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Abstract

We develop fast discrete Fourier transforms (and their adjoints) from a square in

space to a disk in the Fourier domain. Since our new transforms are not unitary,

we develop a fast inversion algorithm and derive corresponding estimates that

allow us to avoid iterative methods typically used for inversion. We consider the

eigenfunctions of the corresponding band-limiting and space-limiting operator

to describe spaces on which these new transforms can be inverted and made

useful. In the process, we construct polar grids which provide quadratures

and interpolation with controlled accuracy for functions band-limited within

a disk. For rapid computation of the involved trigonometric sums we use

the unequally spaced fast Fourier transform, thus yielding fast algorithms for

all new transforms. We also introduce polar grids motivated by linearized

scattering problems which are obtained by discretizing a family of circles.

These circles are generated by using a single circle passing through the origin

and rotating this circle with the origin as a pivot. For such grids, we provide a

fast algorithm for interpolation to a near optimal grid in the disk, yielding an

accurate adjoint transform and inversion algorithm.

1. Introduction

This paper introduces fast discrete Fourier transforms from a square in the spatial domain to

a disk in the Fourier domain. Whereas there are many possible discretizations of the Fourier

transform, the new transforms are special in that, under appropriate conditions, we may use

the adjoint in lieu of the inverse transform. Unlike the discrete Fourier transform (DFT), these

transforms are not unitary and have a numerical null space. For these reasons, we pay special

attention to describing spaces on which they may be inverted and made useful. We develop a

fast inversion algorithm (and corresponding estimates) that avoids iterative methods typically

used for inversion. We note that the speed of all new algorithms is proportional to that of

the fast Fourier transform (FFT). In essence, we present an approach for constructing useful

analogues of the FFT to and from a polar grid in the Fourier domain.
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The need for such fast transforms and associated grids arises in many applications,

including problems of non-destructive evaluation such as x-ray tomography, diffraction

tomography, synthetic aperture radar and linearized inverse scattering; applications such as

image rotation, signal processing, directional bases and many others. In all of these instances,

band-limited functions are a natural entity and we expect these fast and accurate new transforms

to play a role similar to that of the FFT as a standardized tool for computing Fourier integrals.

A new feature of our approach is the design of grids permitting complete accuracy control

which should yield improved performance of algorithms for these applications. We provide a

few examples of their use in section 6 and indicate a number of applications in section 8.

The key component of our approach is the introduction of special grids for the disk. A

crucial property of these grids is that they provide quadratures and interpolation with controlled

accuracy for functions band-limited within a disk in the Fourier domain. Unlike the DFT, the

transforms of this paper are not exact in algebraic sense but, instead, are constructed for any

finite but arbitrary accuracy. Recall that we may arrive at the DFT by using the trapezoidal

rule for computing Fourier coefficients; since the trapezoidal rule is exact for trigonometric

polynomials (up to an appropriate degree), it yields an algebraically exact discrete transform.

With this in mind, we consider the construction of discrete transforms as a problem of

developing appropriate quadratures for their Fourier integrals. We present two such grids

for the disk, one with minimal (or near minimal) number of nodes for a given bandlimit and

accuracy and, another, with quadrature nodes invariant under certain transformations.

In this paper, we consider two cases of spatial discretization of functions on the square:

one with equally spaced nodes (appropriate for smooth periodic functions) and the other with

quadrature nodes for band-limited functions (which are not necessarily periodic). We construct

a nearly optimal grid in the Fourier domain applicable to either spatial discretization. We define

the discrete transforms using these grids and analyze spaces of functions (signals) for which

the inversion problem yields a numerical solution with controlled accuracy. The approach

of this paper relies on the results in [8] describing the construction of generalized Gaussian

quadratures for exponentials integrated with the measure |x|dx. We note that example 2 in

section 4.3 in [8] has been presented with this application in mind.

We also introduce an alternative Fourier grid motivated by linearized inverse scattering

[5, 6, 10, 13]. This remarkable grid is obtained by using equally spaced nodes on a single circle

passing through the origin and then rotating it around the origin to generate the entire grid. It

is a simple but not an immediately obvious fact that these nodes may also be described as lying

on particular concentric circles and diameters of the disk. Although such discretizations have

been implicitly used in low order/accuracy computations [13], by themselves they are not well

suited for evaluating integrals with controlled accuracy. On the other hand, it is an excellent

grid for trigonometric interpolation on rotating circles within the disk. Thus, the inverse DFT

from this grid is a two step algorithm, where we first use trigonometric interpolation of the

function to a near optimal grid for which we already have an inverse DFT.

Our algorithms rely on the unequally spaced fast Fourier transform (USFFT) [7, 14] and,

as a result, all transforms that we perform have the same complexity as the FFT and differ in

speed from the FFT only by a factor. This factor depends on the desired accuracy and we refer

to [7, 14, 19, 20] for a demonstration of performance of such transforms. Since by now it is a

well-established subject matter, we briefly discuss the USFFT in appendix A.

A construction of a polar grid in a square, the pseudo-polar fast Fourier transform (pPFFT)

and algorithms for its inversion were presented in [3] (also see references therein). The

algorithms in [3] use only one-dimensional FFTs and also provide a non-iterative inversion

[4]; however, the pseudo-polar grid does not permit high order interpolation. As a result, such

a grid is necessarily oversampled, thus offsetting the benefit of using only one-dimensional
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transforms. We did not attempt to compare the speed of the pPFFT and that of our approach.

These algorithms have the same order of complexity and their speed may differ only by a

factor. Such a factor is difficult to ascertain conclusively, not only due to the details of

implementation, but also due to the differences in the required number of grid nodes.

The Fourier transform on an arbitrary grid, including the polar grid, may be evaluated

by using the USFFT (a point made in [15]). However, as a consequence of neglecting the

quadrature properties of the grid, the inversion of such a transform usually requires solving

an ill-conditioned linear system. In [15] and many other papers on applications of the USFFT

(see e.g. [2]), the authors use the conjugate gradient method to solve such a system since fast

direct solvers are not available. While well justified in many applications, we note that such

an approach produces only a nominally fast algorithm since the number of iterations of the

conjugate gradient method (controlled by the condition number of the linear system) may be

significant. Even if the condition number is reasonable, an iterative approach inflicts a penalty

in performance.

We also mention [22] which provides a numerical method for computing Slepian functions

for the disk to disk mapping (and the corresponding quadratures), following the analytic

construction in [23] and the approach in [27]. The resulting grids are close, but not identical

to the nearly optimal grids developed in this paper. It is important to note that the spectrum

of the space-limiting and band-limiting operator for the disk to disk mapping in [22, 23] is

substantially different from that of this paper which we further explain in remark 5.3.

We start the paper by considering the eigenvalue problem for the space-limiting and

band-limiting operator defined for functions concentrated in a square in the spatial domain

and in a disk in the Fourier domain. In section 3, we develop near optimal Fourier grids to

accurately approximate the kernel of such an operator. Given these grids, we introduce the

discrete forward and adjoint transforms in section 4 and consider their inversion in section 5.

In section 6, we present several examples of using these transforms. In section 7, we turn our

attention to another type of Fourier grids generated by rotating circles. We show how to use

the trigonometric interpolation along these rotating circles to compute values of the function

on the nearly optimal grids introduced in section 3, thus making it possible to use grids on

rotating circles for inversion. We remark on applications and extensions of our results in

section 8.

2. Preliminary considerations

In this section, we provide the necessary background by adapting Slepian’s original

construction [17, 18, 23–26] for our case and introducing appropriate notation.

2.1. Functions band-limited on a disk

It is well known that a function with compactly supported Fourier transform cannot have

compact support itself unless it is identically zero. However, this constraint is easily overcome

for a finite accuracy. For example, consider a Gaussian and set a threshold on it and its

Fourier transform, thus limiting both supports for any finite accuracy. All measurements,

being approximate, violate this localization constraint since we never deal with either infinite

bandwidth or with functions that extend indefinitely in space or time. Thus, it is natural to

analyze the operator whose effect on a function is to truncate it both in spatial and in Fourier

domains. This has been the topic of a series of seminal papers by Slepian et al [17, 18, 23–26],

where it is observed (inter alia) that the eigenfunctions of such an operator on a finite interval

are the prolate spheroidal wavefunctions (PSWFs) of classical mathematical physics.
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In this section, we construct such a Slepian operator by band-limiting functions to a disk

and space-limiting them to a square. The choice of a disk and a square is suggested by

typical applications. A disk in the Fourier domain is a natural choice for isotropic treatment

of directions. Choosing a square in space is relevant in many contexts as well. It turns out,

however, that these choices also lead to useful spectral properties of the corresponding Slepian

operator, not obtainable in the original construction in [23] (see also [22]).

For a band-limited function f with Fourier transform f̂ supported in the disk

D2c =
{

(p1, p2) :

√

p2
1 + p2

2 � 2c

}

,

we have

f (x) = f (x1, x2) =
1

(2π)2

∫

D2c

f̂ (p1, p2) ei(p1x1+p2x2) dp1 dp2. (1)

We choose the disk of radius 2c since, in what follows, we will consider the square

B =
[

− 1
2
, 1

2

]

×
[

− 1
2
, 1

2

]

instead of the ‘traditional’ square [−1, 1] × [−1, 1]. With this

choice, the function f in (1) has bandlimit parameter 2c and, thus, bandwidth W = c/π . The

bandwidth W appears in discrete transforms and is used in the engineering literature.

We denote by L2(B) and L2(D2c) the spaces of square integrable functions with the inner

products

〈f, g〉B =
∫

B

f (x)ḡ(x) dx (2)

and

〈f̂ , ĝ〉D2c
=

1

4π2

∫

D2c

f̂ (p) ¯̂g(p) dp. (3)

In order to identify a useful class of functions, we consider a function f supported in B with

Fourier transform

f̂ (p) = F2c[f ](p) =
∫

B

f (x) e−ix·p dx, (4)

and restrict the support of f̂ to the disk of radius 2c, so that

F2c : L2(B) → L2(D2c).

We then consider the adjoint transform

F
∗
2c[ĝ](x) =

1

4π2

∫

D2c

ĝ(p) eix·p dp, (5)

and limit the support of the resulting function to the square B, so that

F
∗
2c : L2(D2c) → L2(B).

We now define the band-limiting and space-limiting operator as

Q2c = F
∗
2cF2c : L2(B) → L2(B),

where

Q2c[f ](x) =
1

4π2

∫

D2c

f̂ (p) eix·p dp.

The compact positive definite operator Q2c acts as a convolution with kernel

K2c(x) = K2c(x1, x2) =
1

4π2

∫

D2c

eip·x dp =
cJ1

(

2c

√

x2
1 + x2

2

)

π

√

x2
1 + x2

2

, (6)
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where x ∈ 2B. Following [23–26], we are interested in finding the eigenvalues and the

eigenfunctions of Q2c. We consider the eigenvalue problem

µjψj,2c(y) =
∫

B

K2c(y − z)ψj,2c(z) dz, (7)

where y, z ∈ B, j = 0, 1, 2, . . . and 1 > µ0 > µ1 � µ2 � · · ·. We briefly discuss the

spectral properties of the operator Q2c in appendix A.1. For brevity of notation, we drop the

dependence of the eigenfunctions on c and write ψj,2c = ψj . The eigenfunctions of Q2c are

real valued, and we normalize them so that

‖ψj‖B =
(∫

B

|ψj (z)|2 dz

)1/2

= 1. (8)

The operator Q2c plays a key role in the construction of Fourier grids (see section 3).

Next we consider two discrete versions of the eigenproblem (7), derived by equally or

unequally spaced discretization of the spatial domain. The former discretization is intended

for band-limited functions periodic in B and the latter for band-limited but not necessarily

periodic functions.

2.2. Equally spaced discretization in the spatial domain

Let us consider a case where we are given a finite set of values of a function f in (1):

fmn = f

(

−
1

2
+

m

N
,−

1

2
+

n

N

)

, (9)

evaluated on the equally spaced grid in B denoted as

xe =
{

xe
mn

}N−1

m,n=0
=

{(

−
1

2
+

m

N
,−

1

2
+

n

N

)}N−1

m,n=0

. (10)

In this case, we may refer to fe = {fmn}N−1
m,n=0 as a discrete signal or simply a signal to distinguish

this common occurrence from problems where we control the manner of discretization of f

on B. For these signals, we use the (usual) inner product obtained by uniform discretization

of (2):

〈fe, ge〉 =
1

N2

N−1
∑

m,n=0

fmnḡmn. (11)

We now define analogues of transforms (4) and (5) for the critically sampled case where

c =
πN

2
. (12)

Let D = D1 =
{

(p1, p2) :

√

p2
1 + p2

2 � 1
}

be the unit disk in the Fourier domain. We define

the forward transform as

Fe : C
N2 → L2

D

f̂ e(p) = Fe[fe](p) =
1

N2

N−1
∑

m,n=0

fmn e−iπNp·xe
mn , (13)

where C
N2

is considered with the inner product (11). Here L2
D is the space of square integrable

functions in the unit disk with the inner product induced by (3), our choice of c in (12) and a

simple rescaling to the unit disk. Thus, the adjoint transform is given by

F ∗
e : L2

D → C
N2

,
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Figure 1. Eigenvalues of (16) and (25) for equally and unequally spaced discretization in space

with N = Nω = 60.

F ∗
e [ĝ]mn =

N2

4

∫

D

ĝ(p) eiπNp·xe
mn dp, (14)

where the grid xe
mn is defined by (10).

Next, we consider a composition of the forward and the adjoint transforms, Qe = F ∗
e Fe,

Qe : C
N2 → C

N2

,

Qe[fe]mn =
N2

4

∫

D

f̂ e(p) eiπNp·xe
mn dp.

The matrix elements of Qe are given by the discretized kernel (6),

(Qe)mn,m′n′ =
1

N2
KπN

(

m − m′

N
,
n − n′

N

)

. (15)

We compute the eigenvalues and eigenvectors of the symmetric eigenproblem

µe
jψ

e
j,mn =

N−1
∑

m′,n′=0

(Qe)mn,m′n′ψe
j,m′n′

=
N−1
∑

m′,n′=0

J1

(

πN

√

(

m
N

− m′

N

)2
+

(

n
N

− n′

N

)2
)

2N

√

(

m
N

− m′

N

)2
+

(

n
N

− n′

N

)2
ψe

j,m′n′ , (16)

with
〈

ψe
j , ψ

e
j ′

〉

= δjj ′ . (17)

The spectrum of (16) and several eigenvectors are illustrated in figures 1 and 2.

2.3. Unequally spaced discretization in the spatial domain

Let us consider the case where we control how to discretize the functions in (7). In order to

accommodate band-limited, non-periodic functions, we select a tensor product grid associated

with generalized Gaussian quadratures for band-limited functions (see [8, 27]).
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(a) j = 440 (b) j = 439 (c) j = 438

(d) j = 440 (e) j = 439 (f) j = 438

Figure 2. The last three eigenvectors of (16) (top row) and the magnitude of their discrete Fourier

transforms (bottom row) for N = 21. Significant values in the bottom row are indicated as black.

Since these eigenvectors correspond to eigenvalues close to zero, they are effectively in the null

space of the operator; their Fourier transforms are supported essentially outside the disk D2c .

Following [8] we compute, for some ǫω > 0 and bandlimit 2c, the nodes |θk| < 1 and the

weights ωk > 0, k = 0, . . . , Nω − 1, where Nω = Nω(c, ǫω), such that for all y ∈ [−1, 1]
∣

∣

∣

∣

∣

∫ 1

−1

ei2cθy dθ −
Nω−1
∑

k=0

ωk ei2cθky

∣

∣

∣

∣

∣

� ǫω. (18)

We note that selecting the spatial discretization via (18) is nearly optimal as described in [8].

We form the tensor product grid in B

xω =
{

xω
mn

}Nω−1

m,n=0
=

{(

θm

2
,
θn

2

)}Nω−1

m,n=0

(19)

and assign the associated weights,

ωmn =
ωmωn

4
. (20)

The factors of 2 and 4 in (19) and (20) account for the size of the square B relative to the standard

square for quadratures [−1, 1] × [−1, 1]. Using these nodes and weights, we discretize (2) to

obtain the inner product

〈fω, gω〉ω =
Nω−1
∑

m,n=0

ωmnf
(

xω
mn

)

ḡ
(

xω
mn

)

, (21)
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where vectors fω and gω are function values on the grid xω. We now define analogues of (4)

and (5) for this unequally spaced case:

Fω,2c : C
N2

ω
ω → L2

D,2c,
(22)

f̂ ω(p) = Fω,2c[fω](p) =
Nω−1
∑

m,n=0

ωmnf
(

xω
mn

)

e−i2cp·xω
mn ,

where C
N2

ω
ω is considered with the inner product (21). Here, L2

D,2c is the space of square

integrable functions in the unit disk with the inner product induced by (3) rescaled to the unit

disk.

The adjoint transform is given by

F ∗
ω,2c : L2

D,2c → C
N2

ω
ω , F ∗

ω,2c[ĝ]mn =
c2

π2

∫

D

ĝ(p) ei2cp·xω
mn dp, (23)

where the grid xω
mn and the weights ωω

mn are given by (19) and (20) respectively. We then

consider Qω,2c = F ∗
ω,2cFω,2c,

Qω,2c : C
N2

ω
ω → C

N2
ω

ω , Qω,2c[fω]mn =
c2

π2

∫

D

f̂ ω(p) ei2cp·xω
mn dp,

where

(

Qω,2c

)

mn,m′n′ = K2c

(

θm − θm′

2
,
θn − θn′

2

)

ωm′n′ . (24)

In order to find the eigenvectors of Qω,2c, we first consider the symmetric eigenvalue problem

µω
j qω

j,mn =
Nω−1
∑

m′,n′=0

√
ωmnK2c

(

θm − θm′

2
,
θn − θn′

2

)

√
ωm′n′qω

j,m′n′ , (25)

where the real eigenvectors qω
j =

{

qω
j,mn

}Nω−1

m,n=0
are orthonormal with respect to the standard

inner product. The problem in (25) uses the matrix representation of the operator Qω,2c with

respect to the inner product (21). We then define vectors

ψω
j =

{

1
√

ωmn

qω
j,mn

}Nω−1

m,n=0

, (26)

which now solve the eigenvalue problem

Qω,2cψ
ω
j = µω

j ψω
j . (27)

We normalize the eigenvectors ψω
j with respect to the inner product (21),

〈

ψω
j , ψω

j ′

〉

ω
= δjj ′ . (28)

The spectrum of the problem in (27) is illustrated in figure 1. We note that, for an identical

matrix size, there are fewer eigenvalues close to one for problem in (27) than for problem

in (16). The difference is a consequence of removing the restriction of function periodicity

necessary to justify the equally spaced discretization in the spatial domain. In the limit, as the

number of points Nω → ∞, the difference between the two spectra in figure 1 disappears.

Further discussion of the approximation of (18) by using quadratures can be found in

[8, 27]. Given that the transforms are approximate by construction, we also apply them to

functions which are only approximately band-limited within the accuracy of the transform. In

what follows, we only study the discrete problems (16) and (27). We assume that ǫω and the
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bandlimit c have been selected and serve the purpose of providing an approximation to the

original problem (7) with accuracy no worse than ǫω.

We now turn to the discretization of the Fourier representation of the kernel K2c

maintaining accuracy at a threshold ǫ. We note that for the problem (27), it is natural to

consider ǫ � ǫω.

3. Discretization of the kernel

In this section, we construct Fourier grids that provide accurate quadratures for exponential

functions (with an appropriate measure) in the disk D. One of our goals is to define and invert the

discrete transforms on the linear span of eigenvectors corresponding to significant eigenvalues

in (16) and (27). For this reason, we need a Fourier grid to accurately approximate the kernel

of the space-limiting and band-limiting operator Q2c introduced in the previous section.

Toward this end, we discretize the integral representation (6) of the real-valued kernel

K2c. Using polar coordinates in (6) with p1 = 2cρ cos θ, p2 = 2cρ sin θ , and dp1 dp2 =
4c2ρ dρ dθ , we write the kernel as

K2c(x) =
c2

π2

∫ 2π

0

∫ 1

0

ei2cρ(x1 cos θ+x2 sin θ)ρ dρ dθ

=
c2

2π2

∫ 2π

0

(∫ 1

−1

ei2cρ(x1 cos θ+x2 sin θ)|ρ|dρ

)

dθ. (29)

Since x ∈ 2B, it follows that |x1 cos θ + x2 sin θ | �
√

2. Next, we discretize the radial integral

in (29) using the generalized Gaussian quadratures for integrating exponential functions with

measure |ρ|dρ. Following [8], we compute for given ǫ > 0 and bandlimit 2
√

2c > 0 the

nodes |ρk| < 1 and the weights wk > 0, k = 1, . . . ,M , where M = M(c, ǫ), such that for all

y ∈ [−1, 1]
∣

∣

∣

∣

∣

∫ 1

−1

ei2
√

2cρy |ρ|dρ −
M

∑

k=1

wk ei2
√

2cρky

∣

∣

∣

∣

∣

�
πǫ

c2
. (30)

Results in [8] indicate that the number of terms is proportional to

M ∼ c + A1 log c + A2 log ǫ−1, (31)

where A1 and A2 are small constants as is the case for integration with the measure dρ leading

to the nodes for PSWFs.

Due to the symmetry of the measure, the nodes in (30) are symmetric with respect to the

origin so that ρM−k+1 = −ρk and wM−k+1 = wk (see example 2 in section 4.3 in [8]). An

example of the quadrature nodes and weights is shown in figure 3.

Using (29) and (30), we obtain for x ∈ 2B,
∣

∣

∣

∣

∣

K2c(x) −
c2

2π2

∫ 2π

0

(

M
∑

k=1

wk ei2cρk(x1 cos θ+x2 sin θ)

)

dθ

∣

∣

∣

∣

∣

� ǫ. (32)

Discretization of (32) in the angle θ proceeds via one of the next two (consistent) approaches.

3.1. Uniform angular discretization

We use the trapezoidal rule and select the number of nodes, L, so that the discretization is

accurate for all radii ρk, k = 1, . . . ,M . The angular integral is then approximated by
∣

∣

∣

∣

∣

c2

2π2

∫ 2π

0

ei2cρk(x1 cos θ+x2 sin θ) dθ −
c2

Lπ

L−1
∑

l=0

ei2cρk(x1 cos θl+x2 sin θl)

∣

∣

∣

∣

∣

� ǫ, (33)
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Figure 3. Weights as a function of their radial nodes in (30) for M = 30, ǫ ≈ 9.75 × 10−6 and

c ≈ 23.324. As expected, the weights mimic the measure |ρ|dρ.

where θl = 2πl/L. In this case, it is sufficient to use L for the largest ρk (see below how to

select L). We obtain
∣

∣

∣

∣

∣

K2c(x) −
c2

Lπ

L−1
∑

l=0

M
∑

k=1

wk ei2cρk(x1 cos θl+x2 sin θl)

∣

∣

∣

∣

∣

� 2ǫ. (34)

Although the number of nodes in (34) is excessive on circles close to the origin in the Fourier

domain, in many applications it may be convenient to locate nodes on the disk diameters.

We note that (34) has roughly twice as many terms (depending on the parity of M) than

needed since (29) introduces a double coverage of the disk. When computing with this

formula, we use only the nodes with ρk � 0 and θl ∈ [0, 2π ].

3.2. Optimized angular discretization

We use the trapezoidal rule and select the number of nodes, Lk , so that the discretization is

accurate for each radius ρk, k = 1, . . . , M ,
∣

∣

∣

∣

∣

c2

2π2

∫ 2π

0

ei2cρk(x1 cos θ+x2 sin θ) dθ −
c2

Lkπ

Lk−1
∑

l=0

ei2cρk(x1 cos θkl+x2 sin θkl)

∣

∣

∣

∣

∣

� ǫ, (35)

where θkl = 2πl
Lk

. This has the effect of reducing the number of nodes as the radius ρk becomes

smaller. As a result, we obtain
∣

∣

∣

∣

∣

K2c(x) −
M

∑

k=1

c2wk

Lkπ

Lk−1
∑

l=0

ei2cρk(x1 cos θkl+x2 sin θkl)

∣

∣

∣

∣

∣

� 2ǫ. (36)

To find an appropriate number of nodes L or Lk to be used for the trapezoidal rule in (33)

or (35), we replace in (32) x1 = ‖x‖ cos φ and x2 = ‖x‖ sin φ, where ‖x‖ =
√

x2
1 + x2

2 , to

obtain

c2

2π2

∫ 2π

0

ei2cρk‖x‖ cos(θ−φ) dθ =
c2

π
J0(2cρk‖x‖), (37)
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and thus (32) is equivalent to
∣

∣

∣

∣

∣

K2c(x) −
c2

π

M
∑

k=1

wkJ0(2cρk‖x‖)

∣

∣

∣

∣

∣

� ǫ. (38)

Our goal is to approximate, for accuracy ǫ, the Bessel function J0(2cρk‖x‖) by a trigonometric

polynomial, separately for each ρk . Since x ∈ 2B, we approximate J0(b) for b = 2
√

2cρk

using

J0(b) =
1

2π

∫ 2π

0

eib cos ϕ dϕ =
1

2π

∫ 2π

0

cos(b cos ϕ) dϕ. (39)

We note that the integrand in (39) has the Fourier expansion (see e.g. [1, 9.1.44])

cos(b cos ϕ) = J0(b) + 2

∞
∑

j=1

(−1)jJ2j (b) cos 2jϕ, (40)

where the coefficients decay exponentially fast. In fact, using [1, 9.1.62] with b > 0, we have

|J2j (b)| �
b2j

(2j)!22j
. (41)

Thus, the series in (40) may be truncated to yield a trigonometric polynomial of degree L. Since

the trapezoidal rule with appropriately chosen nodes is exact for trigonometric polynomials,

we obtain
∣

∣

∣

∣

∣

J0(b) −
1

L

L−1
∑

l=0

cos

(

b cos
2πl

L

)

∣

∣

∣

∣

∣

� ǫ, (42)

as a discretization of (39) (see e.g. [12, Problem 6, section 7.4]). We note that rotating such

grids by an angle ϕ, i.e. 2πl/L + ϕ in (42), produces an equally valid quadrature, a property

we will use later. The number of nodes is chosen as small as possible in (33) or (35). In fact,

it is sufficient to choose

Lk �
e

√
2
cρk +

1

2
log ǫ−1. (43)

We summarize our discretization of (6) as

Proposition 3.1. The kernel

K2c(x) =
1

4π2

∫

D2c

eix·p dp (44)

may be approximated for any ǫ > 0 via
∣

∣

∣

∣

∣

K2c(x) −
∑

k,l

σk ei2cpkl ·x

∣

∣

∣

∣

∣

� ǫ, (45)

where x ∈ 2B = [−1, 1] × [−1, 1], pkl = ρk (cos θkl, sin θkl) , θkl are either 2πl
L

or 2πl
Lk

, and

σk denote the weights in either (34) or (36), σk = c2wk

Lπ
or σk = c2wk

Lkπ
. Parameters ρk, wk, L

and Lk are described in the previous discussion.

We note that the nodes pkl and the weights σk depend on the bandlimit 2c.

Remark 3.1. The number of nodes in proposition 3.1 depends only weakly on the accuracy ǫ

and may be estimated by the product M ·L, where M is given in (31) and L � e√
2
c + 1

2
log ǫ−1

as it follows from (43).
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4. Square to disk discrete Fourier transforms

We now introduce discrete transforms for (13), (14), (22) and (23), where we replace integrals

in the Fourier domain by discrete sums using the approximation in proposition 3.1.

Using the Fourier grid and the corresponding weights given in proposition 3.1, we

discretize (3) to obtain the inner product

〈f, g〉σ =
∑

kl

σkfkl ḡkl, (46)

where fkl, gkl are values of functions on that grid.

4.1. Equally spaced discretization in the spatial domain

We introduce a fully discrete version of transforms in (13) and (14),

Ge : C
N2 → C

N2
σ

σ ,
(47)

f ♯
e (pkl) = Ge[fe](pkl) =

1

N2

N−1
∑

m,n=0

fmn e−iπNpkl ·xe
mn

and

G∗
e : C

N2
σ

σ → C
N2

,
(48)

G∗
e [g]mn =

∑

kl

σkgkl eiπNpkl ·xe
mn ,

where the nodes pkl and the weights σk are given in proposition 3.1, and the spatial nodes xe
mn

are given by (10). Here Nσ is the total number of nodes pkl in the Fourier domain, and the

total number of nodes xe
mn in the spatial domain is N2. Note that

(G∗
eGe)mn,m′n′ =

1

N2

∑

kl

σk eiπNpkl ·(xe
mn−xe

m′n′ ). (49)

Let us denote the eigenvector of (16) by ψe
j =

{

ψe
mn

}N−1

m,n=0
, and define its image in the

Fourier domain

ψ
♯,e

j (pkl) = Ge

[

ψe
j

]

. (50)

We obtain
〈

ψ
♯,e

j , ψ
♯,e

j ′

〉

σ
=

〈

Ge

[

ψe
j

]

,Ge

[

ψe
j ′

]〉

σ
=

〈

G∗
eGe

[

ψe
j

]

, ψe
j ′

〉

. (51)

Proposition 4.1. For any ǫ > 0 using the grid in the Fourier domain described in

proposition 3.1 yields ‖G∗
eGe − F ∗

e Fe‖2 � ǫ, where ‖·‖2 is the norm induced by the inner

product (11).

Proof. From (15),

(F ∗
e Fe)mn,m′n′ =

1

N2
KπN

(

xe
mn − xe

m′n′

)

and using (49) with σk, pkl in proposition 3.1 for ǫ, we have that all entries of G∗
eGe − F ∗

e Fe

are bounded by ǫ/N2. Thus, the result follows. �

The eigenvectors ψ
♯,e

j are almost orthonormal. In fact,
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Proposition 4.2. For ǫ in proposition 3.1, we have
∣

∣

〈

ψ
♯,e

j , ψ
♯,e

j ′

〉

σ
− µe

jδjj ′
∣

∣ � ǫ,

for all j, j ′ = 0, . . . , N2 − 1.

Therefore, the images of eigenvectors
{

ψe
j

}N2−1

j=0
in the Fourier domain,

{

ψ
♯,e

j

}N2−1

j=0
, are

approximately orthogonal and we will use them as a basis.

Proof. The eigenvectors ψe
j of (16) are orthonormal (17). Using (50) and (51),

〈

ψ
♯,e

j , ψ
♯,e

j ′

〉

σ
− µe

jδjj ′ =
〈

G∗
eGeψ

e
j , ψ

e
j ′

〉

−
〈

F ∗
e Feψ

e
j , ψ

e
j ′

〉

=
〈(

G∗
eGe − F ∗

e Fe

)

ψe
j , ψ

e
j ′

〉

,

we arrive at
∣

∣

〈

ψ
♯,e

j , ψ
♯,e

j ′

〉

σ
− µe

jδjj ′
∣

∣ �
∥

∥G∗
eGe − F ∗

e Fe

∥

∥

2

∥

∥ψe
j

∥

∥

2

∥

∥ψe
j ′

∥

∥

2
� ǫ,

using proposition 4.1. �

4.2. Unequally spaced discretization in the spatial domain

Similarly, we introduce the discrete versions of (22) and (23) as

Gω,2c : C
N2

ω
ω → C

Nσ

σ
(52)

f ♯
ω(pkl) = Gω,2c[f](pkl) =

Nω−1
∑

m,n=0

ωmnf
(

xω
mn

)

e−i2cpkl ·xω
mn ,

and its adjoint transform

G∗
ω,2c : C

Nσ

σ → C
N2

ω
ω

G∗
ω[g]

(

xp
mn

)

=
∑

kl

σkg(pkl) ei2cpkl ·xω
mn , (53)

where pkl and σkl are given by proposition 3.1, Nσ is the total number of nodes pkl, x
p
mn is

given by (19) and ωmn is given by (20). The inner products 〈·〉ω and 〈·〉σ are defined in (21)

and (46) respectively. The matrix elements of G∗
ω,2cGω,2c are given by

(G∗
ω,2cGω,2c)mn,m′n′ =

∑

kl

σk ei2cpkl ·(xω
mn−xω

m′n′ )ωm′n′ . (54)

Let us denote by ψω
j =

{

ψω
j

(

xω
mn

)}Nω−1

m,n=0
an eigenvector of (27) and define by

ψ
♯,ω

j (pkl) = Gω,2c

[

ψω
j

]

(55)

its image in the Fourier domain.

We obtain
〈

ψ
♯,ω

j , ψ
♯,ω

j ′

〉

σ
=

〈

Gω,2c

[

ψω
j

]

,Gω,2c

[

ψω
j ′

]〉

σ
=

〈

G∗
ω,2cGω,2c

[

ψω
j

]

, ψω
j ′

〉

ω
.

Proposition 4.3. For any ǫ > 0, the grid in the Fourier domain described in proposition 3.1

yields ‖G∗
ω,2cGω,2c − F ∗

ω,2cFω,2c‖ω � ǫ
∑Nω−1

m,n=0 ωmn, where ‖ · ‖ω is the norm induced by the

inner product (21).

Proof. Let us consider the matrix A given by A = G∗
ω,2cGω,2c − F ∗

ω,2cFω,2c. This matrix is

Hermitian with respect to the inner product in (21), so that the induced matrix norm ‖A‖ω is

‖A‖ω = sup
‖f ‖ω=1

∣

∣〈Af, f 〉ω
∣

∣
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for vectors f ∈ C
N2

ω
ω . Using (24), (54) and proposition 3.1, we interpret the matrix A as

A = EW , where all entries emn,m′n′ of E are less than ǫ and W is the diagonal matrix with

positive entries ωmn. Thus, we have

|〈EWf, f 〉ω| =

∣

∣

∣

∣

∣

∑

mn

∑

m′n′

emn,m′n′ωm′n′fm′n′ωmnf̄mn

∣

∣

∣

∣

∣

� ǫ

∣

∣

∣

∣

∣

∑

mn

ωmnfmn

∣

∣

∣

∣

∣

2

,

and, using the Cauchy–Schwarz inequality,
∣

∣

∣

∣

∣

∑

mn

ω1/2
mn ω1/2

mn fmn

∣

∣

∣

∣

∣

2

�

(

∑

mn

ωmn

)

‖f ‖2
ω,

we obtain the result. �

Remark 4.1. From (18), with y = 0, we have
∣

∣

∑Nω−1
m=0 ωm − 2

∣

∣ � ǫω. Therefore, from

definition (20) it follows that the constant
∑Nω−1

m,n=0 ωmn is close to 1.

The eigenvectors ψ
♯,ω

j are almost orthonormal as is stated in

Proposition 4.4. For ǫ in proposition 3.1, we have

∣

∣

〈

ψ
♯,ω

j , ψ
♯,ω

j ′

〉

σ
− µω

j δjj ′
∣

∣ � ǫ

Nω−1
∑

m,n=0

ωmn,

for all j, j ′ = 0, . . . , N2
ω − 1.

Therefore, the images of eigenvectors
{

ψω
j

}N2
ω−1

j=0
in the Fourier domain,

{

ψ
♯,ω

j

}N2
ω−1

j=0
, are

approximately orthogonal and we will use them as a basis.

Proof. The eigenvectors ψω
j of (27) are orthonormal (28). Using (55) and (51),

〈

ψ
♯,ω

j , ψ
♯,ω

j ′

〉

σ
− µω

j δjj ′ =
〈

G∗
ω,2cGω,2cψ

ω
j , ψω

j ′

〉

−
〈

F ∗
ω,2cFω,2cψj , ψ

ω
j ′

〉

=
〈(

G∗
ω,2cGω,2c − F ∗

ω,2cFω,2c

)

ψω
j , ψω

j ′

〉

,

we arrive at

∣

∣

〈

ψ
♯,ω

j , ψ
♯,ω

j ′

〉

ω
− µω

j δjj ′
∣

∣ �
∥

∥G∗
ω,2cGω,2c − F ∗

ω,2cFω,2c

∥

∥

ω

∥

∥ψω
j

∥

∥

ω

∥

∥ψω
j ′

∥

∥

ω
� ǫ

N2
ω−1
∑

m,n=0

ωmn,

using proposition 4.3. �

5. Inverse discrete transform

Since the discrete transforms Ge and Gω,2c in (47) and (52) are not unitary, inverting them

requires, in general, solving a system of linear equations which, due to ill conditioning,

typically requires additional constraints or modifications (see remark 5.2). However, there

are important cases where solving such a system may be avoided. In particular, if a function

is sufficiently oversampled so that (up to specified accuracy) the essential support of f̂

is contained within D2c, the inversion may be accomplished by simply using the adjoint

transforms in (48) and (53).

It is important to point out differences between the transforms Ge and Gω,2c (or Fe and

Fω,2c). The intended use of these transforms assumes different conditions when we apply

them to a function in the spatial domain B. For the transform Ge, we assume that (within
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the required precision) the function is smooth and periodic in the square B. This is similar

to the requirements on a function for using the DFT to approximate its Fourier transform.

In this case, we require the function to be approximately periodic and sampled with at least

the Nyquist rate. These conditions assure that trigonometric interpolation may be performed

without the artifact of Gibbs phenomenon. Since most signals are not periodic, they are

periodized by applying a window; an extensive literature is devoted to constructing algorithms

for this purpose. Effectively, the only difference between the discrete transform Ge and the

DFT is the grid used in the Fourier domain. If a smooth function is periodic in B and is

oversampled above the Nyquist rate by a factor of at least
√

2, then its support in the Fourier

domain will be (essentially) within the disk D2c. As a result, to invert Ge it is sufficient to

apply the adjoint transform (48).

On the other hand, for the transform Gω,2c (or Fω,2c) we no longer require the smooth

function to be periodic in B. However, removing the periodicity constraint requires the

introduction of the unequally spaced grid in the spatial domain (19). As one would expect, the

number of grid points exceeds the Nyquist sampling rate for periodic functions, but the extra

factor (described in [8, 9] for functions on an interval) approaches 1 as the number of points

becomes large. We note that by selecting the classical, polynomial-based quadrature nodes,

the oversampling factor asymptotically approaches π/2.

If a smooth function in B is not periodic, its Fourier transform f̂ (p1, p2) in (4) decays

asymptotically as 1
/
√

p2
1 + p2

2 and, thus, the support of f̂ is not limited to the disk D2c. Yet,

as we describe below, it is possible to recover the function f if it belongs (within the desired

precision) to a subspace generated by eigenvectors in (27) with eigenvalues above a selected

threshold. The algorithm exploits the structure of the spectrum of Qω,2c in (27), namely, the

fact that most eigenvalues concentrate near one or zero, leaving only O(log Nω) eigenvalues in

the decay region. In our inversion algorithm, we avoid solving a linear system by computing in

advance the O(log Nω) eigenvectors corresponding to the decay region. With this provision,

the algorithm requires only O
(

N2
ω log Nω

)

operations.

We start by expanding the function values f with respect to the eigenvectors ψω
j in (27),

f =
N2

ω−1
∑

j=0

〈

f, ψω
j

〉

ω
ψω

j . (56)

In order to describe the inversion algorithm for a given accuracy δ > 0, let us split

the spectrum of Qω,2c into three parts and define the corresponding sets of indices as

Jhead =
{

j ∈ N
∣

∣µω
j > 1−δ

}

, Jdecay =
{

j ∈ N
∣

∣1−δ � µω
j � δ

}

and Jtail =
{

j ∈ N
∣

∣µω
j < δ

}

.

We assume that the vector f has a small projection on the eigenvectors of the tail region,




∑

j∈Jtail

∣

∣

〈

f, ψω
j

〉

ω

∣

∣

2(
1 − µω

j

)2





1/2

� δ‖f‖ω. (57)

Since µω
j � δ for j ∈ Jtail, condition (57) effectively requires that the tail portion of the

function has a small relative norm. Since for small µω
j the essential support of the Fourier

transform of ψω
j is outside the disk D2c, it is a natural condition to impose.

Given f♯ = Gω,2c[f], where Gω,2c is the forward transform (52), we would like to recover

f under the assumption (57). Let us describe the algorithm where we assume that the functions

ψω
j and ψ

♯,ω

j for indices j ∈ Jdecay have been computed in advance.

(i) We start by computing projections

αj =
〈

f♯, ψ
♯,ω

j

〉

σ
, (58)

for indices in Jdecay. The cost of this computation is O(Nσ log Nω).
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(ii) Given the projection coefficients αj and the eigenvalues µω
j , we form

d =
∑

j∈J decay

αj

µω
j

ψω
j

and

d♯ =
∑

j∈J decay

αj

µω
j

ψ
♯,ω

j .

This requires O
(

N2
ω log Nω

)

and O(Nσ log Nω) operations. We note that Gω,2c(d) = d♯.

(iii) As an approximation to f, we compute

frecon = G∗
ω,2c[f♯ − d♯] + d. (59)

The application of G∗
ω,2c requires O(Nσ log Nσ ) + O

(

N2
ω log Nω

)

operations via the

USFFT. Note that Nσ is proportional to N2
ω.

To show why frecon in (59) is a reasonable approximation to f, we split f in (56) as

f = fhead + fdecay + ftail with indices in corresponding sets, Jhead, Jdecay and Jtail. We note

that G∗
ω acts as an approximate inverse on fhead since the eigenvalues in Jhead are close to 1 and

the contribution from ftail is negligible due to the assumption (57). The remaining contribution

fdecay is computed explicitly. We quantify this statement in

Theorem 5.1. For a given δ > 0 and ǫ > 0 in proposition 3.1, consider a vector f satisfying

(57). Then, given f♯ = Gω[f], we compute frecon via (59) as an approximation to f so that

‖f − frecon‖ω � (2δ + ǫCωCµ + 2ǫCω + ǫ2C2
ωC̃µ)‖f‖ω, (60)

where

Cµ = Cµ(δ) =





∑

j∈J decay

(

1 − µω
j

µω
j

)2




1/2

, C̃µ = C̃µ(δ) =





∑

j∈J decay

(

1

µω
j

)2




1/2

and

Cω =
Nω−1
∑

m,n=0

ωmn.

The proof of this theorem is presented in appendix A.3.

Remark 5.1. The same result and estimates hold for the transform Ge. We also note that

in both cases, if the projection on the eigenvectors with indices in Jdecay are negligible, then

these algorithms amount to the application of the adjoint transform.

For selected δ, in our algorithm we choose ǫ ≈ δ2. Recall that ǫ only affects the choice of

the Fourier grid via proposition 3.1. The additional cost to achieve greater accuracy, e.g. from

ǫ to ǫ2, is insignificant since we only need to add a small number of nodes, O(log ǫ−1) (see

remark 3.1). We have both Cµ(δ) ≈ 1/δ and C̃µ(δ) ≈ 1/δ, so that the estimate (60) yields

‖f − frecon‖ω

‖f‖ω

= O(δ). (61)

Remark 5.2. In the case of non-unitary transform pairs G and G∗ (e.g., Gω,2c and G∗
ω,2c

or Ge and G∗
e ) the usual approach to find f given g = Gf is to form the normal system

G∗Gf = G∗g. Since such a linear system is ill conditioned (see figure 1), in order to apply an
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Figure 4. Rotation of function (62) by φ = π/5.

iterative procedure for finding f , e.g. the conjugate gradient method, a typical modification is

to solve (G∗G + δI )f = G∗g, with some δ. Although such an approach is applicable here, it

only offers indirect control over the accuracy and is a rather slow algorithm since the number

of iterations depends on the condition number of the normal system (of order O(δ−1)). On the

other hand, the algorithm of this section is of the same complexity as the transforms G and G∗

and does not require solving a linear system.

Remark 5.3. In contrast to our construction, Slepian’s disk to disk mapping [23] has

O(Nω log Nω) eigenvalues in the decay region (out of a total of N2
ω). The reason for this large

proportion is that variables separate and, for a fixed angular mode, each radial component

contributes O(log Nω) eigenvalues to the decay region [22]. Thus, the inversion algorithm of

this section is not available in the original Slepian’s setup.

6. Examples

6.1. Rotation of smooth space-limited signals

Using the grid in proposition 3.1 yields a simple algorithm for rotating signals by an arbitrary

angle, provided that these signals are effectively periodic in space and band-limited in the

Fourier domain with sufficient accuracy (see section 5). In this case, we may use the adjoint

transform G∗
e in lieu of the inverse. The algorithm consists of applying Ge in (47), rotating the

grid in proposition 3.1 by the selected angle φ, and applying G∗
e in (48) with the rotated grid.

We demonstrate this algorithm using

f (x1, x2) = e−σ1(x1−τ)2

e−σ2x
2
2 cos(kx1) + e−σ1(x1+τ)2

e−σ2x
2
2 cos(kx2), (62)

where k = 40π, σ1 = 240, σ2 = 100 and τ = 1/7. We are given the samples

fmn = f
(

− 1
2

+ m
N

,− 1
2

+ n
N

)

with m, n = 0, . . . , N − 1 and N = 110. The result of

rotating by an angle φ = π/5 is illustrated in figure 4. In this example, the grid in the Fourier

domain was constructed with ǫ ≈ 6.38 × 10−12 in proposition 3.1. The absolute deviation of

the result of rotation (from the exact values) is 1.33 × 10−11. We note that this example also

illustrates the use of the adjoint as an inverse (rotation by φ = 0) given that the function f is
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well localized in square B and is oversampled so that its Fourier transform is well localized in

D2c. We note that this function projects on the eigenvectors of (16) with the eigenvalues close

to 1.

6.2. Fourier transform of smooth, non-periodic functions

Although the transform Gω,2c may appear similar to Ge, it is quite different in that it allows us

to work with smooth, non-periodic functions in the square B. Since the Fourier coefficients of

such functions decay slowly, we use the analysis introduced by Slepian et al [23–26] and the

transforms in (52) and (53) providing a discrete version for such an approach. The following

example uses the approach described in section 5 and shows that we can work with smooth,

non-periodic functions, something that is not directly possible by using the ordinary DFT.

We consider a function

f (x1, x2) =
{

ei(k1x1+k2x2)

0

(x1, x2) ∈ B

otherwise
(63)

with k1 = 11π, k2 = 3π and its Fourier transform

f̂ (ξ1, ξ2) =
4 sin

(

k1

2
− πξ1

)

sin
(

k2

2
− πξ2

)

(k1 − 2πξ1)(k2 − 2πξ2)
(64)

on the grid pkl in proposition 3.1 with c = 12.5 and ǫ ≈ 4.9 × 10−6. Given the values of the

function (64), f̂ = {f̂ (pkl)}k,l , we reconstruct the function f in (63) on the grid given in (19)

with Nω = 60. The accuracy of such a reconstruction is estimated in theorem 5.1. Choosing

δ ≈ 3.16 × 10−6, we compute




∑

j∈Jtail

∣

∣

〈

f, ψω
j

〉

ω

∣

∣

2(
1 − µω

j

)2





1/2

≈ 1.25 × 10−4.

We then use the inversion algorithm described in section 5 and compare the result with exact

values of f in (63). We obtain

‖frecon − f‖ω ≈ 1.25 × 10−4,

and the reconstruction and its error are illustrated in figure 5. We note that the reconstructed

component on the subspace corresponding to the decay region is mostly supported near the

boundary. For comparison, the accuracy of inverting using only the adjoint transform is

‖G∗
ω,2c f̂ − f‖ω ≈ 6.48 × 10−2.

7. Double integrals over spheres

Although grids in proposition 3.1 are efficient and useful, it is often desirable to build grids

with emphasis on other properties. In what follows, we construct grids (and associated fast

algorithms) suggested by integrals arising in linearized scattering problems. For a function in

R
d , band-limited in a ball of radius 2c,

f2c(x) =
1

(2π)d

∫

D2c

f̂ 2c(p) eip·x dp, (65)

it has been shown in [5, 6, 10, 13] that it may be written as a double integral over spheres,

f2c(x) =
cd

2(d+2)/2πd�d−1

∫

|µ|=1

∫

|ν|=1

f̂ 2c(cµ − cν) ei(cµ−cν)·xw(µ · ν) dµ dν, (66)
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(a) (b)

(c) (d)

Figure 5. (a) The real part of the function f in (63) and the two components of its reconstruction

via algorithm in section 5, where (c) is G∗
ω,2c[f♯ − d♯] and (d) is d in (59). The contribution

from d is mostly near the boundary and the sum of (c) and (d) yields (a) with accuracy

‖frecon − f‖ω ≈ 1.25 × 10−4. The spatial distribution of the error is shown in (b). Note that

maximum error occurs in the corners.

where µ and ν are unit vectors in R
d ,

w(µ · ν) =
(1 − µ · ν)1/2

(1 + µ · ν)(d−3)/2
,

and �d = 2πd/2/Ŵ(d/2) is the surface area of the unit sphere in R
d . In linearized inverse

problems, the scattering amplitude is measured as f̂ 2c(cµ − cν), where the unit vectors

represent the incident and scattering directions (see e.g. [5, 6, 10, 13]). The integral (66)

follows from a general relation for iterated spherical means (see [5, 16]) and has been of

practical interest in dimensions d = 2, 3.

In this paper we use (66) for d = 2,

f2c(x) =
c2

8π2

∫

|µ|=1

∫

|ν|=1

f̂ 2c(cµ − cν) ei(cµ−cν)·x[1 − (µ · ν)2]1/2 dµ dν, (67)
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Figure 6. An equally spaced discretization in angles α and β for Nα = Nβ = 37. Note that the

points align themselves on diameters although they are constructed using rotating circles.

where x = (x1, x2). Writing unit vectors µ = (cos α, sin α) and ν = (cos β, sin β), we have

f2c(x) =
c2

8π2

∫ 2π

0

∫ 2π

0

f̃ (α, β) eic(x1[cos(α)−cos(β)]+x2[sin(α)−sin(β)])| sin(α − β)| dα dβ, (68)

where f̃ (α, β) = f̂ 2c(c(cos α − cos β), c(sin α − sin β)). The function f̃ (α, β) is a smooth,

periodic function in the variables α and β, thus permitting accurate trigonometric interpolation,

as described below. Due to the range of these variables, the disk D2c is covered twice.

Using an equally spaced grid in angles α and β to discretize f̃ (α, β), we set

αl =
2πl

Nα

, βl′ =
2πl′

Nβ

(69)

and

ull′ =
cos αl − cos βl′

2
, vll′ =

sin αl − sin βl′

2
, (70)

so that |ull′ | � 1, |vll′ | � 1 and

f̃ ll′ = f̂ 2c(2cull′ , 2cvll′), (71)

where l = 0, . . . , Nα − 1 and l′ = 0, . . . , Nβ − 1. This discretization is illustrated in figure 6

where, somewhat unexpectedly, the grid points line up on the diameters of the disk although

they were generated using (70). This is further illustrated in figure 7.

Let us choose L = Nα = Nβ so that

αl =
2πl

L
, βl′ =

2πl′

L
, l, l′ = 0, . . . , L − 1. (72)

Then, the Fourier grid points can be written as

(ull′ , vll′) = sin
αl − βl′

2

(

− sin
αl + βl′

2
, cos

αl + βl′

2

)

, (73)
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(a) (b)

Figure 7. Grids with even Nα = Nβ = 36 (a) and odd Nα = Nβ = 37 (b) number of points in the

subdivision.

where

αl − βl′

2
=

π(l − l′)

L
and

αl + βl′

2
=

π(l + l′)

L
.

For each fixed angle αl − βl′ , the grid points are located on a concentric circle with

signed radius sin((αl − βl′)/2). For each fixed angle αl + βl′ , for example αl + βl′ = 0

and thus l′ = −l, l − l′ = 2l, the signed distance from zero to the grid points is

sin 1
2
(αl − βl′) = sin(2πl/L). As l changes from 0 to L − 1 and L is odd, we generate

all possible grid points for each fixed angle. These grid points along the diameters are

illustrated in figure 6. We note that if L is even, then in our description in (73) some of the

points coincide thus reducing the overall number of gridpoints (see below). Examples of both

grids, for L even or odd, are plotted in figure 7.

By construction, the grids (72) with Nα = Nβ = L are invariant under discrete rotation

with the step size of the discretization. If we define

Crot
αl

=
{

1

2
(cos αl − cos βl′ , sin αl − sin βl′)

}

l′=0,...L−1

, (74)

then, for each l, the grid points Crot
αl

lie on a circle centered at 1
2
(cos αl, sin αl) with radius 1/2,

as may be seen in figure 6.

Let us count the number of nodes in such grids for the case Nα = Nβ = L. If L is odd,

then it follows from (73) that the grid points are located on concentric circles with signed

distances given by

rk = cos

(

π

2

2k + 1

L

)

, k = 0, 1, . . . , L − 1. (75)

We note that on each diameter the grid points described by (75) are (remarkably) the Chebyshev

nodes on the interval [−1, 1], zeros of TL(x) = 0. Thus, we have (L−1)/2 concentric circles,

each containing 2L grid points plus a single point at the origin. Therefore, we have a total of

L2 − L + 1 grid points.



2080 G Beylkin et al

If L is even, the grid points are located on concentric circles with signed distances given

by

rk = cos

(

π
k

L

)

, k = 0, 1, . . . , L − 1, (76)

which (with the exception of r0 = 1) are zeros of the Chebyshev polynomial of the second

kind UL−1(x) = 0. Counting the number of grid points, we have L/2 concentric circles each

containing L grid points and a single point at the origin, for a total of L2/2 + 1 grid points. We

note that the (almost) factor of two reduction of the number of points is due to the removal of

double coverage in our description in (73); see figure 7.

We observe that using even L allows us to construct embedded grids of various resolutions

as illustrated in figure 9. In this case, it is proper to consider such grids in space (see

section 8) rather than Fourier domain.

7.1. Interpolation from the rotating grid

In contrast with the grids described in proposition 3.1, the grid in (72) does not directly lead to

a high accuracy quadrature for integration of exponentials. However, it is an excellent grid for

trigonometric interpolation along the circles Crot
αl

, l = 0, . . . , L − 1, since the nodes on these

circles are equally spaced. Therefore, using trigonometric interpolation, we first compute

values of the function at points of intersection of the circles Crot
αl

, l = 0, . . . , L − 1, and the

concentric circles in proposition 3.1. We will explain how to choose L below.

The grids in proposition 3.1 lie on concentric circles Cρk
with radii ρk obtained in (30),

namely,

Cρk
= ρk {cos θ, sin θ}θ∈[0,2π) ,

where ρk > 0, k = ⌊(M + 1)/2⌋+1, . . . ,M , and ⌊⌋ denotes the integer part. These concentric

circles intersect the circle Crot
αl

at points ρk(cos γkl, sin γkl), where the angles γkl may be found

by solving

cos(γkl − αl) = ρk (77)

for each l = 0, . . . , L−1, with αl given by (69). For each fixed k and l there are two solutions

of (77), γkl and 2αl −γkl , as illustrated in figure 8(a). All intersection points γkl for all radii ρk

and angles αl are displayed in figure 8(b). We use only half of these points (on each concentric

circle with radius ρk) leading to the grid in figure 8(c). This grid is one of the grids described

in proposition 3.1. Indeed, these nodes are equally spaced in angle and their number is the

same as the number of nodes in (34). This is illustrated in figure 8(d). The angular shift of

the nodes does not impact the accuracy of the quadrature since these nodes simply provide an

alternative discretization of the integral in proposition 3.1.

To interpolate on each circle Crot
αl

for fixed αl , let us start with a set of values f̂ l′ = f̂ (βl′)

corresponding to the angles βl′ = 2πl′

L
for l′ = 0, . . . , L − 1 and compute the coefficients

fn =
1

L

L−1
∑

l′=0

f̂ l′ eiβl′n, (78)

where n = 0, . . . , L − 1. We then use the coefficients fn for the trigonometric interpolation

on the circle Crot
αl

. We compute values ˜̂f (β̃k) for the angles β̃k = γkl that enumerate only the

points that are used as quadrature nodes (see figure 8(c)). As explained above, the number of

such nodes is ⌊(M + 1)/2⌋ + 1 and we have

˜̂f (β̃k) =
L−1
∑

n=0

fn e−inβ̃k (79)
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(a) (b)

(c) (d)

Figure 8. (a) Intersecting circles solving (77): a concentric circle Cρ and a circle Crot
α (indices are

not displayed). (b) All intersections as solutions of (77) for L = 20. (c) Intersection points in (b)

used as quadrature nodes. (d) A comparison with a grid equivalent to (c) vis-a-vis proposition 3.1

with nodes lying on diameters.

for k = 0, . . . , ⌊(M + 1)/2⌋. We use the FFT to compute (78) and the USFFT to compute

(79) (see appendix A.2). We repeat this computation for each circle Crot
αl

; thus the total cost is

O(L2 log L) operations.

For accurate trigonometric interpolation, we choose the number of nodes L to be the same

(or larger) as the number of nodes on the concentric circle Cρk
with the largest radius ρk .

Recall that the number of nodes is chosen in section 3 using (41) as the criterion; the selection

of L follows the same derivation. In many cases, it is preferable to select even L as this reduces

the overall number of nodes.

Our main point is that due to the trigonometric interpolation described above, the rotating

grids of this section may be used in lieu of the near optimal grids of proposition 3.1. We point

out additional applications of such rotating grids in section 8.
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7.2. Example of interpolation from the rotating grid

Let us illustrate the accuracy of the trigonometric interpolation algorithm described in

section 7.1. We transform a function from the spatial domain to the rotating grid in the

Fourier domain given by (70). Next, we interpolate to the grid described in section 7.1. We

then compare the resulting values in the Fourier domain with those computed directly from

the function as well as with those computed analytically.

We use the function f in (63) from section 6.2. We set ǫ ≈ 2.02 × 10−15 and Nω = 60

resulting in c = 10. Let (ull′ , vll′) be the rotating grid in (70) for l, l′ = 0, . . . , L − 1, where

L is given by (34) for a given accuracy and bandlimit. In this example, L = 148 and is the

same as the number of grid points on the concentric circle of the largest radius in section 7.1.

We compute the Fourier transform on the rotating grid ĝrot =
{

Gω,2c[fω](ull′ , vll′)
}

l,l′=0,...,L−1
,

where fω are the samples of f on the unequally spaced grid (19). We use the interpolation

procedure to compute the values on the grid described in section 7.1 and denote the result as
˜̂grot. We also compute directly the values on that grid

ĝ =
{

Gω,2c[fω](γkl)
}

k=0,...,⌊(M+1)/2⌋
l=0,...,L−1

.

The Fourier transform of the function is given in (64) and we denote by f̂ its exact values on

the same grid. We report the resulting errors:

• ‖ ˜̂grot − ĝ‖∞ ≈ 2.07 × 10−14,

• ‖ ˜̂grot − f̂ ‖∞ ≈ 1.86 × 10−14, and

• ‖ĝ − f̂ ‖∞ ≈ 8.88 × 10−15, which we present for comparison.

This example demonstrates that the rotating grid may be used to achieve the same accuracy as

the near optimal grid of proposition 3.1, whereas the grid points have the special property of

being invariant under discrete rotations induced by the rotating circles.

8. Conclusion and remarks

In this paper, we have introduced grids and fast discrete transforms associated with functions

band-limited in the disk. The grid described in section 3 provides accurate quadratures for

band-limited functions, while the grid described in section 7 has other remarkable properties;

we provide a fast algorithm to interpolate between them. The fast discrete transforms in

section 4 are analogous to the DFT and their numerical implementation has the same

complexity as the FFT. We also provide a fast inverse discrete transform in section 5 which

utilizes properties of the eigenvectors and eigenvalues of the band-limiting and space-limiting

operator constructed for our problem. We conclude with some remarks on applications and

further work.

• The approach of this paper allows us to efficiently apply radial kernels in the Fourier

domain. The necessary modification to accommodate a radial kernel with the Fourier

transform K̂
(
√

p2
1 + p2

2

)

(effectively band-limited in the disk D2c) is to compute

quadratures for the integral with the measure K̂(r)|r|dr instead of the measure |r|dr

used in this paper. It turns out that we do not need to require K̂ to be positive and the

approach in [8] allows us to construct an approximation

∣

∣

∣

∣

∣

∫ 1

−1

K̂(r)|r|eicrx dr −
M

∑

m=1

wm eicθmx

∣

∣

∣

∣

∣

� ǫ.
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Figure 9. Embedded grids with Nα = Nβ = 32 and Nα = Nβ = 16.

Application of a convolution kernel is then obtained via a discrete transform that uses

nodes generated by this approximate quadrature instead of the one in the paper. The

details of such algorithms will be described elsewhere.

We note that the approach in [23] to construct the eigenfunctions, the PSWFs, relies

on a commuting property of the relevant integral and differential operators. Such an

approach is not available for a general measure K̂(r)|r|dr .

• The generalization of our results to dimension d = 3 requires quadratures for the measure

r2 dr in the radial direction (easily handled by the approach in [8]) and an appropriate

discretization of the sphere. The usual discretization of the sphere (via the equally spaced

and the Legendre nodes), although workable, is not necessarily optimal or results in a grid

with good invariant properties. For this reason, we plan to consider this case separately.

• Algorithms of this paper are applicable to problems of non-destructive evaluation,

including x-ray tomography, MRI, electron microscopy and diffraction tomography. For

MRI problems, our approach should result in a reduction of the data collection area in the

Fourier domain as well as new algorithms for collecting data using the rotating grids of

section 7. Since in any of such applications one needs to consider many specific details,

we plan to address such problems separately.

• Although in this paper we consider disks in the Fourier domain, the same approach may

be used to produce a grid for a disk in the spatial domain. We note that in such a case, we

may use the multiresolution embedding of grids developed in section 7. This embedding

is illustrated in figure 9. Such grids may be useful for discretizing and solving problems

with, for example, cylindrical geometry.

• The polar transform in [3] has been used for constructing directional bases, the so-called

curvelets [11]. Since our approach allows us to control accuracy, it is appropriate for

constructing directional bases similar to constructions in [11], where we can incorporate

additional useful features using Slepian’s approach on radial wedges. We plan to develop

such applications.

• The integral in (66) is not the most general formula of its kind (see [10]). In the general

case, f̂ (k1ν − k2µ) has support in the annulus with the outer radius k1 + k2 and the

inner radius k1 − k2. It is also possible to extend (66) by integrating over the bandlimit
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parameter, in addition to integrating over the two unit spheres [10]. We note that such

generalizations may also serve as a starting point for useful discretizations.

• Nonlinear inversion algorithms for the Fourier transform that rely on the structure of the

spectrum (see figure 1) are feasible within our overall approach and may provide more

accurate results.
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Appendix A

A.1. Spectral properties of the operator Q2c

In this appendix, we briefly discuss properties of the spectrum of the operator Q2c. We show

Proposition A.1. For any c > 0, all eigenvalues µj of the operator Q2c belong to the open

interval (0, 1).

Proof. To avoid carrying constants, in this proof we use the Fourier transform defined as a

unitary operator,

ĝ(p) =
∫

R
2

g(x) e−2π ix·p dx.

Consider g = Q2cf , where the support of f is limited to the square B. The function g is

naturally extended outside B to R
2 by simply considering the integral defining g in R

2. Note

that such an extension cannot be identically zero outside B due to the compact support of its

Fourier transform. Thus, we have

‖Q2cf ‖B < ‖g‖L2(R2) = ‖ĝ‖L2(R2) = ‖f̂ ‖Dc/π
� ‖f̂ ‖L2(R2) = ‖f ‖B,

where we used the natural extension of the function f to R
2. �

Let us show that the null space of Q2c contains only zero, i.e. given that Q2cf = 0, we

need to show that f = 0 in B. We define for x ∈ R
2,

g(x) =
∫

B

K2c(x − y)f (y) dy =
∫

R
2

K2c(x − y)fB(y) dy,

where fB is zero outside the square B. Since the Fourier transform of the kernel is the

characteristic function of a disk, we have

ĝ(p) = 1Dc/π
(p)f̂ B(p),

implying that ĝ(p) = 0 outside the disk in the Fourier domain. We have

g(x) =
∫

Dc/π

e2π ip·xĝ(p) dp

and consider G(r) = g(r x̂), where x = r x̂, x̂ is a unit vector and r ∈ R. We note that due

to the compact support of ĝ(p),G(r) may be extended to an entire function of a complex

variable, G(z). Since Q2cf = 0, the function G(z) is zero for r x̂ ∈ B and, therefore, vanishes

identically as an entire function. Since x̂ is an arbitrary unit vector, we conclude that g(x) ≡ 0
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in R
2. This, in turn, implies that ĝ(p) ≡ 0 and, thus, f̂ B(p) is zero inside the disk Dc/π . Since

fB is compactly supported, by repeating the argument above, we conclude that f̂ B(p) ≡ 0 in

the Fourier domain and, finally, fB ≡ 0.

We also have

Proposition A.2. For any c, the estimate ‖Q2c‖B � c2/π holds.

We note that since we select c = πN/2, we have c >
√

π for N � 2 and the norm bound

‖Q2c‖B < 1 is sharper.

Finally, in this paper we use that, asymptotically, most eigenvalues of Q2c appear to

concentrate near one or zero, leaving only O(log Nω) eigenvalues in the transition region

Jdecay (see section 5). At the moment, we do not have a complete proof of this property;

however, we have strong numerical evidence for it. We also note that this fact has been shown

for PSWFs on an interval [23–26].

A.2. The unequally spaced fast Fourier transform

For speed the transforms of this paper rely on the USFFT developed in [7, 14] (also see

[19, 20] and references therein). The USFFT evaluates trigonometric sums

hn =
Np
∑

l=1

gl e±2π iNxlξn , n = 1, . . . Nf ,

with accuracy ǫ and complexity (C1Np + C2Nf ) log ǫ−1 + C3N log N . In dimension d = 2,

these sums become

hn =
Np
∑

l=1

gl e±2π i(Nxxlξn+Nyylηn), n = 1, . . . Nf ,

and the algorithm has complexity (C̃1Np + C̃2Nf ) log ǫ−1 + C̃3NxNy(log Nx + log Ny), where

Np is the number of points, Nf is the number of frequencies, c = Nπ/2, cx = Nxπ/2 and

cy = Nyπ/2 are the corresponding bandlimits. Here we require that xl, yl, ξn and ηn are inside

the interval [−1/2, 1/2] but are otherwise arbitrary. This formulation is the most general.

The important special cases occur if

(i) frequencies are equally spaced, N = Nf , and ξn = − 1
2

+n/N , with n = 0, . . . , N −1, or

(ii) points are equally spaced, N = Np, and xl = −1/2 + l/N , with l = 0, . . . , N − 1.

We note that although not explicitly described, the transform in the most general formulation

is easily implied from algorithms described in [7]. The USFFT is also available in dimensions

d > 2.

As stated above, the USFFT has the same complexity as the FFT; its speed differs from that

of the FFT essentially by a factor (penalty factor below). For this reason it is useful to measure

the speed of the USFFT in the units of the FFT on the same platform, thus providing some

level of hardware-independent comparison. It should be noted that any reasonable algorithm

based on local interpolation has the same complexity as the USFFT or, for this matter, the

FFT (see e.g. [21]). The only difference between such algorithms is the penalty factor as a

function of the desired accuracy. Unlike their predecessors, the algorithms developed in [7,

14] have controllable accuracy and a small penalty factor. The tight error estimates obtained

in [7] make it possible to use these algorithms as ‘off-the-shelf’ tools (also see [19, 20]). We

refer the reader to [7, 14, 19, 20] and references therein for timing information.
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To give the reader a general idea of the speed, we note that the penalty factor (as compared

to the FFT) in dimension 1 is roughly 2.5−8 and in dimension 2 is between 6 and 30 depending

on accuracy requirements, type of the transform and implementation. There is an absolute

lower limit on the penalty factor since all algorithms of this type use the FFT with oversampled

data as a step of the computation. The oversampling factor is typically 4 (or 2 for the special

cases) since these are more convenient factors to be used in conjunction with the FFT. Thus,

the ultimate limit in performance has a penalty factor equal to the oversampling factor in

dimension d = 1 and its square in dimension d = 2. We note that for low accuracies these

oversampling factors can be made smaller and, thus, lead to faster algorithms than indicated

here. We also note that except for separating the initialization step, we did not so far address

a possible acceleration of the USFFT algorithms due to the specific grids employed in this

paper.

A.3. Proof of theorem 5.1.

For brevity of notation, we drop the matrices dependence on c and write Fω = Fω,2c and

Gω = Gω,2c.

We first rewrite (59) as

frecon = G∗
ωGω[f − d] + d

and obtain

f − frecon = (I − G∗
ωGω)[f − d]. (A.1)

Let us estimate ‖(I − G∗
ωGω)g‖ω for an arbitrary vector g =

∑

j

〈

g, ψω
j

〉

ω
ψω

j . Recalling

Qω = F ∗
ωFω and (27), we write

(I − G∗
ωGω)g = (I − F ∗

ωFω)g + (F ∗
ωFω − G∗

ωGω)g

=
∑

j

〈

g, ψω
j

〉

ω

(

1 − µω
j

)

ψω
j + (F ∗

ωFω − G∗
ωGω)g.

By proposition 4.3 and the orthonormality of ψω
j , we have

‖(I − G∗
ωGω)g‖ω �





∑

j

∣

∣

〈

g, ψω
j

〉

ω

∣

∣

2(
1 − µω

j

)2





1/2

+ ǫCω‖g‖ω. (A.2)

Since f − d = (fdecay − d) + fhead + ftail, we use (A.2) to estimate each of the three terms

separately.

For the first term, we start with

〈

fdecay − d, ψω
j

〉

ω
=

〈

f, ψω
j

〉

ω
−

1

µω
j

〈

f♯, ψ
♯,ω

j

〉

σ

=
1

µω
j

〈

f, F ∗
ωFωψω

j

〉

ω
−

1

µω
j

〈

f,G∗
ωGωψω

j

〉

ω

=
1

µω
j

〈

f, (F ∗
ωFω − G∗

ωGω)ψω
j

〉

ω
, (A.3)

where j ∈ Jdecay and we used (27).

Note that, for any vector f, the Cauchy–Schwarz inequality, proposition 4.3 and the

orthonormality of ψω
j imply the estimate

∣

∣

〈

f, (F ∗
ωFω − G∗

ωGω)ψω
j

〉

ω

∣

∣ � ǫCω‖f‖ω. (A.4)
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Using (A.4) for (A.3) yields

∣

∣

〈

fdecay − d, ψω
j

〉

ω

∣

∣ �
ǫCω‖f‖ω

µω
j

,

and thus, using our definition of Cµ,




∑

j∈Jdecay

∣

∣

〈

fdecay − d, ψω
j

〉

ω

∣

∣

2(
1 − µω

j

)2





1/2

� ǫCωCµ‖f‖ω.

In order to bound the second term on the right-hand side of (A.2), we again use (A.3) and

(A.4) to obtain

‖fdecay − d‖
ω

=





∑

j∈J decay

(

1

µω
j

)2
∣

∣

〈

f, (F ∗
ωFω − G∗

ωGω)ψω
j

〉

ω

∣

∣

2





1/2

� ǫCωC̃µ‖f‖ω.

Thus, in the decay region, estimate (A.2) implies

‖(I − G∗
ωGω)(fdecay − d)‖

ω
� (ǫCωCµ + ǫ2C2

ωC̃µ)‖f‖ω.

For fhead, since 1 − µω
j < δ, the first term in estimate (A.2) can be bounded by





∑

j

|〈fhead, ψ
ω
j 〉ω|2(1 − µω

j )2





1/2

� δ‖f‖ω,

and thus

‖(I − G∗
ωGω)fhead‖ω � (δ + ǫCω)‖f‖ω.

For ftail, the estimate (A.2) yields

‖(I − G∗
ωGω)ftail‖ω �





∑

j∈J tail

∣

∣

〈

f, ψω
j

〉

ω

∣

∣

2(
1 − µω

j

)2





1/2

+ Cωǫ‖f‖ω

� (δ + ǫCω)‖f‖ω,

where we used our assumption (57).
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