
GRIN: A Graph Based RDF Index

Octavian Udrea
University of Maryland

College Park, MD 20742

Andrea Pugliese
University of Calabria – DEIS department

Via P. Bucci, Rende, Italy

V.S. Subrahmanian
University of Maryland

College Park, MD 20742

Abstract

RDF (“Resource Description Framework”) is now a widely
used World Wide Web Consortium standard. However,
methods to index large volumes of RDF data are still in
their infancy. In this paper, we focus on providing a very
lightweight indexing mechanism for certain kinds of RDF
queries, namely graph-based queries where there is a need to
traverse edges in the graph determined by an RDF database.
Our approach uses the idea of drawing circles around selected
“center” vertices in the graph where the circle would encom-
pass those vertices in the graph that are within a given dis-
tance of the “center” vertex. We come up with methods of
finding such “center” vertices and identifying the radius of the
circles and then leverage this to build an index called GRIN.
We compare GRIN with three existing RDF indexex: Jena,
Sesame, and RDFBroker. We compared (i) the time to an-
swer graph based queries, (ii) memory needed to store the
index, and (iii) the time to build the index. GRIN outper-
forms Jena, Sesame and RDFBroker on all three measures
for graph based queries (for other types of queries, it may be
worth building one of these other indexes and using it), at the
expense of using a larger amount of memory when answering
queries.

Introduction
One of RDF’s major strengths over the relational model of
data is in graphical queries. For instance, users often want to
propose a query pattern (think of this as a labeled graph with
zero or more variables labeling either the vertices and/or the
edges). The problem is to find “matches” for this pattern
in the RDF graph. Past work on RDF indexing (Theoharis,
Christophides, & Karvounarakis 2005) does not provide any
index specialized to handle such queries. This paper primar-
ily focuses on providing a data/index structure that supports
the efficient solution of such queries. The principal contri-
butions in this paper are the following.

1. The key problem in processing graphical queries is that
we do not have any index supporting such graph match-
ing. Clearly such an index structure must preserve the
proximity of vertices from one another. We do this by
proposing a way of identifying certain center vertices in a

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graph (think of these as vertices that occupy strategic po-
sitions in the graph) and by proposing a notion of radius
from those center vertices. All vertices within the stated
radius of a center vertex are associated with that vertex
(each graph vertex must be associated with one or more
center vertices). We propose methods of finding center
and radius vertices.

2. We then define GRIN - an efficient tree data structure to
store the regions defined by these center vertices (together
with their associated radii).

3. Subsequently, we develop algorithms to answer graphical
queries efficiently by using the GRIN data structure. The
algorithms are proved correct, and their worst case com-
putational complexity is stated.

4. Finally, we conduct a detailed series of experiments on
the TAP1 and the ChefMoz2 data sets to determine the
effectiveness of the GRIN index structure and the Grin-
Answer algorithm. These are measured along three di-
mensions:

• How large is the size of the index? We show that the
GRIN index is smaller than that of Sesame (Broekstra,
Kampman, & van Harmelen 2002), RDFBroker (Sintek
& Kiesel 2006) and Jena. The use of circles provides a
very compact representation of vertex neighborhoods.

• How long does it take to answer queries? We show
that GrinAnswer answers graph-based queries much
faster than either Jena, Sesame or RDFBroker. We find
experimentally that the determining factor in choosing
GRIN over one of the other systems depends on the
average degree of a node in the query graph.

• How long does it take to build the index? We show that
GRIN takes less time to build than Jena, Sesame and
RDFBroker.

We use standard statistical tests (the t-test) to show that our
experimental results are statistically significant.

RDF Graph Queries
This section provides a brief overview of RDF and graphical
queries. Let U denote a set whose elements are called URI
references, L denote a set whose elements are called literals,
and Up ⊆ U denotes the set of properties. R = U ∪ L

1Available at http://sp11.stanford.edu.
2Available at http://chefmoz.org/.

1465

denotes the set of resources. An RDF triple has the form
(s, p, v)3 where s ∈ U , p ∈ Up, v ∈ R. A set of RDF triples
can be depicted in graphical form in a well-known way.

Cold
Stone

Dairy
Queen

Dessert

FastFood

cuisine

cuisine

cuisine

Lincoln

Arby’s

cuisine

Review#
16742

casual

business
casual

Italian

Charlie’
s

Fazoli

Grivanti

Norfolk

cuisine

cuisine

cuisine

cuisine

cuisine

location

location

location

location

location

location

attire

attire

attire

attire

attire

attire

attire

NE/USA
locatedIn

locatedIn

Review#
21765

review

review

8 12/15/06

rating date

611/03/03 ratingdate

Figure 1: RDF graph example

Figure 1 contains an example graphical depiction of an
RDF graph extracted from the ChefMoz dataset 4. The RDF
data contains six restaurants (bold nodes) in two locations
in NE, USA (underlined nodes) for three different cuisine
styles (italicized nodes); in addition, the data contains the
type of attire required, as well as two restaurant reviews. We
will use this RDF graph as a running example throughout
the paper. We now define the concept of P -path.

Definition 1 (P-path) Given an RDF graph D and a set
P ⊆ Up, a P-path in D is a set {e1, . . . , eq}, with ej =
(sj , pj , vj), such that

• ∀j ∈ [1, q] ej ∈ D;
• ∀j ∈ [1, q − 1] vj = sj+1;
• ∀j ∈ [1, q] pj ∈ P .

Intuitively, a P -path is a path in the RDF graph whose edge
labels are all drawn from the set P .

Example 1 Let P = {location, locatedIn}. The triples
(ColdStone, location, Lincoln) and (Lincoln, locatedIn,
NE/USA) constitute a P-path of length two in the graph in
Figure 1.

Our query language is an extension of the RDF query lan-
guage SPARQL5. Specifically, we allow path-at-most pred-
icates which can state that two resources are linked by a
P -path with a given maximum length. For example, sup-
pose we had an RDF-graph describing relationships and we
want to find all people linked to John by a professional
work relationship of length 3 or less. This is an exam-
ple of a path-at-most relationship where P might be the set

3Special features of RDF such as blank nodes, reification and
collections are not handled in this paper.

4Some URIs were shortened for readability.
5http://www.w3.org/TR/rdf-sparql-query/.

?v1NE/USA

?v2Norfolk Italian

?v3
(location, locatedIn), 2

locatedIn

location cuisine

cuisine
attire

attire

Figure 2: Graph query example

{boss, banker, lawyer} saying that the relationships of in-
terest are boss, banker and lawyer. We define an intuitive,
graph-based representation for RDF queries.

Definition 2 (RDF graph query) An RDF graphical query
is a 4-tuple (N,V,E, λn) where:

• N is a set of vertices;
• V is a set of variables;
• E = Es ∪ Ed is a set of edges, where Es ⊆ N × N ×

(V ∪ Up) and Ed ⊆ N × N × 2Up × IN . We call Es the
set of single edges and Ed the set of double edges.

• λn : N → R∪ V is a vertex labeling function.

What this definition says is that in a graphical query, the
structure of the graph is fixed. However, the vertices can be
labeled either with variables or with values and likewise, the
edges can be labeled either with variables or properties.

Example 2 The query graph in Figure 2 informally says:
find restaurants ?v1, ?v2 with the same attire ?v3, such that
both restaurants serve Italian food, ?v2 is in Norfolk, NE,
USA and ?v1 has a {location, locatedIn}-path of length at
most 2 to NE, USA.

Note that, with the exception of P -path edges, the RDF
graph queries are standard SPARQL queries6. Consider the
query in Figure 2, without the double edge between ?v1 and
NE/USA. The query can be expressed in SPARQL as:
SELECT ?v1 ?v2 ?v3
WHERE {{(?v1 attire ?v3) . (?v1 cuisine Italian)}

{(?v2 attire ?v3) . (?v2 cuisine Italian) .
(?v2 location Norfolk)}
{(Norfolk locatedIn NE/USA)}}

An answer to a query is a set of instantiations (or substi-
tutions) for the variables in the query. Each element in the
answer is a set of triples that forms a subgraph of the RDF
graph D and matches the query graph q. This is formally
defined below.

Definition 3 (Graph query answer) The answer to an
RDF graph query q = (N,V,E, λn) w.r.t. a graph D, de-
noted q(D), is a set of variable substitutions {θ1, . . . , θk},
with θi : V → R, such that

• ∀e = (n, n′, x) ∈ Es, ∀i ∈ [1, k], (λn(n)θi,
xθi, λn(n′)θi) ∈ D;

• ∀e = (n, n′, P, l) ∈ Ed, ∀i ∈ [1, k], ∃ a P-path
{e1, . . . , em} in D, with ej = (sj , pj , vj), such that
m ≤ l and λn(n)θi = s1, λn(n′)θi = vm.

6SPARQL is the standard query language for RDF. A
description can be found at http://www.w3.org/TR/
rdf-sparql-query/.

1466

The following example shows the answer to the query ex-
pressed in Example 2.

Example 3 Consider the query in Example 2 w.r.t. the RDF
graph in Figure 1. The possible substitutions are: (?v1 ←
Grivanti , ?v2 ← Charlie’s, ?v3 ← businessCasual) and
(?v1 ← Fazoli, ?v2 ← Charlie’s, ?v3 ← casual).

The GRIN Index
For the rest of the paper, we assume that all inferences on
rdfs:subClassOf and rdfs:subPropertyOf are made apriori
in the RDF graph. Let d : R×R → IN be a metric defined
on the set of resources in the RDF graph. There are many
such metrics (e.g., the minimum or maximum cycle-free
path length between two resources in the RDF graph). For
instance, the minimum distance between Fazoli and NE/USA
is 2 in Figure 1. For simplicity, we assume in the rest of the
paper that d is the minimum path length between two re-
sources. We will now define the formal properties of the
GRIN index structure.

(Review #16472, date, 12/
15/06)

(Review #16472, rating, 8)

(Grivanti, cuisine, Italian)
(Grivanti, attire,

businessCasual)

(Charlie’s. location ,
Norfolk)

(Review #21765, date, 11/
08/03)

(Review #21765, rating, 6)

(Lincoln , locatedIn , NE/
USA)

(Fazoli , attire, casual)

(DairyQueen , cuisine,
FastFood)

(Arby’s, cuisine, FastFood)

(Coldstone , cuisine,
Dessert)

Center:
Charlie’s

Distance : 2

Center:
Norfolk

Distance : 2

Center:
FastFood
Distance : 2

Center:
Grivanti

Distance : 3

Center:
Italian

Distance : 3

Center:
DairyQueen
Distance : 3

ROOT

Figure 3: GRIN index example

Definition 4 (GRIN index) A GRIN index is a balanced bi-
nary tree such that:

• Each leaf node � contains a set N� ⊆ R of nodes s.t. for
all leaf nodes �′
= �, N� ∩ N�′ = ∅, and ∪�∈LN� = R;

• Each non-leaf node t contains a pair (c, r), with c ∈ R
and r ∈ IN . Intuitively, this is a very succinct represen-
tation of the set of resources in the graph at distance at
most r of the resource c according to the metric d. We
write this set as Nt = {c′ ∈ R|d(c, c′) ≤ r}.

• For any nodes x, y in the tree such that x is a parent of y,
Nx ⊇ Ny .

The GRIN index is a binary tree. The set of leaf nodes
in the tree form a partition of the set of triples in the RDF
graph D. Interior nodes are constructed by finding a “cen-
ter” triple, denoted c, and a radius value, denoted r. An
interior node in the binary tree implicitly represents the set
of all vertices in the RDF graph that are within r units of
distance (i.e. less than or equal to r links) from the center.

Example 4 Figure 3 shows an example GRIN index struc-
ture for the RDF graph in Figure 1. Note that the leaf nodes
consist of clusters of resources – for this example, there is
more than one possible GRIN structure, since membership

of a resource to a cluster or another is often tied. The in-
termediate node (Grivanti, 2) signifies the set of resources
in the graph with a minimum path less than or equal to two
from the vertex Grivanti.

Building the Index

Suppose M is the maximum number of RDF graph vertices
per page. Since we want to build a balanced binary tree,
the number of leaf nodes has to be a power of two. If we
denote the number of leaf nodes by C, then we write |R|

C ≤
M ⇒ C ≥ |R|

M . The smallest C which is a power of 2 is

C = 2�log2
|R|
M �.

We use dc : 2R × 2R → IN to denote an arbitrary, but
fixed, inter-cluster distance function based on the metric d.
dc takes two sets of resources and returns a numeric value.
Three well-known inter-cluster distances are often used in
clustering algorithms: (i) Single link defines dc(S, S′) =

min
x∈S,y∈S′

(d(x, y)); (ii) Complete link defines dc(S, S′) =

max
x∈S,y∈S′

(d(x, y)) and (iii) Average link defines dc(S, S′) =
P

x∈S,y∈S′
(d(x,y))

|S|×|S′| .
We do not commit to any specific definition of dc at this

stage - however, we have found experimentally that average
link provides the best query response time.

An algorithm to build the GRIN index is shown in Fig-
ure 4. The algorithm builds the index structure bottom up.
Initially, we cluster the vertices in the graph into C disjoint
sets using a modification of the partitioning around medoids
(PAM) clustering algorithm (Kaufman & Rousseeuw 1987)
(line 1). PAM starts by choosing C random vertices from
the graph as cluster centroids. It then assigns all vertices in
the graph to one cluster, based on their distances to the cho-
sen cluster centroids. After C clusters have been formed, the
centroids are re-computed and the process is repeated until
an equilibrium is reached. We modified the original algo-
rithm to ensure no cluster contains more than M vertices.
Ties (cases when a vertex could be assigned to more than
one cluster) are broken uniformly at random.

For each intermediate level in the tree, GRINBuild
chooses a random node u from the available nodes and
computes the “closest” node (denoted v) to u in terms of
dc(Nu, Nv) (lines 7–8). u and v are then assigned a new
parent node (c, r). The values of the center c and radius r
are computed based on the set of vertices Nu ∪ Nv (lines
9–10). The process is repeated until we build the root of the
tree, which corresponds to a set of resources encompassing
the entire graph (loop condition on line 3).

We point out that the GRIN structure only points to the
original RDF data, but it does not store it. Instead, we will
represent D physically as a hash map in which each pair of
resources c, c′ is a key in the hash map associated with a list
of properties {p1, . . . , pk}. This means the RDF graph D
contains the triples (c, p1, c

′), . . . , (c, pk, c′).
Complexity of building the GRIN Index. The set of ver-
tices represented by a GRIN node is at most |R|. For a
level of the GRIN tree containing k nodes, the most time-

1467

Algorithm GRINBuild(C, M , D)
Input: C is the number of leaf nodes, M is the maximum number of vertices on a

page, D is the RDF theory.

Output: The GRIN index structure G.

1: L0 ← PAM(D, C, M)

2: Create leaf nodes in G from clusters in L0

3: for i ∈ [1, log2 C − 1] do
4: F ← Li

5: Li+1 ← ∅
6: while F �= ∅ do
7: Pick a random node u ∈ F

8: Find v ∈ F that minimizes dc(Nu, Nv)

9: Compute centroid c and radius r for Nu ∪ Nv

10: Create node p = (c, r) in G as a parent of u and v

11: Li+1 ← Li+1 ∪ {p}
12: F ← F − {u, v}
13: end while
14: end for
15: return G

Figure 4: An algorithm to build the GRIN index

consuming operation is the computation of inter-cluster dis-
tance, which can be done in parallel for the entire level
in time O(|R|2 · k2). The number of leaf nodes C is
O(|R|) and the height of the tree is O(log2(|R|)). This
leads to a worst case complexity for building the index of
O(|R|4 log2(|R|)). However, we will show experimentally
that building the index is generally much faster than the
worst case.

Query Evaluation
In this section, we show how to evaluate a graphical query
q = (N,V,E, λn) against the GRIN structure. We start
by showing how to derive a set of inequality constraints
cons(q) from the query. The constraints will be evaluated
against the nodes of the GRIN index. This is done to iden-
tify the smallest subgraph that contains answers to q. We
derive the following constraints:

• For any path of length l on edges from Es connecting a
resource c and a variable v, we write d(c, v) ≤ l. The rule
applies similarly for paths from v to c.

• For any edge (c, v, P, l) ∈ Ed, we write
d(λn(c), λn(v)) ≤ l. The rule applies similarly for
edges from v to c.

Example 5 Consider the example query in Figure 2. The
query leads to the following set of constraints: d(?v1,
NE/USA) ≤ 2, d(?v2, NE/USA) ≤ 2, d(?v2, Norfolk) ≤ 1),
d(?v1, Norfolk) ≤ 3, d(?v1, Italian) ≤ 1, d(?v2, Italian) ≤
1, d(?v3, NE/USA) ≤ 3, d(?v3, Norfolk) ≤ 2, d(?v3,
Italian) ≤ 2.

We want to use the constraints generated from the query to
identify nodes in the GRIN structure that could contain an-
swers to the query. On any GRIN node, we have the option
of accepting the node (which means it may contain answers
to the query) or rejecting the node (which means it is guaran-
teed not to contain answers to the query). Consider a GRIN
node corresponding to the circle (c, r). We will define two
rules to decide whether (c, r) should be rejected.

The first rule is straightforward: for any constant (re-
source) x in q, reject (c, r) if d(c, x) > z (R1). Intuitively,
we are rejecting the circle represented by the GRIN node if
any constant factors in the query are outside it.

Let’s consider the case of a constraint d(x, v) ≤ l in-
volving variable v and resource x. Since d is a metric,
d(c, v) ≤ d(c, x) + d(x, v) ≤ d(c, x) + l. Note that d(c, x)
is a constant. If d(c, x) + l ≤ z, we are sure that v is inside
the circle (c, r). If this case, we say (c, r) definitely satis-
fies v. Also from the fact that d is a metric we can write
d(c, x) − l ≤ d(c, x) − d(x, v) ≤ d(c, v). If z ≤ d(r, c) − l
then we are sure v is outside the circle (c, r). In this case, we
say (c, r) does not satisfy v. If any variable is not satisfied,
then we cannot find an answer to the query within (c, r).

We may also have situations in which neither of the two
cases hold – we do not know for certain whether v is inside
or outside the circle solely on the constraints derived from
the query. We will take a conservative approach and only
look for solutions in nodes that definitely satisfy all vari-
ables. This has the potential downside of stopping at sub-
graphs larger than necessary, but we have found experimen-
tally that this policy is very effective. The second rule is: if
there exists v ∈ V such that (c, r) does not definitely satisfy
v, then reject (c, r) (R2). Intuitively, we want to find the
smallest sets of vertices that definitely satisfy all variables
– or the equivalent, nodes lowest in the GRIN tree that sat-
isfy all variables. Note that only one constraint per variable
needs to be satisfied in order for the variable to be satisfied.

Example 6 Consider the node (Grivanti, 2) in the index in
Figure 3 and the constraint that says d(?v2, Norfolk) ≤ 1.
This constraint is trivially not satisfied, since Norfolk is not
in the circle specified by the node. However, the variable ?v1
is satisfied from d(Grivanti,?v1) ≤ d(Grivanti, Italian) +
d(?v1, Italian) ≤ 2,

Figure 5 contains the query evaluation algorithm. Given a
query q and a node nI of a GRIN index I , evaluates q over
the subtree rooted in nI . Answering a query over the theory
D is equivalent to calling GRINAnswer(q, root(I)).

The algorithm uses the subgraph matching algorithm by
Cordella et al. (Cordella et al. 2004). We chose this algo-
rithm empirically because it generally yielded the best query
answer times. If the invocation of GRINAnswer is currently
at a leaf node, we will simply match the query graph with
a subgraph of D containing the resources represented in nI

(lines 2–4). Otherwise, – if nI is a potential candidate (line
5 checks (R1), (R2)), we will attempt a recursive call on the
left-hand and right-hand children of nI (line 6). Given the
strategy of computing answers when all variables are defi-
nitely satisfied, we are guaranteed one of two outcomes.

(i) One of the recursive calls will return a non-empty an-
swer. This implies that there exists a descendant (c, r) of nI

that passes both rules (R1) and (R2). In turn, this implies
that all answers to the query are guaranteed to be inside the
(c, r). All we need to do is return the answer found by sub-
graph matching while analyzing (c, r) (line 11).

(ii) We have not found an answer for any descendant, in
which case we will attempt to run the subgraph matching on
nI itself and return the results (line 8–9).

1468

Algorithm GRINAnswer(D, G, q, nI)
Input: RDF theory D, GRIN index G and query q = (N, V, E, λn), GRIN node

nI . subgraphMatch is a subgraph matching method that finds an isomor-

phism between the query graph q and a graph H and returns a set of substitutions

Θ for the variables in q.

Output: A set of answers Θ.

1: Θ ← 0

2: if nI is a leaf node then
3: H ← the subgraph of D containing the resources in NnI

4: return subgraphMatch(q,H)

5: else if ni is not rejected by checking rules (R1), (R2) against cons(q) then
6: Θ ← GRINAnswer(D, G, q, nI .left) ∪

GRINAnswer(D, G, q, nI .right)

7: if Θ = ∅ then
8: H ← the subgraph of D containing the resources in NnI

9: return subgraphMatch(q,H)

10: else
11: return Θ

12: end if
13: else
14: return ∅
15: end if

Figure 5: An algorithm to answer queries over the GRIN
index

Figure 6: GRIN Index build time

Cordella et al. (Cordella et al. 2004) show the memory
complexity of the subgraph matching algorithm to be Θ(N)
(with a small constant factor), where N is the total num-
ber of vertices in the graphs to be matched, whereas time
complexity ranges from O(N) in the best case to O(N !) in
the worst case. The GRINAnswer algorithm therefore has a
worst-time complexity of O(|R|!). However, we have dis-
covered in practice that GRINAnswer is able to identify very
small subgraphs on which to match very efficiently, which
greatly reduces the value of N . Our experimental results
show that GRINAnswer is often faster than Jena, Sesame and
RDFBroker for certain types of graph-based queries.

Example 7 To better understand how query evaluation
works, consider the query in Figure 2 without the node
NE/USA. We start off at the root of the tree. We recur-
sively call the evaluation for the nodes (Italian, 3) and
(DairyQueen, 3). (DairyQueen, 3) can be quickly eliminated
since we cannot determine whether ?v1 and ?v2 are defi-

Figure 7: GRIN Query time

nitely satisfied; this follows from d(DairyQueen, Italian) =
3, d(?v1, Italian) ≤ 1 and the fact that the radius of the
current circle is 3. On the other hand, (Italian, 3) definitely
satisfies all variables, but its children do not. This means
(Italian, 3) is the GRIN node the algorithm is looking for,
namely the node that definitely satisfies all variables and
is at the lowest possible level in the tree. When we match
the query graph against the circle (Italian, 3), we obtain the
two substitutions in Example 3, namely (?v1, ?v2, ?v3) =
(Grivanti, Charlie’s, businessCasual) and (?v1, ?v2, ?v3) =
(Fazoli, Charlie’s, casual).

Experimental evaluation
We implemented GRIN in approximately 2450 lines of Java.
We used the Jena API to parse the input RDF files, but
did not use any other part of the Jena system. We eval-
uated GRIN on the set of RDF files from TAP and Chef-
Moz datasets. The TAP files range from approximately 1.5
MB up to 300 MB, with a number of triples from 17,086
to approximately 3.5 million. The ChefMoz data consists
of three RDF files (about 220MB total) holding information
about restaurant and dining guides from all over the world.
We compare the implementation of GRIN to three other sys-
tems: RDFBroker (Sintek & Kiesel 2006), Sesame (Broek-
stra, Kampman, & van Harmelen 2002), and Jena (Wilkin-
son et al. 2003). All results are averaged over 5 independent
runs.
Index creation time. We measured the index creation times
on different file sizes. Figure 6 (note that the x-axis is in log-
scale) shows that GRIN outperforms the other systems and
builds the index for 300MB of RDF data in under 50 sec-
onds. Two factors account for this performance: (i) GRIN
does not store the data in the index, but points to it; the data
is stored in a hash table representation and (ii) There is only
one computationally intensive operation in building GRIN,
namely the clustering at the leaf-node level. In each step, the
rest of the algorithm finds the centroid vertices for a given
subgraph and merges the circles in pairs based on the inter-
circle distance.
Index size. GRIN is very efficient – it uses less than 395
MB for the 300MB data file. The index is stored in approx-
imately 75 MB, the remaining 320MB is used for the hash

1469

table representation of the actual data. RDFBroker, Sesame
and Jena use 950 MB, 825 MB and 403 MB respectively.

Query time. We developed a set of 35 base queries for the
TAP dataset, of which 25 were standard SPARQL queries7

and 25 base queries for the ChefMoz dataset, of which 15
were standard SPARQL queries. The queries are typically
very similar to the one in Figure 2, but larger. We then mod-
ified each base query by varying the number of variables as
this is a good measure of the difficulty of a query. Figure 7
(which shows average time taken over these queries) shows
that Jena and Sesame are unable to answer queries with over
10 variables (we stopped the run after 15 minutes). RDF-
Broker and GRIN tie as long as the number of variables is
5 or less, but GRIN beats RDFBroker when more than 5
variables are present. At this stage, we also evaluated the
three inter-cluster distance metrics w.r.t. the query evalu-
ation time. The index built with average link performed
approximately 5% better than single link or complete link,
which were comparable.

Related Work

Many RDF storage and querying systems rely on relational
or object-relational DBMSs (Theoharis, Christophides, &
Karvounarakis 2005). The majority of these systems asso-
ciate relational tables with RDF triples, properties or class
instances. Sesame (Broekstra, Kampman, & van Harme-
len 2002) is designed to be independent from the specific
back-end storage; however, the current implementation sup-
ports the creation of schema-specific tables if a schema is
available, otherwise it employs class-specific tables. RDF-
Suite (Alexaki et al. 2001) also adopts a “schema-driven”
storage technique; both systems rely on the underlying
DBMS for query optimization. Coupling the table layout
to the schema of RDF data allows to take into account the
specific characteristics of employed classes and properties
and to exploit the explicit schema relationships. On the
other hand, limiting the number of created tables, especially
when facing dynamic schema restructuring, becomes a cru-
cial issue. A machine-learning based technique applied to
data and queries to compute suitable relational table lay-
outs is proposed in (Ding et al. 2003). Jena (Wilkinson et
al. 2003) adopts instead a denormalized relational schema
where long literals and URIs are compressed and stored in
specific tables; moreover, it uses property tables that con-
tain all subject-value pairs connected by a certain property.
RDFBroker (Sintek & Kiesel 2006) computes resource sig-
natures, i.e., the specific sets of properties used on each
resource, and stores RDF data into lattice-organized tables
corresponding to resource signatures. The Redland (Beck-
ett 2002) system uses a hash-based technique that optimizes
the search of RDF triples when two of their components
are given. BRAHMS (Janik & Kochut 2005) specializes in
searching for semantic association paths between resources.

7The graph patterns for the query did not contain any P -path
double edges.

Comparison with Related Work
All the related work in RDF indexing mentioned in this sec-
tion uses some form of relational representation for RDF
triples that yields faster query answers than the standard re-
lational representation of RDF in which all triples are stored
in a three-column table. As a consequence, graph-based
queries are translated into a series of relational join op-
erations, which tend to be very time consuming for large
queries. GRIN on the other hand introduces a radically new
format for indexing triples that takes advantage of the layout
of the RDF graph by grouping information around selected
“center” nodes. We prove experimentally that the new struc-
ture has two major advantages over three of the best rela-
tional representations: (i) the index build time is consider-
ably faster, since we do not have to build separate indexes
for the subject, property and object part of a triple and (ii)
query answers are faster as GRIN is able to quickly identify
a small part of the RDF graph that contains the answer, thus
avoiding time-consuming join operations.

Acknowledgements
Researchers funded in part by grant N6133906C0149, ARO
grant DAAD190310202, AFOSR grants FA95500610405
and FA95500510298, and NSF grant 0540216.

References
Alexaki, S.; Christophides, V.; Karvounarakis, G.; Plexousakis,
D.; and Tolle, K. 2001. The ICS-FORTH RDFSuite: Managing
Voluminous RDF Description Bases. In International Workshop
on the Semantic Web.

Beckett, D. 2002. The Design and Implementation of the Redland
RDF Application Framework. Computer Networks 39(5):577–
588.

Broekstra, J.; Kampman, A.; and van Harmelen, F. 2002. Sesame:
A Generic Architecture for Storing and Querying RDF and RDF
Schema. In ISWC, 54–68.

Cordella, L. P.; Foggia, P.; Sansone, C.; and Vento, M. 2004. A
(Sub)Graph Isomorphism Algorithm for Matching Large Graphs.
IEEE Trans. PAMI 26(10):1367–1372.

Ding, L.; Wilkinson, K.; Sayers, C.; and Kuno, H. A. 2003.
Application-Specific Schema Design for Storing Large RDF
Datasets. In International Workshop on Practical and Scalable
Semantic Systems.

Janik, M., and Kochut, K. 2005. BRAHMS: A WorkBench RDF
Store and High Performance Memory System for Semantic Asso-
ciation Discovery. In ISWC, 431–445.

Kaufman, L., and Rousseeuw, P. 1987. Clustering by Means of
Medoids. In Dodge, Y., ed., Statistical Data Analysis based on
the L1 norm. North Holland/Elsevier. 405–416.

Sintek, M., and Kiesel, M. 2006. RDFBroker: A Signature–
Based High–Performance RDF Store. In ESWC, 363–377.

Theoharis, Y.; Christophides, V.; and Karvounarakis, G. 2005.
Benchmarking Database Representations of RDF/S Stores. In
ISWC, 685–701.

Wilkinson, K.; Sayers, C.; Kuno, H. A.; and Reynolds, D. 2003.
Efficient RDF Storage and Retrieval in Jena2. In Semantic Web
and Databases Workshop, 131–150.

1470

