
International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

GridNexus: A Grid Services Scientific Workflow System

Jeffrey L. Brown, Clayton S. Ferner, Thomas C. Hudson, Ann E. Stapleton, Ronald J. Vettera,
Tristan Carland, Andrew Martin, Jerry Martin, Allen Rawls, William J. Shipman, and Michael Wood

University of North Carolina Wilmington, USA

Abstract

 We introduce GridNexus, a graphical system for
creating and executing scientific workflows in a grid
environment1.. GridNexus allows the user to assemble
complex processes involving data retrieval, analysis and
visualization by building a directed acyclic graph in a
visual environment. Workflows in GridNexus are
described by a script written in a language called JXPL.
The script can be executed either locally or in a remote
managed-job environment. GridNexus enables the
composition of larger software modules from smaller
ones to build very complex tasks and separates the
graphical user interface (GUI) from execution of the
workflow. This increases system flexibility while retaining
interactive capabilities. We compare our approach with
that of similar projects, and provide an assessment of the
system by highlighting two real-world scientific
applications that have taken advantage of the GridNexus
environment.

Keywords: grid computing, workflow programming,
bioinformatics, computational chemistry, web and grid
services.

1. Introduction

1.1 Overview

 In recent years there has been significant research and
development related to grids, which promise to provide
resource sharing across many domains under
decentralized control. The problem of managing grid
workflows has received much attention lately, including a
workshop at the Global Grid Forum [1]. Implementations
of the Open Grid Services Architecture (OGSA) [2] and
the emerging Web Service Resource Framework (WSRF)
[3] standards have changed the way we work with remote
computational resources. In the past, using a remote
resource typically involved logging in, sending the
appropriate request and receiving the results. Modern grid
technology allows seamless authentication and
authorization and provides standard interfaces for access
to remote services. This makes it much easier to automate
the process of accessing and using distributed computing
resources.

a Contact Author:
Department of Computer Science
UNC Wilmington, Wilmington, NC 28403, USA
vetterr@uncw.edu

1 A beta version of GridNexus has been released and is available at
http://www.gridnexus.org

 Today, many demonstrations of grids still use
command line and batch mode processing. This is the
style of computation used since the first days of
computing. It is difficult for a novice user to discern the
difference between a supercomputing environment and a
grid computing environment. Both require the submission
of a job, scheduling and execution of that job, and
collecting the results at a later time. For example, suppose
a scientist wishes to retrieve a large number of DNA
sequences from a database, compare these sequences with
those in another database through a BLAST search [4]
and view the results. A typical scenario would be for the
scientist to log into one machine to perform the query,
FTP the results to another machine, log into that machine,
perform the BLAST search, and then download the results
to the local machine. All of this would probably be done
using a command line interface.

 If grid technology is to gain widespread acceptance,
there must be better interfaces: ones that are more
intuitive, graphical, easy to use, but most importantly that
hide the complexity of the underlying architecture.
Without being able to visualize how a grid will help them,
a scientist will likely continue performing their tasks in
the same labor intensive way that they have used for
years.

 Our ultimate goal is to be able to seamlessly integrate
disparate high performance computing resources on the
North Carolina Research and Education Network into a
statewide grid computing environment which does not
require scientists to know the underlying network and
computational infrastructure.

1.2 Previous Work

 We previously developed a flexible architecture for
scientific processing that supports a high level of
abstraction [5]. After user testing and review of the
advances made by other projects of this type, we designed
our new grid application builder to incorporate both a
highly functional graphical user interface and an
extensible, high-level scripting language. We designed
our system with execution separated from the interface
and with layering so that high-level processes (for
scientific users) encompass lower-level processes (used
by programmers). The scientist sees a dataflow, with
modules carrying out processing steps on the data
whereas the programmer creates workflows that enable
the building of modules and deals with the actual steps in
execution. In addition, an important design criteria was

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

that modules be re-usable, to avoid wasted effort in script-
writing, and that both interactive and batch processes be
supported in the workflows. We are convinced that in
order for a new system to be widely adopted, it is
essential that the user interface be attractive and easy-to-
use. We choose to adapt an existing interface that had this
characteristic rather than devote substantial resources to a
new design.

1.3 Related Work

 There are several projects currently under development
whose aim is to address a wide variety of grid computing
problems [6]. These efforts fall into the following
categories: (a) development of a graphical user interface
(e.g., Kepler and Taverna), (b) workflow specification
(e.g., Pegasus and DAGMan), (c) job submission and
scheduling (e.g., GridFlow and CONDOR), (d) resource
management and monitoring (e.g., Globus Monitoring
and Discovery System), and (e) file management (e.g.,
GridFTP). The Grid portal framework, whose focus is on
providing access to grid resources via a web browser,
offers another approach to creating grid computing
environments.

 Even though there are many different grid projects, we
discuss only those projects that most closely relate to
GridNexus. This is not intended to be a comprehensive
list or complete survey of the field, but rather a
representative set of grid projects that directly relate to
our work.

1.3.1 Kepler

 Since GridNexus and Kepler [7] are both based on
Ptolemy II, an open source project from the University of
California at Berkeley [8], it is easy to make a direct
comparison between these two systems. Consider the
problem of creating a new GUI module, or actor in the
Ptolemy II vernacular. The easiest approach to this task is
to extend one of the Ptolemy II classes so that it can take
advantage of the dynamic configuration capabilities of
Ptolemy II.

 In the Kepler setting, the new class is responsible for
carrying out the operation that the GUI module
represents, such as a database query or a mathematical
calculation. Of course, this work might be delegated to
another class, but ultimately the new module class is
responsible for getting the work done and handling the
input and output. In this approach computation occurs in
the same code used to create the actor, tying the
computation to the user interface.

 The functionality of the software modules in
GridNexus are provided through an XML based scripting
language called JXPL, which is fully described in section
2.2. The modules do not produce the results directly, but
rather produce a JXPL script which, when evaluated,
produces the result. This separation provides flexibility

that will allow GridNexus to operate in more complex
environments. The execution of the JXPL script might be
performed by a processor running locally, or it could be
submitted by the client to be run in a managed job
environment. Furthermore, applications other than the
GridNexus could be used to create JXPL scripts. With
Kepler, execution of the workflow is part of a complex
system that includes the GUI.

1.3.2 OGSA-DAI

 OGSA-DAI [9] is a project initiated by the UK
Database Task Force concerning data access and
integration (DAI) in a grid environment. The OGSA-DAI
software is included as a contributed part of the Globus
Toolkit 3.2. OGSA-DAI provides a system for managing
a special type of grid service called a Grid Data Service
(GDS). Services that implement the GDS interface work
seamlessly together. For example, one GDS could provide
database access, while another provides an XSL
transformation. OGSA-DAI manages the delivery of data
from the database to the transformation service. The result
of the transformation could be delivered to another
service, a file, GridFTP, etc. In addition to a common data
format, there are other important aspects of the exchange
that OGSA-DAI handles. In particular, very large result
sets are delivered in pieces to avoid taxing machine
resources.

 The type of workflow management offered by
GridNexus is complementary to the specialized data
transfer management offered by OGSA-DAI. GridNexus
models handle interactions between many different types
of processes, some of which could be OGSA-DAI
workflows.

1.3.3 Taverna

 Taverna [10] is another scientific workflow project
similar to Kepler and GridNexus, except that it does not
yet support Grid services. Taverna is similar to
GridNexus in that it uses an XML-based scripting
language to describe the processing that should be
executed. The Taverna GUI is used to visualize the
workflow but not to build or modify it. Both Kepler and
GridNexus use a GUI to create and execute workflows.

 The scripting language that Taverna uses, called
XSCUFL, is somewhat like Moml, the XML modeling
language used by Ptolemy II, although much simpler.
XSCUFL contains tags such as: “processor”, “source,”
“sink,” and “link.”

 In GridNexus, the new module has the relatively easy
task of writing JXPL script that will carry out the
operation. I/O type is not an issue because the GUI is
simply writing script. The execution of the script may be
done by a JXPL processor running on the client machine
or it could be handled by a processor running as a

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

persistent Grid service. The JXPL processor could also
run under some form of managed job service.

1.3.4 Grid Portals

 Grid portals allow users access to high performance
computing resources via an easy to use web page
interface. Portals provide access to grid technologies
through sharable and reusable components for web-based
access to scientific and business-oriented applications.
Sharable components allow the portal developer to
quickly create grid portals from provided libraries that
support baseline grid technologies (such as file transfer,
job launching an monitoring, and access to information
services), freeing the developers to concentrate on the
specialized needs of a particular scientific community
[11].

 A few well known grid portal projects include: (a) the
Legion grid portal, (b) GridSphere, (c) GridScape, (d)
GridSpeed, and (e) the National Partnership for Advanced
Computational Infrastructure (NPACI) Grid Portal
Toolkit or GridPort. Each of these projects leverages
standard technologies to provide information services that
portals can access and incorporate. Although GridNexus
is not technically a grid portal, it does address a problem
similar to that of grid portals, namely to make grids
readily accessible to users. We are currently exploring

the integration of GridNexus with the statewide
Bioinformatics Portal being created by the University of
North Carolina at Chapel Hill.

2. Our Grid Environment

 We have created a grid environment that consists of a
GUI, called GridNexus, and a scripting language, called
JXPL. In our environment GridNexus allows a scientist to
create workflows, JXPL specifies the workflows, and a
JXPL processor (which can run anywhere, including in
the GUI or on a separate server) executes JXPL scripts.

2.1 Graphical User Interface

 The graphical user interface of GridNexus is derived
from Ptolemy II. Figure 1 shows a simple example of a
workflow described in GridNexus. The large frame on the
right of the application window shows a workflow that
calculates 3+4. The frame on the left-hand side of the
window is a palette of modules that either perform
operations or provide information. The modules can be
dragged into the workspace on the right. A connection is
made between two modules by clicking and dragging
from an output port of one module to an input port of
another. Source modules are modules that provide data
but do not need an input connection. Sinks are modules
that do not produce an output.

Figure 1: A simple workflow in GridNexus

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

 GridNexus supports a wide variety of mathematical
operations, and control nodes for branching and looping.
A workflow can be used to define a function which can
then be used in other workflows. There are also two
features that allow the user to define functionality:
module composition and function definition. Function
definition is discussed in detail in the next section.

 The module labeled “Addition” in Figure 1 is an
example of a composite entity. It appears as one
component in the workflow, but it actually represents a
workflow that behaves like a user-defined function. In
addition to allowing the user to build upon previously
created workflows, the use of composites adds a layer of
abstraction and leads to cleaner workflows. Composite
entities can hide complexity from users who are not
interested in that level of detail.

2.2 JXPL

 JXPL is an XML-based scripting language inspired by
LISP and written in Java [12]. There are several reasons
why we chose to develop and use JXPL for this project:

1. The directed acyclic graphs created by the user in

GridNexus are easily translated to the tree-like data
structure used by JXPL. Thus, there is a natural
correspondence between the workflows and JXPL
scripts.

2. Since SOAP is the protocol used to transmit
messages between grid services, XML is an obvious
choice to represent a script or program to execute a
workflow in a grid environment.

3. One of the most appealing features of LISP is the
simplicity of its data structures. Everything is either
an atom or a list. Since JXPL is based on LISP, both
functions and data are represented in the same way:
the all-inclusive list. This is a powerful feature of
both LISP and JXPL that allows for implicit and
dynamic allocation and de-allocation. It also allows
for dynamic programming, recursion, and
extensibility.

4. Other languages such as Perl work well with text,
however the kinds of applications we are interested in
(e.g., bioinformatics applications) often must deal
with machine learning tasks and complex data
manipulation activities (e.g., data mining). Like
LISP, JXPL is well suited to these kinds of
applications.

 As an example of the ability of JXPL to handle
machine learning, consider the problem of pattern
matching. JXPL includes primitives that implement a
unifying pattern matcher and deductive retriever. These
are classic LISP applications (see the section on Logic
Programming in [8]). For a simple example of what a
deductive retriever does, consider a database that contains
the following facts:

1. All dogs are mammals.
2. All beagles are dogs.
3. Rover is a beagle.

 A deductive retriever uses recursive backward
chaining to derive conclusions from the facts. For
example, it could conclude that Rover is a mammal.

 We demonstrate the basic structure of JXPL using the
simple workflow shown in Figure 1. Table 1 shows the
LISP program and the corresponding JXPL equivalent to
compute 3+4.

 In JXPL functions are represented by <primitive> tags.
The JXPL processor receives an XML DOM element
which can be any one of the simple types or a list. The
DOM element is unmarshalled to a corresponding Java
class – a subclass of JxplElement. JXPL includes the
standard mathematical functions and uses the BigInteger
and BigDecimal Java API classes to support arbitrary
precision decimal calculations and exact rational
arithmetic.

 JXPL is designed for extensibility. There are two ways
to add new primitives to the language: 1) by defining a
new Java class to implement the primitive or 2) defining a
new function using a primitive called “Defun.” Defining
a new primitive operation using Java is simply a matter of
writing a class that implements the method “evaluate”
with the signature:

 JxplElement evaluate (JxplElement input).

 Defining a new function using Defun is similar to
defining a new function in LISP. For example, we can
have a JXPL script which defines a function called
“myadd,” that takes x and y as parameters and returns the
sum of x and y. Once the “myadd” function is defined,
then another script can use it as if there was a primitive
named “myadd” as shown in Table 2.

Table 1: A simple LISP example and the corresponding JXPL scripts
LISP JXPL

 <list>
 <primitive name=”Arithmetic”>
 <property name=”operation” value=”add”/>

(+ 3 4) </primitive>
 <integer value=”3”/>
 <integer value=”4”/>
 </list>

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Table 2: Defining new primitives in JXPL

Defining a function Using a function
<list>
 <primitive name=”Defun”/> <list>
 <symbol name=”myadd”/> <primitive name=”myadd”/>
 <list> <integer value=”3”/>
 <symbol name=”x”/> <integer value=”4”/>
 <symbol name=”y”/> </list>
 </list>
 <list>
 <primitive name=”Arithmetic”>
 <property name=”operation” value=”add”/>
 </primitive>
 <symbol name=”x”/>
 <symbol name=”y”/>
 </list>
</list>

 The example above demonstrates the ability of JXPL
to define simple functions, which allows for flexibility
and extensibility. One of the drawbacks of LISP is its lack
of readability. Because JXPL scripts are written in XML,
they are even more difficult for people to read and write.
However, JXPL is not intended to be a programming
language for humans, but rather to be automatically
generated and used by tools such as GridNexus.

2.3 Integrating GridNexus and JXPL with Grid
Services2

 The main goal of GridNexus is to create workflows
that can make use of web and grid services. To
accomplish this, we have implemented primitives in JXPL
that are generic web and grid clients. These clients must
inspect the stub classes or WSDL of the service to
determine its interface.

 First, we created a GSClient module in the GridNexus
GUI, whereby the user can specify the factory URL, the
instance name of the service, the stub class, and the port
type. The GSClient module inspects the stub class to
dynamically configure ports for each method of the grid
service. Figure 2 shows the new module after inspecting
the stub class. When data is passed in to one of the ports,
the module creates the JXPL to call that service method
with the data as arguments. The figure demonstrates a
call to the “add” method of our counter service with an
argument of 5.

 The JXPL. script includes a call to a GSClient JXPL
primitive with properties that specify the factory URL, the
instance name of the service, the stub class, and the port
type. The service method and the arguments are given as
arguments to the GSClient primitive. The primitive uses
the OGSIServiceGridLocator to find the grid service and
invoke the appropriate method with the arguments. The

2 Grid services are like web services [3].

results, if there are any, are collected and returned by the
GSClient primitive which is send to the output port of the
GSClient module.

 Integrating GridNexus with web services is even
easier. The WSClient module only needs the URL of the
WSDL. Through inspection of the WSDL, the WSClient
is able to configure the ports and generate the JXPL to
call a WSClient primitive. The primitive then generates a
call to the appropriate method of the web service and
returns the results.

2.4 Data Access and Integration

 OGSA-DAI Grid Data Services are designed so that
the output of one can be delivered to another. An
individual GDS can be invoked through an XML script.
However, the OGSA-DAI scripting environment is not
rich enough to control interaction between services. For
example, one cannot control the interaction of two Grid
Data Services with only one OGSA-DAI script. Consider
a generic example in which a source GDS will deliver its
output to a sink GDS. Here is a typical sequence of steps
that the client program takes:

1. Use a GDS factory to create the sink service instance

and store the handle of the instance.
2. Run methods of the sink service in a separate thread

so that it can wait for input.
3. Create a script to control the source service. This

script needs to be created dynamically because it
must contain the handle of the sink service.

4. Use a factory to create the source service and submit
the control script.

 A JXPL program can carry out the steps required to
control the interaction of Grid Data Services. A variety of
other languages could serve as well. In particular, the
OGSA-DAI distribution has examples of Java programs
for this purpose. However, GridNexus allows non-

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

programmers to create JXPL to control GDS interaction
in a graphical environment. The workflow described

above as been implemented using GridNexus. Figure 3
shows an example of using an OGSA-DAI service.

Figure 2: Using the new grid service client

Figure 3: Using OGSA-DAI grid service clients

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

3. Proof-of-Concept

3.1 Background

 We are working with faculty in biology, computational
chemistry, mathematics, and e-business to make
discipline-specific workflows that are useful for their
research. This will enable them to create input files,
submit jobs to nodes on a grid, and to view output results
(completely transparently to the user) through a graphical
user interface. An interdisciplinary faculty and student
research team have collaborated to develop several
GridNexus applications over the past year. Two

interesting grid-enabled applications that we have
designed and implemented are described below.

3.2 Biology Application

 Biologists have generated large amounts of
heterogeneous data in recent years [13]. Computational
skills are uncommon among both biology students and
faculty. Thus, using these large data sets requires
substantial investment by a biologist in either additional
training or salaries for programmers. This barrier means
that exploratory data analysis is rare, and use of high-
performance computing is limited to specialized groups
who invest in their own IT management and clusters.

Figure 4: Molecular biology workflow in GridNexus

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

 We have demonstrated with an earlier prototype [5]
and with GridNexus that a high-level graphical interface
allows access to sophisticated data mining algorithms by
biologists without programming skills. In tests with
students, the graphical interface is clearly less
intimidating than command line instructions, and allows
set-up of dataflows quickly and easily. Commercial
software for data mining such as Enterprise Miner (SAS)
and Clementine (SPSS) includes high-level graphical
interfaces. There is no debate that graphical interfaces are
needed, and in our development and testing of GridNexus
we show that our flexible, layered interface is an excellent
design for this problem. The ability to integrate existing
software written in Java, C, or Fortran and the ability to
have both interactive and batch processing are key
advances over current open-source and commercial
systems.
 Figure 4 shows a GridNexus workflow for the DNA
query and BLAST search example described in section 1.
The boxes labeled “Database Query” and “Blast Service”
represent OGSA Grid services deployed under Globus
Toolkit 3 (GT3). These modules were produced using the
generic GSClient described in section 2.3. The
QueryService sends the query string to a grid service on
one machine and the results of that query are sent to a
BLAST service running on another machine. The
BLAST service runs on a cluster of computers and
performs a computationally intensive many-to-many
search to produce a matrix of all possible comparisons.
This matrix is then provided to a visualization program
called PhyloGrapher [14]. This example shows the ease
with which data flows between processes, even when
those processes reside on separate machines. Compare
this interface to that of a command line interface using
FTP to transfer files between machines.

 Searching for interesting patterns in data sets is the
first step in developing experimentally testable
hypotheses. The biologists in our group are very enthused
about using GridNexus for computationally intensive data
mining. It would not be possible for UNCW biologists to

do this level of genomics data analysis without
GridNexus.

3.3 Chemistry Application

 One difficulty facing computational chemists is the
incompatibility among file formats of molecule files used
by chemistry software. The list of file formats includes
ENT, DAT, MOL, among others. Most of these formats,
although not all, use Cartesian coordinates. However,
chemists often translate between file formats by hand in
order to use a molecule created by one chemistry software
program in another program. There currently are no tools
to translate these file formats available to chemists.
Furthermore, there is no consistency or standard used by
software manufacturers for the same file type. One MOL
file may differ in format from another.
 We have added modules to the GridNexus library that
translate between file formats as well as modules to
perform some manipulations of the molecules. Figure 5
shows an example of a workflow that performs some
operations on a molecule to produce a new one. The
workflow reads in a molecule of one file format type, runs
a molecule visualization program that allows the chemist
to identify certain atoms of interest, sends this
information to a program that performs some
transformations on the molecule, and then the results are
stored in a different file format.

 The Jmol Viewer is an application that draws the
molecule in a window and allows the user to rotate and
zoom the molecule as well as to select parts of it. This
demonstrates two useful features of GridNexus: 1) the
ability to plug in off the shelf existing applications, and 2)
the ability to incorporate interaction with the user in a
workflow. We are currently in the process of creating a
grid service to run the Gaussian program. Gaussian is one
example of an application that is difficult and expensive
to license. The high-level graphical interface of
GridNexus will aid chemists in using this application and
others.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Figure 5: Molecular chemistry workflow in GridNexus

4. Future Work and Conclusions

 We plan to use GridNexus to help create and deploy
new grid services in addition to scripting existing
services. We are also developing a generic module to
provide interactive feedback while executing a workflow.
It has become apparent from our discussions with users
that some feedback is necessary between the user and the
workflow.

 Although there are several projects that are building
tools for scientific workflows, GridNexus has the unique
feature of separating the GUI from the execution of the
workflow. New functionality can be added by creating
new primitives in Java, or by defining functions in JXPL.
The execution of the script may be carried out locally by
the GUI or remotely as a grid service. Exposing the JXPL
processor as a persistent grid service allows access to
previously defined functions.

 We are in the process of disseminating GridNexus to
the wider research community. As part of this effort, we
will be using GridNexus to facilitate the use of the North
Carolina statewide grid project. We are working with
faculty around the state to create workflows that use
computer resources on the North Carolina Research and
Education Network. GridNexus has also been used in a

multi-campus grid computing class, where students were
asked to create grid services and workflows that use them.

 Finally, we are working on the Paraguin Project [15],
whose goal is to build an open-source parallelizing
compiler that can adapt a sequential program to a
distributed system. The Paraguin compiler generates an
MPI program. MPI is becoming the de facto open-source
standard for grid-enabling applications for use in
distributed environments. Our plan is to use the GUI to
allow the user to import existing application code, send it
to the Paraguin compiler to create a parallel version, and
then to expose the parallel version as a new Grid service.

Acknowledgements

 This work was supported in part by the University of
North Carolina Office of the President and the Division of
Information Technology Systems at UNC Wilmington.

References

[1] “Workflow in Grid Systems: Final Program”,

Global Grid Forum, Berlin, March 9, 2004.
Retrieved from http://www.extreme.indiana.edu/
groc/ggf10-ww/ on September 22, 2004.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke,
“The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration”. Retrieved from
http://www.globus.org/research/papers/ogsa.pdf on
September 22, 2004.

[3] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S.
Graham, I. Sedukhin, D. Snelling, S. Tuecke, and
W. Vambenepe, “The WS-Resource Framework”,
Version 1.0, March 5, 2004. Retrieved from
http://www-106.ibm.com/developerworks/library/
ws-resource/ws-wsrf.pdf on September 22, 2004.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
and D. J. Lipman, “Basic local alignment search
tool”, J. Mol. Biol, vol. 215, pp. 403-10, 1990.

[5] T. C. Hudson, A. E. Stapleton, and J. L. Brown,
“Codifying Bioinformatics Processes without
Programming”, BioSilico, vol. 2, no. 4, pp. 164-
169, July 2004.

[6] “Scientific Workflows Survey”. Retrieved from
http://www.extreme.indiana.edu/swf-survey/ on
September 22, 2004.

[7] Altintas, C. Berkley, E. Jaeger, M. Jones, B.
Ludaescher, and S. Mock, “Kepler: Towards a
Grid-Enabled System for Scientific Workflows”,
Global Grid Forum, Berlin, March 9, 2004.
Retrieved from http://www.extreme.indiana.edu/
groc/ggf10-ww/kepler_towards_grid-enabled
_system_for_scientific_workflows__bertram_ludae
scher/kepler-GGF10.doc on September 22, 2004.

[8] "Ptolemy II”. Retrieved from http://ptolemy.eecs.
berkeley.edu/ptolemyII/ on September 22, 2004.

[9] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley,
N. C. Hong, B. Collins, J. Davies, N. Hardman, G.
Hicken, A. Hume, M. Jackson, A. Krause, S. Laws,
J. Magowan, J. Nowell, N. Paton, W., D. Person, T.
Sugden, P. Watson, and M. Westhead, "OGSA-
DAI: Two Years On," Global Grid Forum, Berlin,
March 9, 2004. Retrieved from
http://www.ogsadai.org.uk/docs/OtherDocs/15-
Antonioletti-OGSA-DAI-DA-WS-final.pdf on
September 22, 2004.

[10] “The Taverna Project”. Retrieved from
http://taverna.sourceforge.net/ on September 22,
2004.

[11] “Open Grid Computing Environments”. Retreived
from http://www.ogce.org on September 22, 2004.

[12] C. Hunt, C. Ferner, and J. Brown, “JXPL: An
XML-based Scripting Language for Workflow
Execution in a Grid Environment”, 2005 IEEE
Southeastern Conference, Ft. Lauderdale, FL, April
8-10, 2005.

[13] Stein, L. D. “Integrating Biological Databases”,
Nature Reviews Genetics, vol. 4, pp. 337-345,
2003.

[14] “PhyloGrapher - Graph Visualization Tool”.
Retrieved from http://www.atgc.org/PhyloGrapher/
PhyloGrapher_Welcome.html on September 22,
2004.

[15] C.S. Ferner, "The Paraguin compiler---Message-
passing code generation using SUIF", in the
Proceedings of the IEEE SoutheastCon 2002,
Columbia, SC, April 5-7, 2002, pp. 1-6.

Jeffrey L. Brown is a professor in
the Department of Mathematics and
Statistics at the University of North
Carolina Wilmington. His research
interests include parallel and
distributed computing, computer-
aided geometric design, and
computational geometry. He has

developed and teaches an advanced Web programming
course that includes topics such as JSP/JDBC, XML,
XSLT, Web and Grid services.

Clayton S. Ferner is an assistant
professor in the Department of
Computer Science at the University
of North Carolina Wilmington. His
research interests are parallel and
distributed computing, grid
computing, and compilers for parallel
and distributed computing. Ferner is

a member of the IEEE Computer Society and the ACM.

Thomas C. Hudson an assistant
professor in the Department of
Computer Science at the University
of North Carolina Wilmington. His
research interests span computer
graphics, scientific visualization,
distributed systems, networking, data
mining, and collaborative computing.

He designs new tools for scientists and engineers using
techniques from distributed systems & computer graphics.

Ann E. Stapleton is an assistant
professor in the Department of
Biology and Marine Biology at the
University of North Carolina
Wilmington. Her research interests
include genetic and genomic analyses
of plant ultraviolet radiation
responses, and plant functional

genomics/bioinformatics, along with advancement of
undergraduate research participation.

Ronald J. Vetter is a professor and
chair of the Department of Computer
Science at the University of North
Carolina Wilmington. His research
interests include parallel and
distributed computing, mobile
computing, and wireless networks.
Vetter is a member of the IEEE
Computer Society and the ACM.

International Journal of Computer & Information Science, Vol. 6, No. 2, June 2005

Tristan M. Carland is a 2005
graduate of the University of
North Carolina at Wilmington
with a B.S. in Computer Science
and Marine Biology who will be
attending the Scripps Institute of
Oceanography in the fall of 2005.
His interests include data mining,

gene regulation networks, distributed computing,
Nemertean diversity and sailing.

Andrew Martin is an
undergraduate student majoring in
computer science at the University
of North Carolina Wilmington. His
main research focus is on
computational chemistry and its
integration with GridNexus.

Jerry Martin is an undergraduate
student majoring in computer
science at the University of North
Carolina Wilmington. His main
research focus is on computational
chemistry and its integration with
GridNexus.

Allen W. Rawls is an undergraduate
student at the University of North
Carolina Wilmington pursuing a
degree in Computer Science with a
minor in Physics. In addition to grid
computing, Mr. Rawls's interests
include database systems, data
security and aeronautics with a
passion for flying.

William J. Shipman is an
undergraduate student majoring in
computer science at the University
of North Carolina Wilmington. His
research interests include parallel
computing, grid computing,
bioinformatics, web-based
application development and
deployment.

Michael Wood graduated from the
University of North Carolina
Wilmington in May 2004 with a
B.S. in Computer Science. He is
currently a graduate student at
North Carolina State University
working to create biological grid
applications.

