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METHODOLOGY

GridSample: an R package to generate 
household survey primary sampling units 
(PSUs) from gridded population data
Dana R. Thomson1,2,3*, Forrest R. Stevens3,4, Nick W. Ruktanonchai2,3, Andrew J. Tatem2,3 and Marcia C. Castro5

Abstract 

Background: Household survey data are collected by governments, international organizations, and companies to 

prioritize policies and allocate billions of dollars. Surveys are typically selected from recent census data; however, cen-

sus data are often outdated or inaccurate. This paper describes how gridded population data might instead be used 

as a sample frame, and introduces the R GridSample algorithm for selecting primary sampling units (PSU) for complex 

household surveys with gridded population data. With a gridded population dataset and geographic boundary of the 

study area, GridSample allows a two-step process to sample “seed” cells with probability proportionate to estimated 

population size, then “grows” PSUs until a minimum population is achieved in each PSU. The algorithm permits strati-

fication and oversampling of urban or rural areas. The approximately uniform size and shape of grid cells allows for 

spatial oversampling, not possible in typical surveys, possibly improving small area estimates with survey results.

Results: We replicated the 2010 Rwanda Demographic and Health Survey (DHS) in GridSample by sampling the 

WorldPop 2010 UN-adjusted 100 m × 100 m gridded population dataset, stratifying by Rwanda’s 30 districts, and 

oversampling in urban areas. The 2010 Rwanda DHS had 79 urban PSUs, 413 rural PSUs, with an average PSU popu-

lation of 610 people. An equivalent sample in GridSample had 75 urban PSUs, 405 rural PSUs, and a median PSU 

population of 612 people. The number of PSUs differed because DHS added urban PSUs from specific districts while 

GridSample reallocated rural-to-urban PSUs across all districts.

Conclusions: Gridded population sampling is a promising alternative to typical census-based sampling when census 

data are moderately outdated or inaccurate. Four approaches to implementation have been tried: (1) using gridded 

PSU boundaries produced by GridSample, (2) manually segmenting gridded PSU using satellite imagery, (3) non-

probability sampling (e.g. random-walk, “spin-the-pen”), and random sampling of households. Gridded population 

sampling is in its infancy, and further research is needed to assess the accuracy and feasibility of gridded population 

sampling. The GridSample R algorithm can be used to forward this research agenda.

Keywords: Cluster survey, Multi-stage, Cluster sample
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Background
Household survey data are collected to support prioriti-

zation of national and international issues, allocate bil-

lions of donor and government dollars, track progress 

toward major policy and program goals including the 

sustainable development goals (SDGs) [1, 2], quantify 

needs during disaster responses [3, 4], and follow con-

sumer trends [5]. Household surveys are particularly 

important in countries where census data, or other forms 

of official data such as birth and death registries, are 

outdated, incomplete or inaccurate. Selection of repre-

sentative household survey samples requires definition 

of areal units with up-to-date and accurate population 

counts—typically enumeration areas from a recent cen-

sus—creating a circular dilemma. Where census data 

are not available, outdated, or known to be unreliable, 
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individual survey teams have begun to experiment with 

gridded population sampling as an alternative [6–11], 

and organizations that fund routine surveys are begin-

ning to recommend gridded population datasets as alter-

native sample frames [12]. To date, however, no tools 

exist to support complex survey selection from gridded 

population datasets, and there is scant guidance to use 

these emerging methods. �is paper (1) describes how 

gridded population datasets have been used as alterna-

tive sample frames to outdated or inaccurate census data, 

(2) introduces GridSample [13], an R package, for the 

first-stage selection of complex household surveys using 

gridded population data, and (3) summarizes options to 

implement gridded population samples in the field. R is 

an open-source free software environment created and 

maintained by hundreds of developers from many dis-

ciplines worldwide. R contains well-established, user-

created packages to perform statistical analysis and data 

visualization.

Typical household surveys

Since the 1980s, hundreds of nationally-representative 

household surveys have been conducted by governments 

in low- and middle-income countries roughly every five 

years with support from the United Nations (UN) [14, 

15], the US Government [16], and the World Bank [17] 

to monitor social, demographic, economic, and health 

indicators. �e UN’s Multiple Indicator Cluster Surveys 

(MICS), the US Government’s Demographic and Health 

Surveys (DHS), and the World Bank’s Living Stand-

ard Measurement Surveys (LSMS) stratify samples by 

sub-national region, and sample roughly 10,000 house-

holds in a two-stage design that is widely used by survey 

implementers to maximize statistical power and feasibil-

ity while minimizing costs and potential biases [14–16]. 

Each of these surveys cost several hundred thousand US 

dollars and approximately two years to implement and 

publish [18].

In standard large-scale household surveys, implement-

ers sample communities first (called clusters, or primary 

sampling units—PSUs) from recent census enumeration 

areas. �en second, list all households in the sampled 

communities during a field mapping exercise before sys-

tematically sampling households [13, 15, 16] (Fig.  1). In 

the poorest settings, household enumeration is still rou-

tinely performed by hand with a pencil and paper [16], 

and satellite-enhanced enumeration has been piloted 

with printed maps of satellite imagery and with mobile 

devices [19, 20]. While these methods are widely adopted 

and considered the gold-standard, they are limited in 

their ability to generate accurate samples when census 

data frames are outdated or inaccurate [21]. At the time 

of this writing in 2017, 37 of 157 countries in Africa, 

Asia, and Central and South America has a census that is 

10 years old or more [22]. Many of these countries have 

experienced population displacement by environmental 

Fig. 1 Comparison of first stage in typical population sampling and gridded population sampling
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disasters, conflict, rapid economic change [23], official 

changes to subnational administrative area boundaries 

[24] and normal demographic shifts due to changing 

birth and death rates.

Gridded population data

Gridded population data may prove to be a viable alter-

native sample frame where census data are outdated or 

inaccurate. �ree types of gridded population datasets 

are available. First, standard “top-down” gridded popula-

tion datasets are generated by models that either directly 

disaggregate administrative population counts to grid 

cells using satellite imagery (e.g. land cover and nighttime 

lights) and other spatial data (e.g. road and building loca-

tions), or non-uniformly disaggregate population counts 

using complex modeling approaches. Direct disaggrega-

tion approaches vary from simple areal weighting (e.g. 

GPWv4 [25], UNEP [26]) to use of ancillary data, such as 

urban settlement areas, to inform the location and den-

sity of disaggregated population (e.g. GRUMP [27], GHS-

Pop [28], Facebook [29]). Complex modelling techniques 

(e.g. WorldPop [30], Landscan [31], Demobase [32]) 

include such methods as aggregating input and covari-

ate data at two scales to test and tailor the model to local 

areas.

Multiple top-down global gridded population datasets 

are available to freely download including WorldPop [33], 

GPWv4 [34], GHS-POP [35], GRUMP [36], and UNEP 

[26]. Landscan [37] datasets are free to US Federal Gov-

ernment agencies and some humanitarian, education and 

commercial organizations, upon request. Gridded popu-

lation datasets are published as population estimates per 

pixel, where pixels are measured in decimal degrees and 

are thus slightly smaller and less square-shaped toward 

the earth’s poles compared to the equator. Within coun-

tries, differences in cell size are generally negligible; 

exceptions include Brazil and Russia with large north–

south coverage. WorldPop [33] additionally provides 

population per hectare estimates measured in meters, 

where each pixel is 100 m × 100 m anywhere on earth. 

Gridded population datasets have known inaccuracies, 

particularly at the sub-national and metropolitan scales 

[38, 39]. Although top-down gridded population datasets 

may be based on outdated or incorrect population totals 

from 2nd-, 3rd-, and 4th-level administrative areas, the 

distribution of population estimates within administra-

tive areas might be more representative of the population 

than enumeration area counts in the last census.

Gridded population data need not be based entirely 

on census data. Where census data are grossly outdated 

and populations are reasonably stationary, researchers 

are experimenting with a second type of gridded popu-

lation dataset using “bottom-up” methods that integrate 

population counts from small area surveys with dozens of 

spatial covariates [40]. In areas where large-scale popu-

lation movement has resulted from a major event, such 

as an earthquake or violent conflict, researchers have 

begun to work with mobile phone companies to gain 

anonymized, aggregated call detail records (CDR) and 

generate a third type of CDR-enhanced gridded popula-

tion dataset [41–43].

Gridded population sampling for household surveys

�e GridSample package was recently released in R 

CRAN to generate PSUs for household surveys using 

gridded population data rather than census data [13]. 

GridSample supports typical complex sample designs 

including stratification, oversampling in urban or rural 

areas, and sampling of different numbers of households 

within urban and rural areas (Fig. 1). Because grid cells 

are approximately uniform in size and shape within a 

country, GridSample also allows for a population sample 

to be supplemented with a spatial oversample in remote 

areas which is attractive if survey results will be used to 

generate small area estimates or make interpolated sur-

faces [44] (Fig. 1).

�e user needs either two or three datasets to use Grid-

Sample. First, a gridded population dataset that covers 

the study area. Gridded population data are produced in 

raster file format. A common example of a raster dataset 

is a photograph which is comprised of pixels, each with a 

single color value. Similar to a photograph, gridded pop-

ulation cells each have one estimated population value. 

Second, the user provides the boundary of the study area 

if the sample is not stratified, or boundaries of geographic 

strata if the sample is stratified. �ird, the user option-

ally inputs urban/rural area boundaries if urban and 

rural domains will be represented in the survey. Bounda-

ries are commonly formatted as a shapefile, a type of file 

used to store points, lines, or polygons (areas) and their 

attributes. GridSample requires that all input datasets 

are converted to raster format using the same grid cell 

dimensions as the population dataset. Below, we provide 

a code example to convert shapefiles to rasters.

�e input raster datasets, plus a number of survey 

parameters, are used to randomly sample grid cells with 

probability proportionate to estimated population (PPES) 

size in a first step, and then optionally grow PSUs around 

selected seed cells until a minimum population thresh-

old is achieved in a second step (Fig.  2). �is two-step 

process ensures both that the desired number of PSUs 

per strata and domain are achieved, as well as desired 

population per PSU. GridSample outputs a shapefile of 

PSU boundaries which can be visualized in a geographic 

information system like QGIS™ or ArcGIS™, or over-

laid on satellite imagery, for example in Google Earth™. 
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�e shapefile includes a record for each PSU containing 

the latitude-longitude coordinate of the PSU centroid 

(geographic center), and the PSU and strata population 

counts needed in sample weight calculations.

In the following sections, we provide a technical over-

view of the GridSample algorithm workflow; describe 

how to replicate typical complex survey designs in Grid-

Sample; describe the use of population sampling with 

a spatial oversample; and reproduce an existing DHS 

sample in GridSample. To support use of GridSample, 

we provide sample weight calculation instructions, dis-

cuss practical limitations, outline areas for future grid-

ded population survey research, and offer suggestions to 

improve the feasibility of fieldwork.

GridSample: technical work�ow

GridSample is an R CRAN package with four functions—

gs_mode, gs_rasterize, gs_zonal_raster, and gs_sample—

though the user only interacts with the main function, 

gs_sample. GridSample is written for R version 3.2.3 or 

newer, and requires the following libraries: rgdal (≥1.2–

5), raster (≥2.5–8), data.table (≥1.10.4), rgeos (≥0.3–22), 

geosphere (≥1.5–5), sp (≥1.2–4), deldir (≥0.1–12), spat-

stat (≥1.49–0), and maptools (≥0.8-41). Figure 2 visual-

izes how the input datasets and parameters are processed 

in gs_sample. At a minimum, the user must specify the 

input gridded population dataset (population_ras-

ter), household sample size (cfg_hh_per_stratum), 

study area boundary (which is strata_raster, the 

boundary of a single stratum sample), population size per 

PSU (cfg_pop_per_psu), and number of households 

to be sampled per PSU (the urban value cfg_hh_per_

urban is used for all PSUs if a rural value cfg_hh_

per_rural is not specified). Further complexities can 

be added to the survey design including stratification, 

oversampling of urban/rural populations, and spatial 

sampling. GridSample first selects PSU seed cells from 

the dataset, and then optionally grows each PSU by add-

ing neighboring cells until a minimum geographic size 

(cfg_max_psu_size) or population size (cfg_pop_

per_psu) is achieved.

Before using gs_sample, the user must rasterize all 

vector data to match the grid dimensions of the grid-

ded population dataset (population_raster). 

Specifically, the user must rasterize urban/rural bound-

aries and strata boundaries. Urban/rural boundaries 

(urban_raster) may be defined from existing data 

sources such as Global Urban Footprint (GUF) [45], 

Global Rural Urban Mapping Project (GRUMP) [36], 

Global Human Settlement City Model (GHS-SMOD) 

[46], Modis 500  m urban extents [47], and European 

Space Agency Land Cover class for urban areas [48]. 

Alternatively, the user may generate urban/rural extents 

by classifying the population density layer (popu-

lation_raster), or by uploading an urban/rural 

shapefile from another source. Choice of urban/rural 

boundary is highly dependent on the nature of the sur-

vey, as definitions of urban and rural populations dif-

fer across countries and disciplines [49]. �e strata 

boundary raster (strata_raster) can be derived 

from administrative area boundaries, for example Map 

Library [50] or DIVA-GIS [51], though the user might 

upload alternative strata boundaries defining, for exam-

ple, ecological regions or a program catchment area.

To select PSU seed cells, gs_sample classifies each 

cell in the gridded population dataset (popula-

tion_raster) by urban or rural location (if cfg_

sample_rururb  =  TRUE and urban_raster is 

specified), and assigns a stratum ID (strata_ras-

ter). Serpentine sampling is used such that cells are 

geographically ordered from west-to-east, north-to-

south, and sampled based on a random starting cell 

and a population increment that produces the desired 

number of PSUs within the stratum, thus facilitating 

a randomized population-weighted sample. �e user 

may halt the algorithm at this point leaving just one cell 

per PSU by setting the PSU growth parameter to false 

(cfg_psu_growth = FALSE).

If the PSU growth parameter is set to true (cfg_psu_

growth = TRUE), gs_sample grows PSUs using a dilation 

filter routine to enlarge the area around each PSU seed 

cell by adding neighboring cells one cell at a time until 

the specified population per PSU parameter is met. From 

the seed cell, the dilation routine randomly chooses one 

of the nearest north, east, south, or west cells, and adds 

that population to the PSU. �e routine loops over each 

PSU adding more population cells each time until each 

PSU achieves the maximum PSU area in square kilom-

eters (cfg_max_psu_size) or total population per 

PSU value (cfg_pop_per_psu). A valid sample frame 

has contiguous, non-overlapping potential PSUs. �us, 

GridSample restricts PSUs to being contiguous and non-

overlapping by drawing voronoi polygons around each 

seed cell, defining unique areas in which each PSU can 

grow; the PSU growth routine will not add cells beyond a 

strata or voronoi polygon boundary.

After all PSUs have been selected, the algorithm gen-

erates a polygon shapefile of the PSU boundaries and 

assigns the following attributes to each PSU: PSU identi-

fier, stratum identifier, urban/rural class of the seed cell, 

PSU centroid coordinate, total/urban/rural population in 

PSU, total/urban/rural population in stratum, number of 

cells in PSU, and number of PSUs in stratum (Table  1). 

�e algorithm prints to screen the value of the random 

number used to start the sampling process; this value 

can be recorded and manually entered in GridSample to 
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Fig. 2 GridSample workflow
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reproduce an existing sample. �e following attributes 

are needed to calculate sample weights (presented later): 

number of selected PSUs in stratum (psus_in_stratum), 

estimated population in stratum (str_pop), and estimated 

population in PSU (psu_pop).

GridSample: clustered sampling

GridSample supports the first-stage of the typical two-

stage cluster design used by DHS, MICS, and LSMS, as 

well as several other common survey designs. �e user 

defines the desired total population in each PSU (cfg_

pop_per_psu), ranging from 400 to 600 people in typi-

cal household surveys. Alternatively, GridSample can be 

used to select one-stage cluster samples by setting the 

total population per PSU (cfg_pop_per_psu) equal 

to the number of households to be sampled per PSU 

(cfg_hh_per_urban and cfg_hh_per_rural) 

multiplied by the average household size (available from 

previous surveys). Likewise, GridSample might be used 

to select a random sample of households by setting total 

population per PSU (cfg_pop_per_psu) equal to the 

average household size, and setting the number of house-

holds to be sampled per PSU (cfg_hh_per_urban 

and cfg_hh_per_rural) equal to 1. To implement a 

random sample of households, the user would addition-

ally need to use a method to identify a random dwelling 

within each PSU [8].

GridSample: strati�cation

Strata should be mutually exclusive geographic areas that 

cover the entire population. In typical household surveys, 

sub-national administrative areas such as provinces or dis-

tricts serve as strata, and sometimes these areas are further 

stratified into rural and urban areas. Independent samples 

will be selected from each stratum allowing strata-level 

estimates to be compared after the survey. While some 

gridded population datasets provide estimates of popula-

tion by age-group and sex [25, 52, 53] or household pov-

erty level [54, 55], GridSample does not currently include 

a mechanism for non-geographic stratification, though the 

user could, in principal, sample from gridded population 

datasets of social-demographic groups.

To generate a geographically stratified sample in 

GridSample, the user defines strata boundaries with 

strata_raster, and specifies the sample size per 

stratum with cfg_hh_per_stratum. �is means that 

if the national sample size is 10,000 households from 5 

provinces, then cfg_hh_per_stratum  ==  2000. 

If the survey were additionally stratified by urban/rural 

such that there are 10,000 households sampled from 

10 strata, then strata_raster should include the 

boundaries of both urban/rural areas and provinces, and 

cfg_hh_per_stratum == 1000.

GridSample: urban/rural oversampling

If urban/rural populations are not stratified, they may 

instead be treated as sub-domains. Sub-domains repre-

sent important sub-populations for which representative 

statistics are generated from the survey data, and thus 

each sub-domain should meet the minimum stratum 

sample size requirement (cfg_hh_per_stratum). If 

either the urban or rural sub-domain does not include 

enough households, then the algorithm uses the ordered 

data frame to choose the next cell from the under-rep-

resented sub-domain (from any strata) and swaps out 

an already selected seed cell of the opposite sub-domain 

within that stratum. �is process repeats until the sample 

size requirement is met in each sub-domain (cfg_hh_

per_stratum). To implement sub-domain representa-

tion in gs_sample, set cfg_sample_rururb == 1 and 

define urban/rural boundaries (urban_raster).

In practice, rural areas may be more difficult and 

expensive to visit, and thus a greater number of house-

holds might be sampled from rural PSUs than urban 

PSUs. �is is why the user may specify different numbers 

Table 1 Summary of attributes in the output shape�le

Label Type Description

PSUid Integer PSU identifier

stratum Integer Stratum identifier

psu_pop Decimal Estimated population in PSU derived by 
summing the seed cell and any growth 
cells selected for PSU

psu_r_pop Decimal Estimated rural population in PSU derived 
by summing all rural cells selected for 
PSU

psu_u_pop Decimal Estimated urban population in PSU 
derived by summing all urban cells 
selected for PSU

psus_in_stratum Integer Number of PSUs in the stratum

str_pop Decimal Estimated population in stratum derived 
by summing all grid cells

str_r_pop Decimal Estimated rural population in stratum 
derived by summing all grid cells classi-
fied as rural

str_u_pop Decimal Estimated urban population in stratum 
derived by summing all grid cells classi-
fied as urban

str_cells Integer Number of total cells in the stratum

xCent Decimal Longitude of PSU seed cell centroid in 
decimal degrees

yCent Decimal Latitude of PSU seed cell centroid in 
decimal degrees

U_R Character Urban or rural label based on whether the 
seed cell was classified as urban or rural
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of households to be sampled from urban PSUs (cfg_hh_

per_urban) and rural PSUs (cfg_hh_per_rural). If 

the same number of households will be sampled from all 

PSUs, then the user only needs to specify households to 

be sampled from urban PSUs (cfg_hh_per_urban).

GridSample: spatial oversampling and other features

Oversampling in space is analogous to oversampling 

urban/rural sub-domains. To select a sample that is both 

representative of the population and of space in Grid-

Sample, set cfg_sample_spatial  ==  1 and spec-

ify the spatial scale (in square kilometers) at which the 

sample should be representative (cfg_sample_spa-

tial_scale). For example, cfg_sample_spatial_

scale == 20 means that a coarse grid system with cells 

20  km ×  20  km will be overlaid on the study area. If a 

coarse grid cell does not contain a PSU seed cell, then the 

first cell within the serpentine ordered data frame located 

inside the course cell will be selected, and another seed 

cell from the same stratum and sub-domain will be ran-

domly dropped. To overcome the issue of slightly smaller 

grid cells toward the poles, GridSample calculates the 

area of the centroid (geographic center) grid cell in the 

study area, and uses that average grid cell size to generate 

the coarse grid with the correct dimensions.

�e spatial scale of the survey is ideally linked to the 

scale of planned small area estimates. For example, 

if the sample is stratified by province (level 1 adminis-

trate units), and small area estimates will later be gen-

erated for districts (level 2 administrative units), then 

the median size of districts could be used. Determining 

an appropriate spatial scale may take trial and error. If 

the country has large areas of sparse population, the 

user might need to (a) increase the size of the spatial 

scale (cfg_sample_spatial_scale), or (b) force 

the algorithm to generate more PSUs in each stratum 

by increasing the sample size per stratum (cfg_hh_

per_stratum) and/or reduce the number of house-

holds sampled in each PSU (cfg_hh_per_urban and 

cfg_hh_per_rural).

GridSample offers several additional parameters. (1) �e 

user can input a 100 m × 100 m gridded population data-

set, and then aggregate cells for the sample frame (e.g. 

300  m  ×  300  m sample frame cells would be generated 

by setting cfg_desired_cell_size = 3). Aggregat-

ing gridded population estimates usually increases the 

accuracy of each grid cell. Note that guidance regarding 

the ideal cell size of gridded population sample frames is 

not yet available. Other parameters include: (2) minimum 

population per cell (cfg_min_pop_per_cell) which 

will exclude grid cells from the sample frame with less 

than the specified minimum population, (3) maximum 

area of the PSU in squared kilometers (cfg_max_psu_

size) to ensure that PSUs can be feasibly enumerated 

during fieldwork, (4) random number value (cfg_ran-

dom_number) to reproduce a previous gridded population 

sample, and (5) halt the PSU growth process (cfg_psu_

growth = FALSE) discussed in detail below.

Results
We replicated the first-stage sample of the 2010 Rwanda 

DHS in GridSample. �e 2010 Rwanda DHS sampled 

12,540 households from 492 PSUs comprising rural villages 

and urban neighborhoods [56]. �e sample was stratified 

by Rwanda’s 30 districts, urban areas were oversampled 

by adding 12 PSUs in Kigali’s three districts, and 26 house-

holds were sampled from each urban and rural PSU. �e 

average village in Rwanda had 610 occupants according to 

the sample frame of 14,837 villages/neighborhoods. To rep-

licate the 2010 Rwanda DHS in GridSample, we loaded the 

GridSample package, the raster package to prepare the data 

for GridSample, and set a working directory:

R> library(gridsample)

R> library(raster)

R> library(rgdal) #if uploading own shapefile boundaries

R> setwd("C:/User/Project")

Next, we called the Rwanda 2010 UN-adjusted grid-

ded population estimates preloaded in GridSample and 

also available at the WorldPop website [33]. �is data-

set was generated from 2002 Rwanda Census block data 

and 15 spatial covariates using a random forest model 

with dasymetric redistribution as described in the 

metadata [57] and cited methods paper [30].

R> population_raster <- raster(paste0(path.package("gridsample"),

+ "/extdata/RWA_ppp_v2b_2010_UNadj.tif"))

R> plot(population_raster)

Then we loaded an unprojected shapefile of Rwan-

da’s 30 district boundaries to use as strata. This file 

is preloaded in GridSample, and can be downloaded 

from MapLibrary [50]. We rasterized strata boundaries 

using the WorldPop population raster dimensions and 

assigned strata ID (ADM2_ID) as the grid cell value 

(numeric district identifier values ranged from 1 to 

30):
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R> data(RWAshp)

R> strata_raster <- rasterize(RWAshp,population_raster,

+ field="ADM2_ID")

R> plot(strata_raster)

We considered using GUF, Modis or GRUMP to distin-

guish urban and rural areas, though we decided that these 

global models were not well suited for the largely rural 

context of Rwanda [38]. Instead, we calculated a sensible 

value to distinguish rural and urban cells directly from the 

WorldPop population raster. According to the 2012 Cen-

sus, the National Institute of Statistics in Rwanda classifies 

16% of the population as urban [58]. �us, we identified 

the cell density value associated with 16% of the popula-

tion living in the most populous cells, and used that value 

(11 people per 100 m × 100 m cell) to create a binary ras-

ter of urban areas (value 1) and rural areas (value 0).

R> total_pop=cellStats(population_raster,stat="sum")

R> urban_pop_value = total_pop*.16 #Table 4, Rwanda 2012 census

R> pop_df = data.frame(index = 1:length(population_raster[]),pop = 

+ population_raster[])

R> pop_df = pop_df[!is.na(pop_df$pop),]

R> pop_df = pop_df[order(pop_df$pop,decreasing = T),]

R> pop_df$cumulative_pop = cumsum(pop_df$pop)

R> pop_df$urban = 0

R> pop_df$urban[which(pop_df$cumulative_pop<=urban_pop_value)] = 1

R> urban_raster <- population_raster >= 

+ ceiling(min(subset(pop_df,urban == 1)$pop)) 

R> plot(urban_raster)

Note that the value used to differentiate urban and 

rural cells was found with the following code.

R> urb_df=subset(pop_df,urban == 1)

R> ceiling(min(subset(pop_df,urban == 1)$pop)) 

�e gridded population, rasterized strata, and raster-

ized urban/rural layers are visualized in Fig.  3. We used 

these input data, plus parameters for total household sam-

ple size per stratum (cfg_hh_per_stratum = 416), 

grow PSUs (cfg_psu_growth = TRUE) to a minimum 

population total per PSU (cfg_pop_per_psu = 610), 

and household sample size per urban and rural PSU (cfg_

hh_per_urban  =  26 and cfg_hh_per_rural  =  26), 

to generate a gridded population sample with the same 

design as the 2010 DHS. We prevented sampling of cells 

with very small probability of population (cfg_min_

pop_per_cell  =  0.01), limited the PSU size to 

10 km × 10 km (cfg_max_psu_size = 10), and speci-

fied the name (sample_name = ”rwanda_psu_sam-

ple”) and file location (output_path = ” C:/User/

Project/data”) to save the output shapefile.

Fig. 3 Input datasets to the Rwanda gridded population sample in 

GridSample
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R> psu_polygons=gs_sample(population_raster = population_raster,

+ strata_raster = strata_raster,

+ urban_raster = urban_raster,

+ cfg_random_number = , 

+ cfg_desired_cell_size = NA,

+ cfg_hh_per_stratum = 416,

+ cfg_hh_per_urban = 26,

+ cfg_hh_per_rural = 26,

+ cfg_min_pop_per_cell = 0.01,

+ cfg_max_psu_size = 10, 

+ cfg_pop_per_psu = 610,

+ cfg_psu_growth = TRUE,

+ cfg_sample_rururb = TRUE,

+ cfg_sample_spatial = FALSE,

+ cfg_sample_spatial_scale = ,

+ output_path=" C:/User/Project/data",

+ sample_name="rwanda_psu_sample")

R> plot(psu_polygons)

�e Rwanda DHS selected 79 urban PSUs and 413 

rural PSUs from their census sample frame. Grid-

Sample produced a similar sample of 75 urban PSUs 

and 405 rural PSUs (Table 2) which followed a similar 

geographic pattern as the Rwanda DHS (Fig.  4) using 

the WorldPop sample frame. In the GridSample-gen-

erated sample [59], the mean population per PSU was 

620 people with one outlier that had 1479 people, and 

the median population was 612 people per PSU. One 

key difference between the samples was that the DHS 

added PSUs during the oversample, while GridSample 

re-distributed PSUs during the oversample, resulting 

in fewer PSUs. A second key difference was that DHS 

purposefully oversampled in the Kigali metropolitan 

area (Gasabo, Kicukiro and Nyarugenge districts) while 

GridSample oversampled from all urban areas, includ-

ing smaller cities in Gisenyi, Cyangugu, and Gikongoro 

districts.

Discussion
Gridded population sampling methods are in their 

infancy. Several approaches to first-stage sample selec-

tion and to fieldwork have been tried. �ese approaches 

are promising but have limitations and require further 

research. �e GridSample R algorithm provides a tool to 

develop and evaluate emerging gridded population sam-

pling methods.

Modi�able Areal Unit Problem

Gridded population sampling is sensitive to the modifia-

ble areal unit problem (MAUP). A MAUP emerges when 

an arbitrary spatial unit, such as a grid cell, is used to 

summarize continuous population characteristics lead-

ing to apparently different spatial patterns of that char-

acteristic in the population simply by changing the size 

(scale) or zone (grouping) of the spatial units [60]. In 

gridded population sampling, the size and zone of grid 

cells are likely to influence sampling inclusion probabili-

ties, especially when the first-stage sample is based on 

geographically large grid cells, and/or the population is 

heterogeneously distributed. 

Four general approaches to first-stage sampling with 

gridded population data are outlined in Fig. 5. First, the 

segmentation approach involves sampling geographi-

cally large PSUs with probability proportionate to esti-

mated population size, then segmenting by smaller grid 

cells [10] or manually delineate smaller areas using sat-

ellite imagery [6–10]. GridSample can be used to select 

large cells by aggregating the input gridded popula-

tion dataset. In Myanmar, Muñoz and Langeraar (2013) 

Table 2 Number of  primary sampling units in  a Demo-

graphic and Health Survey and equivalent GridSample sur-

vey

District name Alternative name DHS GridSample

Urban Rural Urban Rural

Bugesera Bugesera 16 2 14

Burera Burera 16 1 15

Butamwa Nyarugenge 19 1 15 1

Butare Huye 3 13 3 13

Byumba Gicumbi 2 14 1 15

Cyangugu Rusizi 2 14 5 11

Gakenke Gakenke 16 16

Gasiza Nyabihu 16 1 15

Gatagara Ruhango 3 13 16

Gatsibo Gatsibo 16 16

Gikongoro Nyamagabe 1 15 3 13

Gisagara Gisagara 16 16

Gisenyi Rubavu 1 15 10 6

Gitarama Muhanga 4 12 1 15

Kamonyi Kamonyi 16 16

Kayonza Kayonza 16 16

Kibungo Ngoma 3 13 1 15

Kibuye Karongi 2 14 2 14

Kicukiro Kicukiro 20 13 3

Kigali Gasabo 11 9 8 8

Kirehe Kirehe 16 16

Nogororero Ngororero 16 16

Nyagatare Nyagatare 16 16

Nyamasheke Nyamasheke 16 16

Nyanza Nyanza 4 12 2 14

Nyaruguru Nyaruguru 16 16

Ruhengeri Musanze 2 14 3 13

Rulindo Rulindo 16 1 15

Rutsiro Rutsiro 16 16

Rwamagana Rwamagana 2 14 3 13

Total 79 413 75 405
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Fig. 4 Visual comparison of primary sampling units (PSUs) generated by the 2010 Rwanda DHS [56] and GridSample
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aggregated LandScan 1  km ×  1  km gridded population 

estimates to 3  km ×  3  km “super” cells for selection of 

the first-stage sample. �en they grouped 1 km × 1 km 

grid cells within the selected PSUs to meet a minimum 

population threshold, and then randomly sampled one 

group of cells as a secondary sampling unit (SSU) in each 

PSU. Finally, they manually segmented SSUs into dozens 

of areas with roughly equal population based on satellite 

Fig. 5 Probability sampling approaches with gridded population data
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imagery, and sampled one segment [10]. As a result, the 

sample weights were computationally straightforward 

to calculate because they followed a typical multi-stage 

sampling approach. Additionally, the final sampling units 

had sensible boundaries related to features in the real 

world, making fieldwork feasible. However, sample inclu-

sion probabilities of PSUs and SSUs were sensitive to the 

size and zone of grid cells, which could have smoothed-

out or emphasized population density depending on the 

distribution of the underlying population.

A point approach was used by �omson and colleagues 

(2012) using LandScan 1  km  ×  1  km gridded popula-

tion data in the eastern D. R. Congo. For this survey, the 

team generated randomly located points within grid cells 

where the number of points was proportional to esti-

mated population. �en they randomly sampled points 

within strata. Finally, they manually delineated sam-

pling units around the nearest dwellings to each point 

using satellite imagery, ensuring that PSU boundaries 

were located within cell boundaries [6]. Sample weights 

were adapted to follow a typical multi-stage sampling 

approach, the final sampling unit boundaries were sen-

sible, making fieldwork feasible, and the use of points 

prevented any effect of the MAUP. However, the manual 

delineation of one sampling unit around each point was 

subject to human bias.

�e third approach to gridded population sampling 

is the growth approach, uniquely available in the Grid-

Sample tool. Elsey et  al. [7] in Kathmandu, Nepal used 

an early version of GridSample to select seed cells from 

WorldPop’s 100 m × 100 m gridded population dataset, 

and grew PSUs to a minimum population size. Growing 

PSUs is likely less sensitive to the zone and scale MAUPs 

than segmenting large cells because, in the growth 

approach, the scale of the starting grid cells is closer in 

geographic and population size to the final sampling unit. 

However, the correct calculation of sampling inclusion 

probability weights for the growth approach is unclear. 

Should sample probability weights be calculated from the 

grid cell densities, or the densities of final sampling units? 

Arguments can be made for both approaches. Before dis-

cussing two potential sample weight calculations for the 

growth approach, we describe a hypothetical, but feasi-

ble, fourth approach to gridded population sampling.

Perhaps the most ideal gridded population sample 

frame would group grid cells into “sensible” potential 

PSUs of similar population size before first-stage sam-

pling. Sensible PSU boundaries would be defined in 

terms of geographic features such as roads, rivers, ridges 

or valleys that could be easily recognized and navigated 

in the field. Sensible PSUs would also group similar types 

of populations, for example, by grid cell mean poverty 

level. Generation of a sensible gridded population sample 

frame has only recently become possible as new tech-

niques are developed to estimate population characteris-

tics, such as poverty-level or disease status, in a gridded 

population format [54, 61]. �e use of quadtree methods 

to divide dense population grid squares into four smaller 

cells can be viewed as a rudimentary first step toward 

development of sensible potential PSUs [62]. If a grid-

ded population sample frame of sensible potential PSUs 

existed, the survey practitioner would sample units with 

probability proportionate to estimated size, and calculate 

typical sampling inclusion probability weights.

�e growth approach to gridded population sampling 

may be conceptualize of as one instance of a sensible 

frame in which only the boundaries of the sampled PSUs 

are known, and the boundaries of non-sampled potential 

PSUs exist but are not drawn. Sample weights calculated 

from the final PSU population densities are straightfor-

ward to calculate, and are provided below.

If, however, the growth approach inclusion probabilities 

need be calculated from grid cell (rather than final PSU) 

population densities, then a complex adaptive sample 

weight needs to be formulated [63]. An adaptive sample 

weight would account for the estimated population of a 

given cell, as well as the probability of being grown into a 

PSU via a neighboring cell. �e probability of being grown 

into a PSU would depend on (a) the estimated populations 

of neighboring cells, (b) the parameter for PSU maximum 

geographic size, (c) the parameter for PSU minimum pop-

ulation size, and possibly (d) the location of strata bound-

aries, and (e) the location of voronoi polygon boundaries 

between seed cells in a multitude of sample instances. �e 

need for such a complex formulation needs to be evalu-

ated, but is beyond the scope of this paper.

Sample weights

Below, we provide sample weight calculations for the 

growth approach to PSU selection, which is uniquely 

available in GridSample. �ese weights reflect inclusion 

probabilities in the final PSUs, and not of individual grid 

cells. Sample weights for the segmentation, point, and 

sensible PSU approaches have been described elsewhere 

and are summarized in Additional file  1. �ese sam-

ple weight formulations parallel typical survey methods, 

reflecting the probability that a household is (1) selected, 

(2) found, and (3) responded [13–16]. While the Grid-

Sample output shapefile includes values needed to calcu-

late PSU selection probabilities, the survey implementer 

must track the number of households enumerated in the 

field in each PSU, and household response rates to cor-

rectly calculate sample weights. �e following formulas 

use four indices: 1…k strata, 1…i PSUs, 1…j households, 

and 1…q individuals. �e household selection (base) 

weight  for the growth approach to PSU formation—the 
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probability that PSU i is selected, and then household j is 

selected—is given by:

where nk is the number of selected PSUs in stratum k, Gk is 

the estimated total population in stratum k, gik is the esti-

mated population in PSU i in stratum k, mik is the num-

ber of households sampled in PSU i and stratum k during 

fieldwork, and Mik is the number of total households enu-

merated in PSU i and stratum k during fieldwork.

If growth PSUs are manually divided and further sam-

pled, weights are calculated in the same way, except 

that the probability of being in the final sample unit wij.b 

includes bik, the proportion of households located in the 

manually-drawn segment, approximated by counting 

buildings in satellite imagery:

�e household response weight—the probability that 

PSU i is found and sampled, and household j is found and 

responded—is given by:

where nk number of selected PSUs in stratum k, nk∗ is the 

number of found and sampled PSUs in stratum k, mik is 

the number of selected households in PSU i and stratum 

k, and mik∗ is the number of found and responded house-

holds in PSU i and stratum k. �e individual response 

weight—the probability that PSU i is found and sampled, 

then household j is found and responds, and finally that 

individual q is present and responds—is given by:

where nk is the number of selected PSUs in stratum k, nk∗ 

is the number of found and sampled PSUs in stratum k, 

mik is the number of selected households in PSU i and 

stratum k, mik∗ is the number of found and responded 

households in PSU i and stratum k, and uijk is the number 

of eligible individuals in household j in PSU i and stra-

tum k, and uijk∗ is the number of responded individuals 

in household j in PSU i and stratum k. �e household 

sample weight wij is comprised of the household selection 

weight and household response weight:

Assuming that all eligible individuals (e.g., all 

women age 15–49) will be interviewed in the selected 

(1)wij.b =

1

Pi × Pj(i)
=

Gk/gik

nk
×

Mik

mik

(2)wij.b =

Gk/gik

nk
×

Mik

mik
×

1

bik

(3)wij.r =

1

Pi.r × Pj.r(i)
=

nk

nk∗
×

mik

mik∗

(4)

wijq.r =

1

Pi.r × Pj.r(i) × Pq.r(ji)
=

nk

nk∗
×

mik

mik∗
×

uijk

uijk∗

(5)wij = wij.b × wij.r

households, the individual sample weight wijq is com-

prised of the household selection weight and individual 

response weight:

Fieldwork

Four approaches are available for survey fieldwork with 

GridSample output. �ese four approaches are visualized 

in Fig. 6, and described below.

Gridded PSUs

�is option uses gridded PSU boundaries which have 

squared corners and no relation to geographic or 

administrative features in the real world. �is approach 

was used in a two-stage cluster survey of households 

in Kathmandu, Nepal [7]. �e team used OpenStreet-

Map™, a crowd sourced online map of roads, building 

locations, and other features, via an Android application 

on mobile phones to digitally map households within 

PSUs. OpenStreetMap™ enumeration was chosen over 

typical pen-and-paper mapping, in part, because half of 

their PSUs were already mapped in OpenStreetMap™. 

Households (defined as a group of people who share a 

cook pot) were fully enumerated by knocking on doors 

and talking to neighbors ensuring that lower-income 

households who shared an apartment were not under-

sampled. �e team encountered, sometimes substantial, 

differences in the number of households per PSU than 

were expected from the WorldPop sample frame, so 

they planned to interview every  10th household regard-

less of PSU size to achieve a probability sample. �e 

team cited geographic accuracy in field maps, feasibil-

ity of mapping in dense, complex urban environments, 

leveraging of existing data, and the ability to contrib-

ute to a crowd-sourced resource as reasons to use this 

approach [7].

We support the use of OpenStreetMap™ enumera-

tion, especially for urban settings where OpenStreet-

Map™ data are likely to exist. However, we strongly 

recommend that implementers employ a method to 

anonymize buildings added to the crowd-sourced map 

such that interviewed PSUs cannot be identified. In 

areas where buildings have already been mapped in 

OpenStreetMap™, minor edits will not reveal PSU loca-

tions. However, in areas of the map without building and 

road locations, implementers should consider mapping 

beyond the edges of the PSU boundaries so that gridded 

PSU shapes do not suggest a gridded household survey. 

Furthermore, if OpenStreetMap™ data are sparse in the 

survey region, implementers should consider enumerat-

ing a number of fake PSUs to preserve the anonymity of 

interviewed communities. Specific guidelines for Open-

StreetMap™ enumeration are not yet available.

(6)wijq = wij.b × wijq.r
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Manually-drawn PSUs

 A second approach to implement gridded population 

samples is to manually draw PSUs around random points 

within seed cells, or to manually segment gridded sam-

pling units using detailed satellite imagery. Manually-

drawn PSUs were used in a one-stage cluster survey 

in eastern D. R. Congo [6] and a two-stage cluster sur-

vey in Myanmar [10]. A key benefit of this approach is 

that PSUs follow sensible boundaries such as rivers and 

roads, which are easily identified in both satellite images 

and in the field. Because manually-drawn PSUs are easily 

identifiable, field teams are flexible to use hand-sketched 

pen and paper maps, printed maps of satellite imagery or 

OpenStreetMap™ features, or digital maps for field navi-

gation and household enumeration.

Non-probability samples

Random-walk and “spin-the-pen” sampling methods 

result in non-probability samples of the population and 

are thus not recommended by surveyors [64–66]. None-

theless, these and similar methods are often used in 

rapid or high-security field assessments because they are 

cheaper and faster to implement than typical two-stage 

cluster samples. Random-walk and spin-the-pen gridded 

Fig. 6 Schematic of four field implementation options for gridded population sampling
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sampling methods were used in rapid assessments in Iraq 

[8] and Myanmar [11]. In both studies, gridded popula-

tion datasets were considered to be more accurate sam-

ple frames than other available population data. Because 

random-walk and spin-the-pen methods do not lead to 

probability samples, we do not provide sample probabil-

ity weights.

Simple random sample of households

Researchers sometimes perform simple random samples 

of households in small study areas—for example, a refu-

gee camp or a single city—by digitizing dwelling point 

locations in a satellite image and sampling points at ran-

dom [67–71]. While a simple random sample of house-

holds has not been conducted using gridded population 

sampling, it would be straightforward to implement. Grid 

cells would be sampled with probability proportionate to 

estimated size, and the growth algorithm could optionally 

be switched off to generate single cell PSUs. �en a single 

dwelling would be randomly chosen within selected cells, 

either from mapping all dwellings or using a method like 

the one described by Galway and colleagues in Iraq [8]. 

In the Iraq study, the team overlaid a 10 m × 10 m mini-

grid on Google Earth™ satellite imagery within the seed 

cell, and then randomly selected one mini-grid unit. If 

the 10  m mini-grid unit covered a building, the build-

ing was selected for sampling, otherwise the process was 

repeated until the first building was randomly identified 

in the imagery. If the randomly selected building had 

multiple households or was non-residential, one nearby 

household could be randomly selected as describe by Siri 

and colleagues in Kenya [66]. A simple random sample of 

households would not require sample weights.

Limitations

Gridded population data are increasingly used as an 

alternative survey sample frame in countries where cen-

sus data are outdated or inaccurate. Gridded population 

sample frames may also be used in lieu of census data for 

surveys that need to be representative of both population 

and of space, and where PSUs of a specific population 

size are needed. Next we discuss six areas where research 

is underway, or needed, to address limitations of gridded 

population sampling.

Accuracy of gridded population sample frame

�e first major concern in gridded population sampling 

is the accuracy of the underlying gridded population 

data. Gridded population sampling has been tried by 

a number of survey implementers in circumstances of 

outdated or inaccurate census data, however the accu-

racy of gridded population datasets are varied, and often 

unquantified. Accuracy of publically available top-down 

gridded population data is dependent on several model 

components: (1) accuracy of the input census data, (2) 

the geographic scale of the input census data (e.g. cen-

sus tract-level versus district-level), (3) the age, accu-

racy, and type of model covariate data, and (4) the model 

algorithm itself. �e geographic scale of the output grid 

also matters for measurement of accuracy; grid cell 

estimates in a 1 km × 1 km gridded population dataset 

will almost always be more accurate than grid cells in a 

100 m × 100 m gridded population dataset. Model errors 

are difficult to estimate, and to even conceptualize, for 

gridded population datasets that rely on simple disaggre-

gation approaches, as they are essentially gridded repre-

sentations of the input census data [24]. While prediction 

errors can be calculated for gridded population datasets 

derived from complex modelling techniques, WorldPop 

is the only dataset to include errors [see, for example, 56]. 

However, it is unclear how survey implementers can use 

prediction errors to quantify or improve the accuracy of 

household survey sample frames.

Numerous studies have evaluated the accuracy of grid-

ded population estimates against ground-collected set-

tlement locations [72], against census data available at a 

finer-scale than the census data used in the model [29, 

73–76], and by comparing old and new gridded popu-

lation datasets where the new dataset uses updated or 

finer-scale population data [38]. Still this evidence is not 

sufficient to assess the accuracy of a specific top-down 

gridded population dataset. Given the number of compo-

nents that contribute to gridded population model error, 

future research should utilize simulation studies to test 

the effects of various model components on gridded pop-

ulation estimates. �ese studies should also reframe how 

the estimate errors are addressed (e.g. rather than ask 

“how much error is there around the estimate for each 

cell of size X?”, researchers should ask “how many cells 

need to be aggregated to achieve an error of Y?”).

Modi�able areal unit problem

Second, segmentation and growth approaches to sample 

unit selection might be subject to bias from the MAUP. 

Simulation studies should be used to quantify the effects of 

grid cell sizes and groupings on PSU selection probabilities. 

Additionally, development of geographically and socially 

sensible sample frames with gridded population data 

should be pursued. �e ability to create a sensible gridded 

population sample frame is highly dependent on availability 

of fine scale, accurate environmental data and gridded esti-

mates of population social-health characteristics.

Adaptive PSU sample weights

�ird, where growth approaches are used for selection 

of PSUs, further research is needed to evaluate whether 
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adaptive sample weights should be used, and if so, how 

to formulate them. �ese questions can be evaluated with 

statistical theory and simulation studies.

Availability of satellite imagery

Fourth, all of the approaches to gridded population sam-

pling described here are dependent on access to fine-res-

olution satellite imagery with good visibility of dwellings 

without extensive tree-cover or cloud-cover. Existing 

gridded population samples have been implemented in 

cities, camps, deserts, savannah, and deforested farm-

lands; methods for implementing gridded population 

samples have not been described for forested areas.

Concealing PSU locations in publications and crowd-sourced 

maps

Fifth, gridded population samples that use crowd-sourced 

maps in fieldwork must guarantee anonymity of survey 

respondents and their communities. Crowd-sourced maps 

can be incredibly valuable for field navigation and house-

hold enumeration, though the technology and protocols 

to support survey activities are limited. Standard proto-

cols have not yet been established to conceal survey PSU 

locations when mapping buildings and roads in a crowd-

sourced platform such as OpenStreetMap™. Furthermore, 

we are not aware of any applications that allow survey enu-

merators to both update OpenStreetMap™ and separately 

store a confidential household listing linked to building 

locations, which interviewers would need to identify sam-

pled households. As in any survey, PSU boundaries and 

centroid point locations should not be shared publically 

to protect the anonymity of respondents and their com-

munities. PSU point locations can be published if they are 

randomly geo-displaced following methods like those used 

by MeasureDHS [77]. �e MeasureDHS project publishes 

PSU centroid coordinates that are displaced up to 2  km 

in urban areas, and up to 5 km in rural areas, with one in 

every 100th rural point displaced up to 10 km.

Fieldwork feasibility

�e sixth concern of gridded population sampling is 

feasibility of fieldwork. While there are multiple rea-

sons to use gridded population sampling, protocols to 

use these methods in the field need further develop-

ment. What is the enumeration protocol in a PSU that 

falls on two sides of a river where there is not a nearby 

bridge to cross? Should buildings be enumerated if they 

are intersected by the PSU boundary? Given that grid-

ded PSU boundaries do not follow sensible geographic 

or administrative boundaries, recent satellite imagery is 

almost certainly needed during enumeration. What is 

the minimum image resolution required for sampling in 

rural versus urban areas? How recent should the satellite 

imagery be? What are the tradeoffs of using digital enu-

meration methods over paper-based methods? While 

the use of smart phones or tablets to digitally enumerate 

PSUs increases the cost and skill requirements among 

enumerators, it may also reduce the time and increase 

the accuracy of enumeration compared to pen-and-paper 

methods. Multiple issues related to cost, time, accuracy, 

technology, and staff skill requirements to implement 

gridded population surveys need to be evaluated.

Conclusions
 �e GridSample R package facilitates further research 

into the promising field of gridded population sampling. 

Gridded population sampling is an attractive alterna-

tive to typical sampling methods when census data are 

outdated or inaccurate. GridSample supports standard 

complex survey designs including clustered sampling, 

stratification, and oversampling in urban or rural areas. 

GridSample additionally allows users to oversample in 

space, and to specify a desired population size of sampling 

units. We show that GridSample can be used to replicate 

a DHS in Rwanda, providing evidence of a similar number 

of primary sampling units with similar population sizes 

in urban and rural areas. We also summarize four ways 

in which gridded population samples have been imple-

mented in the field, and provide sample weight calcula-

tions for GridSample output. Finally, we discuss several 

areas of current and future research into gridded popula-

tion sampling which can benefit from this tool.
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