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Griffith–Kelly–Sherman Correlation Inequalities:
A Useful Tool in the Theory of Error Correcting

Codes
Nicolas Macris, Member, IEEE

Abstract—It is shown that a correlation inequality of statistical
mechanics can be applied to linear low-density parity-check codes.
Thanks to this tool we prove that, under a natural assumption,
the exponential growth rate of regular low-density parity-check
(LDPC) codes, can be computed exactly by iterative methods, at
least on the interval where it is a concave function of the relative
weight of code words. Then, considering communication over a bi-
nary input additive white Gaussian noise channel with a Poisson
LDPC code we prove that, under a natural assumption, part of
the GEXIT curve (associated to MAP decoding) can also be com-
puted exactly by the belief propagation algorithm. The correlation
inequality yields a sharp lower bound on the GEXIT curve. We
also make an extension of the interpolation techniques that have
recently led to rigorous results in spin glass theory and in the SAT
problem.

Index Terms—Correlation inequalities, density evolution, gener-
alized EXIT (GEXIT) curve, growth rate, interpolation technique,
iterative decoding, low-density parity-check (LDPC) codes, spin
glasses.

I. INTRODUCTION

T
HERE is a deep connection between the theory of linear

error correcting codes and statistical mechanics of random

spin systems (spin glasses). This connection was first uncovered

by Sourlas [1] and was later applied to various coding schemes

such as convolutional, turbo, low-density parity-check (LDPC)

codes. In particular the replica method of spin glass theory, has

been applied to LDPC ensembles and its intimate connection to

density evolution equations and belief propagation algorithms

has been recognized [2]–[4]. Giving a sound mathematical basis

to the results of the replica method has been a long standing

problem of spin glass theory, but recently progress in this direc-

tion has been accomplished by Guerra, which resulted in the so

called interpolation techniques for the Sherrington–Kirkpatrick

spin model [5]–[7]. These interpolation techniques have been

succesfully applied to the satisfiability (SAT and XORSAT)

problems [8], [9] and LDPC codes [10].

In statistical mechanics a very powerful tool is often pro-

vided by correlation inequalities: in this paper we demonstrate
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that this is also the case in coding. The correlation inequali-

ties that we investigate in the context of coding are the Grif-

fith–Kelly–Sherman (GKS) inequalities [15]. These have been

known since a long time in the context of ferromagnetic non-

random Ising type models and have been extended recently to

the situation of spin glasses provided a certain “gauge sym-

metry” is present [16]. It will become clear later that this sym-

metry is implied by memoryless channel symmetry.

Instead of investigating the most general situation, here we

limit ourselves to two special LDPC ensembles. We study two

different problems: one concerns the exponential growth rate for

regular codes; while the other one pertains to communication

through a noisy channel. For each problem we demonstrate that:

1) the GKS inequalities are applicable, and 2) appropriate quan-

tities can be calculated exactly by message passing algorithms.

Let us stress that from the point of view of spin glass theory 2)

amounts to show the exactness of the replica symmetric solution

in a suitable range of parameters (along the so-called Nishimori

line).

A summary of the present work has appeared in [17].

A. Growth Rate of Regular LDPC Codes

We study the growth rate of regular codes with arbitrary vari-

able node degree and even check node degree . Our main re-

sult rests on an unproven assumption (called H1 in Section III)

which is however very natural in statistical mechanics of spin

systems, namely that a grand canonical free energy can be rep-

resented as the Legendre transform of a canonical one. The main

result states that under this assumption, if on a certain interval

the growth rate is a concave function of the relative weight of

the codewords, then at least on part of that interval iterative mes-

sage passing methods are exact (Theorem 3.3).

This is achieved through upper and lower bounds on the

growth rate. For the upper bound we use the known fact that the

combinatorial growth rate [27], [28] is an upper bound which

happens to be sharp. For irregular ensembles it is known [29],

[30] that such a bound is not sharp and this is essentially why

we limit ourselves to regular codes. To obtain the lower bound

we remark that the weight enumerator is the partition function

of a ferromagnetic spin model so that the GKS inequality

applies (see Lemma 3.1, at this point we need an even degree

for the check nodes).

One would like to extend the main result to all values of the

relative weight (i.e., to go beyond the concave region). Indeed

numerical examples show that the curvature changes from con-

cave to convex before the point where the growth rate vanishes

0018-9448/$25.00 © 2007 IEEE
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(see, for example, Fig. 3), and therefore our result does not, un-

fortunately, allow for a rigorous computation of the typical min-

imum distance of the code ensemble (except for the trivial case

where the left degree is equal to ). We hope that our analysis

is a first step toward this goal. Second, it would obviously be

desirable to have a proof of assumption H1.

B. GEXIT Curves

We consider the problem of communication with a Poisson

LDPC code through a binary input additive white Gaussian

noise channel (BIAWGNC). We prove that a ”Generalized

EXIT curve”—defined as the derivative of the conditionnal

entropy with respect to the inverse square noise—and denoted

GEXIT, can be computed exactly by message passing algo-

rithms at least for some range of noise values (Theorem 3.6).

Here this result is conditional on an assumption (called H2

in Section III) which basicaly means that there are a finite

set of noise values where the “number of density evolution

fixed points can jump” and away from these “singularities” the

replica symmetric functionnal is a differentiable function of the

noise.

Such a result has been derived recently for the binary era-

sure channel (BEC) [20]–[22] by a combination of the notion of

physical degradation and the area theorem [23].

Here we first prove a sharp lower bound to the GEXIT curve

thanks to the GKS inequalities extended to random spin systems

with channel symmetry (Lemma 3.4). This was in fact claimed

in [21] (and proved by physical degradation for the binary sym-

metric channel), and then proved in full generality recently1 in

[11].

Next we prove a lower bound on the conditional entropy by

adapting the interpolation method, as presented in [8], [9] for the

SAT and XORSAT problems, to the case of LDPC codes. This

case has been treated recently [10] for standard irregular ensem-

bles ensembles having a generating function for the check node

degree distribution satisfying a certain convexity requirement

(for example if the checks have regular degree then it has to be

even). One of our contributions is to prove the bound in the case

of a Poisson distribution for the variable nodes and check nodes

with any even or odd degree.

Generalized EXIT curves have been introduced recently in

[21]. The first one denoted GEXIT is simply the derivative of

the Shannon conditional entropy (of the input conditioned on

the output) with respect to the channel entropy (or the noise pa-

rameter). In the special case of the BEC it is shown [20], with

the help of the Area Theorem, that this is the same as the usual

EXIT curve (defined as the average entropy of the th input bit

conditionned on the output bits except the th one). For more

general channels it turns out that the usual EXIT and GEXIT

curves are numericaly very close. This GEXIT curve is said to

be associated to MAP decoding because it involves the knowl-

edge the probability distribution of the input conditionned on

the output. In [11], [21] the authors define other “Generalized

1let us note that in the present paper the GEXIT is defined through a deriva-
tive with respect to the inverse noise in contrast to [11], [21] where it is defined
through a derivative with respect to the noise itself. As a consequence inequal-
ities are reversed. The method of correlation inequalities can also be extended
to general symmetric channels [12], [13].

EXIT” curves associated to iterative decoding such as belief

propagation. Moreover they provide a general bound stating that

the MAP GEXIT curve always stays below the iterative one. Our

result says that for the Poisson code ensemble GEXIT curves as-

sociated to MAP decoding and to belief propagation decoding

are equal for some range of noise values. This range corresponds

to noise values below the first discontinuity (if there is one).

Note that here the curves do not trivialy vanish in this range be-

cause the Poisson ensemble does not have a MAP threshold. On

the other hand, for “good” codes in that same range the EXIT

curves typicaly vanish and a statement such as that of Theorem

3.6 would be of limited interest. However, a generalization of the

intermediate lemmas and techniques would still be of interest.

C. Two Useful Identities

Another feature of this work is the use of two identities re-

lating derivatives of the conditionnal entropy and bit correla-

tions (Lemma 3.7). The first one is also closely related, but

slightly different, to the relationship between mutual informa-

tion and MMSE [24]. The second identity appears to be new

in this context to the best of our knowledge. From the point

of view of statistical mechanics it is a kind of fluctuation the-

orem: the left-hand side is a kind of “suceptibility” while the

right-hand side is a kind of “correlation function.” Because of

these two identities which rely on a Gaussian channel, our result

on GEXIT curves is limited to the Gaussian case. However we

think that it is much more general and support for this conjec-

ture comes from the fact that it is already known in the case of

a BEC. We believe the above results should extend to general

memoryless symmetric channels.

The paper is organized as follows: in Section II we formulate

the problems to be studied in the language of spin systems, in

Section III we state our main results and in Section IV we review

and adapt the GKS inequalities. Sections V–VII are dedicated to

the proofs of the main results. The proofs of some intermediate

results are presented in the appendices.

II. LDPC CODES AS RANDOM SPIN SYSTEMS

We consider two ensembles of codes, namely the regular

LDPC and Poisson LDPC ensembles.

The regular ensemble is defined in a standard way through

random bipartite graphs: the Tanner or factor graphs of the codes

[25], [26]. We have variable nodes of degree labeled

connected to check nodes of degree labeled

. The constraint must be satisfied and the

design rate is fixed . This ensemble of graphs is

endowed with the uniform probability distribution.

In the Poisson ensemble we first fix a design rate

and a number of variable nodes. The number of check nodes

is a Poisson random variable of mean . There are

edges emanating from each check node and each edge is con-

nected with uniform probability to a variable node. Given ,

the probability that a variable node has degree is

. In the limit where this tends to a Poisson dis-

tribution of mean . Clearly, the Poisson ensemble as

defined here does not provide a good code since there is a finite

probability that a variable node is unconstrained. However from
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a technical point of view this ensemble is sufficiently simple that

progress can be made toward rigorous results.

Each graph in the ensemble has an adjacency ma-

trix whose matrix elements are equal to the number of

edges ( ) connecting nodes and . Code words

satisfy parity-check constraints

In the “spin” language of statistical mechanics each bit is rep-

resented as a “spin” taking values . The code

words then satisfy the constraints

where denotes the set of variable nodes that are adjacent

to the check node . It will be convenient to use the notation

where is any subset of . Then,

given a factor graph and its associated code, is a code word

if and only if

(1)

A. Exponential Growth Rate

In terms of spin variables the relative weight of a code word

is

It will be convenient to define

so that .

We introduce the number of codewords with relative weight

(for a given code in the ensemble LDPC )

(2)

and the generating function or weight enumerator

(3)

In the language of statistical mechanics these two objects can

be interpreted as partition functions of a spin system with a hard

core interaction. The former (2) is the partition function in the

“canonical ensemble” with fixed “magnetization per spin” ,

while the later (3) is the partition function in the “grand canon-

ical ensemble” with fixed “magnetic field” . By hard core in-

teraction we mean the fact that the constraint (1) can be viewed

as a Gibbs weight

(4)

where the “Hamiltonian”

(5)

has infinitely large coupling constants

. The representation (4), (5), although not really nec-

essary, will prove insightful in Section IV.

The growth rate of a code

is nothing else but the “canonical potential or free energy.” The

“grand canonical potential” (also called “pressure” or ”free en-

ergy” depending on the interpretation; we adopt the later termi-

nology) is the logarithm of the weight enumerator,

(6)

We will be interested in upper and lower bounds for the ex-

pected value over the code ensemble LDPC .

For the upper bound we simply use Jensen’s inequality

(7)

and the fact that the combinatorial growth rate on the right-hand

side can be evaluated exactly [27], [28]. For the lower bound we

will use a GKS inequality to estimate the expected value of the

free energy . This then yields a bound for the growth

rate through a Legendre transform. Indeed for large from (3)

and (6) we expect

(8)

and therefore

(9)

where is the concave hull of . Thus an estimate for

can be translated into an estimate for . It turns out

that is not concave on the whole interval

so the estimate applies only on the restricted portion

where the function is equal to its concave envelope.

Note that in the heuristic (8),(9) we identify and

with their expectation over the code ensemble because of the

concentration phenomenon. A proof of concentration for these

quantities is still an open problem, although a weak form of it

for the growth rate has been obtained in [14].

We end this paragraph by stressing that (3) is the partition

function of a random spin system (or spin glass). Here random

refers to the fact that the underlying graph is sampled uniformly

from an ensemble LDPC . The coupling constants are

“ferromagnetic” meaning that in (5); in the context

of coding as in (3). If furthermore we say

that the spin system is ferromagnetic. We will need later the

notation for the Gibbs average associated to this spin
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system. More precisely the Gibbs average of any observable

is defined as

B. Conditional Entropy and EXIT Curves

Assume communication through a noisy binary input memo-

ryless channel with output alphabet and transition probability

density . The input is a code word

from LDPC , and the output be-

longs to .

Suppose now that a code word is sent

through the channel. Denoting expectations with respect to the

probability density

of the observed output as , the Shannon conditional entropy

of the input given the output is

(10)

We will assume that the channel is symmetric: as verified below

this implies that (10) does not depend on .

We will prove lower and upper bounds on the later quantity and

also on its derivative with respect to the inverse noise parameter

(genericaly called ) namely the “Generalized EXIT curve” as-

sociated to MAP decoding

(11)

We will now rewrite (10) in the language of statistical me-

chanics, and thereby recognize that it is nothing else than the

Gibbs entropy of a random spin system. For the case where the

code words are uniformly distributed, i.e.

(12)

and a memoryless channel, Bayes formula yields

(13)

where the normalization factor is

In terms of the log-likelihood ratios

(14)

and of the spin variable ,

Thus (13) becomes

(15)

where

(16)

These are the Gibbs measure and the partition function of a finite

random spin system. By random we mean that the code is taken

from the ensemble LDPC and the log-likelihood ratios

(or ”magnetic fields”) have a distribution induced by (14)

It will also be useful later to think of (15) and (16) in hamiltonian

terms: in other words the hard parity-check constraint can be

replaced by a Gibbs weight as in (4).

Let us now specialize the discussion to symmetric

channels for which the transition probability satisfies

. In this case the spin system

described above posseses an important symmetry group of

so called “gauge transformations.” One observes that for a

given code the Gibbs measure (15) is invariant under the

transformations

where is any code word. These transformations form a group

and are local in the sense that each spin is multiplied by a

dependent (phase) factor: one says that the spin system has a

gauge symmetry. The symmetry of the channel and (14) implies

It is therefore clear that the conditional entropy does not depend

on the input word: indeed we can choose so

that (10) remains the same except that now is with respect

to . In other words for symmetric memoryless

channels we may assume that the input word is the all code-

word. In the sequel, it is appropriate to replace the notation

by . In the particular case of the BIAWGNC with inverse
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square noise , assuming the all input code word, is with

respect to

The conditional entropy can be related to the free energy of

the spin system. Indeed substitution of (15) into (10) easily leads

to

(17)

where is the Gibbs average with respect to the measure (15).

More precisely for any

In the case of the Gaussian channel the second term in (17)

becomes very simple (see [3] for a proof)

(18)

III. MAIN RESULTS

In this section we formulate our main results. These state that

under natural hypothesis the growth rate and the GEXIT curve

of LDPC codes are (in some range of parameters) rigorously

given by the fixed point solutions of the density evolution equa-

tions associated to iterative message passing algorithms. In the

language of statistical mechanics this amounts to say that the

replica symmetric solution is exact for the two LDPC ensem-

bles considered in this paper. For the reader familiar with spin

glass theory we remark that the Gibbs measures of interest here

are defined on the Nishimori line where it is a priori known that

the gauge symmetry precludes the breaking of replica symmetry

(see, for example, [19], [3] for further discussion of this point

in the context of coding).

A. Growth Rate for the Regular Ensemble

Here we restrict ourselves to the ensemble

with even. Then the growth rate (resp the free energy) is an

even function of (resp ) so that all the discussion will be

limited to , , without loss of generality.

Consider the density evolution equations

(19)

with the initial condition , , ( ) and the

associated fixed point equation

(20)

These are written in the “difference domain”: a check node of

degree receives messages and transmits a message

to a variable node; a variable node of degree receives

messages and transmits an message to a check node.

Fig. 1. l = 5, k = 10 code. Vertical axis is h, horizontal axis is !. h (!)
between 0 and! = 0:71;! (h) increases from 0 to h = 0:71 and jumps to
! (h) = 1 for h > h . Full curve h (!). The Maxwell plateau at height
h = 0:43 separates two equal areas A = A .

In Section V we will prove that the sequence (respectively,

) is increasing and tends toward the smallest solution of (20),

greater than the initial condition. We call this particular fixed

point .

It is useful to notice that (20) gives the critical points of the

function (sometimes called “replica symmetric free energy”)

(21)

The value of (21) at the particular fixed point is

defined as the “iterative free energy,”

(22)

This definition is made here in order to stress that we look only

at the particular fixed point reached by density evolution with

initial condition , . The “iterative magneti-

zation” (the average relative weight given ) is

(23)

Our first application of a GKS inequality is

Lemma 3.1: Take a regular LDPC ensemble with

even. Then for all the weight enumerator satisfies

Remark 3.1: This lemma can be extended to irregular code

ensembles provided the degrees of variable and check nodes are

bounded, or their probabilities decay fast enough. It also extends

to the situation where is odd but .

It turns out that is increasing as a function of so

that the equation has at most one solution .

More precisely one should distinguish here the ensembles

LDPC and LDPC with . For ,

is a continuous curve and is defined for every ;

moreover is continuous and differentiable. For on
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Fig. 2. Code l = 5, k = 10. Equilibrium free energy f(h) goes from 0 to h = 0:43 where it is nondiffrentiable, and then is equal to h for h > h . The iterative
free energy has a branch from 0 to h = 0:71 where it has a jump discontinuity and is equal to h for h > h .

the other hand is monotone increasing for ,

has a unique jump discontinuity with a vertical slope at and

is equal to for (see Fig. 1 for the ensemble).

Thus when , is defined for . The

iterative free energy has a jump discontinuity at , a value

above which it is simply linear (see Fig. 2).

From the above formulas it is possible to check that (23) and

(22) are related. Namely, the total derivative of the iterative free

energy is equal to the iterative magnetization at points where it

is differentiable, but differs from it by a Dirac function at the

jump discontinuity (for ). For ,

Once is known, the iterative growth rate can be calcu-

lated as

(24)

For (24) gives the full iterative growth rate for all . But

for this expression is defined only on the interval .

In order to define iterative quantities for all one may plot the

parametric curve

This yields the full iteratite curve (see Fig. 1). The

part of the curve corresponding to comes from an un-

stable fixed point solution of (20). The iterative growth rate for

is then obtained from the same formulas as above ap-

plied to this unstable fixed point. We call the full iterative growth

rate which is defined for all (see Fig. 2). We will also

need , the concave hull of , obtained by drawing

a tangent to passing through the point . The

tangency point is (see Fig. 3). It is possible to see that neces-

sarily because is the inflexion point of . We

define as the unique solution of (for , we

have and ).

The first theorem can now be formulated.

Theorem 3.2: Let be the smallest convex function

above . For , for and

for . When , . The

satisfies for all

Moreover for and for

.

One expects that the limit of also exists, but the

foregoing estimates are not strong enough to prove this. We de-

fine the growth rate as

(25)

The next theorem relies on the natural assumption.

1) Hypothesis H1: .

Theorem 3.3: Under hypothesis H1, for a regular ensemble

LDPC with even, we have

for all .

We end this paragraph with a few informal comments in order

to put these results into a broader perspective. The underpin-

ning of this theorem is the Van der Waals picture of first order

phase transitions [33]. A similar picture has been uncovered and
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Fig. 3. Code (l = 5; k = 10). Full iterative growth rate g (!).The curve g (!) goes from 0 to ! = 0:71 where the concavity is lost. Theorem III-A holds
up to ! = 0:4 obtained by the Maxwell construction.

studied in detail in [21] in the context of communication through

a BEC. The singularity of the free energy at corresponds to

the plateau , or equivalently to the discontinuity of

at . The value can be found from the “Maxwell con-

struction”: one draws the plateau such that the two areas and

become equal. This statement is equivalent to the equality

In order to check this equality we note that the left-hand side is

equal to

and the right-hand side to

The following fact is equivalent to the equality of areas:

can be found on the graph of by drawing the tangent

passing through . From the point of view of the Van

der Waals theory the part of the curve on corresponds

to a metastable state in the sense that the iterative free energy

for is the continuation of the left branch of the Gibbs

free energy (see Fig. 3) and is lower than the right linear

branch (lower because here we have defined the free energy as

minus the “physical” free energy for convenience). The part of

the curve on can be obtained from the unstable fixed

point solution of (20) and corresponds to a state which is un-

stable from the thermodynamic point of view [34], because on

this interval is not concave. The precise interpretation of

stable, metastable and unstable states in the context of the code

ensemble is for the moment unclear. For communication over a

BEC [21] the authors discuss an interpretation of these states in

terms of the complexity of decoding algorithms.

B. GEXIT Curves and Conditional Entropy for the Poisson

Ensemble

Our notation will be as follows: is the expectation with

respect to some random variable , which can be the log-like-

lihood variable (14), the degree of variable nodes ( is Poisson

with mean ), likelihood variables and which are

passed from variable to check nodes and vice versa. We will

also need the probability densities and of and .

Here it is convenient to write the density evolution equations

associated to the iterative decoder in the “likelihood domain.” A

check node of degree receives messages

and transmits the message to a variable node; a variable node

of degree receives messages and transmits

the message to a check node. The messsages are (half) log-

likelihood ratios that can be interpreted as the “cavity magnetic

fields” of spin glass theory

(26)

(27)

The sequence generated by the initial condition ,

converges (in a weak sense) to a limit proba-

bility measure. A proof of this fact, based on physical degrada-

tion, can be found in [22]. Here, for completeness, we give in

Appendix IV a similar proof based on the GKS inequality. This
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limit probability measure, whose formal density we write ,

, satisfies a fixed point equation given by (26)–(27) with

the superscripts , , replaced by . We will not make

explicit use of this later fact, so its proof will be ommitted.

A simple calculation with functional derivatives shows that

the solutions of the fixed point equations are the critical points

of a functional (a “replica symmetric” free energy)

(28)

By definition the “iterative free energy” is

(29)

and the “iterative GEXIT curve” (associated to a belief propa-

gation decoder) is

(30)
The argument for the existence of (30) is in the proof of Lemma

(6.1). Concerning the existence of the limit in (29) the argument

is a bit longer and is given in Appendix V. As we will show

in Section VII there is a simple relation between the “iterative

GEXIT curve” and the replica symmetric free energy

(31)

Our second application of a GKS inequality is

Lemma 3.4: Assume communication with a Poisson

LDPC code through a BIAWGNC with inverse square

noise . For all ,

(32)

Remark 3.2: This lemma can be extended to the situation

of irregular codes as long as the degrees of variable and check

nodes is bounded, or their probabilities decay fast enough. More

recntly it has been proven for general channels again by corre-

lation inequalities [12], [13]. As explained in the introduction

such bounds have been derived earlier by physical degradation

for the BSC [21], and proven in full generality more recently

[11] by the data processing inequality.

Extending the interpolation method [8]–[10] to any value of

for a Gaussian channel we prove

Lemma 3.5: Assume communication with a Poisson

LDPC code through a BIAWGNC with inverse square

noise . For all

(33)

Remark 3.3: In fact one first proves a sharper bound, see

Corollary 6.3. This bound can be derived directly from (32) for

where is defined below.

For general LDPC ensembles one cannot exclude that

has jump discontinuities for some set of values of (see the

previous paragraph where this happens to ). For

we have formally

(34)

In this formula the partial derivative is with respect to the

dependence of . This motivates the natural assumption

1) Hypothesis H2: There exist at most a discrete set

of discontinuities of . For ,

the left and right derivatives ,

exist and,

(35)

In order to formulate our next result we make the definition

(36)

where the limit will be shown to exist for .

Theorem 3.6: Assume H2 and communication through a BI-

AWGNC with the ensemble LDPC . For the

limit (36) exists and we have

(37)

If the set of discontinuities is empty the equalities hold for all .

Remark 3.4: The theorem follows by combining Lemmas 3.4

and 3.5. For both lemmas essentialy give the same

information so that we are able to deduce equality only for

. For “good” generic LDPC ensembles we expect the iterative

free energy to be discontinuous and the EXIT curves vanish in

the low noise regime ( ). However for the present case of a

Poisson degree distribution of variable nodes the MAP threshold

is at zero noise due to the finite fraction of unchecked nodes, and

the EXIT curves are non trivial even at low noise.

We stress that here there is no restriction on the values of .

Although the result is restricted to the Gaussian channel it is

probably more general. If we knew a priori that (35) holds for

all the theorem would follow easily from the lower bound on

the GEXIT curve (Lemma 3.4), and formula (31). Indeed if the

equality in assumption H2 holds for every then [see (7.9)]

(38)

So the area under the iterative EXIT curve is equal to

which is also the area under the GEXIT curve. Since one curve

is above the other, they must be equal. Note that if we do not
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assume continuity, the two members of the equality in H2 may

differ by Dirac distributions for which destroy the above

argument. This makes the proof of theorem 3.6 considerably

more complicated.

As an application we give an estimate of the GEXIT curves

in the low noise regime (i.e., ). Retaining only the term

in (30) we obtain

As a particular application of a GKS inequality we will see (Sec-

tion VII) that

For a Gaussian channel

Thus, in the low noise regime

C. Two Useful Identities

Let us finaly state two identities that play an important role.

The first is combined with GKS to prove Lemma 3.4, while the

second is used in the Proof of Theorem 3.6.

Lemma 3.7: For a BIAWGNC and any linear code

(39)

(40)

This lemma is proved in Appendix I where we also discuss

closely related formulas for bit and block error probabilities

under ML decoding. These do not rely on the specific choice

of the LDPC ensembles and are valid for any linear code in

. The first identity is an instance of the relationship between

mutual information and MMSE discussed in a different con-

text by [24] (see also [21]). Note that the MMSE identity of

[24] would involve instead of ; it turns out that for

a symmetric channel the expected value of theses two quanti-

ties are equal (see the next section). The second identity appears

to be new: in particular it suggests that the correlation function

decays as .

IV. GKS INEQUALITIES

In this section, we briefly review the GKS inequalities which

are the main tool from which we will obtain the lower bounds.

In general, the GKS inequalities express the positivity of cer-

tain correlations or equivalently the monotonicity of first and

second derivatives of the free energy. The classical GKS in-

equalities [15] pertain to nonrandom ferromagnetic (positive

coupling constants) spin systems. Although in the deterministic

case they break down as soon as negative couplings are intro-

duced, it turns out, quite surprisingly, that they are still true for

expected values when couplings are random (with both signs)

provided their distribution satisfies a certain symmetry condi-

tion (of which channel symmetry is a special case). The setting

is given by a general spin Hamiltonian

(41)

and the associated Gibbs averages

A. Classical GKS Inequalities

We give the general statement and then specialize to the

weight distribution problem. Suppose for all in the

sum (41) (in other words the system is ferromagnetic). The first

GKS inequality states that for any

(42)

In particular it implies that for any

The second GKS inequality states that for any pair of sets

(43)

In particular, this implies that

(44)

In the weight enumerator problem, for a given code, the

Hamiltonian (5) is of the form(41) with , for

and for . Therefore the

GKS ineuqlities will be valid as long as and .

For finite we can trivially take the limit so that

they remain valid in the case of the hard core constraint which

is really the case of interest. In fact the condition is

necessary only for odd. Indeed when is even the code word

constraint (1) are invariant under , so that

we are allowed to replace by .

B. GKS Inequality for Random Spin Systems

These have been derived recently in [16]. The formulation

given here is slightly different but equivalent. The setting is now

given by the Hamiltonian (41) where are iid variables with

a probability distribution satisfying

(45)
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for some function . In the rest of the paper, it will be useful to

keep in mind that (45) is equivalent to the class of ”symmetric

distributions” [22], [32] defined by

The expectation with respect to (45) will be denoted . As

first shown by Nishimori [18], [19] when combined with gauge

invariance of (41), condition (45) implies a host of exact identi-

ties (called Nishimori identities). Here we just state the identities

that we will need latter on. For any subsets , of

we have

(46)

(47)

(48)

(49)

In Appendix II, we give a proof of a general identity which con-

tain all the above and many others as special cases. Although the

method is standard we have not found such a general identity in

the litterature.

In order to state the GKS inequalities a further assumption

is needed, namely that some subset of are Gaussian with

mean and variance both equal to . Here the mean and

variance are adjusted so that (45) is satisfied. Then using the

Nishimori identities, it is shown in [16]

(50)

and

(51)

Let us discuss how this formalism can be applied to the

random spin system defined by (15), (16). The first observation

is that, remarkably, channel symmetry translates into (45) for

the probability distribution of the log-likelihood variables (14).

Thus for , we set (and if

the channel is Gaussian). Second, for , we

take independent and identically distributed (i.i.d.) Gaussian

variables , with . We have

Taking the expectation with respect to all variables

(52)

For any fixed we have

Moreover the ratio under the integral in (52) is bounded above

by

Therefore, from dominated convergence, we obtain

The last formula implies that since the Nishimori identities

(46), (47), (49) apply for finite, they also apply to the spin

system associated to a code in LDPC (or for that matter

any LDPC). Moreover, in the case of a Gaussian channel with

noise parameter , the probability distribution of the log-like-

lihoods is a Gaussian with mean and variance equal to : this

means that we can apply the GKS inequalities (50) and (51) for

finite . Taking the limit we conclude that the GKS

inequalities also apply to any element of an LDPC ensemble. In

particular if the channel is Gaussian

(53)

As will be shown later this is directly related to the monotonicity

of the GEXIT curves.

V. PROOF OF THEOREM 3.3

We begin with the upper bounds which follow easily from re-

sults in the litterature. The combinatorial (or “annealed”) growth

rate has been computed exactly using combinatorial methods

[27], [28]. For regular codes

(54)

Because of Jensen’s inequality this provides immediately a

sharp upper bound (this is not true for irregular codes [29],

[30])

(55)

Note that in fact Gallager’s original upper bound [27]

(56)

is sufficient to obtain (55). This bound (together with Jensen)

gives also a sharp estimate for the free energy. Indeed

which implies

(57)
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The last equality can be checked by explicit computation. This

computation shows that for , and for ,

if , while if .

We now proceed to prove the lower bounds. Consider

LDPC and its associated Tanner graph. The distance be-

tween two nodes is defined as the minimal number of edges

needed to connect the two nodes. Given some fixed variable

node, say , we define the neighborhood of depth , denoted

, as the set of variable and check nodes which are at a dis-

tance less or equal to from . It is convenient to take even.

Tanner graphs of LDPC codes have the important property of

being locally tree like. In [31], it is proven that there exists a nu-

merical constant such that the probability that is a

tree satisfies

is a tree (58)

Our first application of the GKS inequality is the proof of

Lemma 5.1.

Lemma 5.1: Recall that denotes the Gibbs average

associated to (3). We have

(59)

Proof: Using (58) and (42)

a tree a tree

not a tree not a tree

a tree

Now consider the spin system defined by Hamiltonian (41) with

, for and for .

Set for and for . We

call the associated Gibbs measure. Since we choose

even all the spins attached to variable nodes not contained in

are uncoupled so that is the magnetization of

the code restricted to the tree . The GKS inequality in the

form (44) implies that for each for which is a tree

Therefore

a tree (60)

On a tree the iterative message passing procedure to compute

is exact, and yields

a tree (61)

The reader wishing to see a similar calculation in the context of

statistical mechanics can consult the book of Baxter [35] where

the Ising model on a tree is exactly solved. The result can also

be inferred from the calculations reported in Appendix III.

To complete the proof of the lemma we have to derive the

properties of the sequence that were announced in Sec-

tion III-A. In the case of a BEC, the problem is very similar

to the present one and at this point Richardson and Urbanke

use the concept of physical degradation [22]. Here there is no

channel so there is no proper notion of physical degradation,

but GKS turns out to be a convenient tool. By GKS, for a

sequence of trees , is an increasing sequence

(as a function of even ’s). Since it is trivially bounded by 1 the

sequence converges, thus (61) implies that is an increasing

and convergent sequence also. From (19) we conclude that

is also increasing and convergent. It is easy to see that

the limit is necessarily one of the fixed point

solutions of (20); and from (60), (61)

The following argument which is exactly the same than the

one used on a BEC [22] shows how to select the right fixed

point. Suppose that for some , (this is certainly

the case for ). Then

So the limit is equal to the smallest fixed point which is greater

than the initial condition. This completes the proof of the

lemma.

Remark 5.1: Combining this lemma with (63) below, we ob-

tain Lemma 3.1.

Lemma 5.2: For ,

(62)

while for , exists and

.

Proof: By symmetry

(63)

so that (59) becomes

(64)

For we integrate this inequality from 0 to , use dom-

inated convergence and ,

(for this argument holds for all ). This yields (62). For

, we remark that , so that

This is equivalent to
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Integrating over the interval ( ) and using domi-

nated convergence

(65)

As shown by Gallager when the bound (56) implies that

the code has a linear minimum distance. More precisely there

exists a such that the probability that a code word

has relative weight is less than for

some numerical constant . From this it is easily shown that

for

We conclude the proof by taking the limit in (65).

Proof of Theorem 3.2: From (62) and (57)

Since is convex, is convex. But

is by definition the smallest convex function above

so we must have

Therefore

which proves the theorem.

With the next lemma the Proof of Theorem 3.3 is complete.

Lemma 5.3: The equation (see (23)) has at most

one solution, and for every such that the solution exists we

have

(66)

Proof: The equation

has at most one solution because is increasing: indeed by

GKS is an increasing function of (at fixed ). For

some values of the equation might not have a solution because

might be (and in practice is) discontinuous. From now on

we look at the interval of for which the (unique) solution exists

and call it . Because of Theorem 3.2

(67)

By assumption H1 the left-hand side is equal to the

convex hull of . On the other hand the right-hand side of (67)

is equal to . Thus

By definition of , is strictly concave on . There-

fore is also strictly concave on and so must be

. Thus on this interval.

VI. BOUNDS ON GEXIT AND THE CONDITIONAL ENTROPY

We begin with the lower bound on GEXIT for which the

method is similar to that of the previous section.

A. Lower Bound on the GEXIT Curve

Given a code LDPC and a specified variable

node we consider again a neighborhood . The proba-

bility that all nodes of the factor graph have a degree less than

is (for large)

Then following [31] one can show that the probability of

being a tree again satisfies an inequality of the type (58) with

replaced by .

Lemma 6.1: For a binary input symmetric channel we have

Remark 6.1: The proof below immediately extends to irreg-

ular ensembles as long as the degrees are bounded.

Proof: Proceeding as in the proof of 5.1, we get

tree

Next we construct a new Gibbs measure for a random spin

system on the tree . Take the hamiltonian (41) and set

the Gaussian coupling constants with for the

check nodes and for the variable nodes

. Now for set which means that

with probability one; and for make .

The associated Gibbs measure is denoted . The GKS

inequality in the form (51) implies that

tree tree

Therefore

is a tree (68)

On a tree the right-hand side of this inequality can be computed

exactly by iterative equations which yield (see Appendix C for

a derivation)

tree

(69)
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To complete the proof of the lemma we must show that the right-

hand side has a well defined limit. One could proceed as in [31],

[22] by using the concept of physical degradation. Here instead

we use a GKS inequality

is a tree

is a tree

Thus the right-hand side of (69) is an increasing bounded se-

quence. Hence the result of the lemma follows by taking the

limit limit on both sides of inequality (68).

The previous lemma holds for the rather general class of

symmetric channels. For the next one however, we specify a

Gaussian channel. The probability distribution of the log-like-

lihood variables is a Gaussian with mean and variance both

equal to .

Proof: of Lemma 3.4: First of all, we note that from (69)

tree

Applying GKS in the form (53) to the Gibbs average on

we conclude that is an increasing

function of ( fixed). Thus increases as a function of .

By symmetry

and because of identity (39)

This proves (32).

B. Lower Bound on the Conditional Entropy

We use an extension of the interpolation techniques recently

developed in [8] for the SAT and XORSAT problem. The case

of LDPC codes has been considered in [10] for convex (on

) generating function of the check node degree distri-

bution. In particular for regular check degree only even degree

is allowed. Here we apply the interpolation technique following

the setting of [8], [9] for Poisson LDPC and extend it to the case

covering also odd degree. This is the only paragraph where the

Poisson nature of the variable node degrees is crucialy used.

Let be an interpolation parameter, a Poisson

random variable (RV) with mean , ,

i.i.d. Poisson RV with mean .

Let be an RV distributed according to some arbitrary density

. The later distribution is a “variational parameter” which

will be adjusted later on. Consider an RV distributed according

to

In this section and are expectations with respect to

and , not to be confused with and of previous

sections. We introduce independent copies and and

define the interpolating partition function

The corresponding Gibbs measure interpolates between

the product measure (decoupled spins) and the

measure associated to an LDPC code. The average free energy

can be computed as follows:

For , the free energy of the code ensemble is easily com-

puted

Following [8], [9] the calculation of the derivative with respect

to leads to

(70)

with the remainder term

In this expression we use the shorter notation for the expec-

tation over , , , , . The numbers are computed

from as

The ”overlap parameter” is defined as

(71)

where are independent copies (or replicas) of

the spin . The average has to be understood as the in-

terpolating Gibbs measure replicated times. For example

the average of each term in(71) is

We will prove the following statement.
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Proposition 6.2: For any symmetric probability distribution

and for a Gaussian channel we have

any (72)

The proof of the proposition will clearly show that in the case of

even it is sufficient to have symmetric and any symmetric

channel. For odd we need to specify a Gaussian channel, but

we believe that this should be true also more generaly.

Corollary 6.3: Let denote the set of symmetric probability

distributions. For a Gaussian channel we have

Proof: An immediate consequence of the proposition is

that for any symmetric probability distribution the free

energy is lower bounded by . This shows the first in-

equality. Since is a symmetric probability distribution

[32] the bound holds also for and

. Because of the identity (17) we also get a lower bound

on the conditional entropy. Finally, we perform the limit

.

In order to prove Proposition 6.2 we first need to show that

the overlap parameter does not fluctuate. This is expressed as

follows.

Lemma 6.4: Recall and is the

times replicated interpolation measure. Let denote the prob-

ability distribution and fix some .

For a Gaussian channel we have that for almost every

(73)

Proof: Using

(74)

and we get

therefore from Tchebycheff inequality applied to

(75)

Let us estimate the right-hand side of (75). We notice

Thus using (74) and then the Schwarz inequality we obtain

(76)

For a Gaussian channel the identity (40) holds so that

Integrating both side against a positive test function

we get

where we have used Schwarz inequality and an integration by

parts. The identity (39) can be extended to the interpolating

system so that

Integrating over , using Fubini’s theorem on the left

to exchange the and integrals, and then using dominated

convergence we obtain

Since this is true for any positive test function we conclude that

(73) holds for almost every .
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Proof of Proposition 6.3: The first step consists in com-

bining the terms in the remainder with odd and even. First

of all since is a symmetric probability distribution

(77)

(see Appendix II). A similar identity holds for the overlaps

(78)

Indeed from (71)

Symmetry of implies symmetry of . Thus the interpo-

lation measure satisfies the Nishimori identities (46)–(49) one

of which tells us that for

therefore (78) follows. With the help of (77) and (78) the terms

in the remainder can be rearranged

Clearly the sum over converges because the term in the paren-

thesis is bounded by than ; so it remains to prove that the

parenthesis is non negative. For even this easily follows from

the convexity of the function . Indeed convexity im-

plies

(79)

This is the argument used in [8]–[10].

Here we obtain that for any the slightly weaker result (72)

is true. We split the sum over in two parts and

. The fisrt sum is clearly smaller than

(80)

for some positive numerical constant. We split the second sum

over in two more sums as follows:

(81)

Since is positive we can use the convexity of the func-

tion to show that

(82)

(notice the difference between (79) and (82)) so that the first

sum in (81) is non negative. The second sum can be estimated

by

The first sum is smaller than ( a positive numer-

ical constant); and because of Lemma 6.4, for almost every-

where (a.e.) the second sum has a integral which tends to

zero as . Combining these remarks with (80) and (82)

we conclude that

VII. PROOF OF THEOREM 3.6

We first derive a consequence of Lemma 3.4

Lemma 7.1: For a Gaussian channel with inverse noise we

have

(83)

(84)

Proof: Let us first compute . Using the

identity

(85)

and an integration by parts
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The probability distributions and , are sym-

metric [22], [32] which implies that (see Appendix B where this

is seen as a special case of a Nishimori identity)

(86)

Thus we obtain

(87)

and because of the assumption H2

(88)

To finish the proof we will now integrate the lower bound of

lemma 3.4. We first integrate from to and apply

dominated convergence, to get

For we have . Thus

(89)

For , we proceed similarly by integrating from to

. This time we must use that the conditional entropy van-

ishes as (limit of zero noise), and

This last formula follows easily by integrating the following in-

equality:

The left-hand side is an application of GKS: consider formula

(C.15) and remove all check nodes below the root of the tree.

The right-hand side is immediately obtained by retaining only

the term (unchecked nodes).

End of Proof of Theorem 3.6: From Lemma 83 and Corol-

lary 6.3, we have

and (90)

It remains to compute the total derivative as in (85)–(87)

This proves the theorem.

VIII. CONCLUSION

Correlation inequalities often provide a powerful tool in sta-

tistical mechanics of spin systems. A major aim of this paper

was to demonstrate that one of them, the GKS inequality, is

useful to analyze LDPC codes. For the regular codes it pro-

vides a way to prove a sharp lower bound on the growth rate.

For the Poisson ensemble and communication over a Gaussian

channel it yields a sharp lower bound on the the GEXIT curve.

As pointed out in the proofs of these results, GKS turns out to

be an alternative tool to physical degradation in the later case;

but can also be used when there is no channel (as in the growth

rate problem). An important issue is to clarify what is the pre-

cise connection between GKS and physical degradation. One

should also investigate if GKS and/or other correlation inequal-

ities apply to other coding schemes and channels: this is in fact

very likely in view of the intimate connection between linear

codes and spin systems.

The extension of the interpolation technique to odd degree for

check nodes works on a Gaussian channel because it relies on

identity (40). Presumably the later identity can be generalized

to other symmetric channels so that one can hope to extend the

present results to general symmetric channels. We wish to point

out that an extension to more general irregular LDPC

ensembles might also be achieved by using a version of the in-

terpolation techniques developped in [36] or [10].

Finaly let us point out that it would be desirable to improve

on the present results in order to remove assumptions H1 and

H2.

APPENDIX I

PROOF OF LEMMA 3.7

We first prove the two identities in Lemma 3.7 and then com-

ment on closely related formulas for the bit error probability.

Consider a fixed code . Because of (85), using an integration

by parts we have

Using the Nishimori identity (valid for any symmetric channel)

Thus for a fixed code and a symmetric memoryless channel

If furthermore the channel is Gaussian we have (18). Thus (17)

implies
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Using again an integration by parts the second derivative is

equal to

A straightforward computation yields

Using the four Nishimori identities of Section IV-B we obtain

which leads to

The identity (40) of the lemma now follows immediately.

Here we wish to point out a similarity between (39) and the

error probability for bit decoding. In the present setting the ML

or MAP estimate for the th bit is

In the spin language this becomes (with and

)

The average fraction of wrong bits is (for a fixed code)

Because of channel symmetry one can again show that this prob-

ability does not depend on the input word, so that we may as-

sume (with the appropriate

APPENDIX II

THE USE OF GAUGE INVARIANCE

In this Appendix, we give a streamlined proof of a general

Nishimori identity. Then we give the list of special cases that

are explicitely used in the present work.

Lemma 2.1: Consider a spin system with Hamiltonian (41)

with i.i.d. coupling constants whose distribution satisfies (45).

Then for any collection of subsets and integers

(91)

Proof: Because of (45) the left-hand side of (91) is equal

to

We make a first gauge transformation ,

which shows that the last expression is equal to

(92)

We sum over , divide by , and then insert

in the integral where is the partition function

Then (92) becomes

The last step is a second gauge transformation on each term of

the sum over : , , .

This yields the right-hand side of (91)

To obtain the first identity (46) we set and ,

for . To obtain the second (47) we take two

sets , , . For the third we

set , , and for the fourth (49)

, and , .

Finaly the identity (77) is a special case of (46) for the sim-

plest spin system consisting of a single spin ,

.

APPENDIX III

RECURSIVE EVALUATION OF GIBBS AVERAGES ON TREES

The goal is to compute quantities of the type when

the neighborhood is a tree. The computation presented

here for completeness is in fact equivalent to the methods fond

for example in [22].

We label the tree in the following way: the variable node root

is , the set of level 1 check nodes is , the set of level

2 variable nodes is , the set of level 3 check nodes

is , and so on until the set of level check
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nodes and the set of variable node leaves

. Introducing partial Gibbs weights

the statistical sum can be organized as follows:

(93)

(94)

The above sums can be performed in a recursive way by first

summing over the spins , then and so on. Let

us do explicitly the sum over level .

with

and a normalization constant (independent of the spins, but

depending on the log-likelihoods). Here and have

the usual interpretation of messages transmitted between vari-

able to check and check to variable nodes. Equations (93) and

(94) become

(95)

Now the tree has one level less and the Gibbs weight of the last

level is

with

Iterating this computation we find

where is given by the message passing equations

with the initial condition , . The proba-

bility distribution of the messages evolves according to

with the initial condition (in our case the

Gaussian distribution of log-likelihoods) and . The

average value of the spin at the root is

is tree

We end the appendix by remarking that (19) is obtained as a

special case by specifying the message passing equations to the

case of a regular tree with constant initial condition ,

. Then (dropping the and subscript)

Using ”conjugate variables” and

we get
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The initial condition is now and .

APPENDIX IV

EXISTENCE OF A LIMITING MEASURE UNDER DENSITY

EVOLUTION

We show that the sequence of probability measures ,

have a limit. It is sufficient to show for any integer

the existence of the limit

Indeed, then the moments of the random variable

all have a well defined limit and are bounded. Thus by a criterion

of Carleman, they define a unique probability measure (whose

formal density we called ). The first density evolution for

the moments

(96)

implies that the moments converge to a limit

which defines uniquely a probability measure (with formal den-

sity ).

To prove that the limit of the moments exists we use a GKS

inequality. The tree is the union of subtrees containing

the edges , . We take any one of these subtrees, call it

, and consider the sequence of such trees as increases

by two units. By GKS

is a tree

is a tree

Note that here we really invoke a slight generalization of GKS

because we consider all integer moments: this case is covered

by the results in [16]. A calculation similar to the one performed

in Appendix C shows that

is a tree

Therefore the moments form an increasing bounded sequence

which converges.

APPENDIX V

EXISTENCE OF THE LIMIT

Using the density evolution equation, the replica symmetric

free energy can be expressed in the form

(97)

We will prove that each of the two separate terms on the right-

hand side has a limit.

We start with the first one (call it ) which is more straight-

forward. Expanding the logarithm and using a Nishimori iden-

tity (see for example (77)) we find

By the results of appendix IV each term of the series has a well

defined limit as , so by dominated convergence this is

also the case for .

For the second term (call it ) the main idea is to represent

it as the “difference of two free energies.” This difference is

then related to a “magnetization” on which we can apply a GKS

argument. Consider a realization of the tree of depth ,

with root and the spin system on the tree with degree

at the root. There are subtrees rooted at the nodes of level

. We call these subtrees . Let us denote ,

the partition functions of the spin systems on

each tree. The recursive method of Appendix III leads to the

formula

is tree (98)

The next observation is that if we “delete” the check nodes of

level from the tree , we get a disconnected graph consti-

tuted of trees rooted at level plus a single point . The

free energy of the disconnected graph is for a given realization

. We can interpolate between

and the disconnected graphs by replacing the hard constraints

of level by a Gibbs weight

The interpolation parmeters are iid gaussian with mean and

variance both equal to . This adjustment makes it possible to

use Nishimori identities as well as GKS inequalities. The par-

tition function of the spin system on the tree with soft con-

straints at level is denoted by . We have

The derivative with respect to is performed using (85) and then

integrating by parts. This leads to
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Now we average over the , use the Nishimori identities to sim-

plify the right-hand side, and then average of the Tanner graphs

given that is a tree. We obtain

is tree

is tree (99)

Finaly combining this formula with (98)

is tree (100)

Now GKS tells us that the Gibbs average in the integrand is

monotone increasing as a function of (even) , thus is an

increasing sequence. That the limit exists follows by a uniform

bound most easily obtained from the formula
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