
Kim et al. BMC Genomics 2018, 19(Suppl 2):89

https://doi.org/10.1186/s12864-018-4460-0

RESEARCH Open Access

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies
Jeremie S. Kim1,6*, Damla Senol Cali1, Hongyi Xin2, Donghyuk Lee3, Saugata Ghose1,
Mohammed Alser4, Hasan Hassan6, Oguz Ergin5, Can Alkan4* and Onur Mutlu6,1*

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

Abstract

Background: Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments
(reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor.
State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within
each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read
and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to
determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations
that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior
to alignment such that there is no wasted computation on unnecessary alignments.
Results: We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory
systems that integrate computation within a logic layer stacked under memory layers, to perform
processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of
coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify
read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error
tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x–6.41x, and 2) provides an
end-to-end read mapper speedup of 1.81x–3.65x, compared to a state-of-the-art read mapper employing the best
previous seed location filtering algorithm.

Conclusion: GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to
overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly
improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be
applied to any read mapper. We hope that our results provide inspiration for new works to design other
bioinformatics algorithms that take advantage of emerging technologies and new processing paradigms, such as
processing-in-memory using 3D-stacked memory devices.

Keywords: High throughput sequencing, Genome sequencing, Seed location filtering, 3D-stacked DRAM,
Processing-in-memory, Emerging memory technologies

*Correspondence: jeremiekim123@gmail.com;calkan@cs.bilkent.edu.tr;
omutlu@gmail.com
1Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA
6Department of Computer Science, ETH Zürich, Zürich, CH, Switzerland
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4460-0&domain=pdf
mailto: jeremiekim123@gmail.com;calkan@cs.bilkent.edu.tr
mailto: omutlu@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 24 of 180

Background
Our understanding of human genomes today is affected by

the ability of modern technology to quickly and accurately

determine an individual’s entire genome. The human

genome is comprised of a sequence of approximately

3 billion bases that are grouped into deoxyribonucleic

acids (DNA), but today’s machines can identify DNA only

in short sequences (i.e., reads). Determining a genome

requires three stages: 1) cutting the genome into many

short reads, 2) identifying the DNA sequence of each read,

and 3) mapping each read against the reference genome in

order to analyze the variations in the sequenced genome.

In this paper, we focus on improving the third stage,

often referred to as read mapping, which is a major

computational bottleneck of a modern genome analysis

pipeline. Read mapping is performed computationally by

read mappers after each read has been identified.

Seed-and-extend mappers [1–6] are a class of read

mappers that break down each read sequence into seeds

(i.e., smaller segments) to find locations in the reference

genome that closely match the read. Figure 1 illustrates

the five steps used by a seed-and-extend mapper. First,

the mapper obtains a read (❶ in the figure). Second, the

mapper selects smaller DNA segments from the read to

serve as seeds (❷). Third, the mapper indexes a data struc-

ture with each seed to obtain a list of possible locations

within the reference genome that could result in a match

(❸). Fourth, for each possible location in the list, the map-

per obtains the corresponding DNA sequence from the

reference genome (❹). Fifth, the mapper aligns the read

sequence to the reference sequence (❺), using an expen-

sive sequence alignment (i.e., verification) algorithm to

determine the similarity between the read sequence and

the reference sequence.

Fig. 1 Flowchart of a seed-and-extend mapper

To improve the performance of seed-and-extend map-

pers, we can utilize seed location filters, recently intro-

duced by Xin et al. [7]. A seed location filter efficiently

determines whether a candidate mapping location would

result in an incorrect mapping before performing the

computationally-expensive sequence alignment step for

that location. As long as the filter can eliminate possi-

ble locations that would result in an incorrect mapping

faster than the time it takes to perform the alignment, the

entire read mapping process can be substantially accel-

erated [7–10]. As a result, several recent works have

focused on optimizing the performance of seed location

filters [7–12].

With the advent of seed location filters, the perfor-

mance bottleneck of DNA read mapping has shifted

from sequence alignment to seed location filtering

[7–10]. Unfortunately, a seed location filter requires large

amounts of memory bandwidth to process and charac-

terize each of the candidate locations. Our goal is to

reduce the time spent in filtering and thereby improve the

speed of DNA read mapping. To this end, we present a

new algorithm, GRIM-Filter, to efficiently filter locations

with high parallelism. We design GRIM-Filter such that

it is well-suited for implementation on 3D-stacked mem-

ory, exploiting the parallel and low-latency processing

capability in the logic layer of the memory.

3D-stacked DRAM [13–22] is a new technology that

integrates logic and memory in a three-dimensional stack

of dies with a large internal data transfer bandwidth. This

enables the bulk transfer of data from each memory layer

to a logic layer that can perform simple parallel operations

on the data.

Conventional computing requires the movement of data

on the long, slow, and energy-hungry buses between

the CPU processing cores and memory such that cores

can operate on data. In contrast, processing-in-memory

(PIM)-enabled devices such as 3D-stacked memory can

perform simple arithmetic operations very close to where

the data resides, with high bandwidth and low latency.

With carefully designed algorithms for PIM, application

performance can often be greatly improved (e.g., as shown

in [19–21, 23]) because the relatively narrow and long-

latency bus between the CPU cores andmemory no longer

impedes the speed of computation on the data.

Our goal is to develop a seed location filter that exploits

the high memory bandwidth and processing-in-memory

capabilities of 3D-stacked DRAM to improve the perfor-

mance of DNA read mappers.

To our knowledge, this is the first seed location filtering

algorithm that accelerates read mapping by overcoming

the memory bottleneck with PIM using 3D-stacked mem-

ory technologies. GRIM-Filter can be used with any read

mapper. However, in this work we demonstrate the effec-

tiveness of GRIM-Filter with a hash table based mapper,

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 25 of 180

mrFAST with FastHASH [7]. We improve the perfor-

mance of hash table based read mappers while maintain-

ing their high sensitivity and comprehensiveness (which

were originally demonstrated in [3]).

Key mechanism. GRIM-Filter provides a quick method

for determining whether a read will not match at a

given location, thus allowing the read mapper to skip the

expensive sequence alignment process for that location.

GRIM-Filter works by counting the existence of small

segments of a read in a genome region. If the count falls

under a threshold, indicating that many small segments

of a read are not present, GRIM-Filter discards the loca-

tions in that region before alignment. The existence of

all small segments in a region are stored in a bitvector,

which can be easily predetermined for each region of a

reference genome. The bitvector for a reference genome

region is retrieved when a read must be checked for a

match in the region. We find that this regional approx-

imation technique not only enables a high performance

boost via high parallelism, but also improves filtering

accuracy over the state-of-the-art. The filtering accuracy

improvement comes from the finer granularity GRIM-

Filter uses in counting the subsequences of a read in a

region of a genome, compared to the state-of-the-art

filter [7].

Key results. We evaluate GRIM-Filter qualitatively

and quantitatively against the state-of-the-art seed loca-

tion filter, FastHASH [7]. Our results show that GRIM-

Filter provides a 5.59x–6.41x smaller false negative rate

(i.e., the proportion of locations that pass the filter,

but that truly result in a poor match during sequence

alignment) than the best previous filter with zero false

positives (i.e., the number of locations that do not

pass the filter, but that truly result in a good match

during sequence alignment). GRIM-Filter provides an

end-to-end performance improvement of 1.81x–3.65x

over a state-of-the-art DNA read mapper, mrFAST with

FastHASH, for a set of real genomic reads, when we use

a sequence alignment error tolerance of 0.05. We also

note that as we increase the sequence alignment error

tolerance, the performance improvement of our filter

over the state-of-the-art increases. This makes GRIM-

Filter more effective and relevant for future-generation

error-prone sequencing technologies, such as nanopore

sequencing [24, 25].

Motivation and aim
Mapping reads against a reference genome enables the

analysis of the variations in the sequenced genome. As the

throughput of read mapping increases, more large-scale

genome analyses become possible. The ability to deeply

characterize and analyze genomes at a large scale could

change medicine from a reactive to a preventative and

further personalized practice. In order to motivate our

method for improving the performance of read mappers,

we pinpoint the performance bottlenecks of modern-day

mappers on which we focus our acceleration efforts. We

find that across our data set (see “Methods” section), a

state-of-the-art read mapper, mrFAST with FastHASH

[7], on average, spends 15% of its execution time per-

forming sequence alignment on locations that are found

to be a match, and 59% of its execution time perform-

ing sequence alignment on locations that are discarded

because they are not found to be a match (i.e., false

locations).

Our goal is to implement a seed location filter that

reduces the wasted computation time spent performing

sequence alignment on such false locations. To this end,

a seed location filter would quickly determine if a loca-

tion will not match the read and, if so, it would avoid the

sequence alignment altogether. The ideal seed location fil-

ter correctly finds all false locations without increasing

the time required to execute read mapping. We find that

such an ideal seed location filter would improve the aver-

age performance of mrFAST (with FastHASH) by 3.2x.

This speedup is primarily due to the reduced number of

false location alignments. In contrast, most prior works

[26–40] gain their speedups by implementing all or part of

the read mapper in specialized hardware or GPUs, focus-

ing mainly on the acceleration of the sequence alignment

process, not the avoidance of sequence alignment. These

works that accelerate sequence alignment provide orthog-

onal solutions, and could be implemented together with

seed location filters, including GRIM-Filter, for additional

performance improvement (see “Related work” section for

more detail).

GRIM-Filter
We now describe our proposal for a new seed loca-

tion filter, GRIM-Filter. At a high level, the key idea of

GRIM-Filter is to store and utilize metadata on short

segments of the genome, i.e., segments on the order

of several hundred base pairs long, in order to quickly

determine if a read will not result in a match at that

genome segment.

Genomemetadata representation

Figure 2 shows a reference genome with its associated

metadata that is formatted for efficient operation by

GRIM-Filter. The reference genome is divided into short

contiguous segments, on the order of several hundreds

of base pairs, which we refer to as bins. GRIM-Filter oper-

ates at the granularity of these bins, performing analyses

on the metadata associated with each bin. This metadata

is represented as a bitvector that stores whether or not a

token, i.e., a short DNA sequence on the order of 5 base

pairs, is present within the associated bin.We refer to each

bit in the bitvector as an existence bit. To account for all

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 26 of 180

a

b

Fig. 2 GRIM-Filter has a 2D data structure where each bit at <row,
column> indicates if a token (indexed by the row) is present in the
corresponding bin (indicated by the column). a GRIM-Filter divides a
genome into overlapping bins. b GRIM-Filter’s metadata associated
with a reference genome. Columns are indexed by the bin number of
each location. Rows are indexed by the token value. In this figure,
token size=5

possible tokens of length n, each bitvector must be 4n bits

in length, where each bit denotes the existence of a par-

ticular token instance. Figure 2 highlights the bits of two

token instances of bin2’s bitvector: it shows that 1) the

token GACAG (green) exists in bin2, i.e., the existence

bit associated with the token GACAG is set to 1 in the b2
bitvector; and 2) the token TTTTT (red) is not present

in bin2, i.e., the existence bit associated with the token

TTTTT is set to 0 in the b2 bitvector.

Because these bitvectors are associated with the refer-

ence genome, the bitvectors need to be generated only

once per reference, and they can be used to map any num-

ber of reads from other individuals of the same species.

In order to generate the bitvectors, the genome must be

sequentially scanned for every possible token of length n,

where n is the selected token size. If binx contains the

token, the bit in the bx bitvector corresponding to the

token must be set (1). If binx does not contain the token,

then the same bit is left unset (i.e., 0). These bitvectors are

saved and stored for later use when mapping reads to the

same reference genome, i.e., they are part of the genome’s

metadata.

GRIM-Filter operation

Before sequence alignment, GRIM-Filter checks each bin

to see if the bin contains a potential mapping location for

the read, based on the list of potential locations provided

by the read mapper. If the bin contains a location, GRIM-

Filter then checks the bin to see if the location is likely to

match the read sequence, by operating on the bitvector of

the bin.

This relies on the entire read being contained within a

given bin, and thus requires the bins to overlap with each

other in the construction of the metadata (i.e., some base

pairs are contained in multiple bins), as shown in Fig. 2a.

GRIM-Filter uses the described bitvectors to quickly

determine whether a match within a given error tolerance

is impossible. This is done before running the expen-

sive sequence alignment algorithm, in order to reduce the

number of unnecessary sequence alignment operations.

For each location associated with a seed, GRIM-Filter

1) loads the bitvector of the bin containing the location;

2) operates on the bitvector (as we will describe shortly)

to quickly determine if there will be no match (i.e., a poor

match, given the error tolerance threshold); and 3) dis-

cards the location if it determines a poor match. If GRIM-

Filter does not discard the location, the sequence at that

location must be aligned with the read to determine the

match similarity.

Using the circled steps in Fig. 3, we explain in detail how

GRIM-Filter determines whether to discard a location z

for a read sequence r. We use bin_num(z) to indicate the

number of the bin that contains location z.

GRIM-Filter extracts every token contained within the

read sequence r (❶ in the figure). Then, GRIM-Filter loads

the bitvector for binbin_num(z) (❷). For each of the tokens

contained in r, GRIM-Filter extracts the existence bit of

that token from the bitvector (❸), to see whether the

token exists somewhere within the bin. GRIM-Filter sums

all of the extracted existence bits together (❹), which we

refer to as the accumulation sum for location z (Sumz).

The accumulation sum represents the number of tokens

from read sequence r that are present in binbin_num(z). A

larger accumulation sum indicates that more tokens from

r are present in the bin, and therefore the location is more

likely to contain a match for r. Finally, GRIM-Filter com-

pares Sumz with a constant accumulation sum threshold

value (❺), to determine whether location z is likely to

match read sequence r. If Sumz is greater than or equal

to the threshold, then z is likely to match r, and the read

Fig. 3 Flow diagram for our seed location filtering algorithm. GRIM-
Filter takes in a read sequence and sums the existence of its tokens
within a bin to determine whether 1) the read sequence must be
sequence aligned to the reference sequence in the bin or 2) it can be
discarded without alignment. Note that token size = 5 in this example

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 27 of 180

mapper must perform sequence alignment on r to the ref-

erence sequence at location z. If Sumz is less than the

threshold, then z will not match r, and the read map-

per skips sequence alignment for the location. We explain

how we determine the accumulation sum threshold in

“Determining the accumulation sum threshold” section.

Once GRIM-Filter finishes checking each location, it

returns control to the read mapper, which performs

sequence alignment on only those locations that pass the

filter. This process is repeated for all seed locations, and

it significantly reduces the number of alignment opera-

tions, ultimately reducing the end-to-end read mapping

runtime (as we show in “Results” section). Our implemen-

tation of GRIM-Filter ensures a zero false positive rate (i.e.,

no locations that result in correct mappings for the read

sequence are incorrectly rejected by the filter), as GRIM-

Filter passes any seed location whose bin contains enough

of the same tokens as the read sequence.

GRIM-Filter can also account for errors in the sequence,

when some of the tokens do not match perfectly (see

“Taking errors into account” section). Therefore, using

GRIM-Filter to filter out seed locations does not affect the

correctness of the read mapper.

Integration with a full read mapper

Figure 4 shows how we integrate GRIM-Filter with a read

mapper to improve readmapping performance. Before the

read mapper begins sequence alignment, it sends the read

sequence, along with all potential seed locations found in

the hash table for the sequence, to GRIM-Filter. Then, the

Filter Bitmask Generator for GRIM-Filter performs the

seed location filtering algorithm we describe in GRIM-

Filter Operation, checking only the bins that include a

potential seed location to see if the bin contains the same

tokens as the read sequence (❶ in Fig. 4). For each loca-

tion, we save the output of our threshold decision (the

computation of which was shown in Fig. 3) as a bit within

a seed location filter bitmask, where a 1 means that the

location’s accumulation sum was greater than or equal to

the threshold, and a 0 means that the accumulation sum

was less than the threshold. This bitmask is then passed

to the Seed Location Checker (❷ in Fig. 4), which locates

the reference segment corresponding to each seed loca-

tion that passed the filter (❸) and sends the reference

segment to the read mapper. The read mapper then per-

forms sequence alignment on only the reference segments

it receives from the seed location checker (❹), and outputs

the correct mappings for the read sequence.

Determining the accumulation sum threshold

We now discuss in detail how to determine the thresh-

old used to evaluate the accumulation sum (Sumz). The

threshold is used to determine whether or not a seed

location should be sent to the read mapper for sequence

alignment (shown as ❺ in Fig. 3). A greater value of Sumz

indicates that the seed location z is more likely to be a

good match for the read sequence r. However, there are

cases where Sumz is high, but the read sequence results

in a poor match with the seed location z. A simple exam-

ple of this poor match is a read sequence that consists

entirely of “A” base pairs, resulting in 100 AAAAA tokens,

and a seed location that consists entirely of “G” base pairs

except for a single AAAAA token. In this example, all

100 AAAAA tokens in the read sequence locate the one

AAAAA token in the seed location, resulting in an accu-

mulation sum of 100, even though the location contains

only one AAAAA token. Because such cases occur, even

though they may occur with low probability, GRIM-Filter

cannot guarantee that a high accumulation sum for a

seed location corresponds to a good match with a read

sequence. On the other hand, GRIM-Filter can guaran-

tee that a low accumulation sum (i.e., a sum that falls

Fig. 4 GRIM-Filter integration with a read mapper. The Filter Bitmask Generator uses the bitvectors for each bin to determine whether any locations
within the bin are potential matches with the read sequence, and saves potential match information into a Seed Location Filter Bitmask. The Seed
Location Checker uses the bitmask to retrieve the corresponding reference segments for only those seed locations that match, which are then sent
to the read mapper for sequence alignment

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 28 of 180

under the threshold) indicates that any reference sequence

within the bin is a poor match with the read sequence.

This is because a lower sum means that fewer tokens

from the read sequence are present in the bin, which

translates directly to a greater number of errors in a poten-

tial match. For a low enough sum, we can guarantee that

the potential read sequence alignment would have too

many errors to be a good match.

Taking errors into account

If a read maps perfectly to a reference sequence in

binbin_num(z), Sumz would simply be the total number of

tokens in a read, which is read_length − (n−1) for a token

size of n. However, to account for insertions, deletions,

and substitutions in the read sequence, sequence align-

ment has some error tolerance, where a read sequence and

a reference sequence are considered a good match even

if some differences exist. The accumulation sum thresh-

old must account for this error tolerance, so we reduce

the threshold below read_length − (n− 1) to allow some

tokens to include errors. Figure 5a shows the equation

that we use to calculate the threshold while accounting

for errors.

As shown in Fig. 5b, a token of size n in a bin overlaps

with n − 1 other tokens. We calculate the lowest Sumz

possible for a sequence alignment that includes only a sin-

gle error (i.e., one insertion, deletion, or substitution) by

studying these n tokens. If the error is an insertion, the

insertion shifts at least one of the n tokens to the right,

preserving the shifted token while changing the remaining

tokens (n−1 in the worst case). If the error is a deletion or

a substitution, the change in the worst case can affect all n

tokens.

Figure 5b shows an example of how a substitution

affects four different tokens, where n = 4. Therefore,

for each error that we tolerate, we must assume the

worst-case error (i.e., a deletion or a substitution), in

which case up to n tokens will not match with the read

sequence even when the location actually contains the

read sequence.

The equation in Fig. 5a gives the accumulation sum

threshold, accounting for the worst-case scenario for a

sequence alignment error tolerance of e. This means that

the maximum number of allowable errors is equal to

the ceiling of the read size multiplied by the sequence

alignment error tolerance. A sequence alignment error

tolerance of e = 0.05 or less is widely used [2, 8, 41, 42].

For each allowable error, we assume that the worst-case

number of tokens (equal to the token length n) are affected

by the error.We also assume the worst case that each error

affects a different set of tokens within the read, which

results in the greatest possible number of tokens that may

not match. We calculate this by multiplying the maximum

number of allowable errors by n in the equation. Finally,

we subtract the largest possible number of tokens thatmay

not match from the total number of tokens in the read

sequence, which is read_length − (n − 1).

This leads to the threshold value that GRIM-Filter uses

to determine the seed locations that the read mapper

should perform sequence alignment on, as discussed in

“GRIM-Filter operation” section and shown as ❺ in Fig. 3.

Candidacy for 3D-Stackedmemory implementations

We identify three characteristics of the filter bitmask gen-

erator in GRIM-Filter that make it a strong candidate

for implementation in 3D-stacked memory: 1) it requires

only very simple operations (e.g., sums and comparisons);

2) it is highly parallelizable, since each bin can be oper-

ated on independently and in parallel; and 3) it is highly

memory-bound, requiring a single memory access for

approximately every three computational instructions (we

determine this by profiling a software implementation of

GRIM-Filter, i.e., GRIM-Software, which is described in

“Methods” section). Next, we describe how we implement

GRIM-Filter in 3D-stacked memory.

Mapping GRIM-Filter to 3D-stackedmemory
In this section, we first describe the 3D-stacked DRAM

technology (“3D-stacked memory” section), which

attempts to bridge the well-known disparity between

a b

Fig. 5 a Equation to calculate the accumulation sum threshold for a read sequence, where n is the token length and e is the sequence alignment error
tolerance. b Impact of a substitution error on four separate tokens, when n = 4. A single deletion or substitution error propagates to 4 consecutive
tokens, while a single insertion error propagates to 3 consecutive tokens

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 29 of 180

processor speed and memory bandwidth. Next, we

describe how GRIM-Filter can be easily mapped to utilize

this new memory technology (“Mapping GRIM-Filter

to 3D-Stacked memory with PIM” section). As the dis-

parity between processor speed and memory bandwidth

increases, memory becomes more of a bottleneck in the

computing stack in terms of both performance and energy

consumption [21, 43–46]. Along with 3D-stacked DRAM,

which enables much higher bandwidth and lower latency

compared to conventional DRAM, the disparity between

processor and memory is alleviated by the re-emergence

of the concept of Processing-in-Memory (PIM). PIM inte-

grates processing units inside or near the main memory to

1) leverage high in/near-DRAMbandwidth, and low intra-

DRAM latency; and 2) reduce energy consumption by

reducing the amount of data transferred to and from the

processor. In this section, we briefly explain the required

background for these two technologies, which we leverage

to implement GRIM-Filter in a highly-parallel manner.

3D-stacked memory

Main memory is implemented using the DRAM (dynamic

random access memory) technology in today’s systems

[47–49]. Conventional DRAM chips are connected to

the processors using long, slow, and energy-hungry PCB

(printed circuit board) interconnects [47, 49–54]. The

conventional DRAM chips do not incorporate logic to

perform computation. For more detail on modern DRAM

operation and architecture, we refer the reader to our

previous works (e.g., [47, 50–52, 54–67]).

3D-stacked DRAM is a new DRAM technology that

has a much higher internal bandwidth than conventional

DRAM, thanks to the closer integration of logic andmem-

ory using the through-silicon via (TSV) interconnects, as

seen in Fig. 6. TSVs are new, vertical interconnects that

can pass through the silicon wafers of a 3D stack of dies

[14, 22, 68]. A TSV has a much smaller feature size than a

traditional PCB interconnect, which enables a 3D-stacked

DRAM to integrate hundreds to thousands of these wired

connections between stacked layers. Using this large num-

ber of wired connections, 3D-stacked DRAM can transfer

bulk data simultaneously, enabling much higher band-

width compared to conventional DRAM. Figure 6 shows

a 3D-stacked DRAM (e.g., High Bandwidth Memory

[13, 69]) based system that consists of four layers of

DRAM dies and a logic die stacked together and con-

nected using TSVs, a processor die, and a silicon inter-

poser that connects the stacked DRAM and the processor.

The vertical connections in the stacked DRAM are very

wide and very short, which results in high bandwidth

and low power consumption, respectively [14]. There are

many different 3D-stacked DRAM architectures avail-

able today. High Bandwidth Memory (HBM) is already

Fig. 6 3D-stacked DRAM example. High Bandwidth Memory consists
of stacked memory layers (four layers in the picture) and a logic layer
connected by high bandwidth through-silicon vias (TSVs) and
microbumps [13, 14, 69]. The 3D-stacked memory is then connected
to a processor die with an interposer layer that provides high-
bandwidth between the logic layer and the processing units on the
package substrate

integrated into the AMD Radeon R9 Series graphics cards

[15]. High Bandwidth Memory 2 (HBM2) is integrated in

both the new AMD Radeon RX Vega64 Series graphics

cards [70] and the new NVIDIA Tesla P100 GPU accel-

erators [71]. Hybrid Memory Cube (HMC) is developed

by a number of different contributing companies [17, 18].

Like HBM, HMC also enables a logic layer underneath

the DRAM layers that can perform computation [19–21].

HMC is already integrated in the SPARC64 XIfx chip [72].

Other new technologies that can enable processing-in-

memory are also already prototyped in real chips, such as

Micron’s Automata Processor [73] and Tibco transactional

application servers [74, 75].

Processing-in-memory (PIM). A key technique to

improve performance (both bandwidth and latency)

and reduce energy consumption in the memory sys-

tem is to place computation units inside the memory

system, where the data resides. Today, we see pro-

cessing capabilities appearing inside and near DRAM

memory (e.g., in the logic layer of 3D-stacked memory)

[14, 19–21, 23, 53, 76–91]. This computation inside or

near DRAM significantly reduces the need to transfer data

to/from the processor over the memory bus.

PIM provides significant performance improvement

and energy reduction compared to the conventional sys-

tem architecture [19–21, 23, 76, 90, 92, 93], which must

transfer all data to/from the processor since the processor

is the only entity that performs all computational tasks.

3D-stacked DRAM with PIM. The combination of the

two new technologies, 3D-stacked DRAM and PIM,

enables very promising opportunities to build very high-

performance and low-power systems. A promising design

for 3D-stacked DRAM consists of multiple stacked mem-

ory layers and a tightly-integrated logic layer that controls

the stacked memory, as shown in Fig. 6. As many prior

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 30 of 180

works show [14, 19–22, 76, 80, 90, 92–95], the logic

layer in 3D-stacked DRAM can be utilized not only for

managing the stacked memory layers, but also for inte-

grating application-specific accelerators or simple pro-

cessing cores. Since the logic layer already exists and has

enough space to integrate computation units, integrating

application-specific accelerators in the logic layer requires

modest design and implementation overhead, and little to

no hardware overhead (see [20, 89] for various analyses).

Importantly, the 3D-stacked DRAM architecture enables

us to fully customize the logic layer for the acceleration of

applications using processing-in-memory (i.e., processing

in the logic layer) [20, 21, 76, 94].

Mapping GRIM-Filter to 3D-Stackedmemory with PIM

We find that GRIM-Filter is a very good candidate

to implement using processing-in-memory, as the fil-

ter is memory-intensive and performs simple computa-

tional operations (e.g., simple comparisons and additions).

Figure 7 shows how we implement GRIM-Filter in a 3D-

stacked memory. The center block shows each layer of

an example 3D-stacked memory architecture, where mul-

tiple DRAM layers are stacked above a logic layer. The

layers are connected together with several hundred TSVs,

which enable a high data transfer bandwidth between

the layers. Each DRAM layer is subdivided into multiple

banks ofmemory. A bank in oneDRAM layer is connected

to banks in the other DRAM layers using the TSVs. These

interconnected banks, along with a slice of the logic layer,

are grouped together into a vault. Inside the 3D-stacked

memory, we store the bitvector of each bin (see “GRIM-

Filter” section) within a bank as follows: 1) each bit of

the bitvector is placed in a different row in a consecutive

manner (e.g., bit 0 is placed in row 0, bit 1 in row 1, and

so on); and 2) all bits of the bitvector are placed in the

same column, and the entire bitvector fits in the column

(e.g., bitvector 0 is placed in column 0, bitvector 1 in col-

umn 1, and so on). We design and place customized logic

to perform the GRIM-Filter operations within each logic

layer slice, such that each vault can perform independent

GRIM-Filter operations in parallel with every other vault.

Next, we discuss how we organize the bitvectors within

each bank. Afterwards, we discuss the customized logic

required for GRIM-Filter and the associated hardware

cost.

The left block in Fig. 7 shows the layout of bitvectors

in a single bank. The bitvectors are written in column

order (i.e., column-major order) to the banks, such that

a DRAM access to a row fetches the existence bits of the

same token across many bitvectors (e.g., bitvectors 0 to

t − 1 in the example in Fig. 7). When GRIM-Filter reads a

row of data from a bank, the DRAMbuffers the rowwithin

the bank’s row buffer [50, 52, 96, 97], which resides in the

same DRAM layer as the bank. This data is then copied

into a row data register that sits in the logic layer, from

which the GRIM-Filter logic can read the data.

This data organization allows each vault to compute

the accumulation sum of multiple bins (e.g., bins 0 to

t − 1 in the example) simultaneously. Thus, GRIM-Filter

can quickly and efficiently determine, across many bins,

whether a seed location needs to be discarded or sequence

aligned in any of these bins.

The right block in Fig. 7 shows the custom hardware

logic implemented for GRIM-Filter in each vault’s logic

layer. We design a small logic module for GRIM-Filter,

which consists of only an incrementer, accumulator, and

comparator, and operates on the bitvectorx of a single

bin x. The incrementer adds 1 to the value in the accumu-

lator, which stores the accumulated sum for bin x. In order

to hold the final sum (i.e., Sumz, shown as ❹ in Fig. 3),

each accumulator must be at least ⌈log2(read_length)⌉

bits wide. Each comparator must be of the same width

as the accumulator, as the comparator is used to check

whether the accumulated sum exceeds the accumulated

sum threshold. Because of the way we arrange the bitvec-

tors in DRAM, a single read operation in a vault retrieves

many (e.g., t) existence bits in parallel, from many (e.g., t)

bitvectors, for the same token. These existence bits are

copied from a DRAM bank’s row buffer into a row data

register within the logic layer slice of the vault. In order to

Fig. 7 Left block: GRIM-Filter bitvector layout within a DRAM bank. Center block: 3D-stacked DRAM with tightly integrated logic layer stacked
underneath with TSVs for a high intra-DRAM data transfer bandwidth. Right block: Custom GRIM-Filter logic placed in the logic layer, for each vault

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 31 of 180

maximize throughput, we add a GRIM-Filter logic module

for each bin to the logic layer slice. This allows GRIM-

Filter to process all of these existence bits from multiple

bitvectors in parallel.

Integration into the system and low-level operation

When GRIM-Filter starts in the CPU (spawned by a read

mapper), it sends a read sequence r to the in-memory

GRIM-Filter logic, along with a range of consecutive bins

to check for a match. GRIM-Filter quickly checks the

range of bins to determine whether or not to discard seed

locations within those bins. In the logic layer, the GRIM-

Filter Filter Bitmask Generator (see “Integration with a

full read mapper” section) iterates through each token in

read sequence r. For each token, GRIM-Filter reads the

memory row in each vault that contains the existence bits

for that token, for the bins being checked, into the row

buffer inside the DRAM layer. Then, GRIM-Filter copies

the row to the row data register in the logic layer. Each

GRIM-Filter logic module is assigned to a single bin. The

logic module examines the bin’s existence bit in the row

buffer, and the incrementer adds one to the value in the

accumulator only if the existence bit is set. This process

is repeated for all tokens in r. Once all of the tokens

are processed, each logic module uses its comparator to

check if the accumulator, which now holds the accumu-

lated sum (Sumz, shown as ❹ in Fig. 3) for its assigned bin,

is greater than or equal to the accumulated sum threshold.

If Sumz is greater than or equal to the threshold, a seed

location filter bit is set, indicating that the read sequence

should be sequence aligned with the locations in the bin

by the read mapper. To maintain the same amount of par-

allelism present in the bitvector operations, we place the

seed location filter bits into a seed location filter bitmask,

where each logic module writes to one bit in the bitmask

once it performs the accumulator sum threshold compar-

ison. The seed location filter bitmask is then written to

the DRAM layer. Once the Seed Location Checker (see

“Integration with a full read mapper” section) starts exe-

cuting in the CPU, it reads the seed location filter bit-

masks fromDRAM, and performs sequence alignment for

only those bits whose seed location filter bits are set to 1.

Hardware overhead. The hardware overhead of our

GRIM-Filter implementation in 3D-stacked memory

depends on the available bandwidth b between a memory

layer and the logic layer. In HBM2 [16], this bandwidth is

4096 bits per cycle across all vaults (i.e., each clock cycle,

4096 bits from a memory layer can be copied to the row

data registers in the logic layer). GRIM-Filter exploits all

of this parallelism completely, as we can place b GRIM-

Filter logic modules (4096 modules for HBM2) across all

vaults within the logic layer. In total, for an HBM2 mem-

ory, and for a read mapper that processes reads consisting

of 100 base pairs, GRIM-Filter requires 4096 incrementer

lookup tables (LUTs), 4096 seven-bit counters (a seven-

bit counter can hold the maximum accumulator sum for

a 100-base-pair read sequence), 4096 comparators, and

enough buffer space to hold the seed location filter bit-

masks. With a larger bandwidth between the logic and

memory layers, we would be able to compute the seed

location filter bits for more bins in parallel, but this would

also incur a larger hardware overhead in the logic layer.

While the read mapper performs sequence alignment

on seed locations specified by one seed location filter bit-

mask, GRIM-Filter generates seed location filter bitmasks

for a different set of seed locations. We find that a bitmask

buffer size of 512 KB (stored in DRAM) provides enough

capacity to ensure that GRIM-Filter and the read mapper

never stall due to a lack of buffer space.

The overall memory footprint (i.e., the amount of stor-

age space required) of the bitvectors for a reference

genome is calculated by multiplying the number of bins

by the size of a single bin. In “Sensitivity to GRIM-Filter

Parameters” section, we show how we find a set of param-

eters that results in an effective filter with a low memory

footprint (3.8 GB).

We conclude that GRIM-Filter requires a modest and

simple logic layer, which gives it an advantage over other

seed location filtering algorithms that could be imple-

mented in the logic layer.

Results
We first profile the reference human genome in order

to 1) determine a range of parameters that are reason-

able to use for GRIM-Filter. We determine the points

of diminishing returns for several parameter values.

This data is presented in “Sensitivity to GRIM-Filter

Parameters” section. Using this preliminary data, we

reduce the required experiments to a reasonable range of

parameters. Our implementation of GRIM-Filter enables

the variation of runtime parameters (number of bins,

token size, error tolerance, etc.) within the ranges of values

that we determine from our experimentation for the best

possible results. We then quantitatively evaluate GRIM-

Filter’s improvement in false negative rate and map-

per runtime over the baseline mrFAST with FastHASH

(“Full mapper results” section).

Sensitivity to GRIM-Filter parameters

In order to determine a range for the parameters for our

experiments, we ran a series of analyses on the fundamen-

tal characteristics of the human reference genome. We

perform these initial experiments to 1) determine effective

parameters for GRIM-Filter and 2) compute its memory

footprint. The memory footprint of GRIM-Filter depends

directly on the number of bins that we divide the refer-

ence genome into, since each bin requires a bitvector to

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 32 of 180

hold the token existence bits. Since the bitvector must

contain a Boolean entry for each permutation of the token

of size n, each bitvector must contain 4n bits. The total

memory footprint is then obtained by multiplying the

bitvector size by the number of bins. In this section, we

sweep the number of bins, token size, and error tolerance

of GRIM-Filter while considering the memory footprint.

To understand how each of the different parameters affect

the performance of GRIM-Filter, we study a sweep on the

parameters with a range of values that result in a mem-

ory footprint under 16 GB (which is the current capacity

of HBM2 on state-of-the-art devices [71]).

Average read existence Figure 8 shows how varying a

number of different parameters affects the average read

existence across the bins.We define average read existence

to be the ratio of bins with seed locations that pass the

filter over all bins comprising the genome, for a represen-

tative set of reads. We would like this value to be as low

as possible because it reflects the filter’s ability to filter

incorrectmappings. A lower average read existencemeans

that fewer bins must be checked when mapping the rep-

resentative set of reads. Across the three plots, we vary

the token size from 4 to 6. Within each plot, we vary the

number of bins to split the reference genome into, denoted

by the different curves (with different colors and mark-

ers). The X-axis shows the error tolerance that is used,

and the Y-axis shows average read existence. We plot the

average and min/max across our 10 data sets (Table 1) as

indicated, respectively, by the triangle and whiskers. We

sweep the number of bins in multiples of 216 because 216

is an even multiple of the number of TSVs between the

logic and memory layers in today’s 3D-stacked memories

(today’s systems typically have 4096 TSVs).Wewant to use

a multiple of 216 so that we can utilize all TSVs each time

we copy data from a row buffer in the memory layer to

the corresponding row data register in the logic layer. This

maximizes GRIM-Filter’s internal memory bandwidth uti-

lization within 3D-stacked memory.

We make three observations from the figure. First, look-

ing across the three plots, we observe that increasing

the token size from 4 to 5 provides a large (i.e., around

10x) reduction in average read existence, while increas-

ing the token size from 5 to 6 provides a much smaller

(i.e., around 2x) reduction in average read existence. The

reduction in average read existence is due to the fact that,

in a random pool of As, Cs, Ts, and Gs, the probability

of observing a certain substring of size q is
(

1
4

)q
. Because

the distribution of base pairs across a reference genome

and across a bin is not random, a larger token size does

not always result in a large decrease, as seen when chang-

ing the token size from 5 to 6. We note that increasing

the token size by one causes GRIM-Filter to use 4x the

memory footprint. Second, we observe that in all three

plots (i.e., for all token sizes), an increase in the number

of bins results in a decrease in the average read existence.

This is because the bin size decreases as the number of

bins increases, and for smaller bins, we have a smaller

sample size of the reference genome that any given sub-

string could exist within. Third, we observe that for each

plot, increasing the error tolerance results in an increase

in the average read existence. This is due to the fact that

if we allow more errors, fewer tokens of the entire read

sequence must be present in a bin for a seed location from

that bin to pass the filter. This increases the probability

that a seed location of a random read passes the filter for a

random bin. A poor sequence alignment at a location that

passes the filter is categorized as a false negative. We con-

clude from this figure that using tokens of size 5 provides

quite good filtering effectiveness (as measured by aver-

age read existence) without requiring as much memory

footprint as using a token size of 6.

False negative rate. We choose our final bitvector size

after sweeping the number of bins and the error tolerance

(e). Figure 9 shows how varying these parameters affects

the false negative rate of GRIM-Filter. The X-axis varies

the number of bins, while the different lines represent

different values of e.

We make two observations from this figure. First, we

find that, with more bins (i.e., with a smaller bin size), the

false negative rate (i.e., the fraction of locations that pass

Fig. 8 Effect of varying token size, error tolerance, and bin count on average read existence. We use a representative set of reads to collect this data.
A lower value of average read existence represents a more effective filter. Note that the scale of the Y-axis is different for the three different graphs

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 33 of 180

Table 1 Benchmark data, obtained from the 1000 Genomes Project [102]

ERR240726_1 ERR240727_1 ERR240728_1 ERR240729_1 ERR240730_1

No. of reads 4031354 4082203 3894290 4013341 4082472

Read length 100 100 100 100 100

ERR240726_2 ERR240727_2 ERR240728_2 ERR240729_2 ERR240730_2

No. of reads 4389429 4013341 4013341 4082472 4082472

Read length 100 100 100 100 100

the filter, but do not result in a mapping after alignment)

decays exponentially. Above 300×216 bins, we begin to

see diminishing returns on the reduction in false negatives

for all error tolerance values. Second, we observe that, as

we increase the error tolerance, regardless of the other

parameters, the false negative rate increases. We also find

that the number of bins 1) minimally affects the run-

time of GRIM-Filter (not plotted) and 2) linearly increases

the memory footprint. Based on this study, we choose to

use 450×216 bins, which reflects a reasonable memory

footprint (see below) with the other parameters.

Memory footprint. A larger number of bins results in

more bitvectors, so we must keep this parameter at a

reasonable value in order to retain a reasonable memory

footprint for GRIM-Filter. Since we have chosen a token

size of 5, GRIM-Filter requires t bitvectors with a length of

45 = 1024, where t equals the number of bins we segment

the reference genome into. We conclude that employ-

ing 450×216 bins results in the best trade-off between

memory footprint, filtering efficiency, and runtime. This

set of parameters results in a total memory footprint of

approximately 3.8 GB for storing the bitvectors of this

mechanism, which is a very reasonable size for today’s 3D-

stacked memories [13, 15, 17, 18, 69–71]. We note that

Fig. 9 GRIM-Filter’s false negative rate (lower is better) as we vary the
number of bins. We find that increasing the number of bins beyond
300 × 216 yields diminishing improvements in the false negative rate,
regardless of the error tolerance value

the time to generate the bitvectors is not included in our

final runtime results, because these need to be generated

only once per reference genome, either by the user or by

the distributor. We find that, with a genome of length L,

we can generate the bitvectors in (9.03e− 08)×L seconds

when we use 450×216 bins (this is approximately 5min for

the human genome).

GRIM-Filter parallelization. GRIM-Filter operates on

every bin independently and in parallel, using a separate

logic module for each bin. Thus, GRIM-Filter’s parallelism

increases with each additional bin it operates on simul-

taneously. We refer to the set of consecutive bins that

the GRIM-Filter logic modules are currently assigned to

as the bin window (w). The internal bandwidth of HBM2

[16] enables copying 4096 bits from a memory layer to

the logic layer every cycle, allowing GRIM-Filter to oper-

ate on as many as 4096 consecutive bins in parallel (i.e.,

it has a bin window of size w = 4096). GRIM-Filter must

only check bin windows that contain at least one seed

location (i.e., a span of 4096 consecutive bins with zero

seed locations does not need to be checked). In contrast,

if a consecutive set of 4096 bins contains many seed loca-

tions, GRIM-Filter can operate on every bin in parallel and

quickly determine which seed locations within the 4096

bins can safely be discarded. In these cases, GRIM-Filter

can most effectively utilize the parallelism available from

the 4096 independent logic modules.

In order to understand GRIM-Filter’s ability to paral-

lelize operations on many bins, we analyze GRIM-Filter

when using a bin window of size w = 4096, which

takes advantage of the full memory bandwidth available

in HBM2 memory. As we discuss in “Integration with a

full read mapper” section, the read mapper generates a

list of potential seed locations for a read sequence, and

sends this list to GRIM-Filter when the filter starts. Sev-

eral bins, which we call empty bins, do not contain any

potential seed locations. When w = 1, there is only

one logic module, and if the module is assigned to an

empty bin, GRIM-Filter immediately moves on to the next

bin without computing the accumulation sum. However,

when w = 4096, some, but not all, of the logic modules

may be assigned to empty bins. This happens because in

order to simplify the hardware, GRIM-Filter operates all

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 34 of 180

of the logic modules in lockstep (i.e., the filter fetches a

single row from each bank of memory, which includes the

existence bits for a single token across multiple rows, and

all of the logic modules read and process the existence

bits for the same token in the same cycle). Thus, a logic

module assigned to an empty bin must wait for the other

logic modules to finish before it can move onto another

bin. As a result, GRIM-Filter with w = 4096 is not 4096x

faster than GRIM-Filter with w = 1. To quantify the ben-

efits of parallelization, we compare the performance of

GRIM-Filter with these two bin window sizes using a rep-

resentative set of reads. For 10% of the seeds, we find that

GRIM-Filter with w = 4096 reduces the filtering time

by 98.6%, compared to GRIM-Filter with w = 1. For the

remaining seeds, we find that GRIM-Filter with w = 4096

reduces the filtering time by 10–20%. Thus, even though

many of the logic modules are assigned to empty bins

in a given cycle, GRIM-Filter reduces the filtering time

by operating on many bins that contain potential seed

locations in parallel.

Overlapping GRIM-Filter computation with sequence

alignment in the CPU. In addition to operating on mul-

tiple bins in parallel, one benefit of implementing GRIM-

Filter in 3D-stacked memory is that filtering operations

can be parallelized with sequence alignment that happens

on the CPU, since filtering no longer uses the CPU. Every

cycle, for a bin window of size w = 4096, GRIM-Filter’s

Filter Bitmask Generator (❶ in Fig. 4) reads 4096 bits

frommemory, and updates the accumulation sums for the

bins within the bin window that contain a potential seed

location. Once the accumulation sums are computed and

compared against the threshold, GRIM-Filter’s Seed Loca-

tion Checker (❷ in Fig. 4) can discard seed locations that

map to bins whose accumulation sums do not meet the

threshold (i.e., the seed locations that should not be sent to

sequence alignment). The seed locations that are not dis-

carded are sent to the readmapper for sequence alignment

(❹ in Fig. 4), ending GRIM-Filter’s work for the current

bin window. While the read mapper aligns the sequences

that passed through the filter from the completed bin

window, GRIM-Filter’s Filter Bitmask Generator moves

onto another bin window, computing the seed location fil-

ter bits for a new set of bins. If GRIM-Filter can exploit

enough parallelism, it can provide the CPU with enough

bins to keep the sequence alignment step busy for at

least as long as the time needed for the Filter Bitmask

Generator to process the new bin window. This would

allow the filtering latency to overlap completelywith align-

ment, in effect hiding GRIM-Filter’s latency. We find

that a bin window of 4096 bins provides enough paral-

lelism to completely hide the filtering latency while the

read mapper running on the CPU performs sequence

alignment.

Full mapper results

We use a popular seed-and-extend mapper, mrFAST [3],

to retrieve all candidate mappings from the ten real data

sets we evaluate (see “Methods” section). In our experi-

ments, we use a token size of 5 and 450 × 216 bins, as

discussed in Sensitivity to GRIM-Filter Parameters. All

remaining parameters specific to mrFAST are held at the

default values across all of our evaluated read mappers.

False negative rate. Figure 10 shows the false negative

rate of GRIM-Filter compared to the baseline FastHASH

filter across the ten real data sets we evaluate. The six plots

in the figure show false negative rates for error tolerance

values (i.e., e) ranging from 0.00 to 0.05, in increments of

0.01 (An error tolerance of e = 0.05 is widely used in align-

ment during DNA read mapping [2, 8, 41, 42].). We make

three observations from the figure. First, GRIM-Filter pro-

vides a much lower false negative rate than the baseline

FastHASH filter for all data sets and for all error tolerance

values. For an error tolerance of e = 0.05 (shown in the

bottom graph), the false negative rate for GRIM-Filter is

5.97x lower than for FastHASH filter, averaged across all

10 read data sets. Second, GRIM-Filter’s false negative rate

1) increases as the error tolerance increases from e = 0.00

to e = 0.02, and then 2) decreases as the error tolerance

increases further from e = 0.03 to e = 0.05. There are at

least two conflicting reasons. First, as the error tolerance

increases, the accumulation sum threshold decreases (as

shown in Fig. 5) and thus GRIM-Filter discards fewer loca-

tions, which results in a higher false negative rate. Second,

as the error tolerance increases, the number of accept-

able (i.e., correct) mapping locations increases while the

number of candidate locations remains the same, which

results in a lower false negative rate. The interaction of

these conflicting reasons results in the initial increase and

the subsequent decrease in the false negative rates that

we observe. Third, we observe that for higher error tol-

erance values, GRIM-Filter reduces the false negative rate

compared to the FastHASH filter by a larger fraction. This

shows that GRIM-Filter is much more effective at filtering

mapping locations when we increase the error tolerance.

We conclude that GRIM-Filter is very effective in reducing

the false negative rate.

Execution time. Figure 11 compares the execution time

of GRIM-3D to that of mrFAST with FastHASH across

all ten different read data sets for the same error toler-

ance values used in Fig. 10. We make three observations.

First, GRIM-3D improves performance for all of our data

sets for all error tolerance values. For an error tolerance of

e = 0.05, the average (maximum) performance improve-

ment is 2.08x (3.65x) across all 10 data sets. Second, as

the error tolerance increases, GRIM-3D’s performance

improvement also increases. This is because GRIM-Filter

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 35 of 180

Fig. 10 False negative rates of GRIM-Filter and FastHASH filter across ten real data sets for six different error tolerance values

safely discards many more mapping locations than the

FastHASH filter at higher error tolerance values (as we

showed in Fig. 10). Thus, GRIM-Filter saves significantly

more execution time than the FastHASH filter by ignor-

ing many more unnecessary alignments. Third, based on

an analysis of the execution time breakdown of GRIM-

3D (not shown), we find that GRIM-3D’s performance

gains are mainly due to an 83.7% reduction in the average

computation time spent on false negatives, compared to

using the FastHASH filter for seed location filtering. We

conclude that employing GRIM-Filter for seed location

filtering in a state-of-the-art read mapper significantly

improves the performance of the read mapper.

Related work
To our knowledge, this is the first paper to exploit 3D-

stacked DRAM and its processing-in-memory capabilities

to implement a new seed location filtering algorithm that

mitigates the major bottleneck in read mapping, pre-

alignment (i.e., seed location filtering). In this section,

we briefly describe related works that aim to 1) acceler-

ate pre-alignment algorithms, and 2) accelerate sequence

alignment with hardware support.

Accelerating Pre-Alignment. A very recent prior work

[9] implements a seed location filter in an FPGA, and

shows significant speedup against prior filters. However,

as shown in that work, the FPGA is still limited by the

memory bandwidth bottleneck. GRIM-Filter can over-

come this bottleneck on an FPGA as well.

Accelerating sequence alignment. Another very recent

prior work [98] exploits the high memory bandwidth

and the reconfigurable logic layer of 3D-stacked mem-

ory to implement an accelerator for sequence alignment

(among other basic algorithms within the sequence analy-

sis pipeline). Many prior works (e.g., [26–36]) use FPGAs

to also accelerate sequence alignment. These works accel-

erate sequence alignment using customized FPGA imple-

mentations of different existing read mapping algorithms.

For example, Arram et al. [28] accelerate the SOAP3

tool on an FPGA engine, achieving up to 134x speedup

compared to BWA [99]. Houtgast et al. [32] present an

FPGA-accelerated version of BWA-MEM that is 3x faster

compared to its software implementation. Other works

use GPUs [37–40] for the same purpose of accelerating

sequence alignment. For example, Liu et al. [38] accel-

erate BWA and Bowtie by 7.5x and 20x, respectively. In

contrast to GRIM-Filter, all of these accelerators focus

on accelerating sequence alignment, whereas GRIM-Filter

accelerates pre-alignment (i.e., seed location filtering).

Hence, GRIM-Filter is orthogonal to these works, and can

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 36 of 180

Fig. 11 Execution time of two mappers, GRIM-3D and mrFAST with FastHASH, across ten real data sets for six different error tolerance values Note
that the scale of the Y-axis is different for the six different graphs

be combined with any of them for further performance

improvement.

Discussion
We have shown that GRIM-Filter significantly reduces the

execution time of read mappers by reducing the number

of unnecessary sequence alignments and by taking advan-

tage of processing-in-memory using 3D-stacked DRAM

technology. We believe there are many other possible

applications for employing 3D-stackedDRAM technology

within the genome sequence analysis pipeline (as initially

explored in [98]), and significant additional performance

improvements can be obtained by combining future tech-

niques with GRIM-Filter. Because GRIM-Filter is essen-

tially a seed location filter to be employed before sequence

alignment during read mapping, it can be used in any

other read mapper along with any other acceleration

mechanisms in the genome sequence analysis pipeline.

We identify three promising major future research

directions. We believe it is promising to 1) explore the

benefits of combining GRIM-Filter with other various

read mappers in the field, 2) show the effects of map-

ping to varying sizes of reference genomes, and 3) examine

how GRIM-Filter can scale to process a greater number of

reads concurrently.

Conclusion
This paper introduces GRIM-Filter, a novel algorithm

for seed location filtering, which is a critical perfor-

mance bottleneck in genome read mapping. GRIM-Filter

has three major novel aspects. First, it preprocesses the

reference genome to collect metadata on large subse-

quences (i.e., bins) of the genome and stores informa-

tion on whether small subsequences (i.e., tokens) are

present in each bin. Second, GRIM-Filter efficiently oper-

ates on the metadata to quickly determine whether to

discard a mapping location for a read sequence prior

to an expensive sequence alignment, thereby reducing

the number of unnecessary alignments and improving

performance. Third, GRIM-Filter takes advantage of the

logic layer within 3D-stacked memory, which enables

the efficient use of processing-in-memory to overcome

the memory bandwidth bottleneck in seed location fil-

tering. We examine the trade-offs for various param-

eters in GRIM-Filter, and present a set of parameters

that result in significant performance improvement over

the state-of-the-art seed location filter, FastHASH. When

running with a sequence alignment error tolerance of

0.05, we show that GRIM-Filter 1) filters seed loca-

tions with 5.59x–6.41x lower false negative rates than

FastHASH; and 2) improves the performance of the fastest

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 37 of 180

read mapper, mrFAST with FastHASH, by 1.81x–3.65x.

GRIM-Filter is a universal seed location filter that can be

applied to any read mapper.

We believe there is a very promising potential in

designing DNA read mapping algorithms for new mem-

ory technologies (like 3D-stacked DRAM) and new

processing paradigms (like processing-in-memory). We

hope that the results from our paper provide inspi-

ration for other works to design new sequence anal-

ysis and other bioinformatics algorithms that take

advantage of new memory technologies and new pro-

cessing paradigms, such as processing-in-memory using

3D-stacked DRAM.

Methods
Evaluated read mappers. We evaluate our proposal by

incorporating GRIM-Filter into the state-of-the-art hash

table based read mapper, mrFAST with FastHASH [7].

We choose this mapper for our evaluations as it provides

high accuracy in the presence of relatively many errors,

which is required to detect genomic variants within and

across species [3, 7]. GRIM-Filter plugs in as an extension

to mrFAST, using a simple series of calls to an applica-

tion programming interface (API). However, we note that

GRIM-Filter can be used with any other read mapper.

We evaluate two read mappers:

• mrFAST with FastHASH [7], which does not use
GRIM-Filter;

• GRIM-3D, our 3D-stacked memory implementation

of GRIM-Filter combined with mrFAST and the

non-filtering portions of FastHASH.

Major evaluation metrics. We report 1) GRIM-Filter’s

false negative rate (i.e., the fraction of locations that pass

through the filter but do not contain a match with the read

sequence), and 2) the end-to-end performance improve-

ment of the read mapper when using GRIM-Filter.

We measure the false negative rate of our filter (and the

baseline filter used by the mapper) as the ratio of the num-

ber of locations that passed the filter but did not result in a

mapping over all locations that passed the filter. Note that

our implementation of GRIM-Filter ensures a zero false

positive rate (i.e., it does not filter out any correct map-

pings for the read sequence), and, thus, GRIM-Filter does

not affect the correctness of a read mapper.

Performance evaluation. We measure the performance

improvement of GRIM-3D by comparing the execution

time of our read mappers. We develop a methodol-

ogy to estimate the performance of GRIM-3D, since real

hardware systems that enable in-memory computation

are unavailable to us at this point in time. To estimate

GRIM-3D’s execution time, we need to add up the time

spent by three components (which we denote as tx for

component x):

• t1: the time spent on read mapping,
• t2: the time spent on coordinating which bins are

examined by GRIM-Filter, and
• t3: the time spent on applying the filter to each seed.

To obtain t1 and t2, we measure the performance of

GRIM-Software, a software-only version of GRIM-Filter

that does not take advantage of processing in 3D-stacked

memory. We run GRIM-Software with mrFAST, and

measure:

• GRIM-Software-End-to-End-Time, the end-to-end
execution time for read mapping using

GRIM-Software;
• GRIM-Software-Filtering-Time, the time spent only

on applying the filter (i.e., the GRIM-Filter portions

of the code shown in Fig. 4) using GRIM-Software.

The values of t1 and t2 are the same for GRIM-Software

and GRIM-3D, and we can compute those by subtracting

out the time spent on filtering from the end-to-end execu-

tion time: t1 + t2 = GRIM-Software-End-to-End-Time −

GRIM-Software-Filtering-Time. To estimate t3, we use a

validated simulator similar to Ramulator [47, 100], which

provides us with the time spent by GRIM-3D on filtering

using processing-in-memory. The simulator models the

time spent by the in-memory logic to produce a seed loca-

tion filter bitmask, and to store the bitmask into a buffer

that is accessible by the read mapper.

Evaluation system. We evaluate the software versions

of the read mappers (i.e., mrFAST with FastHASH and

GRIM-Software) using an Intel(R) Core i7-2600 CPU run-

ning at 3.40 GHz [101], with 16 GB of DRAM for all

experiments.

Data sets. We used ten real data sets from the 1000

Genomes Project [102]. We used the same data sets used

by Xin et al. [7] for the original evaluation of mrFAST

with FastHASH, in order to provide a fair comparison to

our baseline. Table 1 lists the read length and size of each

data set.

Code availability. The code for GRIM-Filter, GRIM-

Software, and our simulator for 3D-stacked DRAM with

processing-in-memory is freely available at

https://github.com/CMU-SAFARI/GRIM.

Acknowledgements

An earlier version of this paper appears on arXiv.org [103]. An earlier version of
this work was presented as a short talk at RECOMB-Seq [104]. We thank the
anonymous reviewers for feedback.

https://github.com/CMU-SAFARI/GRIM

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 38 of 180

Funding

This work was supported in part by a grant from the National Institutes of
Health to O. Mutlu and C. Alkan (HG006004), the Semiconductor Research
Corporation, and gifts from Google, Intel, Samsung, and VMware. Funding for
the publication of this article was provided by a gift from Samsung.

Availability of data andmaterials

The datasets generated and/or analysed during the current study are available
in the US National Library of Medicine, https://www.ncbi.nlm.nih.gov.
The code is available online at: https://github.com/CMU-SAFARI/GRIM.

About this supplement

This article has been published as part of BMC Genomics Volume 19
Supplement 2, 2018: Selected articles from the 16th Asia Pacific Bioinformatics
Conference (APBC 2018): genomics. The full contents of the supplement are
available online at https://bmcgenomics.biomedcentral.com/articles/
supplements/volume-19-supplement-2.

Authors’ contributions

JSK, DSC, and HX developed the GRIM-Filter algorithm. JSK and DSC
implemented and applied GRIM-Filter to simulation experiments and real
data. JSK, DSC, and DL developed and validated the processing-in-memory
simulator. OM and CA conceived and planned the experiments, and
supervised JSK, DSC, and HX for the algorithm development. All authors
contributed to the writing of the manuscript. All authors read and approved
the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA. 2Department of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA. 3NVIDIA Research, Austin, TX, USA.
4Department of Computer Engineering, Bilkent University, Bilkent, Ankara,
Turkey. 5Department of Computer Engineering, TOBB University of Economics
and Technology, Sogutozu, Ankara, Turkey. 6Department of Computer
Science, ETH Zürich, Zürich, CH, Switzerland.

Published: 9 May 2018

References

1. Hach F, Sarrafi I, Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC.
mrsFAST-Ultra: a compact, SNP-aware mapper for high performance
sequencing applications. Nucleic Acids Res. 2014;42.W1:W494–W500.

2. Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X. Hobbes:
Optimized Gram-Based Methods for Efficient Read Alignment. Nucleic
Acids Res. 2012;40(6):e41–e41.

3. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F,
Hormozdiari F, Kitzman JO, Baker C, Malig M, Mutlu O, et al.
Personalized Copy Number and Segmental Duplication Maps Using
Next-Generation Sequencing. Nat Genet. 2009;41(10):1061–7.

4. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M.
SHRiMP: accurate mapping of short color-space reads. PLoS Comput
Biol. 2009;5.5:e1000386.

5. Hormozdiari F, Hach F, Sahinalp SC, Eichler EE, Alkan C. Sensitive and
Fast Mapping of Di-Base Encoded Reads. Bioinformatics. 2011;27(14):
1915–21.

6. Weese D, Emde A-K, Rausch T, Döring A, Reinert K. RazerS—Fast Read
Mapping with Sensitivity Control. Genome Res. 2009;19(9):1646–54.

7. Xin H, Lee D, Hormozdiari F, Yedkar S, Mutlu O, Alkan C. Accelerating
Read Mapping with FastHASH. BMC Genomics. 2013;14(Suppl 1):S13.

8. Xin H, Greth J, Emmons J, Pekhimenko G, Kingsford C, Alkan C,
Mutlu O. Shifted Hamming distance: a fast and accurate SIMD-friendly
filter to accelerate alignment verification in read mapping.
Bioinformatics. 2015;31.10:1553–1560.

9. Alser M, Hassan H, Xin H, Ergin O, Mutlu O, Alkan C. GateKeeper: a new
hardware architecture for accelerating pre-alignment in DNA short read
mapping. Bioinformatics. 2017;33.21:3355–3363.

10. Alser M, Mutlu O, Alkan C. MAGNET: Understanding and Improving the
Accuracy of Genome Pre-Alignment Filtering. IPSI Trans Internet Res.
2017;13:33–42.

11. Hieu Tran N, Chen X. AMAS: optimizing the partition and filtration of
adaptive seeds to speed up read mapping. IEEE/ACM Trans Comput Biol
Bioinforma (TCBB). 2016;13.4:623–633. arXiv:1502.05041.

12. Xin H, Nahar S, Zhu R, Emmons J, Pekhimenko G, Kingsford C, Alkan C,
Mutlu O. Optimal seed solver: optimizing seed selection in read
mapping. Bioinformatics. 2015;32.11:1632–42.

13. Advanced Micro Devices, Inc. High Bandwidth Memory | Reinventing
Memory Technology. http://www.amd.com/en-us/innovations/
software-technologies/hbm. Accessed 26 Jan 2016.

14. Lee D, Ghose S, Pekhimenko G, Khan S, Mutlu O. Simultaneous
multi-layer access: Improving 3D-stacked memory bandwidth at low
cost. ACM Trans Archit Code Optim (TACO). 2016;12.4:63.

15. Advanced Micro Devices, Inc. AMD RadeonTM R9 Series Graphics Cards
with High-Bandwidth Memory. http://www.amd.com/en-us/products/
graphics/desktop/r9/. Accessed 26 Jan 2016.

16. O’Connor M. Highlights of the High-Bandwidth Memory (HBM)
Standard. In: The Memory Forum. 2014.

17. Altera Corporation. Hybrid Memory Cube Controller IP Core User Guide.
https://www.altera.com/en_US/pdfs/literature/ug/ug_hmcc.pdf.
Accessed 26 Jan 2016.

18. Hybrid Memory Cube Consortium. Hybrid Memory Cube Member Tool
Resources. http://hybridmemorycube.org/tool-resources.html.
Accessed 26 Jan 2016.

19. Hsieh K, Ebrahimi E, Kim G, Chatterjee N, O’Connor M, Vijaykumar N,
Mutlu O, Keckler SW. Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU
Systems. In: International Symposium on Computer Architecture. IEEE
Press; 2016. p. 204–16.

20. Hsieh K, Khan S, Vijaykumar N, Chang KK, Boroumand A, Ghose S,
Mutlu O. Accelerating pointer chasing in 3D-stacked memory:
Challenges, mechanisms, evaluation. In: Computer Design (ICCD), 2016
IEEE 34th International Conference on. IEEE; 2016. p. 25–32.

21. Ahn J, Hong S, Yoo S, Mutlu O, Choi K. A scalable
processing-in-memory accelerator for parallel graph processing. In:
Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual
International Symposium on. IEEE; 2015. p. 105–17.

22. Loh GH. 3D-Stacked Memory Architectures for Multi-Core Processors. Int
Symp Comput Archit. 2008;36:453–64.

23. Seshadri V, Lee D, Mullins T, Hassan H, Boroumand A, Kim J,
Kozuch MA, Mutlu O, Gibbons PB, Mowry TC. Ambit: In-memory
accelerator for bulk bitwise operations using commodity DRAM
technology. In: Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM; 2017. p. 273–287.

24. David M, Dursi LJ, Yao D, Boutros PC, Simpson JT. Nanocall: An Open
Source Basecaller for Oxford Nanopore Sequencing Data. Bioinformatics.
2016;33(1):49–55.

25. Senol D, Kim J, Ghose S, Alkan C, Mutlu O. Nanopore Sequencing
Technology and Tools: Computational Analysis of the Current State,
Bottlenecks and Future Directions. In: Pacific Symposium on
Biocomputing Poster Session. 2017.

26. Aluru S, Jammula N. A Review of Hardware Acceleration for
Computational Genomics. IEEE Des Test. 2014;31(1):19–30.

27. Arram J, Tsoi KH, Luk W, Jiang P. Hardware acceleration of genetic
sequence alignment. In: International Symposium on Applied
Reconfigurable Computing. Berlin, Heidelberg: Springer; 2013. p. 13–24.

28. Arram J, Tsoi KH, Luk W, Jiang P. Reconfigurable Acceleration of Short
Read Mapping. In: International Symposium on Field-Programmable
Custom Computing Machines; 2013. p. 210–217.

https://www.ncbi.nlm.nih.gov
https://github.com/CMU-SAFARI/GRIM
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-2
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-19-supplement-2
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://www.amd.com/en-us/products/graphics/desktop/r9/
http://www.amd.com/en-us/products/graphics/desktop/r9/
https://www.altera.com/en_US/pdfs/literature/ug/ug_hmcc.pdf
http://hybridmemorycube.org/tool-resources.html

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 39 of 180

29. Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE,
Dudley JT, Ormond KE, Pavlovic A, Morgan AA, et al. Clinical Assessment
Incorporating a Personal Genome. The Lancet. 2010;375(9725):1525–35.

30. Chiang J, Studniberg M, Shaw J, Seto S, Truong K. Hardware
accelerator for genomic sequence alignment. In: Engineering in
Medicine and Biology Society, 2006. EMBS’06. 28th Annual International
Conference of the IEEE. IEEE; 2006. p. 5787–9.

31. Hasan L, Al-Ars Z, Vassiliadis S. Hardware acceleration of sequence
alignment algorithms-an overview. In: Design & Technology of
Integrated Systems in Nanoscale Era, 2007. DTIS. International
Conference on. IEEE; 2007. p. 92–7.

32. Houtgast EJ, Sima V-M, Bertels K, Al-Ars Z. An FPGA-based systolic array
to accelerate the BWA-MEM genomic mapping algorithm. In:
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2015 International Conference on. IEEE; 2015. p. 221–7.

33. McMahon PL. Accelerating Genomic Sequence Alignment Using High
Performance Reconfigurable Computers. PhD thesis., Univ. of California,
Berkeley. 2008.

34. Olson CB, Kim M, Clauson C, Kogon B, Ebeling C, Hauck S, Ruzzo WL.
Hardware acceleration of short read mapping. In: Field-Programmable
Custom Computing Machines (FCCM), 2012 IEEE 20th Annual
International Symposium on. IEEE; 2012. p. 161–8.

35. Papadopoulos A, Kirmitzoglou I, Promponas VJ, Theocharides T.
FPGA-Based Hardware Acceleration for Local Complexity Analysis of
Massive Genomic Data. VLSI J Integr. 2013;46(3):230–9.

36. Waidyasooriya HM, Hariyama M, Kameyama M. FPGA-Accelerator for
DNA Sequence Alignment Based on an Efficient Data-Dependent
Memory Access Scheme. In: Highly-Efficient Accelerators and
Reconfigurable Technologies. 2014. p. 127–30.

37. Blom J, Jakobi T, Doppmeier D, Jaenicke S, Kalinowski J, Stoye J,
Goesmann A. Exact and Complete Short-Read Alignment to Microbial
Genomes Using Graphics Processing Unit Programming. Bioinformatics.
2011;27(10):1351–8.

38. Liu C-M, Wong T, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X,
Zhao K, et al. SOAP3: Ultra-Fast GPU-Based Parallel Alignment Tool for
Short Reads. Bioinformatics. 2012;28(6):878–9.

39. Luo R, Wong T, Zhu J, Liu C-M, Zhu X, Wu E, Lee L-K, Lin H, Zhu W,
Cheung DW, et al. SOAP3-dp: fast, accurate and sensitive GPU-based
short read aligner. PLoS One. 2013;8.5:e65632.

40. Manavski SA, Valle G. CUDA Compatible GPU Cards as Efficient
Hardware Accelerators for Smith-Waterman Sequence Alignment. BMC
Bioinformatics. 2008;9(Suppl. 2):S10.

41. Cheng H, Jiang H, Yang J, Xu Y, Shang Y. BitMapper: An Efficient
All-Mapper Based on Bit-Vector Computing. BMC Bioinformatics.
2015;16(1):192.

42. Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜV. Benchmarking Short
Sequence Mapping Tools. BMC Bioinformatics. 2013;14(1):184.

43. Mutlu O, Stark J, Wilkerson C, Patt YN. Runahead execution: An effective
alternative to large instruction windows. IEEE Micro. 2003;23.6(6):20–5.

44. Mutlu O, Subramanian L. Research Problems and Opportunities in
Memory Systems. Supercomputing Frontiers and Innovations. 2014;1(3):
19–55.

45. Mutlu O. Memory Scaling: A Systems Architecture Perspective. In:
International Memory Workshop. 2013. p. 21–5.

46. Ipek E, Mutlu O, Martínez JF, Caruana R. Self-optimizing memory
controllers: A reinforcement learning approach. In: Computer
Architecture, 2008. ISCA’08. 35th International Symposium on. IEEE;
2008. p. 39–50.

47. Kim Y, Yang W, Mutlu O. Ramulator: A fast and extensible DRAM
simulator. IEEE Comput Archit Lett. 2016;15.1:45–49.

48. Mutlu O. Main Memory Scaling: Challenges and Solution Directions. In:
More than Moore Technologies for Next Generation Computer Design.
Springer; 2015. p. 127–53.

49. Kim Y, Mutlu O. Memory Systems. In: Computing Handbook, Third
Edition: Computer Science and Software Engineering. 2014.

50. Kim Y, Seshadri V, Lee v, Liu J, Mutlu O. A Case for Exploiting
Subarray-Level Parallelism (SALP) in DRAM. In: International Symposium
on Computer Architecture. IEEE; 2012. p. 368–79.

51. Liu J, Jaiyen B, Veras R, Mutlu O. RAIDR: Retention-Aware Intelligent
DRAM Refresh. In: International Symposium on Computer Architecture.
IEEE; 2012.

52. Lee D, Kim Y, Seshadri V, Liu J, Subramanian L, Mutlu O. Tiered-Latency
DRAM: A Low Latency and Low Cost DRAM Architecture. In: International
Symposium on High-Performance Computer Architecture. IEEE; 2013.

53. Seshadri V, Mutlu O. Simple Operations in Memory to Reduce Data
Movement. In: Advances in Computers. 2017.

54. Lee D, Subramanian L, Ausavarungnirun R, Choi J, Mutlu O. Decoupled
Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a
Dual-Data-Port DRAM. In: International Conference on Parallel
Architectures and Compilation Techniques. IEEE; 2015. p. 174–187.

55. Hassan H, Pekhimenko G, Vijaykumar N, Seshadri V, Lee D, Ergin O,
Mutlu O. ChargeCache: Reducing DRAM Latency by Exploiting Row
Access Locality. In: International Symposium on High-Performance
Computer Architecture. IEEE; 2016. p. 581–93.

56. Lee D, Khan S, Subramanian L, Ghose S, Ausavarungnirun R,
Pekhimenko G, Seshadri V, Mutlu O. Design-Induced Latency Variation
in Modern DRAM Chips: Characterization, Analysis, and Latency
Reduction Mechanisms. Proc ACM Meas Anal Comput Syst. 2017;1(1):26.

57. Lee D, Kim Y, Pekhimenko G, Khan S, Seshadri V, Chang K, Mutlu O.
Adaptive-Latency DRAM: Optimizing DRAM Timing for the
Common-Case. In: International Symposium on High-Performance
Computer Architecture. IEEE; 2015. p. 489–501.

58. Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, Wilkerson C, Lai K,
Mutlu O. Flipping Bits in Memory without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In: International
Symposium on Computer Architecture. IEEE; 2014.

59. Chang KK, Yaălikçi AG, Ghose S, Agrawal A, Chatterjee N, Kashyap A,
Lee D, O’Connor M, Hassan H, Mutlu O. Understanding
reduced-voltage operation in modern dram devices: Experimental
characterization, analysis, and mechanisms. Proc ACM Meas Anal
Comput Syst. 2017;1.1:10. ACM.

60. Chang KK, Kashyap A, Hassan H, Ghose S, Hsieh K, Lee D, Li T,
Pekhimenko G, Khan S, Mutlu O. Understanding Latency Variation in
Modern DRAM Chips: Experimental Characterization, Analysis, and
Optimization. In: SIGMETRICS. ACM; 2016. p. 323–36.

61. Liu J, Jaiyen B, Kim Y, Wilkerson C, Mutlu O. An Experimental Study of
Data Retention Behavior in Modern DRAM Devices: Implications for
Retention Time Profiling Mechanisms. In: International Symposium on
Computer Architecture. IEEE; 2013.

62. Hassan H, Vijaykumar N, Khan S, Ghose S, Chang K, Pekhimenko G,
Lee D, Ergin O, Mutlu O. SoftMC: A Flexible and Practical Open-Source
Infrastructure for Enabling Experimental DRAM Studies. In: International
Symposium on High-Performance Computer Architecture. IEEE; 2017.
p. 241–52.

63. Patel M, Kim JS, Mutlu O. The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive
Conditions. In: International Symposium on Computer Architecture.
IEEE; 2017. p. 255–68.

64. Chang KK-W, Lee D, Chishti Z, Alameldeen AR, Wilkerson C, Kim Y,
Mutlu O. Improving DRAM Performance by Parallelizing Refreshes with
Accesses. In: International Symposium on High-Performance Computer
Architecture. IEEE; 2014. p. 356–367.

65. Chang KK. Understanding and Improving the Latency of DRAM-Based
Memory Systems. PhD thesis, Carnegie Mellon Univ. 2017.

66. Kim Y. Architectural Techniques to Enhance DRAM Scaling. PhD thesis,
Carnegie Mellon Univ. 2015.

67. Lee D. Reducing DRAM Energy at Low Cost by Exploiting Heterogeneity.
PhD thesis, Carnegie Mellon Univ. 2016.

68. Kim DH, Athikulwongse K, Lim SK. A Study of Through-Silicon-Via
Impact on the 3D Stacked IC Layout. In: International Conference on
Computer-Aided Design. IEEE; 2009. p. 674–80.

69. JEDEC Solid State Technology Association. High Bandwidth Memory
(HBM) DRAM. Standard JESD235. 2013.

70. Advanced Micro Devices, Inc. RadeonTM RX Vega64 . https://gaming.
radeon.com/en/product/vega/radeon-rx-vega-64/. Accessed 14Oct 2017.

71. NVIDIA Corporation. Tesla P100 Data Center Accelerator. http://www.
nvidia.com/object/tesla-p100.html. Accessed 14 Oct 2017.

72. Yoshida T. SPARC64TM XIfx: Fujitsu’s Next Generation Processor for HPC.
In: Hot Chips 26 Symposium. IEEE; 2014. p. 1–31.

73. Dlugosch P, Brown D, Glendenning P, Leventhal M, Noyes H. An
Efficient and Scalable Semiconductor Architecture for Parallel Automata
Processing. Trans Parallel Distrib Syst. 2014;25(12):3088–98.

https://gaming.radeon.com/en/product/vega/radeon-rx-vega-64/
https://gaming.radeon.com/en/product/vega/radeon-rx-vega-64/
http://www.nvidia.com/object/tesla-p100.html
http://www.nvidia.com/object/tesla-p100.html

Kim et al. BMC Genomics 2018, 19(Suppl 2):89 Page 40 of 180

74. Tibco. In-Memory Computing. http://www.tibco.com/products/
automation/in-memory-computing. Accessed 26 Jan 2016.

75. Micron. Micron Automata Processing. http://www.micronautomata.
com/hardware. Accessed 26 Jan 2016.

76. Ahn J, Yoo S, Mutlu O, Choi K. PIM-Enabled Instructions: a Low-overhead,
Locality-aware Processing-in-Memory Architecture. In: International
Symposium on Computer Architecture. IEEE; 2015. p. 336–48.

77. Seshadri V, Hsieh K, Boroumand A, Lee D, Kozuch M, Mutlu O,
Gibbons P, Mowry T. Fast bulk bitwise AND and OR in DRAM. IEEE
Comput Archit Lett. 2015;14.2:127–131.

78. Seshadri V, Kim Y, Fallin C, Lee D, Ausavarungnirun R, Pekhimenko G,
Luo Y, Mutlu O, Gibbons PB, Kozuch MA, et al. RowClone: Fast and
Energy-Efficient In-DRAM Bulk Data Copy and Initialization. In:
International Symposium on Microarchitecture. IEEE; 2013. p. 185–97.

79. Seshadri V, Mullins T, Boroumand A, Mutlu O, Gibbons PB, Kozuch MA,
Mowry TC. Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-Unit Strided Accesses. In:
International Symposium on Microarchitecture. IEEE; 2015. p. 267–80.

80. Liu Z, Calciu I, Herlihy M, Mutlu O. Concurrent Data Structures for
Near-Memory Computing. In: Symposium on Parallelism in Algorithms
and Architectures. ACM; 2017. p. 235–45.

81. Pattnaik A, Tang X, Jog A, Kayiran O, Mishra AK, Kandemir MT,
Mutlu O, Das CR. Scheduling Techniques for GPU Architectures with
Processing-in-Memory Capabilities. In: International Conference on
Parallel Architectures and Compilation Techniques. IEEE; 2016. p. 31–44.

82. Babarinsa OO, Idreos S. JAFAR: near-data processing for databases. In:
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM; 2015. p. 2069–70.

83. Farmahini-Farahani A, Ahn JH, Morrow K, Kim NS. NDA: Near-DRAM
acceleration architecture leveraging commodity DRAM devices and
standard memory modules. In: High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE;
2015. p. 283–95.

84. Gao M, Ayers G, Kozyrakis C. Practical Near-Data Processing for In-
Memory Analytics Frameworks. In: International Conference on Parallel
Architectures and Compilation Techniques. IEEE; 2015. p. 113–24.

85. Gao M, Kozyrakis C. HRL: Efficient and Flexible Reconfigurable Logic for
Near-Data Processing. In: International Symposium on
High-Performance Computer Architecture. IEEE; 2016. p. 126–37.

86. Hassan SM, Yalamanchili S, Mukhopadhyay S. Near Data Processing:
Impact and Optimization of 3D Memory System Architecture on the
Uncore. In: International Symposium on Memory Systems. IEEE; 2015.
p. 11–21.

87. Morad A, Yavits L, Ginosar R. GP-SIMD Processing-in-Memory.
Trans Archit Code Optim. 2015;11(4):53.

88. Sura Z, Jacob A, Chen T, Rosenburg B, Sallenave O, Bertolli C, Antao S,
Brunheroto J, Park Y, O’Brien K, et al. Data Access Optimization in a
Processing-in-Memory System. In: International Conference on
Computing Frontiers. ACM; 2015.

89. Zhang D, Jayasena N, Lyashevsky A, Greathouse JL, Xu L,
Ignatowski M. TOP-PIM: Throughput-Oriented Programmable Processing
in Memory. In: International Symposium on High-Performance Parallel
and Distributed Computing. ACM; 2014. p. 85–98.

90. Boroumand A, Ghose S, Lucia B, Hsieh K, Malladi K, Zheng H, Mutlu O.
LazyPIM: An Efficient Cache Coherence Mechanism for
Processing-in-Memory. Comput Archit Lett. 2017;16(1):46–50.

91. Chang KK, Nair PJ, Lee D, Ghose S, Qureshi MK, Mutlu O. Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data
Movement in DRAM. In: International Symposium on High-Performance
Computer Architecture. IEEE; 2016. p. 568–80.

92. Akin B, Franchetti F, Hoe JC. Data Reorganization in Memory Using
3D-Stacked DRAM. In: International Symposium on Computer
Architecture. IEEE; 2015. p. 131–43.

93. Guo Q, Alachiotis N, Akin B, Sadi F, Xu G, Low TM, Pileggi L, Hoe JC,
Franchetti F. 3D-stacked memory-side acceleration: Accelerator and
system design. In: Workshop on Near-Data Processing (WoNDP)(Held in
conjunction with MICRO-47); 2014.

94. Zhu Q, Akin B, Sumbul HE, Sadi F, Hoe JC, Pileggi L, Franchetti F. A
3D-stacked logic-in-memory accelerator for application-specific data
intensive computing. In: 3D Systems Integration Conference (3DIC),
2013 IEEE International. IEEE; 2013. p. 1–7.

95. Zhu Q, Graf T, Sumbul HE, Pileggi L, Franchetti F. Accelerating sparse
matrix-matrix multiplication with 3D-stacked logic-in-memory
hardware. In: High Performance Extreme Computing Conference
(HPEC), 2013 IEEE. IEEE; 2013. p. 1–6.

96. Mutlu O, Moscibroda T. Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems.
In: International Symposium on Computer Architecture. IEEE; 2008.

97. Mutlu O, Moscibroda T. Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors. In: International Symposium on Microarchitecture.
IEEE; 2007.

98. Liu P, Hemani A, Paul K, Weis C, Jung M, Wehn N. 3D-Stacked
Many-Core Architecture for Biological Sequence Analysis Problems. Int J
Parallel Prog. 2017;45(6):1420–60.

99. Li H, Durbin R. Fast and Accurate Long-Read Alignment with
Burrows–Wheeler Transform. Bioinformatics. 2010;26(5):589–95.

100. SAFARI Research Group Ramulator: A DRAM Simulator Source Code.
https://github.com/CMU-SAFARI/ramulator. Accessed 26 Jan 2016.

101. Intel Corporation. Intel Core i7-2600 Processor. https://ark.intel.com/
products/52213. Accessed 14 Oct 2017.

102. 1000 Genomes Project Consortium. An Integrated Map of Genetic
Variation from 1,092 Human Genomes. Nature. 2012;491(7422):56–65.

103. Kim JS, Senol D, Xin H, Lee D, Ghose S, Alser M, Hassan H, Ergin O,
Alkan C, Mutlu O. GRIM-Filter: Fast Seed Filtering in Read Mapping Using
Emerging Memory Technologies. 2017. arXiv:1708.04329.

104. Kim JS, Senol D, Xin H, Lee D, Alser M, Hassan H, Ergin O, Alkan C,
Mutlu O. Genome Read In-Memory (GRIM) Filter: Fast Location Filtering
in DNA Read Mapping with Emerging Memory Technologies. 2016.
Presentation at RECOMB Satellite Workshop on Massively Parallel
Sequencing.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://www.tibco.com/products/automation/in-memory-computing
http://www.tibco.com/products/automation/in-memory-computing
http://www.micronautomata.com/hardware
http://www.micronautomata.com/hardware
https://github.com/CMU-SAFARI/ramulator
https://ark.intel.com/products/52213
https://ark.intel.com/products/52213

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Motivation and aim
	GRIM-Filter
	Genome metadata representation
	GRIM-Filter operation
	Integration with a full read mapper
	Determining the accumulation sum threshold
	Taking errors into account
	Candidacy for 3D-Stacked memory implementations

	Mapping GRIM-Filter to 3D-stacked memory
	3D-stacked memory
	Processing-in-memory (PIM).
	3D-stacked DRAM with PIM.

	Mapping GRIM-Filter to 3D-Stacked memory with PIM
	Integration into the system and low-level operation
	Hardware overhead.

	Results
	Sensitivity to GRIM-Filter parameters
	Average read existence
	False negative rate.
	Memory footprint.
	GRIM-Filter parallelization.
	Overlapping GRIM-Filter computation with sequence alignment in the CPU.

	Full mapper results
	False negative rate.
	Execution time.

	Related work
	Accelerating Pre-Alignment.
	Accelerating sequence alignment.

	Discussion
	Conclusion
	Methods
	Major evaluation metrics.
	Performance evaluation.
	Evaluation system.
	Data sets.
	Code availability.

	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

