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GRÖBNER BASES, H–BASES AND INTERPOLATION

THOMAS SAUER

Abstract. The paper is concerned with a construction for H–bases of poly-
nomial ideals without relying on term orders. The main ingredient is a ho-
mogeneous reduction algorithm which orthogonalizes leading terms instead
of completely canceling them. This allows for an extension of Buchberger’s
algorithm to construct these H–bases algorithmically. In addition, the close
connection of this approach to minimal degree interpolation, and in particular
to the least interpolation scheme due to de Boor and Ron, is pointed out.

1. Introduction

The concept of Gröbner bases, introduced by Buchberger [7] in 1965, has become
an important ingredient for the treatment of various problems in computational
algebra, see [9] for an extensive survey. This concept has also been extended to more
general situations, like Gröbner bases of modules, for example, in [19]. However,
all approaches related to Gröbner bases are fundamentally tied to term orders,
which leads to asymmetry among the variables to be considered. On the other
hand, the concept of H–bases, introduced long ago by Macaulay [14], is based
solely on homogeneous terms of a polynomial. This paper gives an algorithmic
approach to H–bases which works in terms of homogeneous polynomials only and is
based on a reduction algorithm which orthogonalizes (homogeneous) leading terms
instead of canceling them. In contrast to the situation of term orders, where the
leading terms are only single monomials, cancellation is in general impossible for full
homogeneous terms, but if it is possible, the orthogonalization is capable of doing
that. Nevertheless, this generalized reduction is suitable for a characterization of
H–bases by means of reduction of a basis of the module of syzygies. This will
lead to a straightforward extension of Buchberger’s algorithm for the generation of
H–bases.

Buchberger’s first intention for the introduction of Gröbner bases for an ideal I
was to compute a multiplication table modulo the ideal, where the notion of reduc-
tion gave rise to a “natural” or “standard” basis for the vector space Π/I. If I is a
zero dimensional ideal (or, an ideal of finite codimension), i.e., I = ker Θ for some
finite set Θ of linear functionals defined on Π, then we can ask for the associated
interpolation problem. Any representation of Π/I is now an interpolation space
(i.e., a finite dimensional subspace of Π where the interpolation problem is uniquely
solvable), and one can ask again for “natural” or “standard” interpolation spaces.
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2294 THOMAS SAUER

Indeed, we will find that the interpolation space induced by the reduction process
is a well–known one: it is the least interpolation space, developed by de Boor and
Ron [3]. In this context it is now possible by the general H–basis construction to
find H–bases for the ideal that reflect some symmetries or geometric properties of
the ideal in the interpolation space which will be destroyed by the more artificial
preferences among variables which term orders induce.

The paper is organized as follows. After setting up the necessary notation in
Section 2, the reduction algorithm will be presented in Section 3. In Section 4
the notion of an H–basis will be recalled and it will be shown that the reduction
algorithm plays the same role for characterizing H–bases as is known for Gröbner
bases. Finally, in Section 5, the connections to minimal degree interpolation will
be pointed out.

2. Notation

For a field K, we denote the ring of d–variate polynomials over K by

Π = K[x] = K [ξ1, . . . , ξd] ,

where the number of variables d is fixed throughout this paper. We will use standard
multi-index notation, writing, for α ∈ Nd0 and x = (ξ1, . . . , ξd) ∈ Kd,

α! = α1! · · ·αd!, xα = ξα1
1 · · · ξ

αd
d ,

as well as

|α| =
d∑
j=1

αj

for the length of a multi-index α ∈ Nd0. Let w ∈ Nd be a weight vector of positive
integers. This weight vector induces a notion of w–degree, δw, if we set

δw (xα) = w · α =
d∑
j=1

wjαj , α ∈ Nd0,

for the monomials and use the straightforward extension

δw(p) = max {δw (xα) : pα 6= 0} , p =
∑
α∈Nd0

pαx
α.

By Πn,w ⊂ Π we denote the vector space of all polynomials of w–degree less than or
equal to n, and by Π0

n,w ⊂ Πn we denote the vector space of all homogeneous poly-
nomials of total degree exactly n. Using the normalized monomials as a convenient
basis, we can write

Πn,w =

 ∑
w·α≤n

cα
xα

α!
: cα ∈ K

 , Π0
n,w =

{ ∑
w·α=n

cα
xα

α!
: cα ∈ K

}
.

Moreover, we will write Λw(p) ∈ Π0
δw(p),w for the leading term of p with respect

to the grading induced by w, which is the unique homogeneous polynomial of w–
degree δw(p) such that δw (p− Λw(p)) < δw(p). In the special situation that w =
(1, . . . , 1), the above notation reduces to the total degree; in this case, we will omit
the reference to w, i.e., δ(p) denotes the total degree of a polynomial and so on.
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Let P ⊂ Π be any finite or infinite set of polynomials. Then we denote the ideal
generated by P by

〈P〉 = 〈p : p ∈ P〉 =

∑
p∈P

qpp : qp ∈ Π, p ∈ P

 .

Let I ⊂ Π be an ideal. Then

Λw(I) := {Λw(p) : p ∈ I}
is called the w–homogeneous ideal generated by I.

3. A reduction algorithm

For m ∈ N, an m–vector of polynomials (p1, . . . , pm) ∈ Πm and n ∈ N0, we
define the following vector space of homogeneous polynomials:

Vn (p1, . . . , pm) =


m∑
j=1

qjΛw (pj) : qj ∈ Π0
n−δw(pj),w

, j = 1, . . . ,m

 ⊂ Π0
n,w,

where we use the standard convention that qj = 0 if n < δw (pj). Moreover, let any
inner product defined on Π be given, i.e., any (strictly) positive definite bilinear
(or, if K = C, sesquilinear) form mapping Π×Π→ K. This inner product induces
a notion of orthogonality, and therefore we can define the following decomposition
into successive orthogonal complements:

Wn (p1) := Vn (p1) ,
Wn (p1, . . . , pj) := Vn (p1, . . . , pj)	 Vn (p1, . . . , pj−1) , j = 2, . . . ,m.

Hence, there is the direct sum decomposition

Vn (p1, . . . , pm) =
m⊕
j=1

Wn (p1, . . . , pj) .

Note that in general this decomposition depends on the order of p1, . . . , pm and
that certain of the subspaces Wn (p1, . . . , pj) can be trivial, which will mean that
pj is redundant for the reduction process. The latter happens if and only if for any
qj ∈ Π0

n−δw(pj),w
there exist qk ∈ Π0

n−δw(pk),w, k = 1, . . . , j − 1, such that we have
the following syzygy of leading terms:

qjΛw(pj) =
j−1∑
k=1

qkΛw (pk) ;

in other words, pj is redundant iff

Λw (pj) Π0
n−δw(pj),w

⊆ 〈Λw (pk) : k = 1, . . . , j − 1〉 .
The main ingredient for what follows is a “nonlinear version” of Gaussian elimina-
tion or Gram–Schmidt orthogonalization which divides off ideal terms to greatest
possible extent.

Algorithm 3.1 (Reduction).
Given: p ∈ Π and (p1, . . . , pm) ∈ Πm.

1. Set fδw(p) = p.
2. For n = δw(p), δw(p)− 1, . . . , 0.
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(a) (Successive orthogonal projection)
For j = 1, 2, . . . ,m:
Determine qnj ∈ Wn (p1, . . . , pj),

qnj =
j∑

k=1

qnjkΛw (pk) , qnjk ∈ Π0
n−δw(pk),w,(3.1)

such that

Λw (fn)−
j∑

k=1

qnjkΛw (pk) ⊥Wn (p1, . . . , pj) .(3.2)

(b) Set

rn := Λw(fn)−
m∑
j=1

qnj = Λw(fn)−
m∑
j=1

qnjkΛw(pk).(3.3)

(c) (Cancellation of leading term)
Set

fn−1 := fn − rn −
m∑
j=1

j∑
k=1

qnjkpk.

Result: Representation

p =
m∑
k=1

δw(p)∑
n=0

m∑
j=k

qnjk

 pk +
δw(p)∑
n=0

rn =:
m∑
k=1

qkpk + r,(3.4)

where

δw(qk) + δw(pk) ≤ δw(p) and rn ⊥ Vn (p1, . . . , pm) .(3.5)

Definition 3.2. A polynomial f ∈ Π is called reduced with respect to the vector
of polynomials (p1, . . . , pm) if each homogeneous term of f is reduced to zero; in
other words, if we write

f =
δw(f)∑
j=0

fj, fj ∈ Π0
j,w, j = 0, . . . , δw(f),

then f is reduced if and only if

fj ⊥ Vj (p1, . . . , pm) , j = 0, . . . , δw(f).

Remark 3.3. Since Vn (p1, . . . , pm) = Vn
(
pσ(1), . . . , pσ(m)

)
for any permutation σ

of the numbers {1, . . . ,m}, the question whether a polynomial is reduced or not
is independent of the order of polynomials in the vector. If the remainder r is not
zero, however, this remainder will in general depend on the order of the polynomials
p1, . . . , pm.

Remark 3.4. It is also worthwhile to note here that the notion of a reduced poly-
nomial depends on the inner product used in the direct sum decomposition of the
reduction algorithm, and that different inner products will usually give different
classes of reduced polynomials. We will make the inner product more specific when
we consider the connection to least interpolation in a later section.
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Hence, equation (3.4) can be interpreted as decomposing a polynomial into a
part which lies in 〈p1, . . . , pm〉, the ideal generated by (p1, . . . , pm), and a reduced
“remainder” r ∈ Π. We will denote the reduced part of p with respect to the vector
(P) = (p1, . . . , pm) by

p→(p1,...,pm) or by p→(P),

where the ordering of (P) is arbitrary but fixed.
However, we still have to verify (3.5). This is an immediate consequence of the

following observation on the intermediate polynomials of the reduction step.

Lemma 3.5. The polynomials rn, n = 0, . . . , δw(p), defined in (3.3), satisfy equa-
tion (3.5).

Proof. We verify by induction on j = 1, . . . ,m that the polynomials qnj , defined in
(3.1), have the property that

Λw (fn)−
j∑

k=1

qnj ⊥ Vn (p1, . . . , pj) ;

Equation (3.5) is then the case j = m. Indeed, j = 1 follows readily from the
definition of qn1 . For j > 1 we use the induction hypothesis and the fact that

qnj ∈Wn (p1, . . . , pj) ⊥Wn (p1, . . . , pj−1)

to conclude that

Λw (fn)−
j∑

k=1

qnj ⊥ Vn (p1, . . . , pj−1) .

Together with (3.2) and the identity

Vn (p1, . . . , pj) = Vn (p1, . . . , pj−1)⊕Wn (p1, . . . , pj) ,

this advances the induction hypothesis.

4. H–bases as homogeneous Gröbner bases

We begin this section by recalling the notion of an H–basis, introduced by
Macaulay [14].

Definition 4.1. A (finite) set H ⊂ Π is called an H–basis (or Macaulay basis) for
the ideal I if for any f ∈ I there exist polynomials qp, p ∈ H, such that

f =
m∑
p∈H

qpp and δ (qpp) ≤ δ(f), p ∈ H.(4.1)

On the other hand, we have the following, well–known alternative description of
H–bases.

Proposition 4.2. A finite set H ⊂ Π is an H–basis for an ideal I if and only if

Λ(I) := 〈Λ(p) : p ∈ I〉 = 〈Λ(p) : p ∈ H〉 =: 〈Λ(H)〉 .(4.2)
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2298 THOMAS SAUER

Clearly, this notion can easily be extended to arbitrary weight vectors w ∈ Nd
and the grading they induce. Thus, we call H ⊂ Π an H–basis (with respect to w)
for the ideal I if for any f ∈ I there exist polynomials qp ∈ Π, p ∈ H, such that

f =
∑
p∈H

qp p, δw (qpp) ≤ δw(f), p ∈ H,

or, equivalently, if Λw(I) = 〈Λw(H)〉.
We next show that H–bases are closely related to the idea of reduction introduced

in Algorithm 3.1.

Theorem 4.3. Let H be an H–basis for 〈H〉. Suppose that f ∈ Π can be written
as

f =
∑
p∈H

qpp+ r, qp ∈ Π, p ∈ H,

for some reduced polynomial r ∈ Π. Then

r = p→(H) .

This immediately implies the following conclusion.

Corollary 4.4. If H is an H–basis, then the reduced polynomial generated by the
reduction algorithm is independent of the order of the elements in H.

Therefore, whenever H is an H–basis, we can simply speak of reduction modulo
(the set) H, which will be written as →H.

Proof of Theorem 4.3. Suppose that (H) = (p1, . . . , pm), and let q̃j , j = 1, . . . ,m,
and r̃ = p→(p1,...,pm) be the coefficients and the remainder obtained by the reduc-
tion algorithm. Then,

f =
m∑
j=1

qjpj + r =
m∑
j=1

q̃jpj + r̃,

or, in other words,

r − r̃ =
m∑
j=1

(q̃j − qj) pj ∈ 〈p1, . . . , pm〉 .

Set g := r − r̃ and assume that g 6= 0. Since r and r̃ are reduced, we have that

Λw(r) ⊥ Vδw(r) (p1, . . . , pm) and Λw(r̃) ⊥ Vδw(r̃) (p1, . . . , pm) .

If δw(r) 6= δw(r̃), then either Λw(g) = Λw(r) or Λw(g) = Λw(r̃), and therefore

Λw(g) ⊥ Vδw(g) (p1, . . . , pm) .(4.3)

The same also follows if δw(r) = δw(r̃) and Λw(r) 6= Λw(r̃). In the remaining case,
we continue with the polynomials r−Λw(r) and r̃−Λw(r̃), which are still reduced
but have strictly smaller degree. Hence, after a finite number of steps we must
again arrive at (4.3), since we assumed that g 6= 0. However, since g ∈ 〈p1, . . . , pm〉,
we also obtain that

Λw(g) ∈ 〈Λ(H)〉 ∩Π0
δw(g),w = Vδw(g) (p1, . . . , pm) ,

which is a contradiction. Hence, g = 0 and therefore r = r̃ = f →(H).
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Let us now investigate the relationship between H–bases and Gröbner bases in
more detail. For that purpose let us recall that a finite set G ⊂ Π is called a Gröbner
basis (with respect to the term order ≺) if

Λ≺ (〈G〉) = 〈Λ≺ (G)〉 ,(4.4)

where Λ≺ denotes the leading term according to the term order. Gröbner bases
have been introduced by Buchberger in his thesis [7, 8] (supervised by Gröbner) and
became a useful tool (not only) in Computer Algebra systems. An introduction to
Gröbner bases can be found in [11]. It has, for example, been remarked in [17] that
any Gröbner basis with respect to a term order which is subordinate with the partial
ordering by the degree δw (i.e., δw(p) < δw(q) implies p ≺ q) is also an H–basis
with respect to w. The classical example of such a term order for w = (1, . . . , 1) is
the graded lexicographical one.

In view of (4.2) and (4.4), H–bases are the homogeneous counterpart of Gröbner
bases, without using term orders any more. Besides the striking simplicity of this
relationship, it allows us to find a way to construct term order free H–bases by
straightforwardly modifying Buchberger’s algorithm. This is based on the following
characterization of H–bases via reduction.

Theorem 4.5. A finite set H ⊂ Π is an H–basis if and only if

δw

∑
p∈H

qpp

 < max
p∈H

δw (qpp) ⇒
∑
p∈H

qpp→(H) 0.(4.5)

Proof. Let

g =
∑
p∈H

qpp.

Since g ∈ 〈H〉 and since the remainder of reduction is unique for H–bases by
Theorem 4.3, the direction “⇒” is obvious.

To prove “⇐”, we follow the argumentation from [18] and pick any f ∈ 〈H〉
which can be written as

f =
∑
p∈H

qpp, qp ∈ Π, p ∈ H.

If

δw(f) = max
p∈H

δw (qpp) = max
p∈H

(δw(qp) + δw(p)) ,

then Λw(f) ∈ 〈Λw(H)〉, which is what we want. Suppose now that there is a
cancellation of leading terms, which means that δw(f) < maxp∈H (δw(qp) + δw(p)).
Consequently, there is a finite subset J ⊂ H such that∑

p∈J
Λw (qp) Λw(p) = 0.

By the assumption (4.5) we have that∑
p∈J

Λw (qp) p→(H) 0, hence
∑
p∈J

Λw (qp) p =
∑
p∈H

gpp,

for appropriate polynomials gp ∈ Π, p ∈ J , such that

max
p∈H

(δw(gp) + δw(p)) < max
p∈J

(δw(qp) + δw(p)) .
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Setting, in addition, gp = Λw(qp), p ∈ H \ J , we obtain that

f =
∑
p∈H

(qp − Λw(qp) + gp) p =:
∑
p∈H

q̃pp,

where

δw(p) ≤ max
p∈H

δw (q̃p) + δw(p) < max
p∈H

δw (qp) + δw(p).

Since the maximal total degree of the representation is strictly reduced in any
step, we arrive, after repeating this argument as long as necessary, at the case that
δw(f) = maxp∈H δw (qpp) and therefore Λw(f) ∈ 〈Λw(H)〉, which means that H is
an H–basis.

The first statement in (4.5) means that the polynomials qp, p ∈ H, form a syzygy
of leading terms of H. Let us briefly recall the notion of a syzygy: given a finite set
P ⊂ Π, a P–tuple g = (gp : p ∈ P) ⊂ ΠP is called a syzygy with respect to P if∑

p∈P
gpp = 0.

Also, we denote by S(P) the module of all syzygies with respect to P . It is well–
known (cf. [12]) that S(P) is finite. This means that there is a finite generating
set G ⊂ S(P), most conveniently written as a matrix

G = [gj,p : j = 1, . . . ,M, p ∈ P ] ,

such that any syzygy g ∈ S(P) can be written as

g =

 M∑
j=1

qjgj,p : p ∈ P

 , qj ∈ Π, j = 1, . . . ,M.

Moreover, such a basis can be constructed effectively (see [9, Method 6.17]) by using
a (reduced) Gröbner basis for the ideal 〈P〉.

Next, let us record the fact that, instead of considering the reduction of all the
syzygies in S (Λ(H)), it suffices to check a basis only. The proof of this result is
almost obvious.

Corollary 4.6. Let H ⊂ Π be a finite set of polynomials and let G be a basis of
S (Λ(H)). Then H is an H–basis if and only if∑

p∈P
gpp→(H) 0, g ∈ G.

This allows us to reformulate Buchberger’s algorithm for the construction of
H–bases without term orders.

Algorithm 4.7. Given: finite set H ⊂ Π.
1. Construct a basis G for S (Λ(H)).
2. For g ∈ G

(a) Compute

h =
∑
p∈H

gpp→(H) .

(b) If h 6= 0, set H := H ∪ {h} and continue at 1.
Result: H–basis H.
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The proof that this algorithm terminates (a consequence of the ascending chain
condition) and produces an H–basis (which follows from Corollary 4.6) is exactly
the same as for Gröbner bases with respect to a term order.

Remark 4.8. Clearly, Algorithm 4.7 is far from optimal efficiency. The “standard
method” for the computation of a basis of the module of syzygies from [9] requires
the computation of a reduced Gröbner basis for 〈Λw(H)〉. Therefore a fast and
simple method for this task would be crucial for performance. At least some simple
possibilities for the improvement of the algorithm should be given here.

1. There is a lot of redundancy in computing the basis G in step 1 “from scratch”
each time. As already remarked, the method sketched in [9] uses a reduced
Gröbner basis for 〈Λw(H)〉. Since in any step of the iteration process the
set of polynomials H is almost the same, except that one more polynomial is
added, the original Gröbner basis can be re–used to a great extent.

2. As Möller pointed out in [18], it is also possible to re–use the earlier bases of
syzygies in variants of Buchberger’s algorithm: a basis for S (Λ(H∪ {h})) is
given by

{(g, 0) : g ∈ S (Λ(H))} ∪G′,
where G′ is some basis for the syzygies involving the additional element h.

3. In view of the simplicity of the reduction algorithm from the previous section,
it may be beneficial to have the elements ofHmutually reduced, i.e., p→H\{p}
0, p ∈ H. First, this removes redundancies and therefore keeps the number
of elements in H as small as possible; and, second, it makes the orthogonal
projections simpler and more efficient. Adding one more h (which is already
reduced with respect to H) then only requires us to set p := p→{h}, p ∈ H.

Nevertheless, the effort to compute H–bases even in the above way may pay off
since, in contrast to Gröbner bases, H–bases are able to preserve symmetries. A
simple example is the ideal generated by the two ellipses

p1(x, y) = ax2 + y2 − 1, p2(x, y) = x2 + ay2 − 1, a > 1,(4.6)

which are easily seen to be an H–basis with respect to the total degree grading: since
the module of syzygies of leading terms is generated by

(
x2 + ay2,−

(
ax2 + y2

))
;

any syzygy of leading terms is of the form

q
(
x2 + ay2

)
p1(x, y)− q

(
ax2 + y2

)
p2(x, y)

= q
(
ax2 + y2

)
− q

(
x2 + ay2

)
= q (p1(x, y)− p2(x, y)) , q ∈ Π,

and thus reduces to zero. A reduced H–basis with respect to the inner product in
(5.4) is given, for example, by

f1(x, y) =
p1 + p2

2
=
a+ 1

2
x2 +

a+ 1
2

y2 − 1

f2(x, y) =
p1 − p2

2
=
a− 1

2
x2 − a− 1

2
y2.

This basis still captures the symmetry of the problem to a great extent; any Gröbner
basis, on the other hand, will destroy the symmetry of these polynomials by en-
forcing a term order.

It is a well–known fact (cf. [11]) that the reduced Gröbner basis for an ideal is
unique. This is no longer true for H–bases, even if we require all elements of the
basis to be mutually reduced. The details of this observation and a characterization
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of all “normalizations” which map reduced H–bases into reduced H–bases of the
same ideal can be found in [20].

It has also been pointed out in [20] how H–bases can be used to replace Gröbner
bases for the computation of common zeros of polynomials, i.e., solutions of systems
of polynomial equations, for example by Stetter’s method (cf. [24]), where the
problem of solving nonlinear equations is reduced to an eigenvalue problem (see
also [21]). Here, H–bases can be used to overcome representation singularities,
which are known from [25] to cause severe numerical problems, as is shown by the
following modification of the above example. For φ ∈ [0, 2π), let Rφ ∈ R2×2 denote
the rotation matrix with respect to the angle φ and consider the polynomials

pφ,j := pj

(
R−1
φ ·
)
, j = 1, 2,(4.7)

which again form an H–basis for the ideal Iφ they generate. Clearly, this H–basis
depends continuously on φ. The Gröbner bases for Iφ, however, depend only on
whether φ is a multiple of π/2 or not; hence they show a discontinuous behavior at
the values φ = 0, π2 , π,

3π
2 . “Close” to these cases, the quotient between the moduli

of the largest and the smallest nonzero coefficient of at least one element of the
Gröbner basis grows to infinity. As shown in [25], this effect makes the nonlinear
system almost unsolvable when done in finite precision arithmetic.

5. Interpolation

The motivation for this paper was a close relationship between Gröbner bases
for zero dimensional ideals (or, ideals of finite codimension) and associated inter-
polation spaces as shown in [10, 15]. In the context of minimal degree interpolation
spaces with minimal monomials these results were partially rediscovered and par-
tially extended in [22, 23]. More precisely, if G denotes the unique reduced Gröbner
basis of a zero dimensional ideal with respect to a certain term order, then the
associated minimal degree interpolation space (defined by means of interpolation)
is nothing but the standard representation for Π/ 〈G〉 induced by the Gröbner basis,
and the processes of interpolation and reduction are equivalent.

Let us recall some terminology on polynomial interpolation. A finite set of linear
functionals Θ ⊂ Π′ is said to be an ideal interpolation scheme (cf. [1]) if

ker Θ = {p ∈ Π : θ(p) = 0, θ ∈ Θ} ⊂ Π

forms an ideal in Π. In this case the components of the primary decomposition of
ker Θ correspond to interpolation of a D–invariant set of partial differential opera-
tors (see [4, 16]) which may be viewed as a natural extension of Hermite interpo-
lation. A finite dimensional subspace P ⊂ Π is called an interpolation space with
respect to Θ if for any q ∈ Π there is a unique p ∈ P such that Θ(p) = Θ(q), i.e.,
θ(p) = θ(q), θ ∈ Θ.

A subspace P ⊂ Π is called a minimal degree interpolation space if it is an
interpolation space such that the interpolation operator LΘ,P : Π→ P is w–degree
reducing, i.e.,

δw (LΘ,Pq) ≤ δw(q), q ∈ Π.

Minimal degree interpolation is treated, for example, in [6, 22]. Given any Θ, there
is usually a multitude of minimal degree interpolation spaces, so that choosing a
“proper” one, or at least a unique one, requires some extra efforts. However, any
H–basis defines a minimal degree interpolation space, as is easy to see now.
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Theorem 5.1. Let Θ ⊂ Π′ be an ideal interpolation scheme and let H be an H–
basis for ker Θ. Then PH = Π→H is a minimal degree interpolation space with the
associated interpolation operator

LΘ,PHq = q →H, q ∈ Π.(5.1)

Proof. Since, for any q ∈ Π, we have that q− (q →H) ∈ 〈H〉 = ker Θ, and therefore

Θ (q →H) = Θ (q − q + q →H) = Θ (q)−Θ (q − q →H) = Θ(q),

it follows that the space PH is an interpolation space; and since the definition of
the reduction process implies that δw (q →H) ≤ δw(q), it is degree reducing and
therefore of minimal degree.

We first remark that Theorem 5.1 allows for implicit interpolation where the
interpolation conditions Θ are only given by its dual, the ideal ker Θ. It is interest-
ing that the oldest approach to multivariate polynomial interpolation, pursued by
Kronecker [13] in 1865, starts with exactly this assumption.

Moreover,1 in the case w = (1, . . . , 1) the “simplest” inner product, which is, for

p =
∑

|α|≤δw(p)

pα x
α, q =

∑
|α|≤δw(q)

qα x
α

defined as

(p, q)∗ =
∑
α∈Nd0

pα qα,(5.2)

yields Macaulay’s inverse systems (cf. [12, p. 174]) as the interpolation space. Con-
versely, the reduction approach from the previous section therefore gives an algo-
rithm to compute this inverse system by using reduction instead of the systems of
equations give in [12], which also assume the knowledge of an H–basis.

The least interpolation space, introduced by de Boor and Ron in [3] (see also
[5, 6] for further investigations and algorithmic aspects), is given as

Pl =
⋂

q∈ker Θ

Λ(q)(D).(5.3)

The name “least interpolation” stems from representing linear functionals in Π′ as
formal power series and defining the least term of a power series (the “counterpiece”
of the leading term) as the nonzero homogeneous term of least total degree in the
power series. Then Pl is the vector space spanned by the least terms of the power
series representation of θ ∈ Θ. Actually, this is how de Boor and Ron introduced
least interpolation, but for our purposes here, the equivalent description by (5.3) is
more convenient. Again, the extension of this notion to arbitrary weight vectors is
straightforward.

To relate reduction with respect to a particular H–basis with least interpolation,
we have to specify the inner product. For the sake of simplicity we will restrict
ourselves to K = R; the case K = C can be easily obtained by inserting complex
conjugation in a straightforward way.

The (canonical) inner product we have in mind here and which has also been
used in [4, 6] is, for p, q ∈ Π, to choose

(p, q) = (p(D)q) (0),(5.4)

1I am grateful to one of the referees for pointing out this connection to me.
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where for any polynomial p ∈ Π we let

p(D) = p

(
∂

∂ξ1
, . . . ,

∂

∂ξd

)
denote the associated constant coefficient partial differential operator which is ob-
tained by replacing the powers xα in p by ∂|α|/∂xα. If we write

p =
∑

|α|≤δw(p)

pα
xα

α!
, q =

∑
|α|≤δw(q)

qα
xα

α!
,

then

(p, q) =
∑
|α|∈Nd0

pαqα
α!

.

Remark 5.2. Note that there is a subtle but important difference between the two
inner products (5.2) and (5.4), because the latter one admits the useful identity
(pq, f) = (p, q(D)f), which immediately implies that, whenever a polynomial p is
reduced with respect to a H–basis H, then all derivatives of p are reduced as well,
and hence the space Π →H is closed under differentiation. This property, which
also follows directly from (5.3), has been observed by de Boor and Ron, who first
observed and proved the D–invariance of the least interpolation space.

Nevertheless, D–invariance relies on the choice of the inner product and is not
satisfied by Macaulay’s inverse systems, as the following simple example shows: the
inverse system with respect to the bivariate (reduced) H–basis

H =
{
x+ y, x3 − x2y + xy2 − y3

}
is easily seen to be

span
{

1, x− y, x2 − xy + y2
}

;

however, the polynomial

∂

∂x

(
x2 − xy + y2

)
= 2x− y

does not belong to that linear space.

The following result finally connects the notion of reduced polynomials with
respect to the inner product (·, ·) to least interpolation.

Proposition 5.3. Let H ⊂ Π be an H–basis for 〈H〉. Then a polynomial q ∈ Π is
reduced with respect to the inner product (·, ·) from (5.4) if and only if

q ∈
⋂
p∈H

ker Λw(p)(D) =
⋂

p∈〈H〉
ker Λw(p)(D).(5.5)

Proof. Let us first assume that q is w–homogeneous, i.e.,

q =
∑

w·α=δw(q)

qα
xα

α!
.
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For any p ∈ Π, if δw(p) > δw(q), then Λw(p)(D)q = 0, while in the case δw(p) ≤
δw(q) we have that

Λw(p)(D)q =
∑

w·α=δw(p)

pα
α!
∂|α|

∂xα

∑
w·β=δw(q)

qβ
β!
xβ

=
∑

w·α=δw(p)

∑
w·β=δw(q)

pαqβ
α!β!

β!
(β − α)!

xβ−α

=
∑

w·α=δw(p)

∑
w·β=δw(q)

pαqβ
α!(β − α)!

xβ−α

=
∑

w·γ=δw(q)−δw(p)

∑
β−α=γ

pαqβ
α!γ!

xγ .

Now, we have Λw(p)(D)q = 0 if and only if, for any γ ∈ Nd0 such that w · γ =
δw(q)− δw(p),

0 =
∑

β−α=γ

pαqβ
α!γ!

=
∑

w·β=δw(p)

pβ−γqβ
(β − γ)!γ!

=
∑

w·β=δw(p)

1
β!

 ∑
α+µ=β

β!
α!µ!

pαδµ,γ

 qβ = (xγΛw(p), q) .

Since the set

{xγp : w · γ = δw(q)− δw(p), p ∈ H} ⊂ Π0
δw(q),w

generates Vδw(q) (H), we conclude from the linearity of the differential operators
that

q ∈
m⋂
p∈H

ker Λw (p) (D) ⇔ q ∈ Vδw(q) (H) ,

i.e., if and only if q is reduced. Moreover, if q is not a homogeneous polynomial, then
we apply the above argumentation to all the homogeneous terms of q separately.

Finally, we show that⋂
p∈H

ker Λw(p)(D) =
⋂

p∈〈H〉
ker Λw(p)(D).

Indeed, the inclusion ⊂ is trivial, while for the converse we observe that for p ∈ H,
f ∈ Π and q ∈ ker Λw(p)(D) we have

Λw(fp)(D)q = (Λw(f)(D)Λw(p)(D)) q = Λw(f)(D) (Λw(p)(D)q) = 0.

Corollary 5.4. Let Θ be an ideal interpolation scheme and let H be an H–basis
for ker Θ with respect to (·, ·). Then Pl = Π→H and

LΘ,Plq = q →H, q ∈ Π.(5.6)
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Proof. Due to Proposition 5.3, Theorem 5.1 and (5.3), all we have to do is to verify
(5.6). For that purpose we first note that both LΘ,Pl and →H are projections
Π→ Pl. Moreover, pick any q ∈ Π which can be written as

q =
∑
p∈H

qpp+ q →H,

with the unique remainder q →H, because H is an H–basis. Then,

LΘ,Plq = LΘ,Pl

∑
p∈H

qpp

+ LΘ,Pl (q →H) = LΘ,Pl (q →H) = q →H,

which proves (5.6).

The above identification allows us to switch between interpolation and reduction.
For example, if the set Θ is given, either as a finite set of points and associated dif-
ferential operators or as power series representations, then it is possible to compute
the H–basis (see [2]) or the Gröbner basis (see [22, 23]) by means of Gauss elimi-
nation (or, equivalently, a Gram–Schmidt orthogonalization process), i.e., by using
only methods from linear algebra. Conversely, if the points are given implicitly,
for example as common zeros of some orthogonal or quasi–orthogonal polynomials,
then, in order to interpolate a polynomial, it is not necessary to find these points,
using reduction instead after having computed an H–basis for the ideal.

Let us finally give some examples where the space Π →H inherits some appeal-
ing geometric properties from least interpolation which are unavailable by using
Gröbner bases with respect to a term order. For that purpose, we restrict ourselves
to the case of Lagrange interpolation, i.e., all the functionals are point evaluations.

Example 5.5. Let Θ =
(
δxj : j = 0, . . . , N

)
1. Suppose that all the points xj lie on a straight line, i.e., xj − xk = λjka,
a ∈ Kd, λjk ∈ K, j, k = 0, . . . , n. Let G≺ denote the Gröbner basis with
respect to the term order ≺; then Π →G≺ is spanned by {1, ξk, ξ2

k, . . . , ξ
N
k },

where k is the index of the ≺–minimal nonzero component of a. On the other
hand, avoiding the artificial ordering, Π ≺ H is spanned by{

(a, x)k : k = 0, . . . , N
}
.

Setting, for simplicity, d = 2, it is easy to see that the H–basis for IΘ is

H =
{(
a⊥, x

)
, (a, x)N+1 − q

}
, q ∈ PΘ,

(
a⊥, a

)
= 0.

It is worth mentioning that, in contrast to the Gröbner basis, the H-basis de-
pends continuity of affine transformations of the line on which points lie, avoid-
ing the so-called representation singularities which are known for Gröbner
bases, cf. [25].

2. Suppose that N ≥ (d + 1)(d + 2)/2 is sufficiently large and that the points
xj lie on some sphere in Kd. Then, the polynomial ξ2

1 + · · · + ξ2
d belongs to

ker Θ and, as it is often desired when working on the sphere, all the reduced
polynomials are harmonic, i.e.,

Π→H⊂ ker ∆, ∆ =
d∑
k=1

∂2

ξ2
k

.
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This is not the case if we choose, for example, reduction with respect to the
graded lexicographical Gröbner basis.

3. Returning to the previous example from (4.6), it is easy to see that in this
case the interpolation space is spanned by {1, x, y, xy}; however, since the
common zeros of the two ellipses form a square whose edges are parallel to
the coordinate axes, the same interpolation space would also by obtained by
reducing modulo any Gröbner basis.

4. In the case that the interpolation points are the common zero of the poly-
nomials pφ,j , j = 1, 2, a straightforward computation shows that the least
interpolation space is spanned by{

1, x, y,
sin 2φ

2
(
x2 − y2

)
+ (cos 2φ)xy

}
and therefore again depends continuously on the rotation angle. The in-
terpolation space generated by reduction modulo a lexicographical Gröbner
basis with, say, x ≺ y, however, is “almost always” (except when φ ∈{
kπ
2 : k = 0, 1, 2, 3

}
) spanned by

{
1, x, x2, x3

}
and has discontinuities which

make the interpolation problem poorly conditioned close to the singularities.
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