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Abstract (150 words) 1 

Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide 2 

clinical precision oncology. Here we developed Griffin, a new method for profiling nucleosome 3 

protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x 4 

coverage whole genome sequencing (WGS) data. Griffin employs a novel GC correction 5 

procedure tailored to variable cfDNA fragment sizes, which improves the prediction of chromatin 6 

accessibility. Griffin achieved excellent performance for detecting tumor cfDNA in early-stage 7 

cancer patients (AUC=0.96). Next, we applied Griffin for the first demonstration of estrogen 8 

receptor (ER) subtyping in metastatic breast cancer from cfDNA. We analyzed 254 samples from 9 

139 patients and predicted ER subtype with high performance (AUC=0.89), leading to insights 10 

about tumor heterogeneity. In summary, Griffin is a framework for accurate clinical subtyping and 11 

can be generalizable to other cancer types for precision oncology applications.    12 
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Introduction 13 

Accurate cancer diagnosis and subtype classification are critical for guiding clinical care and 14 

precision oncology. Current approaches to determine tumor subtype require a tissue biopsy, 15 

which is often difficult to obtain from patients with metastatic cancer. Therefore, at the time of 16 

recurrence or metastatic cancer diagnosis, treatment options may often be informed by clinical 17 

diagnostics from the primary tumor. However, molecular changes in the tumor can emerge during 18 

metastatic progression and in the context of therapeutic resistance. Moreover, surveying 19 

molecular changes is challenging because repeated biopsies are problematic and not routine in 20 

clinical practice for solid tumors.  21 

 22 

Cell-free DNA (cfDNA) is DNA released into circulation by cells during apoptosis and necrosis.1 23 

In patients with cancer, a portion of this cfDNA is released from tumor cells, called circulating 24 

tumor DNA (ctDNA). The analysis of ctDNA can address the challenges in tissue accessibility and 25 

has demonstrated great potential for clinical utility.2–9 Much of the current research and clinical 26 

efforts have focused on the detection of genetic alterations in ctDNA. Shallow coverage 27 

sequencing of cfDNA, including ultra-low pass whole genome sequencing (ULP-WGS, 0.1x), 28 

provides a cost-effective and scalable solution for estimating the tumor fraction (fraction of the 29 

cfDNA that is tumor derived) from the analysis of genomic copy number alterations.10–13 30 

Sequencing analysis of genomic alterations from ctDNA have helped to distinguish molecular 31 

subsets of tumors.14,15 However, these genomic alterations, including somatic mutations, may not 32 

always fully explain treatment failure or identify therapeutic targets, exemplifying a major limitation 33 

of cancer precision medicine.  34 

 35 

Tumor subtypes are often characterized by distinct transcriptional regulation, which can change 36 

during treatment resistance, leading to different clinical tumor phenotypes. For example, prostate 37 

and lung cancers may undergo trans-differentiation from adenocarcinoma to small-cell 38 
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neuroendocrine phenotypes.16–20 For metastatic breast cancer (MBC), treatment is guided based 39 

on clinical subtypes determined by the expression of the estrogen receptor (ER), progesterone 40 

receptor (PR), and human epidermal growth factor receptor 2 (HER2), often in the primary 41 

tumor21; endocrine therapies are prescribed to patients with ER-positive (ER+) or PR-positive 42 

(PR+) carcinomas while patients with HER2 positive tumors are prescribed anti-HER2 drugs. 43 

Patients with tumors absent for expression of all three receptors have triple negative breast 44 

cancer (TNBC) and receive chemotherapy.22 However, receptor conversions during primary and 45 

metastatic disease progression have been frequently observed, including ~20% of patient tumors 46 

switching from ER+ to ER-negative (ER-) subtypes.23–28 Furthermore, similar to the presence of 47 

intra-tumor genomic heterogeneity in breast cancer, mixtures of clinical subtypes may also co-48 

exist across or within metastatic lesions in the same patient, presenting major clinical 49 

challenges.29,30 Therefore, accurate subtype classification and identification of transcriptional 50 

patterns underlying emergent clinical phenotype during therapy has critical implications for 51 

studying mechanisms of resistance and informing treatment decisions. 52 

 53 

Recent studies have shown that the computational analysis of cfDNA fragmentation patterns from 54 

genome sequencing data can reveal the occupancy of nucleosomes in cells-of-origin.31–36 When 55 

DNA is released into the peripheral blood following cell death, they are protected from degradation 56 

by nucleosomes.1 At accessible genomic locations, such as at actively bound transcription factor 57 

binding sites (TFBSs) and open chromatin regions, nucleosomes are positioned in an organized 58 

manner that allows access for DNA binding proteins37 (Fig. 1a). This nucleosome organization 59 

results in a loss of sequencing coverage, reflecting DNA degradation at the unprotected binding 60 

site with peaks of coverage at the surrounding protected locations.  61 

 62 

Applications of nucleosome profiling from cfDNA have been demonstrated for cancer detection 63 

and tumor tissue-of-origin prediction, including the analysis of shorter cfDNA fragments which 64 
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tend to be enriched from tumor cells.38–41 While tumor subtyping from cfDNA has been explored 65 

in prostate cancer by analyzing TFBS locations42, to our knowledge there have not been 66 

demonstrations of subtype classification from cfDNA in other cancers. Specifically, predicting 67 

histological subtypes in breast cancer has not been shown from cfDNA. Furthermore, current 68 

cfDNA nucleosome profiling approaches have not been optimized for ULP-WGS data. Studying 69 

the clinical phenotype of tumors from ctDNA remains challenging due to lack of robust 70 

computational methods but has obvious potential clinical benefits for guiding treatment decisions 71 

in patients with metastatic cancer.  72 

 73 

In this present study, we developed a computational framework called Griffin to classify tumor 74 

subtypes from nucleosome profiling of cfDNA. Griffin overcomes current analytical challenges to 75 

profiles the nucleosome accessibility and transcriptional regulation from the analysis of standard 76 

cfDNA genome sequencing, including ULP-WGS (0.1x) coverage. Griffin employs a novel GC 77 

correction procedure that is specific for DNA fragment sizes and therefore unique for cfDNA 78 

sequencing data. We applied Griffin to perform cancer detection and tumor tissue-of-origin 79 

analysis with high performance. Then, we demonstrate the first application of breast cancer ER 80 

subtyping from cfDNA, showing strong classification accuracy and insights into tumor 81 

heterogeneity and prognosis, all achieved from analysis of ULP-WGS data. Overall, Griffin is a 82 

generalizable framework that can detect molecular changes in transcriptional regulation and 83 

chromatin accessibility from cfDNA and possibly direct personalized treatment to improve patient 84 

outcomes. 85 

 86 

Results 87 

Griffin framework for nucleosome profiling to predict tumor phenotype 88 

We developed Griffin as an analysis framework with a new GC correction procedure to accurately 89 

profile nucleosome occupancy from cfDNA. Griffin processes fragment coverage to distinguish 90 
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accessible and inaccessible features of nucleosome protection (Fig. 1a). Griffin is designed to be 91 

applied to whole genome sequencing (WGS) data of cfDNA from patients with cancer to quantify 92 

nucleosome protection around sites of interest and is optimized to work for ULP-WGS data (Fig. 93 

1b). Sites of interest can be selected from various chromatin-based assays, such as from assay 94 

for transposase-accessible chromatin using sequencing (ATAC-seq) and are tailored to address 95 

specific problems including cancer detection and tumor subtyping.  96 

 97 

The analysis workflow begins with computing the genome-wide fragment-based GC bias for each 98 

sample. Then, for the region at each site of interest, the fragment midpoint coverage is computed 99 

and reweighted to remove GC biases (Methods). Midpoint coverage rather than full fragment 100 

coverage is used because it produces higher amplitude nucleosome protection signals 101 

(Supplementary Fig. 1). Next, a composite coverage profile is computed as the mean of the GC-102 

corrected coverage across the set of sites specific for a tissue type, tumor type, transcription 103 

factor (TF), or any phenotypic comparison of interest. By examining these coverage profiles 104 

around known cancer-specific and blood-specific TFs, we identified three quantitative features 105 

that distinguish a site as accessible and inaccessible: (a) the coverage in the window between -106 

/+ 30 bp (‘central coverage’), where lower values represent increased accessibility, (b) the 107 

coverage in a window between -/+ 1000 bp (‘mean coverage’), and (c) the overall nucleosome 108 

peak amplitude calculated using Fast Fourier transform (FFT, ‘amplitude’). These features can be 109 

used to quantify transcription factor activity or chromatin accessibility and be used as features for 110 

detection of cancer, tumor subtyping, or studying other phenotypes of interest. 111 

 112 

Griffin reduces GC biases enabling detection of tissue specific accessibility 113 

A novel aspect of Griffin is the implementation of a fragment-based GC bias correction. At open 114 

chromatin regions, especially at TFBS, GC-content is non-uniform, which leads to GC-related 115 

coverage biases (Fig. 2a).43 GC bias varies between samples and between different fragment 116 
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lengths within a sample44 (Fig. 2b), which can have a major impact on nucleosome accessibility 117 

prediction (Fig. 2c). To correct for this GC bias, for each sample and each fragment length, Griffin 118 

computes the global estimated mean fragment coverage (“expected”) using a fragment length 119 

position model44 (Methods, Fig. 2b). Then, when calculating coverage around sites of interest, 120 

each fragment is assigned a weight based on the global expected coverage. This correction 121 

eliminates unexpected increases (or decreases) in coverage at binding sites, removing technical 122 

biases to enhance the epithelial tissue-associated accessibility signals when analyzing WGS (9-123 

25x, Fig. 2c) cancer patient cfDNA and ULP-WGS (0.1-0.3x, Fig. 2d). 124 

 125 

To test the performance of nucleosome profiling following Griffin GC-bias correction, we 126 

compared the estimated TFBS accessibility with the amount of tumor-derived DNA (i.e. tumor 127 

fraction) predicted by ichorCNA for ULP-WGS data from 191 MBC cfDNA samples with ≥ 0.1 128 

tumor fraction.10 We expect the tumor fraction to be negatively corrected with the central coverage 129 

around tumor-specific sites, and positively correlated for blood-specific sites. For a blood specific 130 

TF, LYL1, we observed that the central coverage at TFBSs was positively correlated with tumor 131 

fraction before GC correction (Pearson’s r=0.31) as expected, but this correlation was much 132 

stronger after GC correction (Pearson’s r=0.63, Fig. 2e). For a tumor-specific TF, GRHL2, we 133 

observed a negative correlation between the central coverage and tumor fraction, as expected 134 

(Pearson’s r=-0.63, Supplementary Fig. 2). The mean coverage and amplitude features are also 135 

correlated to tumor fraction but appeared to be less influenced by GC bias (Supplementary Fig. 136 

2, Supplementary Data 1). Similar correlations between nucleosome profile features and tumor 137 

fraction following GC correction were also observed for blood and cancer specific DNase I 138 

hypersensitivity sites (DHSs) (Supplementary Fig. 2).  139 

 140 

To quantify how GC correction reduces signal variability between samples, we examined the 141 

central coverage in the 191 MBC cfDNA ULP-WGS samples for 338 TFs in the Gene Transcription 142 
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Regulation Database (GTRD).42,45 For each factor, we compared the variability between the 143 

central coverage and tumor fraction using the root mean squared error (RMSE) from a linear 144 

regression fit before and after GC correction. For LYL1, the RMSE decreased (0.067 to 0.041), 145 

indicating less inter-sample variation in the data after GC correction (Fig. 2e). Similarly, for 325 146 

(96.1%) TFs, the RMSE was decreased after GC correction, indicating reduced inter-sample 147 

variability after accounting for the correlation between tumor fraction and central coverage (two-148 

sided Wilcoxon signed rank test p = 2.4x10-55, test statistic = 472, Fig. 2f, Supplementary Data 1). 149 

Additionally, we examined the central coverage for the 338 TFs in a cohort of 215 healthy donors38 150 

before and after GC correction. Because healthy donor samples have no tumor content, we 151 

evaluated the mean absolute deviation (MAD) for each TF to compare inter-sample variability. 152 

We found that the MAD decreased after GC correction for 324 (95.8%) TFs (two-sided Wilcoxon 153 

signed rank test p = 1.4x10-53, test-statistic = 940, Fig. 2g, Supplementary Data 2), indicating 154 

lower inter-sample variability for nearly all TFs. Altogether, these results suggest that the novel 155 

GC correction in the Griffin framework reduces the variability in chromatin accessibility signals 156 

due to GC biases between samples and allows for improved detection of tissue specific 157 

accessibility in ULP-WGS data. 158 

 159 

Griffin analysis at TFBS enables accurate cancer detection and tissue-of-origin prediction 160 

To determine if Griffin can perform cancer detection, we analyzed a published WGS (1-2X) 161 

dataset of cfDNA samples from healthy donors (n = 215) and cancer patients (n = 208).38 We 162 

generated nucleosome profiles around TFBSs for the 338 TFs using nucleosome sized (100-163 

200bp) fragments and extracted three features from each profile (central coverage, mean 164 

coverage, and amplitude) for a total of 1014 features. Using logistic regression, we achieved a 165 

high performance for predicting the presence of cancer with an area under the receiver operating 166 

curve (AUC) of 0.96 (Fig. 3a, Supplementary Data 3). We achieved the highest prediction 167 

performance for lung and ovarian cancers (AUC=1.00) and the lowest for pancreatic cancer 168 
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(AUC=0.90). We also observed high performance for stage IV cancers (AUC=0.99) but 169 

maintained great performance for stage I cancers (AUC=0.94, Fig. Supplementary Fig. 3). The 170 

performance was likely reflective of the higher tumor fractions observed in late-stage cancer 171 

relative to early-stage cancer. We observed higher performance for samples with tumor fraction 172 

³ 0.05 (AUC 1.0) than samples with undetectable tumor (0 tumor fraction, AUC=0.94, 173 

Supplementary Fig. 3). We also observed similar performance with Griffin analysis around DNase 174 

I Hypersensitivity Sites (DHS) (AUC=0.91, Supplementary Fig. 3). 175 

 176 

To test the ability to detect cancer at ULP-WGS coverage (0.1x), we applied Griffin to the same 177 

cfDNA data downsampled to 0.1x coverage and achieved a performance with AUC of 0.88 (Fig. 178 

3b). Next, because fragments <150bp are enriched for tumor derived DNA38, we tested whether 179 

using only shorter fragments might improve our ability to detect cancer in this framework, we 180 

applied Griffin to analyze only 35-150bp fragments at the same TFBSs and observed a decreased 181 

performance (AUC=0.93, Supplementary Fig. 3). Finally, we compared our results with the 182 

method by Ulz et al.42, which analyzed cfDNA fragments of all lengths at TFBSs. Across all cancer 183 

types, Griffin using nucleosome-sized or short fragments and ULP-WGS coverage had higher 184 

detection performance (Fig. 3c, Supplementary Fig. 3). This demonstrates that Griffin can detect 185 

cancer accurately using various sites from chromatin-based assays and cost-effective ULP-WGS 186 

of cfDNA. 187 

 188 

Next, we tested the ability of Griffin to predict the cancer tissue of origin from cfDNA. Using Griffin 189 

nucleosome profile features around the TFBSs for the 338 TFs, we applied a multinomial logistic 190 

regression to predict the cancer type of each sample. The top prediction was correct for 60% of 191 

samples. When the top two predictions were considered, 79% of the samples were correctly 192 

classified (Fig. 3d). Overall, we show that Griffin can be used for highly accurate cancer detection 193 
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from cfDNA even when using ULP-WGS coverage and that Griffin can be used for tissue of origin 194 

prediction. 195 

 196 

Griffin enables accurate prediction of breast cancer subtypes from ultra-low pass WGS 197 

Breast cancer tumor classification relies on accurate clinical determination of hormone receptor 198 

status primarily by immunohistochemistry (IHC) to quantify the expression of ER, but no ctDNA 199 

approach exists for this application. We set out to determine whether Griffin can be used to predict 200 

ER subtype status from ULP-WGS (0.1x) of cfDNA from MBC patients. We analyzed 254 201 

samples10,11 with tumor fraction greater than 0.05 from 139 patients. First, we inspected the Griffin 202 

profiles at TFBSs for key factors, including ESR1, FOXA1, and GATA3, which are known to be 203 

associated with ER positive tumors.46 We observed that these TFBSs were more accessible in 204 

cfDNA samples from patients with ER+ metastases compared to ER-; central coverage was 205 

negatively correlated with tumor fraction for ER+ samples only (Pearson’s r < -0.35, p < 4.2x10-4, 206 

Supplementary Fig. 4). To predict ER status, we initially built a logistic regression classifier using 207 

features from the Griffin profiles for all 338 TFs and achieved an accuracy of 0.68 (AUC of 0.74, 208 

Supplementary Fig. 5). We also used TFBSs features computed by the Ulz method for ER 209 

subtyping and observed an accuracy of 0.55 (AUC=0.58, Supplementary Fig. 5), likely because 210 

it was not designed for ULP-WGS data.   211 

 212 

Next, we used a more tailored site selection approach by analyzing regions of differential 213 

chromatin accessibility. Using ATAC-seq data generated from 44 ER+ and 15 ER- primary breast 214 

tumors by The Cancer Genome Atlas (TCGA)47, we identified open chromatin sites that were 215 

specific to each ER subtype (Methods, Fig. 4a, Supplementary Data 4). ER+ specific sites 216 

(n=27,359) were enriched for the TFBSs of ESR1, PGR, FOXA1 and GATA3, and ER- specific 217 

sites (n=24,861) were enriched for the TFBSs of STAT3 and NFKB1 (Supplementary Data 5). We 218 

observed differences in coverage profiles between ER subtype-specific sites that were shared 219 
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and not shared with accessible chromatin in hematopoietic cells48 and analyzed them separately 220 

(Fig. 4b, Supplementary Fig. 6).  221 

 222 

We applied Griffin to profile nucleosome accessibility at these four sets of ER subtype-specific 223 

accessible chromatin sites, extracting a total of 12 features (Fig. 4b, Supplementary Fig. 6). We 224 

built a logistic regression classifier to predict ER subtype from these chromatin accessibility 225 

features and achieved an overall accuracy of 0.81 (AUC=0.89, n=139) (Methods, Fig. 4c). The 226 

performance was higher for samples with high tumor fraction (accuracy 0.88, AUC=0.93, n=101, 227 

tumor fraction ³ 0.1) compared to those with lower tumor fraction (accuracy 0.64, AUC=0.68, 228 

n=38, tumor fraction 0.05 to 0.1) (Fig. 4c). Repeating the analysis using only short fragments (35-229 

150bp) did not improve the performance (accuracy 0.66, AUC=0.71), likely due to further reduced 230 

fragment coverage (Supplementary Fig. 5). These results illustrate the utility of using chromatin 231 

accessibility for cancer subtyping from ULP-WGS data and showcase the first application of ER 232 

status prediction in breast cancer from cfDNA. 233 

 234 

Analysis of ER status from cfDNA reveals tumor subtype heterogeneity  235 

To further investigate the ER predictions, we inspected the classification results for 48 of the 236 

patients with an ER- metastasis, known primary ER status, and a tumor fraction of ≥0.1. In 41 237 

patients with where the primary and metastasis were both ER- by IHC, we predicted 39 (95.1%) 238 

patients to have ER- subtype. Intriguingly, in the seven patients who had clinical primary ER+ and 239 

metastatic ER- status (i.e., ER loss), three (42.9%) were predicted to be ER+, and this higher 240 

prevalence of ER+ prediction for this patient group was statistically significant (two-sided Fisher’s 241 

exact test p = 0.018, Fig. 4d). We also observed that the predicted probability of ER+ was higher 242 

in the patients with ER loss than the patients with ER- primary and metastasis, and this was 243 

statistically significant even after accounting for tumor fraction (analysis of covariance, p=0.014). 244 
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These results suggest that there may be residual ER+ tumor features in the ER loss patients or 245 

that Griffin analysis may be capturing a heterogeneous mixture of ER subtypes from ctDNA. 246 

 247 

To further assess whether this observation may be due to tumor heterogeneity, we examined 248 

ULP-WGS samples from six TNBC patients receiving treatment with Cabozantinib who had 249 

plasma collected at different timepoints and had clonal dynamics analysis performed previously 250 

using subclonal somatic mutations from ctDNA.11,49 Overall for all six patients, the ER+ probability 251 

followed closely to the trends of multiple clones over time (Fig. 4f, Supplementary Fig. 7). In 252 

patient MBC_1306, ER+ probability tracked closely with the clonality of clonal cluster 4, as 253 

estimated by the cellular prevalence50, particularly at 21.7 months post-metastasis where both 254 

increased (Fig. 4f). Two of these six patients (MBC_1413 and MBC_1405) had known ER loss 255 

for at least one metastasis.  Interestingly in both cases, the ER+ probability fluctuated over time, 256 

but tracked with one or more of the genomic clones (Fig. 4f). In patient MBC_1413, who had an 257 

ER+ primary and ER- metastasis, we noted the ER+ probability tracked closely with the cellular 258 

prevalence of clonal cluster 3, including the coincident 0.4 ER+ probability increase with a 30% 259 

(cluster 3) expansion at 10 months post-metastasis (Fig. 4g). Patient MBC_1405 had an ER+ 260 

primary and both ER- and ER+ metastatic biopsies but was considered ER+ status despite having 261 

only 25% expression by IHC. While all five timepoints from this patient were predicted to be ER-, 262 

the ER+ probability tracked with both clonal clusters 3 and 4. Furthermore, the proximity of the 263 

predicted ER+ probabilities near the decision boundary suggests we may be capturing the 264 

heterogeneity of the two metastatic biopsies.  These results support the presence of ER subtype 265 

heterogeneity as compared with orthogonal ctDNA clonality analysis and suggest that tumor 266 

subtype dynamics can be monitored during therapy. 267 

 268 

 269 

 270 
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Discussion 271 

In this study, we described the development of Griffin, a new framework and analysis tool for 272 

studying transcriptional regulation and tumor phenotypes. Griffin uses a novel cfDNA fragment 273 

length-specific normalization of GC-content biases that obscure chromatin accessibility 274 

information. We demonstrated that Griffin can be used to detect cancer from low pass WGS with 275 

high accuracy. We also developed an approach to perform ER subtyping in breast cancer from 276 

ULP-WGS, which to our knowledge is the first time that ER phenotype prediction has been shown 277 

from ctDNA. 278 

 279 

Griffin is versatile and can be used for various applications in cancer. We highlighted cancer 280 

detection, tissue-of-origin, and tumor subtype use-cases. However, Griffin can also be used for 281 

any biological comparison where transcriptional regulation and chromatin accessibility differences 282 

can be delineated. The applications described here use TFBSs from chromatin 283 

immunoprecipitation sequencing (ChIP-seq) and accessible chromatin sites from ATAC-seq. 284 

However, Griffin differs from existing methods due to its ability to analyze custom sites of interest 285 

that are specific to any biological context. These sites may be obtained from external sources and 286 

different assays, such as ChIP-seq, DNase I hypersensitivity, ATAC-seq or cleavage under 287 

targets and release using nuclease (CUT&RUN). As additional epigenetic data are collected by 288 

the cancer research community, including from single-cell experiments51,52, Griffin will be integral 289 

for advancing tumor phenotype studies from liquid biopsies. 290 

 291 

Griffin is optimized for the analysis of ULP-WGS (0.1x) of cfDNA, while other nucleosome profiling 292 

methods have focused on deeper coverage sequencing. Griffin takes advantage of analyzing the 293 

breadth of sites as opposed to individual loci, which was inspired by a similar strategy used by 294 

Ulz et al42. We show that Griffin has better performance for both detecting cancer and predicting 295 

ER status from ULP-WGS data when compared to the Ulz method, because of its novel bias 296 
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correction and versatility to analyze any set of genomic regions. However, Griffin is not limited to 297 

low coverage data. Increased cfDNA sequencing coverage can allow for analysis of specific gene 298 

promoters and cis-regulatory elements and may be able to inform gene expression.31 While recent 299 

studies show the promise of cfDNA methylation and cfRNA analysis for tumor phenotype analysis 300 

and cancer detection,53–59 these analytes may be challenging to isolate from clinical specimens 301 

or require specialized assays. Griffin provides a cost-effective and scalable method requiring only 302 

standard low coverage WGS of cfDNA, which can be more rapidly incorporated into existing 303 

platforms to predict clinical cancer phenotypes. 304 

 305 

A limitation of the binary ER classification (ER+ or ER-) is the decreased accuracy for samples 306 

with lower tumor fraction (0.05 to 0.1); however, patients with cfDNA tumor fraction ≥ 10% have 307 

poorer prognosis60 and would benefit more from tumor monitoring. It may be possible to improve 308 

performance of ER subtyping for lower tumor fraction samples with additional sequencing depth 309 

or joint analysis of multiple cfDNA timepoints from the same patient.  310 

 311 

The application of Griffin to predict ER status from cfDNA of MBC patients led to interesting 312 

insights into tumor heterogeneity and potential explanations for misclassified predictions. 313 

Intriguingly, we noticed that for the patients with ER- tumors by IHC, ER+ predictions were 314 

significantly enriched when the primary tumor was ER+. Moreover, we observed that the predicted 315 

ER probability closely matched the clonal dynamics from somatic mutation in six patients. Two of 316 

these patients had a change in predicted ER status, potentially suggesting the presence of 317 

metastases of both subtypes. Importantly, while this subtype heterogeneity and switching would 318 

typically not be captured from a single metastatic biopsy, our results demonstrate the possibility 319 

of using ER probability to monitoring subtype heterogeneity over time during therapy using ctDNA.  320 

 321 
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We focus our breast cancer subtyping on ER prediction because its status has important utility in 322 

predicting likely benefit to endocrine therapy.61 While PR expression is also determined in the 323 

clinic and ER-/PR+ tumors are considered hormone receptor positive, these are rare, not 324 

reproducible or less useful for prognosis.62 In our cohort, only 2 of 139 (1.4%) patients were ER-325 

/PR+. HER2 overexpression is important relevant for prognosis and determining treatment such 326 

as trastuzumab.63 However, we were unable to identify sufficient number of open chromatin sites 327 

that were specific for distinguishing HER2 status. Since ERBB2 (encodes the HER2 protein) is 328 

amplified in ~20% breast cancers, one can instead assess ERBB2 copy number amplification 329 

from ctDNA genomic analysis.64  Alternatively, a model to predict PAM50 status could be useful 330 

as this may be a better indicator of prognosis than ER/PR/HER2 IHC alone.65 331 

 332 

The Griffin framework is a unique advance on our previous method to analyze genomic alterations 333 

and estimate tumor fraction from ULP-WGS of cfDNA.10 Together, these methods form a suite of 334 

tools to establish a new paradigm to study both tumor genotype and phenotype from ULP-WGS 335 

of cfDNA. Griffin has the potential to reveal clinically relevant tumor phenotypes, which will support 336 

the study of therapeutic resistance, inform treatment decisions, and accelerate applications in 337 

cancer precision medicine. 338 

 339 

Methods 340 

Griffin: Site filtering 341 

Prior to performing nucleosome profiling, we filtered all site lists by mappability to remove regions 342 

that had low or uneven coverage due to inability to map reads. We used mappability data from 343 

the hg38 Umap multi-read mappability track for 50bp reads downloaded from the UCSC genome 344 

browser66 (downloaded from here 345 

https://hgdownload.soe.ucsc.edu/gbdb/hg38/hoffmanMappability/k50.Umap.MultiTrackMappabili346 

ty.bw). To perform this filtration, we developed the ‘griffin_filter_sites’ pipeline. This pipeline takes 347 
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a mappability file, a list of sites, a window to examine around each site, and a mappability 348 

threshold. We used a window of -5,000 to +5,000 bp around each site. Within this window, we 349 

calculated the mean mappability value using pyBigWig (https://github.com/deeptools/pyBigWig). 350 

We then excluded sites with a mean mappability below the threshold of 0.95 and retained highly 351 

mappable sites for further analysis. 352 

 353 

Griffin: GC bias calculation 354 

GC content influences the efficiency of amplification and sequencing leading to different expected 355 

coverages (coverage bias) for fragments with different GC contents and fragment lengths. This is 356 

called GC bias and is unique to each sample. We calculated the GC bias of each bam file using 357 

a custom method similar to that demonstrated in Benjamini and Speed 201244 and implemented 358 

in deepTools67. However, unlike this existing approach, which assumes that all fragments have 359 

the same length, our approach calculates a separate GC bias curve for every fragment length 360 

within a specified range. This is helpful for cfDNA where different samples may have different 361 

fragment size distributions. Prior to performing GC bias calculation, we identified all mappable, 362 

non-repetitive regions of the genome. We used pybedtools to find the mappable regions (defined 363 

as mappability score = 1) from the hg38 mappability track (described in the section on site filtering) 364 

and exclude the repetitive regions from the UCSC hg38 repeat masker track68 (downloaded from 365 

the UCSC table browser: http://genome.ucsc.edu/cgi-bin/hgTables). We then examined all 366 

mappable, non-repetitive regions of the genome and, for each fragment length, counted the 367 

number of times each GC content is observed in possible fragments overlapping those regions. 368 

These counts for each fragment length are the ‘genome GC frequencies’. We then developed the 369 

‘griffin GC bias’ pipeline to compute the GC bias in a given bam file. The pipeline takes a bam 370 

file, bedGraph file of valid (mappable, non-repetitive) regions, and genome GC frequencies for 371 

those regions.  For each given sample, we fetched all reads aligning to mappable, non-repetitive 372 

regions on autosomes using pysam (https://github.com/pysam-developers/pysam)69. We counted 373 
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the number of observed reads for each length and GC content, excluding reads with low mapping 374 

quality (<20), duplicates, unpaired reads, and reads that failed quality control. These read counts 375 

are the ‘GC counts’ for that sample. We then divided the GC counts by the GC frequencies to 376 

obtain the GC bias for that bam file and normalized the mean GC bias for each fragment length 377 

to 1, resulting in a GC bias value for every combination of fragment size and GC content (except 378 

those that are not observed in the genome). We then smoothed the GC bias curves. For each 379 

fragment size we took all GC bias values for fragments of a similar length (+/- 10 bp). We sorted 380 

these values by the GC content of the fragment to create a vector of GC bias values for similar 381 

sized fragments. We then smoothed this vector by taking the median of k nearest neighbors 382 

(where k = 5% of the vector length or 50, whichever is greater) and repeated for each possible 383 

fragment length. We then normalized to a mean GC bias of 1 for each possible fragment length 384 

to generate a smoothed GC bias value for every possible fragment length and GC content 385 

observed in the genome.  386 

 387 

Griffin: Nucleosome profiling 388 

We designed the griffin nucleosome profiling pipeline to perform nucleosome profiling around 389 

sites of interest. This pipeline takes a bam file and site list, and assorted other parameters 390 

described below. For a given bam file and site list, we fetched all reads in a window (-5000 to 391 

+5000bp) around each site using pysam (excluding those that failed quality control measures). 392 

We then filtered reads by fragment length and selected those in a range of fragment lengths 393 

(typically 100-200 bp unless otherwise specified). For each read, we determined the GC bias for 394 

each fragment and assigned a weight of 
!

"#	%&'(
 to that fragment and identified the location of the 395 

fragment midpoint. We split the site into 15bp bins and summed the weighted fragment midpoints 396 

in each bin to get a GC corrected midpoint coverage profile (see Fig. 1b for a schematic). We 397 

repeated this for every site on the site list and took the mean of all sites to generate the coverage 398 
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profile for that site list. To make samples with different depths comparable, we normalized the 399 

coverage profile to a mean coverage of 1. We then smoothed the coverage profiles using a 400 

Savitzky-Golay filter with window length 165bp and polynomial order of 3.  401 

 402 

Griffin: Nucleosome profile feature quantification 403 

To quantify coverage profiles, we extracted 3 features from each coverage profile. First, we 404 

calculated the ‘mean coverage’ value +/- 1000 bp from the site. Second, we calculated the 405 

coverage value at the site (+/- 30bp). And third, we calculated the amplitude of the nucleosome 406 

peaks surrounding the site by using a Fast Fourier Transform (as implemented in Numpy70) on 407 

the window +/-960 bp from the site and taking the amplitude of the 10th frequency term. This 408 

window and frequency were chosen due to the observed nucleosome peak spacing at an active 409 

site (190bp) which results in approximately 10 peaks in the window +/-960bp. 410 

 411 

Early-stage cancer and healthy donor cfDNA samples 412 

Whole genome sequencing (WGS) cfDNA from patients with various types of early stage cancer 413 

and healthy donors were obtained from an existing dataset published in Cristiano et al38. Bam 414 

files were downloaded from EGA (dataset ID: EGAD00001005339). This data consisted of 1-2x 415 

low pass whole genome sequencing from 100bp paired end Illumina sequencing reads.  For our 416 

analyses, we used a subset of samples with 1-2X WGS of cfDNA from 208 cancer patients with 417 

no previous treatment and 215 healthy donors. These are the samples used for the cancer 418 

detection analysis in Cristiano et al. cfDNA tumor fraction was estimated using ichorCNA10. An 419 

hg38 panel of normal (PoN) with a 1mb bin size was created using all 260 healthy donors in the 420 

dataset. ichorCNA was then run on all cancer and healthy samples to estimate tumor fraction. 421 

ichorCNA_fracReadsInChrYForMale was set to 0.001. Defaults were used for all other settings. 422 

 423 

Metastatic breast cancer (MBC) and healthy donor cfDNA samples 424 
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WGS of cfDNA from patients with metastatic breast cancer (MBC) and healthy donors were 425 

obtained from an existing dataset published by Adalsteinsson and colleagues10. Bam files were 426 

downloaded from dbGaP (accession code: phs001417.v1.p1). This data consisted of ~0.1x ultra-427 

low pass whole genome sequencing (ULP-WGS) from 100bp paired end Illumina sequencing 428 

reads.  For our analyses, we used a subset of 254 samples with >0.1X coverage WGS, >0.05X 429 

tumor fraction and known estrogen receptor (ER) status. Of these 254 samples 132 were ER 430 

positive (from 74 unique patients) and 122 were ER negative (from 65 unique patients). Coverage 431 

and tumor fraction metrics were obtained from the supplemental data in the publication10. Primary 432 

and metastatic ER and PR status determined by immunohistochemistry. Additionally, we used 433 

deep (9-25X) WGS from two MBC patients (MBC_315 and MBC_288) from the same source and 434 

deep (17-20X) WGS from two healthy donors (HD45 and HD46) from the same source for 435 

designing and demonstrating the pipeline. 436 

 437 

For training and assessing the ER status classifier we labeled each sample as ER+ or ER- using 438 

information about the ER status from medical records. If metastatic ER status was known, the 439 

sample was labeled according to this status. If metastatic ER status was not known, the sample 440 

was labeled according to the primary tumor ER status (20 samples from 11 patients). ER low 441 

samples (9 samples from 5 patients) were labeled ER positive for the purpose of the binary 442 

classifier. For three patients (MBC_1405, MBC_1406, MBC_1408), we had information about 443 

multiple metastatic biopsies with different ER statuses. In these cases, we used the last biopsy 444 

taken for the purpose of the binary ER status classifier. 445 

 446 

Human Subjects 447 

WGS of cfDNA samples from patients with MBC were obtained from an existing study as 448 

described above10. Additional information, including primary ER status, metastatic ER status, and 449 

survival time, was abstracted from the medical records. Use of this data was approved by an 450 
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institutional review board (Dana-Farber Cancer Institute IRB protocol identifiers 05-246, 09-204, 451 

12-431 [NCT01738438; Closure effective date 6/30/2014]). 452 

 453 

Sequence data processing 454 

All sequencing data used in this study was realigned to the hg38 version of the human genome 455 

(downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz). Bam 456 

files were unmapped from their previous alignment using Picard SamToFastq.71 They were then 457 

realigned to the human reference genome according to GATK best practices72 using the following 458 

procedure. Fastq files were realigned using BWA-MEM.73 Files were then sorted with samtools74, 459 

duplicates were marked with Picard, and base recalibration was performed with GATK, using 460 

known polymorphisms downloaded from the following locations: 461 

https://console.cloud.google.com/storage/browser/genomics-public-462 

data/resources/broad/hg38/v0/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz and 463 

https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh38p7/VCF/GATK/All_2018041464 

8.vcf.gz.  465 

 466 

Transcription factor binding site (TFBS) selection 467 

Transcription factor binding sites (TFBSs) were downloaded from the GTRD database45. This 468 

database contains a compilation of ChIP seq data from various sources. For our analyses, we 469 

used the meta clusters data (version 19.10, downloaded from 470 

https://gtrd.biouml.org/downloads/19.10/chip-seq/Homo%20sapiens_meta_clusters.interval.gz). 471 

This contains meta peaks observed in one or more ChIP seq experiments. The GTRD database 472 

contains some ChIP seq experiments for targets that are not transcription factors (TFs). These 473 

were excluded by comparing against a list of TFs with known binding sites in the CIS-BP 474 

database75 (v2.00 downloaded from http://cisbp.ccbr.utoronto.ca/bulk.php). TFBS were then 475 

filtered by mappability as described above (Griffin: Site Filtering). The site position was identified 476 
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as the mean of ‘Start’ and ‘End’. TFs with less than 10,000 highly mappable sites on autosomes 477 

were excluded. For each remaining TF, the top 10,000 highly mappable sites were selected by 478 

choosing those with the highest ‘peak.count’ (number of times that peak has been observed 479 

across all experiments). 480 

 481 

DNase I hypersensitivity site selection 482 

DNase I hypersensitivity sites for a variety of tissue types were downloaded from 483 

https://zenodo.org/record/3838751/files/DHS_Index_and_Vocabulary_hg38_WM20190703.txt.g484 

z76. These sites were split by tissue type for a total of 16 site lists. They were filtered by mappability 485 

as described above (Griffin: Site Filtering) using the ‘summit’ column as the site position. The 486 

highly mappable sites were sorted by the number of samples where that site had been observed 487 

(‘numsamples’) and the top 10,000 most frequently observed sites were selected for each tissue 488 

type.  489 

 490 

ATAC-seq site selection for ER subtyping 491 

Assay for transposase-accessible chromatin using sequencing (ATAC-seq) site accessibility for 492 

primary breast cancer samples from The Cancer Genome Atlas (TCGA) were downloaded from 493 

the TCGA ATAC-seq hub 494 

(https://atacseq.xenahubs.net/download/brca/brca_peak_Log2Counts_dedup)47. The locations 495 

of these sites and patient metadata were obtained from the supplemental tables in the paper47. 496 

These ATAC-seq sites were filtered for mappability as described above (Griffin: Site Filtering), 497 

using the mean of the Start and End columns as the peak position. High mappability sites on 498 

autosomes were kept for further analysis for a total of 142,490 sites. Differentially accessible sites 499 

between ER+ (n=44) and ER- (n=15) tumors were identified by using a Mann-Whitney U test. P 500 

values were corrected for multiple testing using the Benjamini/Hochberg procedure using 501 

statsmodels77 and sites with a q-value <0.05 were selected. Additionally, selected sites were 502 
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further filtered based on the log2 fold change between ER+ and ER- tumors. Sites with a log2 fold 503 

change >0.5 were classified as ER+ specific, while sites with a log2 fold change <-0.5 were 504 

classified as ER- specific. These site lists were further split into sites shared with hematopoietic 505 

cells and those not shared with hematopoietic cells. Hematopoietic sites were obtained from a 506 

database of single cell ATAC-seq data48 (GEO accession number: GSE129785, peak file 507 

available here: 508 

https://ftp.ncbi.nlm.nih.gov/geo/series/GSE129nnn/GSE129785/suppl/GSE129785%5FscATAC509 

%2DHematopoiesis%2DAll%2Epeaks%2Etxt%2Egz). Hematopoietic peaks were lifted over to 510 

hg38 using the UCSC liftover command line tool and sites that changed size during liftover (0.2% 511 

of peaks) were discarded. BRCA ATAC-seq sites that overlapped with Hematopoietic sites 512 

(Overlapping peaks were defined as site centers being within 500bp of one another) this was 513 

performed using pybedtools intersect78,79. This resulted in a total of 4 differential site lists: ER 514 

positive sites that were not shared with hematopoietic cells (15,142 sites), ER positive sites that 515 

were shared with hematopoietic cells (12,217 sites), ER negative sites that were not shared with 516 

hematopoietic cells (12,151 sites), and ER negative sites that were shared with hematopoietic 517 

cells (12,710 sites). 518 

We then overlapped these differential ATAC-seq site lists with the top 10,000 sites for each of 519 

338 transcription factors (TFs) using pybedtools intersect. An overlapping pair of sites was defined 520 

as having <500bp between site centers. Each differential ATAC-seq site list was compared 521 

against each list of TFBSs and the total number of ATAC sites overlapping one or more TFBS on 522 

the given list was recorded.  523 

 524 

Assessment of Griffin before and after GC correction 525 

Tumor fraction correlations at TFBS  526 

For 191 MBC ULP samples with >0.1 tumor fraction, nucleosome profiling with and without GC 527 

correction was performed on the top 10,000 sites for each of 338 transcription factors (TFs). For 528 
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each TF, the relationship between central coverage and tumor fraction was modeled using 529 

scipy.stats.linregress80 producing a Pearson correlation (r) and line of best fit. Root mean squared 530 

error (RMSE) was calculated from the line of best fit. This was performed both before and after 531 

GC correction as illustrated for Lyl-1 in Fig. 2e. For all 338 TFs, the RMSE values before and after 532 

GC correction were compared using a Wilcoxon signed-rank test (two-sided). 533 

 534 

Mean absolute deviation (MAD) at TFBS 535 

For 215 healthy donors, nucleosome profiling with and without GC correction was performed on 536 

the top 10,000 sites for each of 338 TFs. For each TF, the MAD of the central coverage values 537 

was calculated both before and after GC correction. For all 338 TFs, the MAD values before and 538 

after GC correction were compared using a Wilcoxon signed-rank test (two-sided). 539 

 540 

Machine learning, bootstrapping, and performance evaluation procedure 541 

To detect cancer, predict tissue type, or predict ER subtype, we used logistic regression with 542 

Ridge regularization (i.e. L2 norm) as implemented in scikit-learn81. All feature values were scaled 543 

to a mean of 0 and a standard deviation of 1 prior to performing bootstrapping and fitting the 544 

models. We used the following bootstrapping procedure to train and assess the performance of 545 

our models. First, we selected n samples with replacement from the full set of n samples and 546 

used this as a training set. Samples that weren’t selected were used as the test set. We then used 547 

10-fold cross-validation on the training set to select the parameter ‘C’ (inverse of the regularization 548 

strength) from the following options: 10-5, 10-4, 10-3, 10-2, 10-1,100, 101, 102. To account for class 549 

imbalances in the data we used set the ‘class weight’ parameter to ‘balanced’ to adjust the sample 550 

weighs inversely proportional to the class frequencies. We trained a final model on all the training 551 

data using the selected regularization strength. Finally, we tested this model on the test set and 552 

recorded the performance (accuracy and AUC values) and probabilities from each sample. Then, 553 

a new training set was selected, and the procedure was repeated for 2000 iterations (for cancer 554 
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detection and tissue of origin analysis) or 1000 iterations (for breast cancer subtyping). After 555 

completing the bootstrap iterations, we calculated the AUC and accuracy from each bootstrap 556 

iteration and used these to generate the mean and 95% confidence interval around each of these 557 

values. To visualize the mean ROC curve, we used the median probability from all bootstraps 558 

where that sample was included in the test set. For further downstream analyses, we used this 559 

same median probability. 560 

 561 

Features used for cancer detection classification 562 

To detect cancer, we applied the logistic regression approach described above and built four 563 

different models using four different sets of features extracted from the pan cancer patient 564 

samples and healthy donor samples. First, we performed nucleosome profiling in these samples 565 

(selecting fragments 100-200bp in length) on the 338 selected TFs from the GTRD database. We 566 

extracted three features (as described above) from each coverage profile for a total of 1,014 567 

features. 568 

Second, we performed nucleosome profiling on these same samples and sites but selected only 569 

‘short’ fragments (35-150bp) to be counted in the nucleosome profiles.  570 

Third, we downsampled these samples to ~0.1x coverage (procedure described below) and 571 

performed nucleosome profiling for the same 338 TFs selecting fragments 100-200bp in length.  572 

Fourth, we used the original (not downsampled) samples and performed nucleosome profiling at 573 

the 16 tissue-specific DHS site lists described above. We extracted the same 3 features from 574 

each site profile for a total of 48 features.  575 

 576 

Tissue of origin prediction 577 

For tissue of origin prediction, we used the nucleosome profiles from the 338 TFs in the 1-2X 578 

coverage (not downsampled) cancer samples using 100-200bp fragments. We excluded 1 579 

duodenal cancer sample as this was the only sample from that cancer type. This left us with 207 580 
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cancer samples from 7 different cancer types: bile duct (n= 25), breast (n=54), colorectal (n=27), 581 

gastric (n=27), lung (n=12), ovarian (n=28), and pancreatic (n=34). We built a multinomial logistic 582 

regression model to predict the cancer tissue of origin for each sample using the same 583 

bootstrapping strategy described above. We ran this for 2000 iterations. For each iteration, we 584 

calculated the accuracy of the top prediction as well as the top two predictions.  585 

 586 

Downsampling of pan-cancer and healthy donor cfDNA sequencing data 587 

1-2x WGS of pan-cancer patient and healthy donor bam files aligned to hg38 were downsampled 588 

using Picard DownSampleSam. The probability used by DownSampleSam was calculated based 589 

on a target of 2,463,109 read pairs which resulted in approximately 0.11x coverage as calculated 590 

by Picard CollectWgsMetrics. Downsampled bam files were realigned to hg19 for use in the Ulz 591 

pipeline. The realignment procedure was the same as above but using the hg19 genome 592 

(downloaded from https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/hg19.fa.gz) and 593 

hg19 known polymorphic sites for base recalibration (downloaded from ftp://gsapubftp-594 

anonymous@ftp.broadinstitute.org/bundle/hg37/Mills_and_1000G_gold_standard.indels.hg37.v595 

cf.gz and 596 

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/GATK/All_20180423.597 

vcf.gz). 598 

 599 

ER status classification in the MBC cohort 600 

To predict ER status, we applied the logistic regression approach described above to features 601 

extracted from the MBC patient samples. Because some patients had multiple samples, we 602 

modified the bootstrapping procedure to select 139 patients (rather than samples) with 603 

replacement from a full set of 139 patients. For each selected patient, all samples from that patient 604 

were added to the training set (If a patient was selected multiple times, all their samples were 605 

included multiple times). This ensured that separate samples from the same patient (biological 606 
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replicates) could not appear in both the training and test set. Samples from patients that weren’t 607 

selected were used as the test set. 608 

 609 

Using these training and tests sets, we built three different models based on three different sets 610 

of features. First, we applied nucleosome profiling using 100-200bp fragments to the 338 TFs 611 

from GTRD and extracted 3 features per profile for a total of 1014 features. Second, we applied 612 

nucleosome profiling using 100-200bp fragments to the 4 ER differential ATAC seq lists and 613 

extracted 3 features per profile for a total of 12 features. Lastly, we applied nucleosome profiling 614 

using 35-150bp fragments to the 4 ER differential ATAC seq lists and extracted 3 features per list 615 

for a total of 12 features. 616 

 617 

For evaluating the models, we only included the first timepoint for each patient in the test set when 618 

calculating the accuracy and AUC for each bootstrap iteration. This prevented a small number of 619 

patients with many samples from having a large impact on the scores. 620 

 621 

ER probability comparison between patients with and without ER loss using analysis of 622 

covariance (ANCOVA) 623 

To determine whether the probability of ER+ for the patients with ER loss (primary ER+, metastatic 624 

ER-) were significantly different from the probability of ER+ for the patients with ER- primary and 625 

metastasis disease, we performed an analysis of covariance (ANCOVA) as implemented in 626 

Pingouin82. Probability of ER+ was the dependent variable, primary tumor status was the 627 

independent variable (‘between’), and tumor fraction was a covariate. While we found that tumor 628 

fraction was significantly related to the ER probability (p=0.03, F= 5.02, degrees of freedom = 1), 629 

we also found a significant difference (p=0.014, F = 6.48, degrees of freedom = 1) between the 630 

ER loss and ER- unchanged patients. 631 

  632 
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Transcription factor profiling using pipeline from Ulz et al. 633 

We downloaded the Transcription Factor Profiling pipeline published by Ulz and colleagues from 634 

Github (https://github.com/PeterUlz/TranscriptionFactorProfiling)42 and ran it using the following 635 

procedure as described in the paper. hg19 aligned bam files were used because the pipeline was 636 

written to for this version of the genome. Scripts were modified so that they worked in python3. 637 

We trimmed the reads in each bam to 60bp using ‘trim from bam single end’ with modifications to 638 

skip unaligned reads. We ran ichorCNA on the original (untrimmed) bam using the default 639 

ichorCNA settings for hg19 except the bin size, which was modified to 50,000bp and no panel of 640 

normals. We then ran the transcription factor profiling analysis on the trimmed bam using the 641 

script run_tf_analyses_from_bam.py with options ‘-calccov’ and ‘-a tf_gtrd_1000sites’ and the 642 

ichorCNA corrected depth file as the ‘-norm-file’. This ran transcription factor profiling on 1,000 643 

sites for each of 504 TFs. Finally, we ran the scoring pipeline. We used the high frequency 644 

amplitude ('HighFreqRange') for each of the 504 TFs in the accessibility output file 645 

(Accessibility1KSitesAdjusted.txt) as the features for a logistic regression model using the same 646 

bootstrapping scheme described above.  647 

 648 

Clonality analysis  649 

For 6 patients with high tumor fractions, multiple samples, and triple negative breast cancer, data 650 

on clonal dynamics in the ctDNA was available from a previous study49 (results downloaded from: 651 

https://gitlab.com/Zt_Weber/narrow-interval-clonal-structure-mbc/-/tree/master/PyClone-652 

Multisample-Final/pyclone_output_tables). In the study, somatic alterations were identified from 653 

both WES and targeted panel sequencing using GATK-Mutect2. Using these alterations, clonal 654 

dynamics were modeled using the PyClone50 package. The cellular prevalence estimate 655 

represents the proportion of the sample that contains somatic mutation. PyClone reports clusters 656 

of somatic mutations; cellular prevalence of these clusters is shown in the results.  657 
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 658 

Data availability 659 

Sequencing data used in this study was obtained from dbGaP (accession phs001417.v1.p1) and 660 

EGA (dataset ID EGAD00001005339). 661 

 662 

Code availability 663 

Griffin software and the subtype classifier tool can be obtained from 664 

https://github.com/adoebley/Griffin. Code for analysis and machine learning models can be 665 

accessed at https://github.com/adoebley/Griffin_analyses.  666 

 667 
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Figure legends 876 

Fig. 1 Griffin framework for cfDNA nucleosome profiling to predict cancer subtypes and 877 

tumor phenotype. (a) Illustration of a group of accessible sites (left panel) and inaccessible sites 878 

(right panel), such as a TFBS. The nucleosomes (in grey) are positioned in an organized manner 879 

around the accessible sites (red box; left panel), but not around the inaccessible ones (right 880 

panel). These nucleosomes protect the DNA from degradation when it is released into peripheral 881 

blood. The protected fragments from the plasma are sequenced and aligned, leading to a 882 

coverage profile which reflects the nucleosome protection in the cells of origin. (b) Griffin workflow 883 

for cfDNA nucleosome profiling analysis. cfDNA whole genome sequencing (WGS) data with ≥ 884 

0.1x coverage is aligned to hg38 genome build. (1) For each sample, fragment-based GC bias is 885 

computed for each fragment size. (2) Sites of interest are selected from any assay. Paired-end 886 

reads aligned to each site are collected, fragment midpoint coverage is counted, and corrected 887 

for GC bias to produce a coverage profile. (3) Coverage profiles from all sites in a group (e.g., 888 

open chromatin for tumor subtype) are averaged to produce a composite coverage profile. 889 

Composite profiles are normalized using the surrounding region (-5 kb to +5 kb). (4) Three 890 

features are extracted from the composite coverage profile: central coverage (coverage from -30 891 

bp to +30 bp from the site; orange ‘a’), mean coverage (between -1 kb to +1 kb; green ‘b’), and 892 

amplitude calculated using a Fast-Fourier Transform (FFT) (red ‘c’).  893 
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Fig. 2 Griffin GC bias correction improves detection of tissue specific accessibility from 895 

cfDNA. (a) Aggregated GC content at 10,000 GRHL2 binding sites and its surrounding 2kb 896 

region. Mean GC content (line) and interquartile range (green shading) are shown. (b) cfDNA GC 897 

bias is unique to each sample and each fragment length. GC bias computed for cfDNA from a 898 

healthy donor (HD_46; blue shades) and a metastatic breast cancer (MBC_315; orange shades) 899 

sample are shown for various fragment sizes. (c) Composite coverage profile of 10,000 GRHL2 900 

binding sites before and after GC correction, shown for HD_46 (blue) and MBC_315 (orange). 901 

Before GC correction, the ‘central coverage’ has a higher value due to effects of GC bias which 902 

can obscure differential signals between samples. After GC correction, the central coverage of 903 

the MBC sample has lower value, which is consistent with increased GRHL2 activity in breast 904 

cancer but not immune cells making up the healthy donor sample. (d) Composite coverage 905 

profiles of 10,000 LYL1 sites before and after GC correction, shown for two MBC samples with 906 

deep WGS (9-25x, orange), two healthy donors (17-20x, green), and 191 MBC samples with ULP-907 

WGS (0.1-0.3x, blue). Median +/- IQR of 191 ULP-WGS samples is shown with blue shading.  908 

Lower ‘central coverage’ corresponding to greater site accessibility in the healthy donor samples 909 

is expected because LYL1 is a transcription factor associated with hematopoiesis. (e) cfDNA 910 

tumor fraction and central coverage correlation for LYL1, shown for ULP-WGS (0.1-0.3x, n=191) 911 

and WGS (9-25x, n=2) of MBC and healthy donors (17-20x, n=2) samples. cfDNA contains a 912 

mixture of tumor and blood cells; therefore, central coverage value is expected to be positively 913 

correlated with tumor fraction (lower represents increased accessibility). After GC correction, the 914 

correlation (for the MBC ULP-WGS samples) is much stronger based on Pearson’s r correlation 915 

coefficient. Root mean squared error (RMSE) of the linear fit is shown. (f) Boxplots showing the 916 

distribution of the RMSE (linear fit between central coverage and tumor fraction in the MBC ULP-917 

WGS dataset [0.1-0.3x, n=191]) across the 338 TFs, before and after GC correction. The boxed 918 

range represents the median ± IQR, whiskers represent the range of the non-outlier data 919 

(maximum extent is 1.5x the IQR). Outliers are plotted in grey. p-value was calculated using the 920 
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Wilcoxon signed-rank test (two-sided). (g) Boxplots showing the distribution of the mean absolute 921 

deviation (of the central coverage across 215 healthy donors [1-2x WGS]) across the 338 TFs, 922 

before and after GC correction. Box elements are the same as (f). p-value was calculated using 923 

the Wilcoxon signed-rank test (two-sided). 924 
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Fig. 3 Griffin enables accurate cancer detection and tissue-of-origin prediction. (a) Receiver 926 

operator characteristic (ROC) curve for logistic regression classification of cancer (n=208) vs. 927 

healthy controls (n=215)38 using nucleosome profiles around TFBSs in 1-2x WGS data. ROC for 928 

each cancer type vs. healthy are shown. 95% confidence intervals (CIs) were obtained by 929 

bootstrapping. Duodenal cancer (n=1) is not shown. (b) ROC for logistic regression classification 930 

of cancer using the same TFBSs feature set applied to the same dataset downsampled to 0.1x 931 

WGS coverage. (c) Area under the ROC curve (AUC) values for logistic regression models using 932 

different feature sets collected from nucleosome profiling around TFBSs. The fragment size 933 

range, sample coverage, and nucleosome profiling tool (Griffin and Ulz pipelines) are indicated. 934 

95% CIs were obtained by bootstrapping. (d) Accuracy of a multinomial logistic regression model 935 

used to predict tissue-of-origin in 207 cancer patients (duodenal cancer was excluded). The 936 

accuracy of the top prediction and top two predictions by the model are shown for each individual 937 

cancer type and overall, for all cancer types combined.  938 
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Fig. 4 Griffin enables accurate prediction of breast cancer estrogen receptor subtypes from 940 

ultra-low pass WGS. (a) ER+ and ER- specific open chromatin sites were selected from assay 941 

for transposase-accessible chromatin using sequencing (ATAC-seq) data from ER+ (n=44) and 942 

ER- (n=15) breast tumors in The Cancer Genome Atlas (TCGA).47 Sites were selected using a 943 

Mann-Whitney-U (two-sided) test with Benjamini-Hochberg p-value adjustment (q-value) for each 944 

site, and the log2 fold change was also calculated. Sites with a q-value <0.05 and a log2 fold 945 

change of >0.5 or <-0.5 were considered differential. (b) Composite coverage profiles (median ± 946 

IQR) for ER+ specific (n=15,142) and ER- specific (n=12,151) sites are shown for MBC patients 947 

(≥ 0.1 tumor fraction) separated by clinical ER status (ER+, n=99; ER-, n=92). Sites shared with 948 

hematopoietic cells were excluded.48 (c) Receiver operator characteristic (ROC) curve for a 949 

logistic regression model predicting ER+ and ER- subtype. ROC curve, accuracy and AUC are 950 

shown for all patients and for patients grouped by tumor fraction (TFx), 0.05-0.1 and ≥0.1. 95% 951 

CIs were obtained by bootstrapping. For patients with multiple samples, the first sample with 952 

tumor fraction >0.05 was used. (d) Subtype prediction in patients with metastatic ER- breast 953 

cancer separated by clinical primary tumor ER status. P-value was calculated using a Fisher’s 954 

exact test (two-sided). (e) Boxplot showing the distribution of probabilities of ER+ for the same 955 

patients as in (d). The boxed range represents the median ± IQR, whiskers represent the range 956 

of the non-outlier data (maximum extent is 1.5x the IQR). All individual points are plotted. P-value 957 

calculated using ANCOVA with tumor fraction as a covariate. (f) Cellular prevalence of clonal 958 

clusters, ER+ prediction probability (grey line), and tumor fraction (dashed line) for multiple 959 

plasma samples shown for patients, MBC 1306, MBC 1413, and MBC 1405. Cellular prevalence 960 

was obtained from a previous study using PyClone analysis of whole exome and targeted panel 961 

sequencing of the same samples; analysis was performed independently for each patient.49 962 

Decision boundary for ER+ (≥0.5) and ER- (<0.5) is indicated with dotted line. Timelines in months 963 

from metastatic diagnosis to death are shown for each patient. For patient MBC_1405, two 964 

metastatic biopsies were taken shortly after metastatic diagnosis. One was ER- (Chest wall lesion, 965 
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biopsy taken at metastatic diagnosis), and one was moderately ER+ (25% ER staining, bone 966 

lesion, taken 26 days after diagnosis). This patent was considered ER+ for the purpose of the 967 

classifier (see Methods) but predicted as ER- for all timepoints. 968 

 969 
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