3 illustrates the architecture of NaradaBrokering Parallel TCP (NBPTCP)

transport layer, and NBPTCP usage as communication layer between NaradaBroker-

ing Agent A and NaradaBrokering Agent B. Like all other NaradaBrokering transport

protocols, NBPTCP is implemented in the NaradaBrokering’s transport layer as multi

stream protocol, and it uses our Parallel TCP Socket (PTCPSocket) implementation.

PTCPSocket can handle multiple sockets’ input and output streams and it is derived

from Java.net.Socket. It consists of packet splitter, packet merger, senders, receivers,

and TCP sockets, and it has two types of channels; communication and data channels.

All control information and negotiations are sent over the communication channel,

which stays open till the end of whole data transfer, and data channels are used for

actual user data transfer. For example, both sender side and receiver side agree on the

number of streams, which will be used during the data transfer by using communica-

tion channel. Overheads and timing are discussed in detail in [13]. Sender side is

responsible for deciding the number of parallel streams before initiating the actual

user data transfer.

NB Agent A

Transport Layer

TCP … UDP PTCP

PTCP
T CP Socket (Communicat ion Layer)

NB Agent B

Transport Layer

TCP … UDP PTCP

NBPTCP
Packet Splitter

Sender
T CP Socket

Output Stream

Figure 3 NaradaBrokering PTCP Architecture

After the setting parallel streams’ number, packet splitter starts diving user data into

small packets. These packets are passed to senders’ layer and senders send them to

receiver side by writing these packets into TCP sockets’ output streams (data chan-

nels). The number of senders and receivers are same as the number of parallel

streams. At receiver side, receivers read packets from the TCP sockets’ input streams

(data channels) then pass these packets to upper layer, which is called packet merger.

The packet merger combines these incoming packets by checking their packet num-

ber, which is given by the packet splitter. Since TCP uses a checksum computed over

the whole packet to verify that the protocol header and the data in each received

packet have not been corrupted, there is no need to check data integrity at the packet

merger layer again.

4.2.1 Tests

In this section, we are going to discuss how our multiple stream transfer mechanism

architecture is affected by size of the TCP sending and receiving window size and

how well it performs. To understand how the underlying network affects its perform-

ance, we performed three tests by changing the TCP window size; LAN testing, one

continental WAN testing, and one inter-continental WAN testing. To alter TCP win-

dow size we used java socket methods setSendBufferSize(TCP_WINDOW_SIZE)

and setReceiveBufferSize(TCP_WINDOW_SIZE). All the bandwidth capacity was

measured by using Iperf with options listed below:

iperf -s -w 256k

iperf -c <hostname> -w 512k -P 40

4.2.1.1 LAN Test:

It was performed between two Indiana University machines which are nearly 50 miles

away from each other. We used the following environments for our performance tests.

Server: Sun Fire V880 machine has 8x1.2 GHz UltraSPARC III processors with 16

GB of RAM on Solaris 9. It has 6x72GB 10K rpm internal HD.

Client: Sun-Fire-V250 machine has 2x1.2 GHz UltraSPARC III processors with 8

GB of RAM on Solaris 9. It has 6x72GB 10K rpm internal HD.

Bandwidth reported by IPerf: 94.6 Mbps

Figure 4: Bandwidth for different file size with a fixed buffer size. (IU-IU set-

tings)

As discussed in Ref [13], even though, there are very fast LAN connections, network

transmission time still plays an active role in data transfer over the network. As it can

be seen in figure 4, all files get benefits by using multiple parallel streams. However,

since transmission time is not as big as WAN, using multiple streams beyond 2 or 3

does not provide any gain in the network bandwidth usage, in fact it degrades the

performance. Although, these overheads are less drastic because of longer transmis-

sion times associated with them in data transmission of larger size files, smaller size

files suffer significantly in the use of multiple streams.

Figure 5: Bandwidth for different buffer size with a fixed stream number. (IU-

IU settings)

On the contrary of multiple streams, increasing TCP buffer size has positive impact

on LAN based data transmission of all size files. However, for smaller size files, in

figure 5, bandwidth usage gains due to increase of buffer size are much better than

files sizes are larger than 100MB.

Figure 6: Bandwidth for different buffer size with a fixed file size. (IU-IU set-

tings)

The graph in Figure 6 shows how changing the TCP buffer size impacts network

bandwidth usage of file with fixed size (400 MB). It demonstrates that increasing TCP

buffer size with 2 or 3 multiple parallel streams boosts network bandwidth usage to its

peak value. After that point, the overheads of multiple parallel streams becomes domi-

nant and starts to diminish network bandwidth usage.

4.2.1.2 Continental WAN Test:

This test was performed between Indiana University and University of California at

San Diego.

Server: Dual Pentium III 731MHz CPU with 512 MB of RAM on GNU/Linux

2.4.21-4.ELsmp located at University of California at San Diego.

Client: Sun Fire V880 machine has 8x1.2 GHz UltraSPARC III processors with 16

GB of RAM on Solaris 9. It has 6x72GB 10K rpm internal HD.

bandwidth reported by IPerf: 89.4 Mbps

Figure 7: Bandwidth for different file size with a fixed buffer size. (IU-UCSD

settings)

As we can see in Figure 7, with a fixed size TCP buffer, the gain from the multiple

parallel streams becomes dominant in long-distance data transfer. Although, both

smaller and larger size file gets the benefits of multiple streams, the overhead of frag-

mentation and coalescence of data still has negative impact on files which sizes are

smaller than 50 MB.

Figure 8: Bandwidth for different buffer size with a fixed stream number. (IU-

UCSD settings)

Figure 8 demonstrates that increasing buffer size with a fixed stream number has bet-

ter positive impact on file size larger than 50 MB. In the case of smaller file sizes the

bandwidth usage still suffers from the overhead caused by multiple streams and files

smaller than 400 MB size have almost the same bandwidth usage gains despite the

significant changes on TCP buffer size. On the other hand, larger size files greater

than 400 MB have much better network performance when the TCP buffer size in-

creases considerably.

Figure 9: Bandwidth for different buffer size with a fixed file size. (IU-UCSD

settings)

As we can see from figure 9, both increasing buffer size and the number of streams

boosts the usage of network bandwidth. However, increasing buffer size does not

have the same impact as the number of streams. There is no difference in the band-

width usage when the buffer size reaches 16 KB; however, the bandwidth usage is

still rising drastically with the number of parallel streams.

4.2.1.3 Intercontinental WAN Test:

We performed this test between Indiana University at US and XXXXX at Korea. We

used the following environments for our performance tests.

Server: Sun Fire V880 machine has 8x1.2 GHz UltraSPARC III processors with 16

GB of RAM on Solaris 9. It has 6x72GB 10K rpm internal HD.

Server(Korea):?????????????

bandwidth reported by IPerf: ???????????? Mbps

Figure 10: Bandwidth for different file size with a fixed buffer size. (US-Korea

settings)

With a fixed size TCP buffer, there is a massive gain from the multiple parallel

streams in intercontinental data transfer (in Figure 10).On the contrary of continental

WAN data transfer small size files are not suffering the overhead caused by multiple

parallel streams.

Figure 11: Bandwidth for different buffer size with a fixed stream number. (US-

Korea settings)

Figure 11 demonstrates clearly that increasing buffer size with a fixed stream number

has vital impact on all size of files. Similar to figure 10, intercontinental data transfer

benefits tremendously from increasing of TCP buffer size. Even though, there is an

increase in bandwidth usage gain when the buffer size is set to from 1,024 Kb to

65,536 KB, the performance gain is not that much dramatically.

Figure 12: Bandwidth for different buffer size with a fixed file size. (US-Korea

settings)

Similar to continental data transfer, as we can from figure 12, the usage of network

bandwidth is improved by both increasing buffer size and number of streams. How-

ever, increasing buffer size does not have the same impact as number of streams.

There is no difference in the bandwidth usage when the buffer size reaches 2,048 KB;

however, the bandwidth usage is still rising drastically with the number of parallel

streams.

4.2.2 Future Works

Both LAN and WAN test result show that increasing TCP buffer size and using mul-

tiple streams improves network bandwidth usage. However, there is no direct ratio

between these. Therefore, finding the optimum buffer size with the most advanta-

geous multiple parallel streams number without reducing the network bandwidth us-

age and adding extra computation work to underlying system is the major challenging

problem that we are planning to solve to provide the best data transmission rate with

the minimum system and network overheads.

5 Benchmarks

In this section, we will discuss how well our reliable middleware architecture is per-

forming in the existing services. To increase realities, we are done performance tests

between Cardiff University at United Kingdom and Indiana University at United

State. We are also using multiple platform environments to show interoperability of

the NaradaBrokering. For example, we are running NaradaBrokering server on the

Windows platform and NB Agents on the Linux platform.

We are using following environments for our performance tests (see Figure 1 for each

parts):

 GridFTP Client: Dual Pentium III 1GHz CPU with 1.5 GB of RAM

on Red Hat Linux 7.2. Located at Cardiff University.

 NB Agent A: Dual Pentium III 1GHz CPU with 1.5 GB of RAM

on Red Hat Linux 7.2. Located at Cardiff University.

 NaradaBroker-

ing Server:

Pentium 4 2.53GHz CPU with 512 MB of RAM on

Windows XP Professional Operating System. Lo-

cated at Indiana University.

 NB Agent B: Intel(R) Xeon(TM) CPU 2.40GHz CPU with 2GB of

RAM on Red Hat Linux 3.2. Located at Indiana Uni-

versity.

 GridFTP Sever: Dual AMD Athlon(tm) MP 1800+ CPU with 513 MB

on Red Hat Linux 7.3. Located at Indiana University.

We will present performance results up to 2 streams since there are virtually no dif-

ferences beyond 2 streams. It is happened to both GridFTP and NBGridFTP. This

kind of behavior is due to the network setting between Cardiff University at UK and

Indiana University at USA, which is beyond our control. Figure 4 shows the perform-

ance result of 1 stream of GridFTP, NBGridFTP, and NaradaBrokering. As we can

see on this Figure, NBGridFTP is slower by 22.22% (25 MB) to 28.76% (400 MB)

range. Those percentages of delays are come from inside of NaradaBrokering like

divide large file, writing to database, and temporary copy of data on the NaradaBro-

kering Agent A and NaradaBrokering Agent B. Result of NB only represent the per-

formance result of between NaradaBrokering Agent A and NaradaBrokering Agent B.

This means that we remove timing for temporary file store and NaradaBrokering

Agent A is worked as GridFTP Client and NaradaBrokering Agent B is worked as

NBGridFTP server. This result gives us idea about how well our NaradaBrokering

network implemented. As actual network stand point of view it is only about 11.91%

to 18.52% slower compare with GridFTP plus our NaradaBrokering system has reli-

able mechanisms are there. As we can see on the Figure 5, we also have similar re-

sults for 2 streams case. In this case our architecture is slower compare with GridFTP

about 25.44% to 30.91% for NB + GridFTP case and about 7.56% to 13.45% for NB

only case. We also can see the rate of second dropping from the 1 stream case is very

similar to GridFTP—GridFTP dropped 42.36% and NaradaBrokering dropped

44.57%. This means our implementation of multiple streams is as effect as what

GridFTP has currently. For the future optimization issues, we will discuss about the

matters that delays our architecture in the next section.

0

200

400

600

800

1000

25 MB 50 MB 100
MB

200
MB

400
MB

NB +
GridFTP
NB Only

Figure 4 File Transfer Results with 1 Stream

0
100
200
300
400
500
600

25
MB

50
MB

100
MB

200
MB

400
MB

NB +
GridFTP
NB Only

Figure 5 File Transfer Results with 2 Streams

5.1 NaradaBrokering Timing

We will look deeply into the time spending on our architecture for further optimiza-

tion (see Table 1). We divide NaradaBrokering with GridFTP into 2 parts; Timing for

transfer temporary file (from GridFTP client to NaradaBrokering Agent A and from

NaradaBrokering Agent B to GridFTP server) and internal NaradaBrokering time.

Internal NaradaBrokering time is divided into initialization, delete temporary file,

writing to database, actual transferring, and merging file. A large file will be divided

into small pieces of fixed size and will be stored into temporary directory in the Ini-

tialization phase and after done transfer, timing for the cleanup those temporary files

are measured on the Delete phase. Those small pieces of a file will be stored into the

database that located on the NaradaBrokering server first. This time is estimated tim-

ing based on the experimental benchmark. Actual file transferring time is measured

on the Network phase. After NaradaBrokering Agent B gets all the small pieces of file

it will reconstruct original file using those pieces. As we can see for this table, most

of the time is either not takes much time (delete, database, and merging) or non-

avoidable (temporary file transfer). And also actual timing for the transferring file is

reasonable. According to the Table 2, actual file transfer rates are as good as GridFTP

file transfer rates. GridFTP is little bit slower because we did not separate authentica-

tion form the actual file transfer.

Table 1. Detailed timing for NaradaBrokering + GridFTP with 2 streams in seconds.

MB Temporary

file trans-

fer

Init Delete Database Merging Network

25 4.82 0.95 0.02 ~ 1 0.36 25.52

50 9.16 1.80 0.05 ~ 2 0.72 52.24

100 17.54 3.88 0.11 ~ 4 1.66 106.05

200 36.42 17.28 0.22 ~ 8 3.15 206.63

400 74.20 41.04 0.43 ~ 16 5.97 418.56

Table 2. Timing for actual file transferring for NB + GridFTP and GridFTP in

seconds.

MB NB + GridFTP transfer GridFTP Transfer

25 25.52 26.95

50 52.24 54.18

100 106.05 103.93

200 206.63 208.66

400 418.56 424.85

One part we believe we can optimization is initialization part. Table 1 shows that it is

not taking much time if it dealing with small file size. However it takes more then

necessary when it is dealing with larger file size. Initialization phases will be deeply

investigated for the future optimization.

6 Conclusions

We discussed reliable transfer mechanism in NaradaBrokering using GridFTP as an

example. NaradaBrokering system is an event brokering system designed to run on a

large network of cooperating broker nodes. Communication within NaradaBrokering

is asynchronous and the system can be used to support different interactions by en-

capsulating them in specialized events. . Decoupling good features of exist systems

like file recovery technologies in GridFTP from the implementation of the service and

instead placing into the reliable, high performance messaging substrate between the

client and service will allow us to extend to other services without extensive reim-

plementation.

We also discussed deploying NaradaBrokering in GridFTP and its performance tests.

As we can see from the performance tests we have reasonable file transfer rates with

great features like reliable transfer and multiple stream file transfer. We show the

possibilities of our goal that decouple reliability features from the implementation of

the service and protocol, and instead placed into the messaging substrate without

great lose of performances.

For future work, the brokering system is by design a many-to-many messaging sys-

tem, so we may exploit this to support simultaneous delivery of files to multiple end-

points. Finally, we will develop more examples of using other file transfer mecha-

nisms that will mimic RTF-like features without reimplementation

References

[1] GridFTP: Universal Data Transfer for the Grid

http://www.globus.org/datagrid/gridftp.html

[2] The Globus Project http://www.globus.org/

[3] Ravi K Madduri, Reliable File Transfer in Grid Environments, Proceedings of the

27th Annual IEEE Conference on Local Computer Networks (LCN’02), 2002.

[4] Reliable File Transfer Service http://www-unix.mcs.anl.gov/~madduri/RFT.html

[5] RFC 765 – File Transfer Protocol specification

http://www.faqs.org/rfcs/rfc765.html

[6] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke,

GridFTP: ProtocolExtensions to FTP for the Grid, Argonne National Laboratory,

April 2002.

[7] The NaradaBrokering System http://www.naradabrokering.org

[8] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware Frame-

work and Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings of

ACM/IFIP/ USENIX International Middleware Conference. 2003.

[9] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-Based Cellular Peer-to-

Peer Grids:Foundations for Secure Federation and Autonomic Services. (To ap-

pear) Journal of Future Generation Computer Systems.

[10] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S.

Meder, V. Nefedova, D. Quesnal, S. Tuecke, Data Management and Transfer in

High Performance Computational Grid Environments Parallel Computing Journal,

Vol. 28 (5), May 2002, pp. 749-771.

[11] G. C. Fox, W. Wu, A. Uyar and H. Bulut Design and Implementation of Au-

dio/VideoCollaboration System Based on Publish/subscribe Event Middleware

Proceedings of CTS04 San Diego January 2004

[12] S. Lim, G. Fox, S. Pallickara, and M. Pierce, Web Service Robust GridFTP. The

2004 International Conference on Parallel and Distributed Processing Techniques

and Applications (PDPTA04), June 2004

[13] Pete Burnap et al. Worldwide Messaging Support for High Performance Real-

time Collaboration. Proceedings of the UK e-Science Programme's All Hands

Meeting 2005 (AHM2005). Nottingham, UK.

