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Abstract 
Biometric identification systems are principally related to the information security as well as data 
protection and encryption. The paper proposes a method to integrate biometrics data encryption 
and authentication into error correction techniques. The normal methods of biometric templates 
matching are replaced by a more powerful and high quality identification approach based on 
Grӧbner bases computations. In the normal biometric systems, where the data are always noisy, 
an approximate matching is expected; however, our cryptographic method gives particularly exact 
matching. 
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1. Introduction 
Digital data sent over communication channels are subject to distorting as a result of various circumstances such 
as electromagnetic fluctuations. Also, it might not be able to restore correct data from a hard disk or a digital au-
dio (or video) system as most of the storage media is liable for errors. Another extreme example is the images 
remitted from space-probes, where a considerable error rate takes place and re-transmission is often not possible. 
The last example is the biometric feature vectors made of the attributes of the individuals which are noisy by 
nature. The consequence is that the digital data received (read or captured) may be not the same as the primarily 
sent (stored or enrolled). In this regard codes provide a methodical technique to transmit messages, with some 
supplementary information (check digits) in such a way that an error occurring in the original messages will not 
only be detected by the receiver, but in many cases, it could be corrected. More algebraic structures should be 
added to the code spaces to solve the decoding and encoding problems efficiently. In particular, linear codes are 
excessively exploited for controlling errors because they are well understood, powerful and easy to generate. 
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Biometrics can be defined as a largely automated measurement of physiological and behavioral characteristics 
that are used to prove or confirm identities of human beings [1] [2]. The physiological characteristics are the 
physical human traits such as hand shape, face, fingerprints, eyes, ear shapes, and hand veins. The behavioral 
characteristics of human beings are the way to sign their names, walk, speak or even keystroke dynamics; inter-
ested readers are referred to the literature [3]-[9]. Biometric identification methods show several particularities 
over traditional methods such as identification cards (tokens) and personal identification numbers (passwords) for 
many reasons. For example, users to be identified have to attend physically at the particular place of identification 
[10]. Also, biometric based identification systems avoid carrying tokens or remembering passwords. In addition, 
biometrics prevents misuse of stolen identification cards, credit cards and passports. Eventually, biometric sys-
tems can work in verification (authentication) or identification modes [11]. Several serious matters have to be con- 
sidered when designing a successful biometric system such as users must be first enrolled in the system as bio-
metric templates which are securely stored in a database or on smart cards issued to the users. These templates can 
be used for matching when the users need to be identified or authorized to log into the secured system. This means 
that before the system can be used, during the enrollment step, the biometric imprints are acquired and data ex-
tracted from that imprints are saved as biometric templates in a central database. Later, during the authentication 
step, a new biometric imprint is acquired and the data extracted from that imprint are compared with the reference 
template [12]. The result of that comparison, with (a very small) percentage of error, is a match or no match. 

Once a biometric trait is captured, residual random noise is removed by using filters (as a directed smoothing 
process); see for instance [13]. Then, the extracted feature vector or codeword, as we will more commonly call 
(see below), is turned out as a binary vector. Since the binary feature vectors of biometric templates acquired 
from the same person are most probably different from each other, it is necessary to detect and rectify the dif-
ference between the data acquired in the enrollment and verification steps [14] [15]. This correction takes the 
place of the normal templates matching in present biometric systems. Therefore, the matching between the 
enrolled and verified feature vectors can be modeled as transmitting messages through a noisy communication 
channel. Thus, the proposed matching algorithm measures diversities between the extracted and enrolled code-
words. Each codeword (or bit string) is represented (or encoded) into secure data by computing its syndrome 
with respect to a preferable low-density parity-check (LDPC) code. The LDPC codes were first discovered by 
Gallager in 1962 [16]. In this work we develop a new biometric authentication algorithm that is not only based 
on the data contained in biometric templates but also on a randomly selected codeword from an LDPC code. 
Consequently, we propose a syndrome decoding algorithm (as replacement of matching process) based on 
Grӧbner bases calculations as a decoding scheme for the combination of data contained in biometric traits and 
suggested codewords. 

A Grӧbner basis as a vigorous tool initiated from a commutative algebra is defined as a set of polynomials 
computed, using Buchberger’s algorithm [17], from another set of polynomials. Grӧbner bases algorithms have 
been comprehensively studied, revised and implemented on most computer-algebra systems. In addition, Grӧbner 
bases have many interesting properties and applications in commutative (and non-commutative) algebra [18]- 
[20]. For instance, we can decide ideal membership or ideal equivalence with the aid of Grӧbner bases. Also, the 
elimination property of Grӧbner bases enables us to solve non-linear systems of algebraic equations in multiple 
variables. The application that we are actually interested in is to use Grӧbner bases in cryptography and, there-
fore, in biometric identification systems. In the case of binary linear codes, the Grӧbner bases will consist of all 
binomials which correspond to the problem’s codewords. The first connection between linear codes and Grӧbner 
bases was established in [21]. The main obstacle to our algorithm is that the computations of Grӧbner bases are 
expensive, and (in non-commutative algebras) are not guaranteed to stop [22]. 

2. Theoretical Background 
In this section, we give the substantial background required to understand the syndrome decoding problem and 
present some principles of linear codes. We also recall the elementary theory of Grӧbner basis algorithm for the 
case of multivariate polynomials. We show that the basic component of the Grӧbner basis theory is the concept 
of polynomial reduction that is used to compute the appropriately defined normal form of a specified polynomial. 

2.1. Syndrome Decoding Problem 
Let { }2 0,1= =F Z  be the finite field of two elements and let n and k be positive integers with k n≤ . In this 
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work we assume that the feature vectors that represent biometric traits are given as elements of the vector space 
nF . The (Hamming) weight of a word n∈w F  is defined to be the number of nonzero entries in w  and the 

(Hamming) distance of , n∈v w F , denoted by ( ),dist v w , is the weight of the difference −v w . A coding 
function φ  is defined by the injective mapping 

: k nφ →F F . 

Let C  be an ( ),n k -code for some n and k. We say that 

( ){ }kφ= ∈w w FC  

is a linear code of length n and dimension k over F  if it forms a subspace of nF . The rate of C  is k n  and 
redundancy of C  is n k− . The elements of C  are written as row vectors and are called codewords. For 
d ∈N , we consider an ( ), ,n k d -code as an ( ),n k -code for which d is the minimum distance between any two 
distinct codewords. A priority of linear codes over any other arbitrary codes is that the minimum distance be-
tween any two codewords is much easier to calculate. Here, we assume that there exists an effectual algorithm 
that has the ability to detect up to t errors in a given corrupted pattern, where 2 1d t= + . Furthermore, if 

2 2d t= + , then any error pattern containing t or fewer errors can be corrected and any error pattern containing 
1t +  errors can be detected. 

A generator matrix for the code C  is a matrix k nG ×∈F  whose rows are an F -basis of C . The k n×  bi-
nary standard generator matrix 

( )kG I C= , 

which produces the code C  should have rank k. A vector k∈w F  is encoded as the vector G=z w , where 
the first k-entries of the transmitted codeword Gw  contain the message vector w . During the identification, it 
is possible that several bits of z  are changed and, hence, an incorrect word y  is obtained. Therefore, we need 
to solve the decoding problem, that is, ∈x C  is calculated such that ( ),dist x y  is minimized. Now, if 

( ), 2dist d<z y , where d is the minimum distance of any two different codewords, then x  is equal to the 
original vector z . 

The parity-check binary matrix of such code C  is defined by the ( )n n k× −  matrix 

n k

C
H

I −

 
=  
 

. 

We define the syndrome ( )s w  of n∈w F  by the vector-matrix product Hw  in n k−F . In this respect, 
each codeword turned out from the standard generator matrix G satisfies the condition 0H =w . Given a parity- 
check matrix H of a code C , the problem is to determine the minimum distance and the weight of such code, 
see e.g. [23]. We will solve this problem by computing the Grӧbner basis for an ideal from the parity-check ma-
trix. 

2.2. Grӧbner Bases 
We introduce some basic definitions which we need to explain the Grӧbner basis theory. We only cite the theo-
rem for the existence of the Grӧbner basis of an ideal. In 1965 Buchberger [17] gave an appropriate framework 
for the study of polynomial ideals in 

[ ]1, , nR K X X=  , 

multivariate polynomials in commuting n variables over a computable field, with an introduction of Grӧbner ba-
sis. Furthermore, Mora [19] presented an algorithm for 

1, , nR K X X=  , 

multivariate polynomials in non-commuting n variables over a computable field. We can say that both Buch-
berger and Mora algorithms, which based on a generalization of the Euclidean division algorithm to several va-
riables, use the reality that coefficients are in a specified field. Therefore, given any two polynomials f and g, we 
can write f as f gq r= + , where r has lower degree than g or r is equal to 0. For polynomials of one variable, 
this gives an algorithm for ideal membership: f is in the ideal induced by g if and only if r = 0. Now, if 
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1, , sI g g=   

then, using the generalized division algorithm, we can write a polynomial f as f g r= + , where g I∈  while 
no term of r is divisible by any of the leading terms of the ig . For the case of one variable polynomials, we 
follow the natural ordering 

21 X X< < <  
while, in several variables case, there are numerous preferences for the term ordering, see [18]. It is worth noting 
that the computation of Grӧbner basis could vary according to the type of ordering. A Grӧbner basis for an ideal 
has the property 

0f I r∈ ⇔ = . 

Buchberger not only proved that each ideal has a basis for which the problem of ideal membership is compu-
tationally solvable, he also described an algorithm that can be exploited to get such a basis. Here, we should 
mention that polynomial reduction is the cornerstone in the Grӧbner bases algorithms as it represents the most 
intensive portion in terms of computations. In this regard we say that a polynomial f reduces to a different poly-
nomial r, denoted as f r→ , if and only if r is the remainder of f upon division by some polynomial set F. The 
polynomial reduction is not only recognized for one reducing polynomial instead it is also defined for sets of 
polynomials. For any polynomials 

[ ]1, , , nf g K X X∈  , 

we define ( ) ( )( ),h lcm LM f LM g= , where ( )LM f  is the leading monomial of f. Now, the S-polynomial of 
f and g is written in terms of the two polynomials as 

( ) ( ) ( )
, h hSpol f g f g

LT f LT g
= − , 

where ( )LT f  is the leading term of f. 
Of course, in non-commutative case the situation is more sophisticated since the monomials are words and 

there can be either more than one S-polynomial or none. A finite set of polynomials { }1, , sF f f=   is called a 
Grӧbner basis if and only if 

( ), , , 0i j i jf f F Spol f f∀ ∈ → . 

Now we are in a position to give the layout of the Buchberger algorithm. It launches with the initial basis 
{ }1, , sF f f=  . If 

( ), , , 0i j i jf f F Spol f f h∀ ∈ → ≠ , 

then h is appended to the basis. The process, with other added technical details, is reiterated till we obtain a basis 
satisfying the condition that is mentioned above. In the commutative situation, Buchberger showed that the 
process constantly terminates and gives at the end a Grӧbner basis. On the other hand, Mora noted that the 
process in non-commutative case does not always terminate—but, when it does, it should produce a Grӧbner ba-
sis. 

For the proofs of the existence and uniqueness of a Grӧbner basis (in fact reduced Grӧbner basis) G for an 
ideal [ ]I K X⊆  and the improvements of Buchberger’s algorithm, readers are referred to [18]. 

3. Syndrome Decoding and Grӧbner Bases 
The interaction between coding theory and Grӧbner bases has been observed from the property that each func-
tion from nF  to F  can be represented as a polynomial in [ ]K X . This section presents a modelling of the 
syndrome decoding problem to find the distance of a code. This can be achieved via computation of a Grӧbner 
basis in terms of an ideal and a solution of (corresponding) system of equations [24]. 

Let = +v w e  be a received corrupted word with a t-error, where ∈w C  is the codeword that was sent and 
e  is the error vector. Since 0H =w , then the syndromes of v  and e  with respect to H are equal and can be 
written as a linear combination of t rows of H as 



M. Sayed 
 

 
245 

( ) ( )
1 1 t ti i i is s e e= = + +v e h h , 

where 1, , nh h  are the n rows of H and { } { }1, , 1, ,ti i n⊆   is called the support of the error vector e  such 
that 

{ }0, 1, ,
si

e s t≠ ∈  . 

In order to solve the syndrome decoding problem we need to find such linear combination that gives the syn-
drome vector. 

Let H BA= , where B is an n n×  matrix with columns 1, , nb b . The matrix B is invertible provided that 
its column form a basis for nF . Now, the unknown syndrome ( )u e  of the error vector e  with respect to B is 
defined as ( )u B=e e . The entries of ( )u e  are 

( ) , 1, ,i iu i n= ⋅ =e e b  . 

Then, we can recover the error vector as ( ) 1u B−=e e . Thus, the idea is to find the unknown syndrome of an 
error vector with respect to some fixed bases B. 

For any two vectors , n∈x y F  we define coordinate-wise star product by 
( )1 1, , n nx y x y∗ =x y  . 

We can write the star product of two columns ib  and jb  of B as a linear combination of 1, , nb b  as 

1

n
ij

i j l l
l

u
=

∗ = ∑b b b , 

where ij
lu ∈F  called the structure constants of the basis 1, , nb b . We define the n n×  matrix of unknown 

syndrome of e  whose rank is equal to the weight of e  as 

( ) ( ),ij ij i jU u u = = ⋅ ∗ e e b b . 

The relation between ( )U e  and ( )u e  is given by 

( ) ( )
1

n
ij

ij l l
l

u u u
=

= ∑e e . 

Now we can express the unknown syndromes in terms of the known syndromes as 

( ) ( ) ( ) ( )
1

n

i i i i ij j
j

s s A a u
=

= = ⋅ = ⋅ = ∑v e e h e b e , 

1
ijA a B H− = =   is an ( )n n k× −  matrix. Here, we have a system of n k−  linear equations in the n un-

knowns ( ) ( )1 , , nu ue e : 

( ) ( )
1

0, 1, ,
n

i ij j
j

s a u i n k
=

− = = −∑v e  . 

Since the rank of ( )U e  is t, then there exists ( ) ( )1 , , tv ve e  such that 

( ) ( ), 1
1

t

i t ij j
j

u u v+
=

= ∑ e e . 

By representing iju  and , 1i tu +  as a linear combination of ( ) ( )1 , , nu ue e , we get 

( ) ( ) ( ), 1

1 1 1
0, 1, ,

n t n
i t ij
l l l l j

l j l
u u u u v i n+

= = =

 − = = 
 

∑ ∑ ∑e e e  . 

Let the unknowns 1, , nX X  represent ( ) ( )1 , , nu ue e  and 1, , tY Y  represent ( ) ( )1 , , tv ve e , respec-
tively. We have the combined system, ( ),J t v , 

( )
1

, 1

1 1 1

0, 1, ,

0, 1, ,

n

i ij j
j

n t n
i t ij
l l l l j

l j l

s a X i n k

u X u X Y i n

=

+

= = =

 − = = −



  − = =   

∑

∑ ∑ ∑

v 


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The ideal generated by the combined system defines the set of solutions that satisfies both systems. The re-
duced Grӧbner basis of the combined system with respect to a monomial ordering takes the form 

( )
( )

, 1, ,

, 1, ,
i i

j j

X u i n

Y v j t

 − =


− =

e

e





 

where t is the smallest positive integer such that the system has solution (see the proof and some details on all of 
the above in Bulygin and Pellikaan [25]). The unique solution of the system corresponds to the unknown syn-
drome ( )u e . Assuming that the number of error capacity of the proposed code exceeds the number of occurred 
errors, then the syndrome decoding algorithm using Grӧbner bases can be successfully formulated and imple-
mented. 

4. Biometric Matching Algorithm 
In [26] [27] we showed that the biometric imprint (for security reason) is stored in encrypted binary form instead 
of plain-text. The biometric authentication device should agree access as long as two (enrolled and identified) 
biometric feature vectors do not differ by more than a definite amount of bits (the threshold). Here, the biometric 
identification systems should be able to deal with a large amount of bits. One more difficulty is how to design a 
system that can remedy 10% to 20% anticipated errors in extracted feature vectors [28]. Therefore, we require 
an ( ), ,n k d -code with considerable dimension over the binary field. In addition to that we request codes with 
large relative minimum distance. Only low rate codes can afford these requirements. In this regard, the LDPC 
codes are good candidates. The number of non-zero entries, which is also fixed for each row and column, in the 
parity-check matrix of an LDPC code is small relative to the dimension of the matrix. Moreover, LDPC codes 
which are actually constitute a large family of codes are linear block codes and can handle relatively high error 
rates. 

A biometric image is acquired and a feature vector is extracted from an enhance version of such image. Let 
n∈x F  be the feature vector that we want to enroll on the database. The system requires to choose a random 

codeword ∈y C . The algorithm then computes the vector −x y  and stores a corrected and encrypted version 
of the vector on the database. In Algorithm 1 we formulate the enrollment process of a given feature vector of a 
biometric trait. 
 
Algorithm 1: Enrollment process 

Givena biometricfeature vector x , a randomly chosen word w  of length k and a generated matrix G that defined the error correcting 

code 
Encodethe word w  as a codeword G=y w  of length n 

Find the encrypted feature vector = ⊕v x y  

Set the system ( ),J t v  

Set 1t =  

Repeat 

Find the reduced Grӧbner bases G of ( ),J t v  with respected the specified ordering 

Set 1t t= +  

Until G takes of the form { }, , 1, , , 1, ,i i j jX u Y v i n j t− − = =   

Find the vector ( )u e  of unknown syndromes of v  

Computethe error vector ( ) 1u B−=e e  

Store the first k bits, ′w , of the corrected codeword ⊕v e  and the word w  together with the user information in the central database 

 
The authentication process is similar to the enrollment process for any new acquired biometric image. The 

result of such process is called the match score. Here, we assume that the number of errors is fewer than the 
code correcting capacity. Algorithm 2 shows how to verify (match)a feature vector of a new captured biometric 
trait. 
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Algorithm 2: Authentication process 

Givena user feature vector x  and the corrected encrypted version of the feature vector, ′w  
Encodethe word ′w  as a codeword G′=y w  of length n 
Find = ⊕v x y  
Set the system ( ),J t v  
Set 1t =  
Repeat 
Find the reduced Grӧbner bases G of ( ),J t v  with respected the specified ordering 
Set 1t t= +  
Until G takes of the form { }, , 1, , , 1, ,i i j jX u Y v i n j t− − = =   

Find the vector ( )u e  of unknown syndromes of v  

Computethe error vector ( ) 1u B−=e e  
If the word w  equalsthe first k bits of ⊕v e , then matching is accepted 

 
Our technique is in fact different from conventional biometric authentication techniques which use numerical 

measure of the similarity of two biometric traits acquired at enrollment and verification steps. These conven-
tional biometric systems require powerful digital signal processing algorithms in order to enhance the captured 
images before extracting the hidden characteristics. This process, which is called feature vector extraction, in-
deed plays the most critical part of biometrics identification. Our method is able to overcome most of the prob-
lems which might be resulting from the extraction of the biometric information as binary feature vectors from 
the realization of biometric traits. 

5. Experimental Result 
The implementation (as a proof-of-concept prototype) of our more promising approach has been done using 
various feature vectors of fingerprints and palm vein images as test data. We evaluated the algorithm using sam-
ples of 50 different users, with 5 samples per each user. The algorithm was implemented using an interpreted 
code as well as several built-in functions of MAGMA [29]. Because of our particular and special error correc-
tion and encryption approach the feature vectors exploited here are different from the biometric feature vectors 
used in the traditional biometric systems. For example, the dimension of the required code is minimal compared 
to other cryptographic based biometric systems. Using our approach, we can accept poor-quality biometric im-
ages which is always rejected (before matching) in most of conventional biometric technologies. Our approach 
also enables the use of low-cost sensors or even wireless biometric systems. For the used segmentation process 
and feature vectors extraction strategies the reader is referred to the literature [26] [27]. The LDPC code (with 
appropriate dimension), together with its standard generated matrix, was taken as the decoding strategy and 
proved to achieve optimal performance in terms of templates matching. We obtained an equal error rate of 0.1% 
for both false acceptance rate and false rejection rate, while the rate is about 5% with a template matcher in most 
conventional biometric systems. 

Although the proposed approach does not yet fulfil the anticipated performance in terms of a Grӧbner basis 
computation complexity and latency, it does provide a low-cost secure biometric encryption architecture. On top 
of that it reveals various factors and provides beneficial insights that motivate the researchers in the area of inte-
grating computational algebra with biometrics. The method is also suitable for other biometric systems such as 
iris biometrics that seem also very promising. All of these reasons make the algorithm feasible for different 
practical uses. 

6. Conclusion 
Even though many commercial and academic systems for biometrics identification are working out, the consi-
derable number of publications on this domain states the necessity for extensive research for the sake of obtain-
ing better performance and enhancing the reliability of such systems. In this paper, the problem for merging 
biometrics and cryptography was tackled. We used an algebraic method that allowed an exact recovery of a 
given a binary word (representing a biometric feature vector) using a randomly chosen word from a proposed 
code. We showed how to match a feature vector of a biometric trait by exploiting the theory of error-correcting 
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codes over the field of two elements 2F . Special attention was given to linear codes since these codes could be 
defined using generator matrices. In this regard, a linear code was considered as a subspace of the vector space 

2
nF . The problem of errors decoding was shown to be equivalent to the problem of calculating the ideal generat-

ed by a set of polynomials. The algorithm is also applicable to general codes over qF , where q  is a power of 
prime number. Our next aim is to give an accurate analysis of the efficiency of the algorithm. 
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