
GRKLib: a Guaranteed Runge Kutta Library

Olivier Bouissou

CEA LIST

olivier.bouissou@cea.fr

Matthieu Martel

CEA LIST

matthieu.martel@cea.fr

Abstract

In this article, we describe a new library for computing

guaranteed bounds of the solutions of Initial Value Prob-

lems (IVP). Given an initial value problem and an end point,

our library computes a sequence of approximation points

together with a sequence of approximation errors such that

the distance to the true solution of the IVP is below these er-

ror terms at each approximation point. These sequences are

computed using a classical Runge-Kutta method for which

truncation and roundoff errors may be over-approximated.

We also compute the propagation of local errors to obtain

an enclosure of the global error at each computation step.

These techniques are implemented in a C++ library which

provides an easy-to-use framework for the rigorous approx-

imation of IVP. This library implements an error control

technique based on step size reduction in order to reach a

certain tolerance on local errors.

1. Introduction

Users of numerical solvers for Ordinary Differential

Equations (ODEs) are generally interested in computing ap-

proximation points with an estimate of the error at each

point. Many scientists and engineers are more interested

in the efficiency of the method than on the quality of the

error estimation. However, for many safety critical appli-

cations, this estimation is not enough, and safe bounds on

the error are required. These applications that need guar-

anteed approximations include state estimation [8], hybrid

systems analysis [6] or industrial systems where critical

damage may occur. For such systems, the required feature

of the solver is safety rather than efficiency, i.e. the nu-

merical solver should not only give an approximation of the

solution but it should also prove that the true solution lies

between computed bounds. This problem has been studied

over the past 40 years, i.e. almost since interval arithmetic

was invented. However, using interval versions of classi-

cal algorithm gives validated solvers which usually suffer

from a bad long term stability. The most successful meth-

ods are based on a Taylor Series expansion of the solution

with respect to time and a fine algorithm for computing the

remainder terms.

In the rest of this introduction, we briefly recall what an

Initial Value Problem is and we give the foundations of Tay-

lor Series based methods for computing rigorous bounds of

IVPs. For a more complete description of these methods

and tools implementing them, we invite the reader to refer

to [13].

1.1. Initial Value Problems

An IVP consists of a system of ODEs together with an
initial condition:

ẏ = f(y) y(x0) = y0. (1.1)

Here, y is a function from R to R
n and f is a continuous

function from R
n to R

n. ẏ denotes the derivative of y with

respect to time x.

Solving the IVP means finding a (possibly unique) func-

tion y(x;x0, y0) which satisfies Equation (1.1). Numeri-

cal solvers usually compute a sequence of approximation

points {y0, y1, . . . , yM} such that yi is an approximation of

the value y(xi;x0, y0), for some xi. Let yv
i = y(xi;x0, y0)

be the real value of the solution of (1.1) at time xi. The

sequence
(

xn

)

is the sequence of steps, and we let hi =
xi+1 − xi denote the step sizes. In sections 2 and 3, we

assume a fixed step size. The step size control mechanism

and its influence on the algorithm are detailed in Section 4.

If we consider systems with uncertainties, the initial con-

ditions are not always exactly known, or we may only have

approximate values for the parameters of the equations.

Therefore, we will focus on a more general IVP, where the

initial conditions are given as follows:

y(x0) ∈ [y0], [y0] ⊆ R
n

(1.2)

Solving this interval IVP means finding the set of func-

tions y(x;x0, [y0]) = {y(x;x0, y0) | y0 ∈ [y0]}. Again,

this problem is difficult. All we can do is to compute a se-

quence of boxes [yn] such that ∀n, y(xn;x0, [y0]) ⊆ [yn].

1.2. Taylor Series Methods in a Nutshell

The method studied and used most often to achieve
guaranteed bounds on the solutions of IVPs is based on
an interval version of classical Taylor Series algorithm
[4, 10, 12, 17]. This method performs a Taylor decomposi-
tion of the solution of (1.1) with respect to time, in such a
way that:

y
j+1

= yj +

N−1
X

k=1

f [k](yj)h
k
j + hN

j · f [N]`y(xs)
´

, (1.3)

where xs ∈ [xj , xj+1
] and f [k] = 1

k

(

∂k−1f
∂yk−1

)

(y). A direct

translation of (1.3) into interval arithmetic gives Equation
(1.4), where [ỹj] is an a priori enclosure of y(xs):

[y
j+1

] = [yj] +

N−1
X

k=1

f [k]([yj])h
k
j + f [N]`[ỹj]

´

. (1.4)

In a direct evaluation of (1.4), the width of [yj] grows, even
if the system contracts. Thus, it is important to compute
[y

j+1
] in a way which limits the overestimation inherent in

interval arithmetic. This is achieved by expressing the in-
terval valued evaluations by their mean value form:

f({a ∈ [a, a]}) ⊆ â+ J(f, [a, a]) · ([a, a] − â) ⊆ f([a, a]),

where J(f, [a, a]) is the Jacobian of the function f evalu-
ated on the whole interval [a, a], and â ∈ [a, a]. If we apply
this formula to (1.4), we obtain:

[y
j+1

] = ŷj +

N−1
X

k=1

f [k](ŷj)h
k
j + f [N]`[ỹj]

´

+

`

I +

N−1
X

k=1

J(f [k], [yj])h
k
j

´

([yj] − ŷj).

There are still two problems to solve to use this formula:

• finding the a priori enclosure [ỹj], i.e. a box such that

∀x ∈ [xj , xj+1
], y(x;xj , [yj]) ∈ [ỹj].

• reducing the wrapping effect when computing
(

I +
∑N−1

k=1 J(f, [yj])h
k
j

)

([yj] − ŷj).

Thus, Taylor Series methods are generally two-step meth-

ods: they first compute an a priori enclosure of the solution

on one integration step, then they reduce this enclosure to

get [y
j+1

] as tight as possible. We will face these two prob-

lems in our method, as developed in sections 3.1 and 3.2.

1.3. Description of our Method

The main contribution of this article is to show the fea-

sibility of another way for computing rigorous bounds on

the solution of an IVP. Our approach is comparable to the

one taken by ValEncIA-IVP [15]; we compute a sequence

of non-validated approximation points together with a se-

quence of guaranteed bounds on the distance between these

points and the exact solution. Therefore, this method may

be seen as a predictor-corrector algorithm: we predict the

value of the approximation points, and we correct them by

computing an over-approximation of the global error. The

interest of this approach is that the use of interval arithmetic

is limited to verification tasks (computation of the errors),

thus limiting the size of the intervals to grow too much.

We chose to base our method on a classical Runge-Kutta

algorithm for the computation of the approximation points.

The error is then estimated using the higher order deriva-

tives of the function y we want to approximate. It is com-

puted as the sum of three terms: the error due to the lim-

ited order of the Runge-Kutta method, the error propagated

by the dynamical system, and finally the error due to the

implementation of the algorithm on a finite precision ma-

chine. We start with a brief review of the RK4 algorithm

we use (Section 2). Then we show how we compute the

over-approximation of the global error (Section 3). Finally,

we see how the step size may be controlled to achieve a re-

quired error bound in Section 4 and we give some numerical

results and benchmarks in Section 5.

2. The RK4 Algorithm

The RK4 algorithm is a Runge-Kutta algorithm of or-
der 4. Runge-Kutta algorithms are implicit schemes which
compute the sequence of approximation points

(

yn

)

us-
ing only yn and some intermediary points for the compu-
tation of yn+1. Details on these methods may be found
in many numerical analysis books, for example [3, 18].
The RK4 method can be seen as an extension of Euler’s
(yn+1 = yn + h · f(yn)) and Midpoint’s method (yn+1 =
yn + h · f(yn + h/2 · f(yn))). It uses four evaluations of f to
compute yn+1: one at the beginning of the interval, two at
the middle and on at the end:

k1 = f(yn)
k2 = f(yn + h/2 · k1)
k3 = f(yn + h/2 · k2)
k4 = f(yn + h · k3)

yn+1 = yn + h
6

(k1 + 2k2 + 2k3 + k4) .

(2.1)

It is commonly known, as we will see it in the next section,
that using these formulas gives an approximation of order
4, i.e. the difference between the exact value y(xn + h)
and yn+1 is of the same magnitude as h5. If we apply suc-
cessively these formulas, we obtain a set of approximation
points yj for every xj = x0 + j ∗ h. These points are often
believed to be a good approximation of the real solution. We
show in the next section how one can compute guaranteed
bounds on the error y(xj) − yj for every j. Let us define
some functions which will help to express the error bounds.
We make the ki coefficients depend on y and h, and define

the iteration function Φ:

k1(y, h) = f(y)
k2(y, h) = f(y + h/2 · k1(y, h))
k3(y, h) = f(y + h/2 · k2(y, h))
k4(y, h) = f(y + h · k3(y, h))
Φ(y, h) = y + h

6

`

k1 + 2k2 + 2k3 + k4

´

(y, h)

(2.2)

such that we have yj = Φj
(

y0, h
)

, where Φj is the jth iter-
ate of the function Φ. We also define two partial functions
ψj and φj at every step:

ψj : y 7→ Φ(y, hj) φj : x 7→ Φ
`

yv
j , x− xj

´

. (2.3)

3. Computing the Error

Let us now focus on the central part of our algorithm, i.e.

the computation of guaranteed bounds on the global error.

Our goal is to compute upper bounds of
(

y(xj ;x0, y0)−yj

)

for all the approximation points. Hence, we need to address

the following questions: what is the error introduced by the

method and how is it propagated by the dynamical system

from one step into another? Furthermore, we need to be

very careful on the implementation of the method, as any

roundoff error must be taken into consideration.

Let us consider Step n + 1: we already computed yn

and [ǫn] at xn such that yv
n ⊆ yn + [ǫn]. We recall that

yv
n = y(xn;x0, y0) is the value of the solution at time xn.

Let yr
n+1

be the real valued point given by the Runge-Kutta

fomulas, which approximates yv
n+1

, and let y
n+1

be the cor-

responding floating point given by the implementation. This

is the point we will actually use. A first source of error

comes from the difference between y
n+1

and yr
n+1

. In addi-

tion, there is the error propagated by the dynamical system

itself. Let y∗
n+1

be the real valued point that we would have

computed if we had applied the RK4 formulas starting from

yv
n. The distance between yr

n+1
and y∗

n+1
represents how

[ǫn] has been propagated into [ǫ
n+1

]. Finally, there is the

error introduced by the method itself, which is the distance

between y∗
n+1

and yv
n+1

. So, the global error at x
n+1

may be

decomposed into three kinds of errors (see Figure 1):

• truncation errors due to the method:

η
n+1

= yv
n+1

− y∗
n+1

,

• propagation of the previous error due to the dynamical

system: χ
n+1

= y∗
n+1

− yr
n+1

,

• roundoff errors due to finite precision computations:

ǫ
n+1

= yr
n+1

− y
n+1

.

In the following, we explain how these terms are computed.

Figure 1. Three kinds of errors.

3.1. Truncation Errors

Truncation errors arise because the trajectory of the true

solution to Equation (1.1) (curved line on Figure 1) and

the trajectory given by the RK4 formulas (dotted line) dif-

fer. We suppose that they have a common starting point

yv
n at xn, and we try to over-approximate their difference

y(x
n+1

;xn, y
v
n) − y∗

n+1
at x

n+1
= xn + hn. The following

proposition then holds:

Proposition 3.1 y∗
n+1

= φn

(

x
n+1

)

, and the four first

derivatives of y and φn are equal at x = xn:

∀i ∈ [0, 4],
diy

dxi

`

xn

´

=
diφn

dxi

`

xn

´

.

The proof of this proposition is straightforward and may be

read in [2]. Proposition 3.2 follows immediately:

Proposition 3.2 There exists some ξ ∈ [xn, xn+1
] such that

η
n+1

=
h5

120

d5(y − φn)

dx5

`

ξ
´

.

The proof is once again a straightforward application of the

Taylor Series theorem with Lagrange remainder. Now, let

us compute this fifth derivative. We have:

d5(y − φn)

dx5
=

d5(y)

dx5
−
d5(φn)

dx5
=
d4(f)

dx4
−
d5(φn)

dx5

η
n+1

=
d4(f)

dx4

(

y(ξ;xn, y
v
n)

)

−
d5(φn)

dx5

(

ξ
)

.

The function φn only depends on x; so does
d5(φn)

dx5 . There-
fore, we have:

d5(φn)

dx5

`

ξ
´

∈
d5(φn)

dx5

`

[xn, xn+1
]
´

. (3.1)

For the term
d4(f)
dx4

(

y(ξ;xn, y
v
n)

)

, the situation is a bit

more complicated, as we cannot easily enclose the value

y(ξ;xn, y
v
n). We thus need an a priori enclosure of the func-

tion y on the interval [xn, xn+1
], i.e. a box [ỹn] such that

∀x ∈ [xn, xn+1
], y(x;xn, y

v
n) ∈ [ỹn]. This will be done us-

ing Picard operator and Banach fixed point theorem, as in

[10, 12]. Let us recall the definition of the operator and the

main result that we will use (Proposition 3.3).

Defintion 3.1 Given an ODE ẏ = f(y), y(xn) = yv
n, the

associated Picard-Lindelöf operator is defined by:

T (y)(t) = yv
n +

Z t

xn

f(y(s)) ds

Furthermore, let S be a closed subset of

C0
(

[xn, xn+1],R
d
)

, the set of continuous functions

from [xn, xn+1] into R
d.

Proposition 3.3 If f satisfies a Lipschitz condition and if S

is mapped into itself by T , then there exists a unique solu-

tion to the ODE on [xn, xn+1].

This proposition is used to find an a priori enclosure of the
solution of the ODE over the step [xn, xn+1] [17]. Let
S′ =

˘

y|y ∈ C0
`

[xn, xn+1], B
´¯

be the set of continuous
functions over [xn, xn+1] with value in the box B. For any
y ∈ S′, we have:

(Ty)(t) = yv
n +

Z t

xn

f(y(s))ds

⊆ yv
n + [0, hn] · f(B)

Now, if we have yv
n + [0, hn] · f(B) ⊆ B, then for every

u ∈ S′, Tu ∈ S′, so that S′ is mapped into itself by T . Thus
there is a unique solution to the ODE on [xn, xn+1] that has
values in B. We then just need to get a box [ỹn] such that
yv

n + [0, hn]f([ỹn]) ⊆ [ỹn]. Let P be the interval Picard-
Lindelöf operator defined by P (R) = [yn]+[0, h]f(R). We
find [ỹn] by iterating P : we start from R0 which contains
[yn] and y∗

n+1
, and we compute Rn = P (Rn−1). We stop

once we found Rm such that Rm+1 ⊆ Rm. We use Rm+1

as our a priori enclosure for the values of y(x;xn, y
v
n), and

then compute the over-approximation:

d4f

dx4

`

y(ξ;xn, y
v
n)

´

∈
d4f

dx4

`

Rm+1

´

. (3.2)

So, combining 3.1 and 3.2 gives an enclosure of η
n+1

:

η
n+1

∈
d4f

dx4

`

Rm+1

´

−
d5(φn)

dx5

`

[xn, xn+1
]
´

(3.3)

3.2. Propagation of the Error

The propagation of the error at the nth step [ǫn] into the
error at the (n + 1)st step must account for the separation
between the solutions of Equation (1.1) with an initial value
yv

n at xn and with an initial value yn: the point y∗
n+1

is the

application ψn at yv
n, and yr

n+1
is the application of ψn at

yn. These two flows are functions defined over D ⊆ R
d

with values in D′ ⊆ R
d. The separation of such functions

is computed using the Jacobian matrix. For every differen-
tiable function f : D → R

d, let

J(f) =

0

B

B

B

@

∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xd
∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xd

. . .
∂fd

∂x1

∂fd

∂x2
. . . ∂fd

∂xd

1

C

C

C

A

.

be its Jacobian matrix, and let

J(f, Y) =

0

B

B

B

@

∂f1

∂x1
(Y) ∂f1

∂x2
(Y) . . . ∂f1

∂xd
(Y)

∂f2

∂x1
(Y) ∂f2

∂x2
(Y) . . . ∂f2

∂xd
(Y)

. . .
∂fd

∂x1
(Y) ∂fd

∂x2
(Y) . . . ∂fd

∂xd
(Y)

1

C

C

C

A

.

be its Jacobian matrix with all derivatives evaluated at some

Y ∈ D. We may now express the extension of the mean

value theorem to multivariate functions in a compact for-

mulation:

Theorem 3.1 Let D ⊆ R
d be an open subset of R

d and let
f : D → R

d be a differentiable function on D. Then, for
all a and u such that [a, a + u] ⊂ D, there exists θ ∈]0, 1[
such that

f(a+ u) − f(a) = J(f, a+ θ · u) · u.

Now, as y∗
n+1

= ψn

`

yv
n

´

and yr
n+1

= ψn

`

yn

´

, there must

exist θ ∈]0, 1[and c = yv
n + θ(yn − yv

n) such that:

y∗
n+1

− yr

n+1
= J

`

ψn, y
v
n + c

´

·
`

yn − yv
n

´

. (3.4)

This formula gives the exact value of χ
n+1

, assuming we
know the exact value of c and yv

n, which we do not. How-
ever, the following holds:

∀θ ∈]0, 1[, yv
n + θ

`

yn + y(xn)
´

∈ [yn, y(xn)] ⊆ yn + [ǫn].

Furthermore, we know that yv
n ∈ yn + [ǫn], so we may

enclose the propagation of [ǫn] as follows:

χ
n+1

= J
`

ψn, y
v
n + c

´

·
`

yn − yv
n

´

∈ J
`

ψn, yn + [ǫn]
´

· [ǫn]. (3.5)

Equation (3.5) gives a method for computing χ
n+1

. How-

ever, if we apply this formula naively, the wrapping effect

mentioned in Section 1.2 makes the error grow. Actually,

if the Jacobian matrix is a rotation matrix, then huge over-

estimations are performed at each step, as shown by Figure

2 (where J = J
(

ψn, yn + [ǫn]
)

). To limit this problem, we

can use the same techniques as Taylor Series methods, for

example Löhner’s QR factorization method [10]. Its idea

is the following: instead of representing errors as boxes in

the standard orthogonal coordinate system, we will express

them in a different, better basis before performing the mul-

tiplication with the Jacobian matrix. The new coordinate

system is constructed as follows: the first axis is chosen

parallel to the longest edge of J , and we construct the other

axis so that they are as parallel as possible to other edges.

This is achieved by permuting the columns of J and then

computing its QR-factorization. For more details, see [12].

Figure 2. Wrapping effect.

3.3. Roundoff Errors

Roundoff errors occur during the computation of the

next approximation point y
n+1

. They are due to the differ-

ence between the computation made on a finite precision

machine, which leads to the floating point number y
n+1

,

and the computation that would be performed on real num-

bers, which leads to the real value yr
n+1

. This separation

comes from the implementation of floating point numbers

as defined by the IEEE754 Standard. They may be re-

duced using multi-precision arithmetic, such as the MPFR

library [5], but not eliminated and we thus need to con-

sider very carefully these error terms. We compute to-

gether with the floating point number y
n+1

an interval [e
n+1

]
such that yr

n+1
∈ y

n+1
+ [e

n+1
]. This interval which over-

approximates all computation errors is computed using the

global error arithmetic, first defined and used in the field

of numerical validation of C programs [14]. The idea is to

attach to each floating point number a formal term which

represents the distance between the floating point and the

real number it is supposed to represent. Thus, a global error

number a may be written as:

a = fa + [ea]−→εe ,

where fa is a floating point number and −→εe is a formal vari-

able. [ea] is supposed to be the difference between the real

value xa and its floating point representation fa. It should

thus be a real number, and we naturally implement it as an

interval. This representation means that a is a floating point

number with value fa which represents a real number xa

such that xa ∈ fa + [ea]. We have two kinds of infor-

mation: the result of a floating point computation and its

distance to the real value. The main advantage of this repre-

sentation is that the final enclosure on xa, namely fa +[ea],
does not need to contain fa, whereas all interval based rep-

resentations (either infimum/supremum or midpoint/radius)

produce enclosures that contain both the real value and the

floating point number. Thus, the width of our error term [ea]
is usually smaller than the width of the otherwise computed

interval. Moreover, it is possible to use more precision for

the computation of the error term than for the floating point

term, in order to decrease the width of [ea]. In our imple-

a = fa + ea
−→εe and b = fb + eb

−→εe

a+ b = ↑
∼

(fa + fb) + (ea + eb+ ↓
∼

(fa + fb))
−→εe

a− b = ↑
∼

(fa − fb) + (ea − eb+ ↓
∼

(fa − fb))
−→εe

a× b = ↑
∼

(fa × fb)
+

`

eafb + ebfa + eaeb+ ↓
∼

(fa × fb)
´−→εe

Table 1. Global error arithmetic.

mentation, we use double the precision for the error terms.

Let us give an example to explain the gain of this arith-

metic compared to interval arithmetic. Suppose that we

have floating point numbers with a mantissa of 5 digits only.

We start from y = 1 and subtract 106 times 10−6 to y. In

real number arithmetic, the result is obviously 0. In floating

point arithmetic, the result will be y = 1 as a cancella-

tion occurs at each subtraction. If we do the same com-

putation with the infimum/supremum interval arithmetic,

we obtain a final interval of width 1066. With the mid-

point/radius arithmetic, using doubled precision for the ra-

dius terms, we obtain (1, 1.0001), i.e. an enclosure of width

2 for the real result. With the global error arithmetic, we ob-

tain 1 + [−1.0001,−9.9977]−→εe , i.e. an enclosure of width

4 · 10−4 . This difference1 is due to the fact that the er-

ror term in the global error representation is directed: it is

not a radius indicating in which circle the real value lies but

rather an arrow aiming at it. For a more complete compar-

ison between various arithmetic used for the validation of

numerical programs, see [11].

The casting of a real number x into a global error num-

ber a proceeds as follows: the floating point part of a is the

closest floating point number to x, denoted ↑
∼

(x), and its

error part is the distance between x and ↑
∼

(x), denoted

↓
∼

(x). Thus we have:

a =↑
∼

(x)+ ↓
∼

(x)−→εe .

In a computer, the value ↓
∼

(x) is enclosed by the interval

[−u, u], where u is the value of the last bit of the repre-

sentation of ↑
∼

(x), and doubled precision is used. Basic

operations and elementary functions are defined over such

numbers. The rules for addition, subtraction and multipli-

cation are given in Table 1. So, if we use this arithmetic to

compute y
n+1

, we not only get the floating point value of

the next step but also its distance to the real value yr
n+1

:

yr
n+1

= y
n+1

+ [e
n+1

]−→εe

yr
n+1

− y
n+1

∈ [e
n+1

]. (3.6)

1A c++ program showing these results can be downloaded at

http://www.lix.polytechnique.fr/Labo/

Olivier.Bouissou/progs/patriot.cc

3.4. Putting Things Together

Using formulas (3.3), (3.4) and (3.6), we have:

ǫ
n+1

= η
n+1

+ χ
n+1

+ e
n+1

∈
d4f

dx4

`

R
´

−
d5(φn)

dx5

`

[xn, xn+1
]
´

+

J
`

ψn, yn + [ǫn]
´

.[ǫn] + [e
n+1

]. (3.7)

4. Controlling the Step Size

The global error can be estimated with our method and
interval arithmetic. Using this error estimator, one may
want to control the error by modifying the step-size in order
to achieve a prescribed accuracy. The main difficulty is that
it is in general very expensive to control the global error.
Actually, as it has been shown, the global error after n + 1
steps is computed as:

yn+1 − y(xn+1) =
`

yn+1 − y∗n+1

´

+
`

y∗n+1 − y(xn+1)
´

.

The second term represents the local error due to the method

and its implementation, while the first one represents the

stability of the dynamical system (in the sense of Lya-

punov’s stability [16]): given two close initial points, a

stable system will join them whereas an unstable system

will separate them. The second term depends on the cho-

sen method, and we can control it, whereas the first term

depends on the problem itself, and it is therefore not di-

rectly observable. If the problem is unstable between xn

and xn+1, this term grows, and a reduction in the step-size

does not affect this. Moreover, if we want to achieve a cer-

tain tolerance at time T , it may not be efficient to control

the global error before this point, as the integral curves may

converge only near T . So, controlling the global error gen-

erally requires at least two integrations of the problem, as

the step-size selection at one point strongly depends on what

happens next. Here we concentrate on the local error con-

trol for performance issues. Another reason why we should

do that comes from the previous formula. Clearly, keep-

ing the local error (the second term) small will affect the

global error and help to keep it small. Moreover, control

techniques often try to prevent from instability phenomenas

and thus keep the values of yn inside the stability region of

the problem: the control techniques we present will reduce

the step-size as soon as the derivative of the solution grows.

Thus, the accuracy of the computation will be increased in

the regions where the derivative is high, so that the first term

of the formula will be kept low.

For all these reasons, we focus on the following problem:

given a user-defined, absolute tolerance tol, adapt the step-

size so that the error introduced at each step (both method

and roundoff error) is smaller than tol. Obviously, as the

step-size decreases, the method error decreases. However,

the dependence of the roundoff error into the step-size is

not so obvious, and this error clearly limits the accuracy one

can obtain. Therefore, we only control the method error by

adapting the step-size. If one wants to control the roundoff

error as well, then increasing the precision of the computa-

tion by using multi-precision arithmetic such as the MPFR

library would be the easiest way.

The method for controlling the step-size is derived from
general methods of control theory for the automatic con-
trol of physical systems. The main idea is that the step-size
is the adjustment variable to control the truncation error,
which can be seen as a physical variable with an optimal
value, tol, and that we must bring as close as possible to it.
The dependence between the error and the step-size is given
by the formula

ǫn+1 = |ϕn| · h
5
n,

where |ϕn| is the enclosure of the value of the fifth deriva-
tive of f on the a priori enclosure for the nth step (between
xn and xn+1). This gives us a first control method, based
on the assumption that |ϕn| ≈ |ϕn+1|:

hn+1 =

„

tol

|ϕn+1|h5
n

« 1
5

hn

This controller is called the integral controller. Actually, if
you use this formula, then the error after the n+ 1st step is
ǫn+2 = |ϕn+2|.h

5
n+1 = |ϕn+1|.

tol
|ϕn+1|.h5

n
.h5

n = tol. How-

ever, the assumption that |ϕn| ≈ |ϕn+1| is in general false
for non trivial problems. Hence, this control mechanism
tends to overcompensate, leading to many variations in the
step-size and to rejected steps. To overcome this problem,
a first solution would be to use θ.tol instead of tol in the
formula, with θ ∈ [0, 1]. This smooths slightly the varia-
tions of hn, but this strategy is still not satisfactory for com-
plex problems. Hence, we build a more complex controller
which considers not only the previous step error to compute
the next step-size, but also takes into account the variation
of the error over the last two steps. In this way, if the error
is growing, then the previous controller will be adjusted so
that the step-size does not increase too much. On the con-
trary, if the error is decreasing, the controller will amplify
the variations of the step-size. The idea of this second con-
troller is to add, as in control theory, a term proportional to
the control error to the previous integral term. This leads to
the formula:

hn+1 =

„

θ.tol

rn+1

«k1
„

rn

rn+1

«kp

hn,

with rn = |ϕn+1|.h
5
n. k1 and kp are the controller parame-

ters. The difficulty is to chose them to achieve a good per-

formance. Ideally, they should be computed independently

for every problem, as they strongly depend on its condi-

tion. However, choosing k1 = 0.3
k

and kp = 0.2
k

is a good

choice for many problems.

5. Numerical Results and Benchmarks

We implemented this method in a C++ library that offers

an easy-to-use framework for solving differential equations.

Our implementation depends on two libraries:

• GiNaC [1], a formal derivation C++ library. With this

tool, we generate at compile time C++ code for the

higher order derivatives. We thus provide a source

code transformation system which computes all the

function needed for the computation of the error term.

• Profil/BIAS [9], a C++ interval library.

In this section, we study the performances of our library.

First, we compare the speed and accuracy of our library with

Taylor series methods; we chose to compare with AWA [10]

and VNODELP [13]. AWA was the first software to use

Taylor series to achieve guaranteed integration, and VN-

ODELP is the new version of VNODE, which is proba-

bly the validated solver that is used the most. We run the

tests with GRKLib, VNODELP and AWA but also with

VNODELP and AWA limited to order 5. Actually, the

main limitation of our method is its relatively low order,

but our RK4 method is much more efficient than Taylor se-

ries method of the same order, while as precise as them. We

then show how the method scales with problem size, toler-

ance and initial error. The tests were run on a laptop (two

1.7Ghz processors, 1Gb of RAM) running Ubuntu Linux.

We used g++ (version 4.1) with optimization options -O2.

5.1. Linear problem: pure contraction

We integrate the IVP (5.1) on the interval [0, 2000], and
with an absolute tolerance of 10−12 at each step. This prob-
lem is a pure contraction, meaning that the Jacobian matrix
does not rotate the error terms. Thus, the wrapping effect
described in 3.2 is very limited.

Ẏ =

0

@

−0.4375 0.0625 0.2652
0.0625 0.4375 0.2652
−0.2652 0.2652 0.375

1

AY Y0 =

0

@

1.0
1.0
1.0

1

A

(5.1)

Figure 3 shows how the CPU time depends on the integra-

tion time. VNODELP is 1.5 times faster than our library,

but we are 3 times faster than VNODELP with order 5.

AWA is more than 10 times slower than VNODELP of or-

der 5, whatever the order is. The time for one step is much

smaller for GRKLib (4.6 · 10−5 seconds against 3.8 · 10−4
for VNODELP). The width of the final enclosure is 2 ·10−9

for our method, 3.10−10 for VNODELP with order 5 and

10−12 for VNODELP and AWA. The error is bigger for

GRKLib because the error control method controls the step

size so that the local error introduced is of 10−12, and we

do not control the global error. If we integrate the same

 0.01

 0.1

 1

 10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
P

U
 t

im
e

 (
s
)

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 3. CPU time versus t for Problem (5.1)

problem with fixed, small step size, we can achieve a fi-

nal global error of 10−14 while being only 5 times slower.

Thus, we would greatly benefit from a global error control

which would predict the evolution of the step size in a better

way.

5.2. Linear problem: pure rotation

We solve the IVP (5.2), on the interval [0, 2000], with an
absolute tolerance of 10−12 at each step. This problem is
a pure rotation, meaning that the Jacobian matrix is almost
a rotation matrix. Thus, it widely suffers from wrapping
effect, and this problem shows the efficiency of Löhner’s
QR factorization method.

Ẏ =

0

@

0 −0.707107 0.5
0.707107 0 0.5

0.5 0.5 0

1

AY Y0 =

0

@

1.0
1.0
1.0

1

A

(5.2)

Figure 4 shows how the CPU time depends on the integra-

tion time. The time per step remains 10 times smaller for

GRKLib, but we need to make more steps because of our

limited order. The width of the error at t = 2000 is 2.10−9

for GRKLib, 10−11 for VNODELP and AWA and 6.10−10

for VNODELP with order 5. Once again, a global error

control method would help to reduce the error width.

5.3. Non linear problem: Lorenz equations

Finally, we applied our method on Lorenz equations
(5.3). We set the absolute tolerance to 10−12 and performed
the integration on the interval [0, 15].

8

<

:

ẏ1 = σ.(y2 − y1)
ẏ2 = y1.(ρ− y3) − y2
ẏ3 = y1.y2 − β.y3

8

<

:

y1(x0) = 15.0
y2(x0) = 15.0
y3(x0) = 36.0

(5.3)

Figure 5 shows how the computation time depends on the

time. Once again, the time per step is much smaller for

GRKLib, but as the derivatives of the function take very

high values, we need to make very small steps to achieve

 0.01

 0.1

 1

 10

 100

 100 300 500 700 900 1100 1300 1500 1700 1900

C
P

U
 T

im
e

 (
s
),

 l
o

g
a

ri
th

m
ic

 s
c
a

le

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 4. CPU time versus t for Problem (5.2)

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12 14

C
P

U
 T

im
e

 (
s
),

 l
o

g
a

ri
th

m
ic

 s
c
a

le

Integration time

GRKLIB
VNODE

VNODE_ORDER_5
AWA

AWA_ORDER_5

Figure 5. CPU time versus t for Problem (5.3)

the given tolerance. However, we remain 10 times faster

than VNODELP with order 5 and 2 times faster than AWA.

The final error at t = 15 is 4 ·10−3 for GRKLib, 5 ·10−6 for

VNODELP, 2 · 10−3 for VNODELP with order 5 and 10−4

for AWA. AWA with order 5 did not make it to t = 15.

The bigger number of steps we have to make explains this

difference.

5.4. Performance

Work versus problem size
To study how computation time depends on the problem

dimension, we used the DETEST problem C3 [7], as sug-
gested by Nedialkov [13]. The problem is given by:

Ẏ =

0

B

B

B

B

B

@

−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

...

0 0 · · · 0 1 −2

1

C

C

C

C

C

A

Y

with y0 = (1, 0, . . . , 0)T . We solved the equation from 0 to

2 for dimensions n = 40, 60, 80, . . . , 140. Figure 7 shows

the computation time per step (we need 42 steps to reach 2).

The complexity is O(n3) because the QR method to reduce

 1

 10

 100

 1000

 10000

 40 60 80 100 120 140

C
P

U
 t

im
e

/s
te

p
 (

s
),

 l
o

g
 s

c
a

le

Dimension

Figure 6. CPU time per step versus n

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12 1e+13
 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

C
P

U
 t

im
e

 (
s
),

 l
o

g
 s

c
a

le

A
c
c
u

ra
c
y
,

lo
g

 s
c
a

le

1/Tolerance, log scale

CPU Time (s)
Accuracy

Figure 7. CPU time and accuracy versus tol

the wrapping effect requires a matrix decomposition which

is the most time expensive part of the algorithm.

Work versus tolerance

To study the dependence of our method on

the tolerance, we integrate the linear problem

(5.1) on the interval [0, 1000] with a tolerance

tol = 5.10−2, 10−2, 5.10−3, . . . , 5.10−14. Figure 7

shows how CPU time and accuracy depends on the toler-

ance. As excepted, the accuracy increases as the tolerance

decrease, whereas the CPU time increases.

Accuracy versus initial conditions

To study how the method depends on initial conditions,

we integrate the Lorenz equations (5.3) with initial errors

tol = 10−4, 10−5, . . . , 10−9. We present on Figure 5.4 the

maximum time at which we were able to integrate (5.3) for

each value of tol. As excepted, the bounds diverge much

quicker than for point initial conditions; on this problem,

the bounds tend to explode as soon as they start diverging.

6. Conclusion

In this article, we have shown the feasibility of a guar-

anteed version of the classical numerical algorithm RK4.

The guaranteed nature of our method differs from previous

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10000 100000 1e+06 1e+07 1e+08 1e+09

M
a

x
im

u
m

 i
n

te
g

ra
ti
o

n
 t

im
e

 (
s
)

1/(initial error), log scale

GRKLib
VNODE

Figure 8. Maximum Tend versus initial error

works in the sense that we compute non validated points

in a first step and then guaranteed error bounds. To com-

pute these bounds, we localize every type of errors that may

occur during the computation of the approximating points:

truncation errors due to the method, propagation errors due

to the dynamical system, and roundoff errors due to the pre-

cision of machines on which the method is implemented.

We use a constant a priori enclosure to compute truncation

errors, Löhner’s method to reduce the wrapping effect in

propagation errors, and the global error domain for round-

off errors. We also use a step-size control mechanism that

gives good performance results.

We believe that this method is promising because it does

not mix interval and floating point computations. Actually,

intervals are used only for verification tasks and not for the

computation of the next approximation points. This clear

separation is analogous to the separation between floating

point numbers and intervals in global error arithmetic. This

has given very good results in the field of numerical vali-

dation, so we are confident that it should perform well for

guaranteed integration.

The idea of separation between interval and floating

point computations is orthogonal to the choice of the nu-

merical method. Actually, all we need is an iteration func-

tion for which the derivatives are computable. We chose to

base our library first on Runge-Kutta methods because they

are widely used for numerical (non guaranteed) integration

and that users generally know how to tune the step size con-

trol mechanism to make the method as precise as possible.

However, we do not want to limit ourselves to this partic-

ular integration scheme, and we plan to add more sophisti-

cated ones to our library to fit better to more types of prob-

lems. Especially, we are planning to use higher order nu-

merical integration schemes; experimentations showed that

the mean step size is the main limitation to performance and

accuracy, the use of higher order methods will allow bigger

step sizes and consequently much better performances.

References

[1] C. Bauer, A. Frink, and R. Kreckel. Introduction to the

GiNaC framework for symbolic computation within the C++

programming language. Journal of Symbolic Computation,

33(1):1–12, 2002.

[2] L. Bieberbach. On the remainder of the runge-kutta for-

mula in the theory of ordinary differential equation. ZAMP,

2:233–248, 1951.

[3] J. C. Butcher. The numerical analysis of ordinary differential

equations: Runge-Kutta and general linear methods. Wiley-

Interscience, New York, 1987.

[4] G. Corliss and Y. F. Chang. Solving ordinary differential

equations using Taylor series. ACM Transaction on Mathe-

mathical Software, 8(2):114–144, 1982.

[5] G. Hanrot, V. Lefevre, R. F., and P. Zimmermann. The

MPFR library. Available at www.mpfr.org.

[6] T. Henzinger and P. Ho. Algorithmic analysis of nonlinear

hybrid systems. In CAV, volume 939 of LNCS, pages 225–

238. Springer Verlag, 1995.

[7] T. Hull, W. Enright, B. Fellen, and A. Sedgwick. Compar-

ing numerical methods for ordinary differential equations.

Journal on Numerical Analysis, 9(4):603–637, 1972.

[8] M. Kieffer and E. Walter. Guaranteed nonlinear state esti-

mator for cooperative systems. Journal of Numerical Algo-

rithms, 37(1–4):187–198, Dec. 2004.

[9] O. Knüppel. PROFIL/BIAS – A fast interval library. Comput-

ing, 53:277–287, 1994.

[10] R. Löhner. Einschliessung der Lösung gewöhnlicher

Anfangs- und Randwertaufgaben und Anwendungen. PhD

thesis, Universität Karlsruhe, 1988.

[11] M. Martel. An overview of semantics for the validation of

numerical programs. In VMCAI, volume 3385 of LNCS,

pages 59–77. Springer, 2005.

[12] N. Nedialkov, K. Jackson, and G. Corliss. Validated solu-

tions of initial value problems for ordinary differential equa-

tions. Applied Mathematics and Computation, 105(1):21–

68, 1999.

[13] N. S. Nedialkov. Interval tools for ODEs and DAEs. Tech-

nical Report CAS 06-09-NN, Dept. of Computing and Soft-

ware, McMaster University, 2006.

[14] S. Putot, E. Goubault, and M. Martel. Static analysis-based

validation of floating-point computations. In Numerical

Software with Result Verification, volume 2991 of LNCS,

pages 306–313. Springer, 2003.

[15] A. Rauh, E. Auer, E. Hofer, and W. Luther. Validated mod-

eling of mechanical systems with SmarMOBILE: Improve-

ment of performance by ValEncIA-IVP. In Reliable Imple-

mentation of Real Number Algorithms: Theory and Prac-

tice. Springer Verlag, to appear.

[16] S. Sastry. Nonlinear Systems Analysis, Stability and Control.

Spinger, Berlin, 1999.

[17] O. Stauning. Automatic Validation of Numerical Solutions.

PhD thesis, Technical University of Denmark, Lyngby, Den-

mark, 1997.

[18] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.

Springer Verlag, New York and Berlin, 1993.

