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Abstract

Background: Position-specific priors (PSP) have been used with success to boost EM and Gibbs sampler-based

motif discovery algorithms. PSP information has been computed from different sources, including orthologous

conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been

used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the

gain of combining priors from different sources has not yet been studied.

Results: We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a

greedy procedure that uses prior information. PSP’s from different sources are combined into a scoring criterion

that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF

ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that

GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without

combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the

state-of-the-art approaches for the same task. We also show that PSP’s improve GRISOTTO ability to retrieve motifs

from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different

technology and for a higher eukaryote.

Conclusions: The conclusions of this work are twofold. First, post-processing the output of combinatorial

algorithms by incorporating prior information leads to a very efficient and effective motif discovery method.

Second, combining priors from different sources is even more beneficial than considering them separately.

Background

An important part of gene regulation is mediated by

specific proteins, called transcription factors (TF), which

influence the transcription of a particular gene by bind-

ing to specific sites on DNA sequences, called transcrip-

tion factor binding sites (TFBS). Such binding sites are

relatively short segments of DNA, normally 5 to 25

nucleotides long. Discovering TFBS’s is a challenging

task, mainly because they exhibit a high degree of

degeneracy making them difficult to distinguish from

random artifacts. For this reason, algorithms for motifs

discovery often suffer from impractical high false posi-

tive rates and return noisy models that are not useful to

characterize TFBS’s. Some extra knowledge, carefully

selected from the literature, has been incorporated in

motif discovery methods in order capture a variety of

characteristics of the motif patterns. This extra knowl-

edge is used during the process of motif discovery.

Some interesting works in this line of research made use

of the DNA structure for motif discovery. These works

take into consideration the bendability of a region, as well

as the nucleotide position in DNA loops, to determine

sequence accessibility [1-3]. A quite different and particu-

larly interesting work was devised by R. Lavery [4-10]. In

one approach [4], the atomic structure of the protein,

which specifically bounds to a fragment of DNA, was used

to calculate the binding energy needed for the full combi-

natorial space of base sequences. Binding sites were

selected considering an energy cutoff. This result suggests

that the crystallographic structure of a protein-DNA
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complex indeed contains enough information to locate the

binding sequences of a protein. Recently, a general

approach was proposed which allows the incorporation of

almost any type of information into the class of motif dis-

covery algorithms based on Gibbs sampling [11]. This

extra information is incorporated in a position-specific

prior (PSP) and it amounts for the likelihood that a motif

starts in a certain position of a given DNA sequence. The

most effective PSP’s have been built in a discriminative

way by taking into account not only the sequence-sets that

were bounded by some profile TF, but also sequence-sets

that were not bounded. This is accordant to the evidence

that the discovery of regulatory elements is improved by

employing discriminative approaches [12]. A PSP is built

in pre-processing time and then used to bias the optimiza-

tion procedure towards real motifs. Prior information such

as orthologous conservation, DNA duplex stability,

nucleosome positioning and transcription factor structural

class have been shown to be very effective when used with

Gibbs sampler-based PRIORITY algorithm [11,13-16].

The popular MEME algorithm also pointed out that PSP’s

are beneficial when used with EM procedures [17]. This

approach has not yet been used in the context of combina-

torial algorithms for the same task. Moreover, the infor-

mation given by PSP’s from different sources was never

combined, although there is evidence that predicting pro-

tein-DNA interactions can be improved by integrating

diverse information [18].

Meanwhile, chromatin immunoprecipitation (ChiP)

followed by ultra-high-throughput sequencing, known as

ChiP-seq, brought new challenges for motif discovery

[19]. As a result of direct sequencing of all DNA frag-

ments from ChiP assays, ChiP-seq is able to unravel

DNA sites, across the entire genome, where a specific

protein binds. Regions of high sequencing read density

are referred to as peaks to capture the evidence of high

base-specific read coverage. Peaks are found by peak

finding algorithms [20], which is called peak calling,

yielding a set of DNA fragments of ChiP-enriched geno-

mic regions. Usually, DNA fragments of size ±100 bp

are extracted around top peaks and then a motif discov-

ery tool is used to find for overrepresented sequences

[21]. Some authors have further exploited the informa-

tion provided by these binding peaks by devising priors

that use coverage profiles as motif positional preferences

[22,23].

In this paper, we extend the RISOTTO combinatorial

algorithm [24] in a greedy fashion to take into account

prior information in a PSP format. RISOTTO is a con-

sensus-based algorithm that exhaustively enumerates all

motifs of a certain size by collecting their occurrences,

at a given distance, from a set of co-regulated DNA

sequences [24-27]. Since methods based on the detec-

tion of overrepresentation of TFBS’s in co-regulated

DNA sequences are known to face problems detecting

weak motifs, we propose to post-process the RISOTTO

output by modifying top motifs in a greedy fashion,

guided by the information given by the prior. The

rational for this approach is that the combinatorial algo-

rithm exploits the full space of possible motifs pointing

out good candidates. Afterwards a greedy search is per-

formed over these initial guesses and good motifs are

up-weighted by the prior. The reduction of the search

space attained in the greedy search by using the output

of a combinatorial algorithm makes the proposed

algorithm, called GRISOTTO, very efficient.

A great advantage of GRISOTTO is its ability to com-

bine priors from different sources. This is achieved by

considering a convex combination of the information

given by all priors resulting in an information-theoreti-

cal scoring criterion called Balanced Information Score

(BIS). To unravel the benefits of using BIS with GRI-

SOTTO we focus on discovering motifs in 156 bench-

mark datasets from ChIP-chip data from yeast. We

considered three different priors already used by

PRIORITY, namely, orthologous conservation [14,16],

DNA duplex stability [15] and nucleosome positioning

[11]. By combining the information of these three priors

together in BIS we guided the GRISOTTO greedy

search and achieved considerably more accurate results

than by using the priors separately. Moreover, we

further verified that GRISOTTO is at least as accurate

as the PRIORITY and MEME algorithms when using

the same priors separately.

We also gauge GRISOTTO with 13 mouse ChiP-seq

data. In this evaluation we used two different priors pro-

viding extra information from orthologous conservation

[17] and coverage profiles given by ChiP-seq assays [23].

Results show that orthologous conservation was able to

uncover motifs that resemble ones already reported by

previous works on the same data [17,21]. However, the

PSP built from the ChiP-seq assays was not very benefi-

cial to GRISOTTO, as it reported exactly the same

motifs as the uniform prior for which any position in

the DNA sequences is likely to contain a motif. We

attributed this to the fact that the information contained

in this prior is already encoded in the BIS score. Indeed,

coverage profiles indicate overrepresentation, expressed

via high sequencing read density, and the BIS score is a

weighted balance between overrepresentation and priors.

Besides effectiveness, GRISOTTO also showed to be

very efficient, taking around 2 to 3 seconds per yeast

sequence-set, that have around 200 sequences of

500 bp, and 1 to 4 minutes per mouse sequence-set,

that have from around 1000 to 40000 sequences of 200

bp. These computational times were obtained using one

core of an Intel 2.4 GHz Core 2 Duo and include the

generation of the initial starting points by RISOTTO.
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We conclude that post-processing the output of combi-

natorial algorithms guided with the information given

by single or combined priors yields an efficient approach

that shows great promise in extending the power of

motif discovery tools.

Methods

Herein, we present the GRISOTTO algorithm for motif

discovery. The proposed algorithm uses the RISOTTO

[24] output as starting points of a greedy procedure that

aims at maximizing a scoring criterion based on com-

bined prior information. Our approach diverges from

EM (used in MEME [17]) and Gibbs sampling (used in

PRIORITY [11,13-16]) as we do not consider latent vari-

ables and do not use a background model. Moreover,

instead of maximizing the likelihood, we propose a scor-

ing criterion based on the balanced information of

observing the DNA sequences and the priors given a

candidate motif. We called this score Balanced Informa-

tion Score (BIS). Furthermore, instead of reporting

a PSSM, GRISOTTO returns the IUPAC string that

is best fitted, according to BIS, via a greedy search

procedure.

GRISOTTO algorithm

We next introduce some notation needed to describe

the GRISOTTO algorithm (refer to Table 1). Start by

considering that we have a set of N co-regulated DNA

sequences henceforward denoted by f = (fi)i = 1, ..., N. The

length of the each sequence fi is ni, that is,
fi = (fij)j=1, ..., ni. Moreover, consider that Sp contains

some prior information in a PSP format about the domain

in study, with p = 1 ... ℓ, where ℓ is the number of priors

(eventually zero). We denote by S = 〈S1, ..., Sℓ〉 the list of

all priors. The goal of GRISOTTO is to report a single

motif of a fixed size k, that is, an IUPAC string of size k.

The IUPAC alphabet is henceforward denoted by Σ.

The pseudocode of GRISOTTO is depicted in Algo-

rithm 1. The algorithm starts by running RISOTTO to

extract, at least zmin, and at most zmax, motifs of size k

(see details in Additional File 1). From the RISOTTO

output, the top z motifs are collected in a set called C

(Step 2) and constitute the starting points of the GRI-

SOTTO greedy procedure, called GGP (Step 4). Briefly,

GGP starts with a motif m ∈ C and returns the best

fitted motif, according to BIS, by updating each position

in m with an IUPAC symbol until no local improve-

ments can be achieved. In Step 5-6 the variable r, that

stores the output of the algorithm, is updated whenever

the GGP procedure returns a motif with a BIS score

higher than the current stored one. Note that in Step 2

the result variable r is initialized with the empty motif ε.

We consider that the empty motif ε has the minimum

possible BIS scoring value.

Table 1 Definition of terms used in describing the algorithms presented in Methods.

Symbol Meaning

Σ alphabet (usually DNA or IUPAC)

f input sequences

fi i-th input sequence

fij j-th position of the i-th input sequence

N number of input sequences

ni length of fi

k motif size

Sp p-th prior (in PSP format)

ℓ number of priors (it can be zero)

S S = 〈S1, ..., Sℓ〉 is the list of all priors

zmin minimum number of motifs expected to be returned by a RISOTTO run

zmax maximum number of motifs expected to be returned by a RISOTTO run

z number of top motifs post-processed from RISOTTO output

C the set with the z top motifs to be post-processed by GRISOTTO

m motif of size k

m〈i, a〉 motif m where the i-th position (starting with 0) is replaced by a Î Σ

ε empty motif (its BIS score is the minimum possible value)

fi[j ... j + k - 1] k-long segment of the i-th input sequence that starts at position j

Sp[i, j] prior probability at the j-th position of fi

ji annotated position for fi with maximum BIS score for a motif m

Pm probability distribution given by the PSSM induced by m

ap the weight of the p-th prior

l coefficient to balance priors and over-representation contribution

Carvalho and Oliveira Algorithms for Molecular Biology 2011, 6:13

http://www.almob.org/content/6/1/13

Page 3 of 13



Algorithm 1 GRISOTTO, Greedy RISOTTO

GRISOTTO(DNA sequences f , list of priors S = 〈S1,

..., Sℓ〉)

1. run RISOTTO(k,zmin,zmax);

2. let r = ε and C be the list of the first z motifs

returned in Step 1;

3. for each motif m in C

4. let m = GGP(m, f, S);

5. if (BIS(r,f ,S)<BIS(m,f ,S))

6. let r = m;

7. return r;

It remains to explain the GGP procedure given in

Algorithm 2. The general idea of the algorithm is to

process each position of the motif m, received as para-

meter, in a greedy fashion. Variable i identifies the motif

position being processed. It is initialized with the value

0 (Step 1), the first position of m, and it is incremented

in a circular way using modular arithmetics (Step 9).

GPP terminates when k consecutive positions of the

motif m being considered can not be improved, accord-

ing to BIS, and so m remains unchanged for a complete

k-round. This information is stored in variable t that

counts how many consecutive positions of m have not

been modified. Variable t is initialized with 0 (Step 1)

and controls the outer cycle (Step 2-9), which termi-

nates when t = k. The Boolean flag changed is read in

the outer cycle (Step 7) to detect whether the i-th posi-

tion of the motif has been modified inside the body of

the inner cycle (Step 6). It is initialized in each run of

the outer cycle with false (Step 3). The inner cycle (Step

4-6) tries to improve the BIS score of m by updating its

i-th position with each letter a Î Σ. We denote by m〈i,

a〉 the motif m where the i-th position of m was

replaced by the letter a. Whenever the BIS score of m〈i,

a〉 is greater than the BIS score of m (Step 5) three vari-

ables are updated: (i) motif m is updated to m〈i, a〉; (ii)

variable t is reset to its initial value, forcing a complete

k-round from that point on; and (iii) flag changed is

turned to true. After the inner cycle, in Step 7, we test

whether the i-th position of m was not modified by

checking the value of the flag changed. If that is the

case, variable t is incremented (Step 8). Next, in Step 9,

variable i is incremented so that the next position of m

can be inspected.

Algorithm 2 GGP, GRISOTTO greedy procedure

GGP(motif m, DNA sequences f, list of priors S =

〈S1, ..., Sℓ〉)

1. let t = 0 and i = 0;

2. while (t <k)

3. let changed = false;

4. for each a in Σ

5. if (BIS(m〈i, a〉, f ,S)>BIS(m, f ,S))

6. let m = m〈i, a〉, t = 0 and changed =

true;

7. if (not changed)

8. let t = t + 1;

9. let i = (i + 1) mod k;

10. return m;

We note that the GGP procedure converges since

the BIS score is upper-bounded. Next, we derive and

present in detail the BIS score.

Balanced information score

Start by noticing that a motif m of size k written in

IUPAC can be easily translated into a PSSM with

dimension 4 × k (for details see Additional file 1). More-

over, observe that if we had to guess in which position

m occurs in sequence fi that would be the position ji
that maximizes Pm(fi[ji ... ji + k - 1]) where Pm(w) is the

probability of observing the DNA word w by the PSSM

induced by m and fi[ji ... ji + k - 1] is the k-long segment

of fi that starts at position ji. In other words, such ji
annotates the position in which we believe the motif m

occurs in fi. Henceforward consider that we annotate for

each sequence fi the respective position ji where m

occurs with higher probability (refer to Table 1).

Following Shannon, the self-information of a probabil-

istic event with probability p is given by - log(p). If the

event is very rare, the self-information is very high. On

the other hand, if the event has probability close to 1,

observing such event gives us almost no information.

So, by assuming that m occurs independently in each

sequence of f, the self-information that m occurs in all

sequences of f in the annotated positions is given by

N
∑

i=1

− log(Pm(fi[ji . . . ji + k − 1])). (1)

Note that the above sum is zero (its minimal value) if

the motif m occurs with probability 1 in all annotated

positions and, moreover, the sum is not upper-bounded.

Considering that the priors are in PSP format, their

information can be easily computed from the annotated

sequences. Indeed, the self-information given by the

prior Sp of observing the annotated positions ji, for all

1 ≤ i ≤ N, is computed as

N
∑

i=1

− log(Sp[i, ji]),

where Sp[i, j] is the prior probability stored at the j-th

position of the i-th sequence in the Sp PSP file. Having

this, it remains to understand how the information from

different priors can be combined. Actually, priors come
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from different sources [11,13-16], and some of these

sources might have more quality or be more relevant

for motif discovery than others. A simple way to heuris-

tically combine prior information is to multiply the con-

tribution of each prior by a constant ap that measures

the belief in the quality/relevance of each prior Sp and

consider a balanced sum of all self-informations.

In order to keep the resulting value with the same mag-

nitude of each component, we consider a convex

combination, that is,
∑

ℓ

p=1 αp = 1. Thus, the combined

self-information is computed as

ℓ
∑

p=1

(

αp

N
∑

i=1

− log(Sp[i, ji])

)

. (2)

Following a similar idea, we balance with a constant l

Î (0, 1] the self-information given by the occurrence of

the motif in (1) with the self-information given by the

priors in (2), obtaining in this way the following expres-

sion:

λ

N
∑

i=1

− log(Pm(fi[ji . . . ji + k − 1])) + (1 − λ)

ℓ
∑

p=1

(

αp

N
∑

i=1

− log(Sp[i, ji])

)

=

−

N
∑

i=1

⎛

⎝λ log(Pm(fi[ji . . . ji + k − 1]) + (1 − λ)

ℓ
∑

p=1

αp log(Sp[i, ji]))

⎞

⎠ .

(3)

The closer the above expression is to zero the less

(balanced) self-information follows from observing a

candidate motif m in the annotated positions of both

the DNA sequences and the priors. Indeed, we expect

motifs to occur in the annotated positions of both the

DNA sequences and the priors with high probability.

Therefore, the goal is to find a motif m that minimizes

such information. Next, and for the sake of simplifica-

tion, we drop the minus sign in (3), that is, we consider

the final scoring criterion, called balanced information

score (BIS), defined as

BIS(m, f , S) =

N
∑

i=1

⎛

⎝λ log(Pm(fi[ji . . . ji + k − 1]) + (1 − λ)

ℓ
∑

p=1

αp log(Sp[i, ji])

⎞

⎠ , (4)

and restate our goal to finding a motif m that maxi-

mizes (4). Note that BIS(m, f, S) is always non-positive

and, therefore, is upper-bounded by 0.

For the BIS score in Equation (4) to be well-defined it

remains to determine the values of the constants l and

ap for all 1 ≤ p ≤ ℓ. Whenever there is no knowledge

about the quality of the priors the values of such con-

stants should be uniform, that is, λ =
1

2
and αp =

1

ℓ
for

all 1 ≤ p ≤ ℓ. Usually, it is possible to refine heuristically

these constants by evaluating the usefulness of each

prior in well-know domains.

Finally, it is not obvious how to translate back the

combined information into a combined prior that could

be used in an EM or Gibbs sampler-based algorithm.

These techniques need that such prior reflects the prob-

ability of finding a motif in a certain position of the

DNA sequences in order to correctly bias, in each itera-

tion step, the expected log-likelihood of the candidate

motif occurring in the positions given by the latent vari-

able. On the other hand, GRISOTTO incorporates prior

information in BIS resulting in a theoretical-information

scoring criterion that measures the information of

observing the candidate motif in the annotated positions

of both the DNA sequences and the priors. These anno-

tated positions are computed only once, for each candi-

date motif, in such a way that the balanced contribution

to the BIS score of the DNA sequences and the priors

in those positions is maximal. The higher the value of

the BIS score, the higher the probability that a candidate

motif occurs in the annotated positions of both the

DNA sequences and the priors. Therefore, GRISOTTO

reports the motif, among all candidate ones, that maxi-

mizes the BIS scoring criterion.

Results
The GRISOTTO algorithm was implemented in Java.

Source code and binaries are available at http://kdbio.

inesc-id.pt/~asmc/software/grisotto.html. A C implemen-

tation of the RISOTTO combinatorial algorithm, needed

by GRISOTTO, is also available. Source code and execu-

tables can also be found at the GRISOTTO webpage.

We start the evaluation of the effectiveness of GRI-

SOTTO by measuring the benefits of using single and

combined priors in finding motifs in yeast ChiP-chip

data. This data is now a gold standard with several

priors available, providing an unbiased experimental

assay for motif discovery tools. It contains a human-

curated set of 156 motifs known to be present in

156 sequence-sets (one motif per sequence-set). Motif

finder tools are asked to report a single motif for each

sequence-set, which is then compared with the human-

curated one. Human-curated motifs are called through-

out this work as literature motifs, known motifs or even

true motifs. Details about the data, priors, evaluation

methodology, and results can be found in the following

ChiP-chip data subsection.

We also provide an additional check on the value of

using priors with GRISOTTO from data with different

characteristics - a higher eukaryote with sequence data

derived from a different technology. On this account,

we evaluate the performance of GRISOTTO in 13

sequence-sets from mouse ChiP-seq data. Details of this

assessment can be found in ChiP-seq data subsection.

ChiP-chip data

We gauge the performance of GRISOTTO by measur-

ing the benefits of using BIS for finding motifs in
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156 sequence-sets experimentally verified to bind differ-

ent TF’s in yeast. These datasets were collected by

PRIORITY researchers [11] and were compiled from the

work of Harbison et al. [28]. More precisely, Harbison

et al. profiled the intergenetic binding locations of 203

TF’s under various environmental conditions over 6140

yeast intergetecic regions. From these only intergenetic

sequences reported to be bounded with a p-value ≤

0.001 for some condition were considered by the

PRIORITY researchers. Moreover, only sequence-sets

with at least size 10 bounded by TF’s with a known con-

sensus from the literature were considered, resulting in

156 sequence-sets. Presently, these datasets are being

used to benchmark several motif discovery tools

[11,14-17,28-35] as they provide a reliable and fair assay

over real data.

Three different PSP’s were incorporated in BIS to

boost GRISOTTO motif discoverer, namely, priors

based on evolutionary conservation [14,16], destabiliza-

tion energy [15], and nucleosome occupancy [11]. All

these priors were devised by PRIORITY researchers and

were kindly made available by the authors (personal

communication). The popular MEME algorithm was

also evaluated with the evolutionary conservation-based

prior [17] devised by PRIORITY researchers. Since the

sequence-sets and priors used to evaluate GRISOTTO

were exactly the ones used in PRIORITY and MEME

and, moreover, the criterion used to determine a correct

prediction by the algorithms was also the same, we were

able to make direct comparisons with their published

results. PRIORITY and MEME had already shown that

the use of these priors is advantageous when combined

with Gibbs sampling and EM techniques. Herein we aim

at investigating if the same improvements are also

achieved by GRISOTTO. Moreover, we evaluate if com-

bining priors is beneficial.

Following the approach of PRIORITY, we let GRI-

SOTTO look for a single motif of size 8 in each of the

156 yeast sequence-sets, since priors were computed for

8-mers. The results provided by MEME considered a

modification of the priors, adapting them for k-mers of

different sizes. As a consequence, MEME was able

to report accurately a large number of long motifs.

Although we acknowledge that MEME’s approach

improves the capacity to discover motifs, we keep the ori-

ginal priors used in PRIORITY. Moreover, to measure

the accuracy of GRISOTTO we used exactly the same

metric as the one previously used by the PRIORITY and

MEME researches. This metric compares the single motif

reported by the discoverer, for each of the 156 yeast

sequence-sets, to a literature motif by computing a scaled

version of the Euclidean distance between the true motif

and the reported one. A more complete explanation of

this metric can be found in Additional file 1.

The results of GRISOTTO, as well as those of state-

of-the-art motif discoverers, are summarized in Table 2.

Detailed results of GRISOTTO can be found in Addi-

tional file 2 while details about the evaluation methodol-

ogy, including, parameter settings and running times,

can be found in Additional file 1. A brief explanation

about the priors is given in the following sections.

Evolutionary conservation-based priors

Diverse methods for motif discovery make use of ortho-

logous conservation to assess wether a particular DNA

site is conserved across related organisms, and thus

more likely to be functional. A comprehensive work

along this line was done by PRIORITY researchers

[14,16], where an orthologous conservation-based prior

was devised to improve their Gibbs sampler-based motif

discovery method. This prior was built in a discrimina-

tive way by taking into account not only sequence-sets

that were bounded by some profiled TF (the positive

set) but also sequence-sets that were not bounded by

the same TF (the negative set). In this way the prior

reflects not only the probability that a W -mer at a cer-

tain position is conserved but of all the conserved

occurrences of this W -mer what fraction occurs in the

bound sequence-set. Conserved occurrences are found

by searching if a W -mer in a reference sequence also

occurs in most of its orthologous ones regardless of its

orientation or specific position. For this particular case,

the evolutionary conservation-based prior was used for

each intergenetic region in S. cerevisiae and it used the

orthologous sequences from six related organisms,

namely, S. paradoxus, S. mikatae, S. kudriavzevii,

S. bayanus, S. castelli and S. kluyveri. The prior was

named discriminative conservation-based prior (DC) and

was made available, in a PSP format, at PRIORITY

webpage.

Herein, we gauge the performance of GRISOTTO

when this exact DC prior is incorporated into the BIS

scoring criterion. Results comparing GRISOTTO-DC

with PRIORITY-DC[16], MEME-DC[17], and other

state-of-the-art algorithms, can be found in Table 2.

Results show that GRISOTTO-DC correctly predicted

83 motifs out of the 156 experiments, whereas PRIOR-

ITY-DC found 77 and MEME:ZOOP-DC 81. We con-

clude that GRISOTTO performed at least as well as

PRIORITY and MEME:ZOOP when the same DC PSP

was used. A closer inspection of detailed results of GRI-

SOTTO, in Additional file 2 reveals that GRISOTTO-

DC found 15 motifs that PRIORITY-DC did not, while

PRIORITY-DC found only 10 motifs that GRISOTTO-

DC did not.

Destabilization energy-based priors

Information about DNA double-helical stability has

also been collected into a PSP to boost the PRIORITY

Gibbs sampler-based algorithm [15]. The rational
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for the information contained in this prior is based in

the fact that, in general, the energy needed to destabi-

lize the DNA double helix is higher at TFBS’s than at

random DNA sites. The PSP resulting from this effort

was built in a discriminative way, just as for the DC

prior, and was named discriminative energy-based prior

(DE).

We evaluated the DE prior within GRISOTTO.

Results comparing GRISOTTO-DE with PRIORITY-

DE[15], and other state-of-the-art algorithms, can be

found in Table 2. This table shows that GRISOTTO-DE

correctly predicted 80 motifs out of the 156 experi-

ments, whereas PRIORITY-DE found only 70. We con-

clude that GRISOTTO performed quite well when the

DE prior was used, with an improvement of 14% over

correct predictions relatively to PRIORITY, raising the

overall proportion of successful predictions in 6% (from

45% to 51%). As before, we made a closer examination

of the detailed results included in Additional file 2

which revealed that GRISOTTO-DE found 19 motifs

that PRIORITY-DE did not, whereas PRIORITY-DE

found only 9 motifs that GRISOTTO-DE did not.

Nucleosome occupancy-based priors

Nucleosome occupancy has also been used in motif dis-

covery. The rationale for this approach is that Eukaryo-

tic genomes are packaged into nucleosomes along

chromatin affecting sequence accessibility. There are

two main works in the literature to predict genome-

wide organization of nucleosomes in Saccharomyces cer-

evisiae [36-38]. Taking into account the work of Segal

et al. [38] the PRIORITY researchers [11] devised an

informative prior based on a discriminative view of

nucleosome occupancy. The prior was named discrimi-

native nucleosome-based prior (DN ).

GRISOTTO was evaluated with the DN prior incor-

porated in the BIS score. Results comparing GRI-

SOTTO-DN with PRIORITY-DN , and other state-of-

the-art algorithms, can be found in Table 2. This table

shows that GRISOTTO-DN correctly predicted 77

motifs out of the 156 experiments, while PRIORITY-DC

found 70. We conclude that GRISOTTO outperformed

PRIORITY when DN prior was used, with an improve-

ment of 10% over correct predictions. A closer investi-

gation of detailed results in Additional file 2 unravels

that GRISOTTO-DN found 13 motifs that PRIORITY-

DN did not, whereas PRIORITY-DN found 6 motifs

that GRISOTTO-DN did not.

Combining priors

Despite considerable effort to date in developing new

potential priors to boost motif discoverers, PSP’s from

different sources have not yet been combined. Actually,

although having some degree of redundancy, because,

for instance, the positioning of nucleosomes may be cor-

related with DNA double helix stability, it is easy to

conclude by a closer inspection of the detailed results in

Additional file 2 that different PSP’s still report a con-

siderable number of disjoint motifs (refer to Additional

file 1 for further details). As a matter of fact, PRIORITY

researchers have already noticed this fact [15]. However,

it is not a trivial task determining how to translate the

Table 2 Comparison of GRISOTTO with state-of-the-art methods over ChiP-chip data.

Algorithm Description Successes % Ref

PhyloCon Local alignment of conserved regions 19 12% [29]

PhyME Alignment-based with EM 21 13% [30]

MEME:OOPS MEME with OOPS model 36 23% [31]

MEME:ZOOPS MEME with ZOOPS model 39 25% [31]

MEME-c MEME without conserved bases masked 49 31% [28]

PhyloGibbs Alignment-based with Gibbs Sampling 54 35% [32]

Kellis et al. Alignment-based 56 36% [33]

CompareProspector Alignment-based with Gibbs sampling 64 41% [34]

Converge Alignment-based with EM 68 44% [35]

MEME:OOPS-DC MEME with OOPS model and DC priors 73 47% [17]

PRIORITY-DC Gibbs sampler with DC priors 77 49% [16]

MEME:ZOOP-DC MEME with ZOOPS model and DC priors 81 52% [17]

GRISOTTO-DC GRISOTTO with DC priors 83 53% -

PRIORITY-DE Gibbs sampler with DE priors 70 45% [15]

GRISOTTO-DE GRISOTTO with DE priors 80 51% -

PRIORITY-DN Gibbs sampler with DN priors 70 45% [11]

GRISOTTO-DN GRISOTTO with DN priors 77 49% -

GRISOTTO-CDP GRISOTTO with combined priors 93 60% -

The results of motif discoverers were taken from R. Gordân et al. [16] and T. L. Bailey et al. [17].

All priors used were devised by R. Gordân, A. J. Hartemink and L. Narlikar [11,14-16].
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BIS combined information into a PSP that can be used

in EM or Gibbs sampler-based algorithms.

In order to gauge the potential of combined priors, we

incorporated in the BIS score the three DC, DE and

DN priors. We call the final prior combined discrimina-

tive prior (CDP). Results show that GRISOTTO-CDP is

the more accurate motif discoverer for the 156

sequence-sets being evaluated. It correctly predicted 93

motifs, while GRISOTTO-DC found 83, GRISOTTO-

DE 80 and GRISOTTO-DN 77. In this way GRI-

SOTTO-CDP accomplished an improvement of at least

12% over correct predictions, when compared with GRI-

SOTTO variants considering the priors individually.

This raises the overall proportion of successful predic-

tions in 7%, on top of the improvements already

attained in the previous sections, over these 156 yeast

sequence-sets. Moreover, when comparing GRISOTTO-

CDP with state-of-the-art motif discoverers (refer to

Table 2), the final proportion of successful predictions

was raised to 60%, while the best known previous value,

to our knowledge, was 51% attained by MEME-DC[17].

This leads us to conclude that combining priors from

different sources is even more beneficial than consider-

ing them separately.

ChiP-seq data

Herein we measure the accuracy of GRISOTTO in TF

motif discovery on 13 mouse ChiP-seq data. This data

was gathered by Chen et al. [21] where whole-genome

binding sites of 13 sequence-specific TFs (Nanog, Oct4,

STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Essrb,

Tcfcp2l, E2f1, and CTCF) were profiled in mouse ES

cells using the ChiP-seq approach. Sequences of ±100

bp size from the top 500 binding peaks were selected

for each factor, repeats were masked, and the Weeder

[39] tool was used to find overrepresented sequences

unravelling 12 of the 13 factors (excluding E2f1).

We assess the quality of GRISOTTO in discovering

motifs from mouse ChiP-seq data with two priors. First,

an orthologous conservation-based PSP was used as

information for higher organisms is now available.

Indeed, there are already such PSP’s for yeast, fly,

mouse and even human [14,16,17]. Second, a binding

peak-based PSP was tried as ChiP-seq assays provide an

intrinsic positional prior that can be computed from

base-specific coverage profiles. This prior has recently

been employed in motif discoverers [22,23] with success.

As for ChiP-chip data, we let GRISOTTO find for a

single motif of size 8, since priors were computed for 8-

mers. However, as human-curated motifs are not avail-

able for this ChiP-seq data, we made only a resem-

blance, based on a 6-window match, between the motifs

reported by GRISOTTO with those outputted by Chen

et al. [21] and MEME [17] for the same data.

Evolutionary conservation-based priors

Orthologous conservation-based priors for mouse ChiP-

seq data were obtained by MEME researchers [17] fol-

lowing a similar methodology as PRIORITY-DC for the

yeast ChiP-chip data ones. As before, this new mouse

prior received the shorthand name DC. We incorporated

the DC prior into the BIS score and ran GRISOTTO. In

Figure 1, motifs reported by Chen et al. and MEME-DC

are shown along side motifs found by GRISOTTO-DC

for the 13 mouse sequence-sets. Recall that Chen et al.

only reported 12 out of the 13 motifs, excluding the

E2f1 motif, so in this case the TRANSFAC [40] motif is

shown instead. MEME-DC and GRISOTTO-DC were

able to retrieve all motifs. Moreover, the number of

sequences of these sequence-sets vary from 1038 to

38238 and, due to efficiency issues, MEME-DC was only

able to run over 100 sequences randomly chosen from

each sequence-set. GRISOTTO-DC was able to use all

of them taking only 1-4 minutes, per sequence-set, to

report a motif.

Because sequences-sets are very large, some of the

reported motifs became highly degenerated. Actually,

only 6 out of the 13 motifs seem to be highly conserved,

namely, CTCF, Esrrb, Klf4, n-Myc, Tcfc and c-Myc. For

these, even allowing for IUPAC symbols during the

greedy search results in highly conserved motifs. There-

fore, for this data, we searched for IUPAC strings that

allow only two positions to have degenerate IUPAC

symbols.

By a closer inspection of Figure 1 we conclude that

motifs reported by GRISOTTO-DC are strongly similar

to the ones reported by Chen et al. and MEME-DC.

Have in mind that GRISOTTO outputs an IUPAC, and

not a PSSM, but we used, in a 6-window size, the same

color scheme as PSSM’s to make the resemblance with

reported motifs easier.

Binding peak-based priors

Hu el al. [23] devised a prior using coverage profile

information provided by the ChiP-seq approach. This

grounds in the belief that motifs are tightly packed near

the peak summit - the location inside each peak with

the highest sequence coverage depth. As a result, prior

probabilities were set to be proportional to a discretized

Student’s t-distribution with 3 degrees of freedom and

rescaled such that they form a step function with a fixed

25 bp step-size. The prior probabilities are symmetric

and centered at the peak summits. As such prior is

intrinsically a positional one we built a PSP resuming

the described probabilities for the 13 mouse ChiP-seq

data and ran GRISOTTO.

Our results show that direct use of binding peak-based

priors does not help GRISOTTO much. Actually, the

motifs reported by this prior were exactly the same as

using the uniform prior (recall that for the uniform
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Figure 1 Comparison of GRISOTTO-DC with Chen et al. and MEME-DC. Motifs reported by Chen et al. [21] and MEME-DC[17] are shown

along side motifs found by GRISOTTO-DC for the 13 mouse ChiP-seq data. Chen et al. only reported 12 out of the 13 motifs, excluding the E2f1

motif, so in this case the TRANSFAC [40] motif is shown instead.
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prior any position in the DNA is likely to contain a

motif). Moreover, when combined with the DC prior

GRISOTTO reported precisely the same motifs as DC

prior alone. These findings suggest that GRISOTTO is

unable to retrieve any useful information from the bind-

ing peak-based prior. We attributed this to the fact that

part of the information contained in the binding peak-

based prior is already encoded in the BIS score. Indeed,

peak summits indicate an overrepresentation of a motif

in a certain locus. Such overrepresentation is already

weighted in the BIS score (recall Equation (1) and (4) in

page 8-9). Notwithstanding, it seems reasonable that for

short sequences of 200 bp (namely, ±100 bp around the

peak summits) the coverage-based prior has no real

impact on motif discovery. For longer sequences, the

effective resolution of the peak summits seems to pro-

vide useful information [22,23].

Discussion

Wasserman and Sandelin [41] noticed that the discovery

of TFBS’s from a nucleotide sequence alone suffers from

impractical high false positive rates. This was termed

the futility theorem as nearly every predicted TFBS has

no function in vivo. This problem has been studied and

addressed by taking into consideration information in

and beyond the TFBS’s, such as orthologous conserva-

tion [16,17], nucleosome positioning [11,42], DNA

duplex stability [14] and coverage profiles obtained from

ChiP-seq assays [22,23].

Following this line of research we have verified in the

present study that post-processing the output of

RISOTTO with prior knowledge from different sources

is beneficial for motif discovery. RISOTTO is a consen-

sus-based method that enumerated exhaustively all

motifs by collecting their occurrences, up to a fixed

Hamming distance, from input sequences. The Ham-

ming distance between two string measures the mini-

mum number of substitutions required to change one

string into the other. As a result, a set of overrepre-

sented motifs is reported and then ordered by their

biological relevance according to some statistical signifi-

cance test [24,26,27]. This ordered list is retrieved in a

classical way from the nucleotide sequence alone and, as

previously mentioned, it is of particular importance

to introduce a bias from available priors. Following

this goal, we noticed that the top 10 motifs from the

RISOTTO ordered list could be greedily modified to

have a good BIS score. The greedy procedure would

modify these motifs introducing some noise allowed

by the prior and up-weighting weak motifs that were

masked during the combinatorial and/or statistical

significance test. Certainly, we would not expect

RISOTTO, or any other combinatorial algorithm, to

report completely outlandish motifs, as motif discovery

problem is indeed a combinatorial problem that

accounts for overrepresentation of a string in a set of

DNA sequences. However, prior information provides

valuable guidance on how to describe a motif that goes

beyond neighborhoods (defined by the Hamming

distance or any similar distance) of the consensus

sequence. GRISOTTO incorporates such information in

the BIS score providing in this way a broader definition

of overrepresentation of a motif in the input sequences.

Currently, a significant point of discussion is related

with the use of prior information as a post-processing

step of RISOTTO, and not within the RISOTTO proce-

dure itself. For the sake of simplicity, consider we are

looking for motifs of a fixed size k. Combinatorial algo-

rithms take into consideration overrepresentation of

motifs to extract them. This extraction is exhaustive, by

iteratively extending candidate strings of size 1 ... k - 1,

letter by letter of the DNA alphabet, and checking in

each step if the extended string is still overrepresented

in the sequence-set. Usually, complex data structures,

such as suffix-trees, are employed to extend the candi-

date string. Whenever an extension fails to be overre-

presented in the input sequences that extension is

disregarded and another one is attempted. Only exten-

sions that reach the size k are reported.

Conversely, prior information only asserts if a sub-

sequence of a fixed size W in a certain position of the

DNA sequences is likely to be a motif. It is not straight-

forward to use prior information in combinatorial algo-

rithms because they would need to know if a sub-string

of size 1 ... k - 1 is likely to be a motif. However, in one

hand, it is space-wise unfeasible to have priors for mul-

tiple values of W . On the other hand, priors for small

or large values of W have no information whatsoever,

as either they are very common (occur in all input

sequences) or very rare (occur only once or never). Our

work, as well as state-of-the-art ones [11,14-17], have

shown that an efficient and effective solution is to

consider W = k = 8.

Besides this discussion, there are two obvious advan-

tages of using prior information at a post-processing

step. First, the greedy-search procedure is independent

from the starting points provided by the combinato-

rial algorithm, allowing any method to be employed

(for instance, Weeder [39], SMILE [26], RISO [27],

RISOTTO, etc). Another advantage is that while new

priors are devised, we do not need to re-compute

previous starting points, being sufficient to run the

greedy-search procedure of the GRISOTTO algorithm.

In closing, we stress that the BIS score was used

throughout the experiments with sequence-sets known

to be bound by a TF. Therefore, it was only used to dis-

cover the positions of each sequence-set where the

motif occurs. Another possible application of the BIS
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score would be to detect the fraction of sequences that

are likely to have site predictions. There are two possi-

ble ways to adapt GRISOTTO to this new problem:

(i) derive a threshold of the BIS score contribution of a

sequence above which the sequence is likely to have site

predictions; (ii) incorporate an input parameter in the

GRISOTTO greedy procedure, usually called quorum,

that amounts for the fraction of sequences that have

binding site predictions. None of these approaches

seems straightforward and are out of the scope of this

paper, hence they were left as a future research topic.

Conclusions

The GRISOTTO algorithm post-processes in a greedy-

fashion the output of RISOTTO taking into account

prior information available about the domain. In prac-

tice, this introduces some extra knowledge taken from

the literature, or computed from the sequences, that will

help in characterizing motifs. The algorithm is flexible

enough to combine several priors from different sources.

Each prior is given a weight reflecting the confidence on

the information contained in it and its relevance for

motif discovery. In this way, priors can be introduced

at will giving rise to a scoring criterion based on the

convex closure of the information given by each prior.

Prior information has previously been shown to be

beneficial when used with EM and Gibbs sampler-based

motif discoverers. We have shown here that they can

also be of great benefit to boost combinatorial algo-

rithms such as RISOTTO. We emphasize that the goal

of this paper is not to introduce new priors, but to show

that priors can also be advantageous to assist and

improve the output of combinatorial algorithms such as

RISOTTO. Moreover, we have shown that combining

priors is very promising in further extending the power

of motif discovery algorithms.

We gauge the effect of adding prior information to

GRISOTTO over 156 well-studied sequence-sets from

yeast TF ChiP-chip experiments. For each sequence-

set, motif discoverers were asked to report a single

PSSM motif that was then compared with the known

PSSM for the TF pulled down in the ChIP-chip experi-

ment. Prior information from different sources was

used, including, orthologous conservation, nucleosome

occupancy, and destabilization energy. The use of

exactly the same priors in EM and Gibbs sampler-

based motif discoverers, namely, MEME and PRIOR-

ITY, respectively, has been shown to dramatically

improve their performance. In this work, we show that

this boost can be also achieved by GRISOTTO that

performed at least as well as PRIORITY and MEME

when each prior was considered individually. The great

advantage of GRISOTTO was accomplished by the

combination of priors. Indeed, when GRISOTTO

compromised the three mentioned priors in a convex

combination of their information it achieved an

improvement of about 15% over correct predictions

relatively to the best motif discoverer (MEME-DC[17]),

at our present knowledge, for exactly the same experi-

ments. The final proportion of successful predictions is

now at 60%, attained with 93 correct predictions from

GRISOTTO-CDP (with only 81 correct predictions of

MEME-DC) out of the 156 experiments.

Finally, we also confirm the benefit of using GRI-

SOTTO with 13 sequence-sets from a higher eukaryote

ChiP-seq data, namely, the mouse. In this assessment two

priors were used, including, orthologous conservation and

base coverage profiles obtained from the ChiP-seq assays.

We concluded that, as for ChiP-chip data, the ortholo-

gous conservation-based prior was of great convenience,

being able to unravel 13 motifs strongly similar to the

ones reported by other tools and found in the TRANS-

FAC database. In respect to the coverage-based prior,

their direct use as a positional prior was not favorable,

having been comparable to the uniform prior. We believe

this is due to the fact that the BIS score already accounts

for overrepresentation in the input sequences which we

suspect mimics the information contained in this new

prior, turning the prior redundant.

Additional material

Additional file 1: Detailed set up and evaluation methodology of

GRISOTTO. This additional file presents in detail three topics needed to

make the paper self-contained. First, is describes the call to RISOTTO

algorithm found in Step 1 of the Algorithm 1. Second, it includes the

inter-motif distance used to compute successful predictions from motif

discoverers, along with PSSM representation of IUPAC strings reported by

GRISOTTO. Finally, it contains relevant information about the evaluation

methodology, including, parameter settings and running times. This

makes the results presented in this paper reproducible along with the

data and algorithms provided in the GRISOTTO webpage.

Additional file 2: Detailed results of GRISOTTO. Additional details

about experimental results of GRISOTTO presenting actual predictions

sequence-set by sequence-set for various positional priors. It also

presents results of PRIORITY taken from the supplementary material of

the original papers.
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