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GRÖBNER BASES OF ASSOCIATIVE ALGEBRAS
AND THE HOCHSCHILD COHOMOLOGY

YUJI KOBAYASHI

Abstract. We give an algorithmic way to construct a free bimodule resolu-
tion of an algebra admitting a Gröbner base. It enables us to compute the
Hochschild (co)homology of the algebra. Let A be a finitely generated algebra
over a commutative ring K with a (possibly infinite) Gröbner base G on a
free algebra F , that is, A is the quotient F/I(G) with the ideal I(G) of F
generated by G. Given a Gröbner base H for an A-subbimodule L of the free
A-bimodule A · X · A = AK ⊗ K · X ⊗K A generated by a set X, we have a
morphism ∂ of A-bimodules from the free A-bimodule A · H · A generated by
H to A · X · A sending the generator [h] to the element h ∈ H. We construct
a Gröbner base C on F · H · F for the A-subbimodule Ker(∂) of A · H · A,
and with this C we have the free A-bimodule A ·C ·A generated by C and an
exact sequence A · C · A → A · H · A → A · X · A. Applying this construction
inductively to the A-bimodule A itself, we have a free A-bimodule resolution
of A.

1. Introduction

The Gröbner base theory for polynomial rings has been developed since Buch-
berger [5], and has found vast fields of application. It is a central technique used
in the computational theory of polynomial rings and algebraic geometry ([2], [5],
[8]). Many authors have tried to generalize the theory to more general rings. For
example, Mora [21] developed a Gröbner base theory for general associative alge-
bras (the idea already appeared in Bergman [3]). But a shortcoming of the theory
on non-commutative ring is that a finitely generated ideal may not have a finite
Gröbner base, and so the Buchberger algorithm does not converge in general (see
[9]). Some authors (for example Kandre-Rody and Weispfenning [13], see also [18])
developed the theory for certain restricted types of rings for which the Buchberger
algorithm works. But even if an ideal has no finite Gröbner base, if it has an infinite
(but well-behaved in some sense) one, it is sometimes useful.

In the present paper we consider a possibly infinite Gröbner base G on a free
algebra F over a commutative ring K. We give an algorithmic way to construct a
free bimodule resolution over the quotient algebra A = F/I(G), where I(G) is the
ideal of F generated by G. It enables us to compute the Hochschild cohomology
(Hochschild [11]) of A. In the construction Gröbner bases on free F -bimodules play
a crucial role. We discuss Gröbner bases on free algebras and on free bimodules
from a stand point of rewriting systems. Actually, the theory of Gröbner bases and
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that of rewriting systems are considered to be equivalent (in certain situations, see
for example Madlener and Reinert [20]).

Let G be a set of monic elements of a free algebra F over K, here f ∈ F is
monic if the coefficient of the leading term lt(f) of f with respect to some fixed
term order is 1. G is a Gröbner base of the ideal I(G) if the associated system
RG = {lt(g) → −rt(g) | g ∈ G} is a complete (noetherian and confluent) rewriting
system, where rt(g) = g − lt(g). If K is a field, every ideal of F admits a (possibly
infinite) Gröbner base.

Let A be an algebra over K admitting a Gröbner base G on F , that is, A is the
quotient F/I(G). Moreover, we consider a Gröbner base H for an A-subbimodule
L of the free A-bimodule A ·X ·A = AK ⊗K ·X ⊗K A generated by a set X . H is
a generating set for L of monic elements in the free F -bimodule F ·X ·F generated
by X such that the system TH = {lt(h) → −rt(h) |h ∈ H} is a complete rewriting
system on F · X · F modulo G (see Section 3 for a precise definition). We have a
morphism ∂ of A-bimodules from the free A-bimodule A ·H ·A generated by H to
A · X · A given by ∂([h]) = h, where [h] is the formal generator corresponding to
h ∈ H .

The key technique in this paper lies in a construction of a Gröbner base C on
F · H · F for the A-subbimodule Ker(∂) of A · H · A (Section 5). This C is made
from the critical pairs of reductions on F · X · F with respect to H and G, and
thus, if G and H are effectively given, C can be effectively constructed. With this
C we have the free A-bimodule A · C · A generated by C and an exact sequence
A ·C ·A → A ·H ·A → A ·X ·A (Section 6). Applying this construction inductively
to the A-bimodule A itself, we have a free A-bimodule resolution of A (Section 7).
This is considered to be a two-sided version of the construction given by Anick [1]
(see also Kobayashi [16]), and, when A is supplemented, taking the functor ⊗AK
on the right-hand side of our resolution yields a left free resolution of the left A-
module K. The last section is devoted to exhibit some examples which show the
effectiveness of our methods.

The technique developed in this paper on free algebras and free bimodules can
be generalized to path algebras and projective bimodules. This will be discussed in
a forthcoming paper.

2. Gröbner bases for algebras

Let Σ be a (finite) alphabet and let Σ∗ be the free monoid generated by Σ, that
is, Σ∗ is the set of words over Σ and the monoid operation of it is given by the
concatenation of words. The empty word, denoted by 1 in this paper, is the identity
element of Σ∗. The set of words of length n and the set of words of length ≤ n
are denoted by Σn and Σ≤n, respectively, that is, Σn = {x ∈ Σ∗ | |x| = n} and
Σ≤n = {x ∈ Σ∗ | |x| ≤ n}, where |x| denotes the length of a word x. Accordingly,
Σ0 = {1}, Σ1 = Σ, Σ≤n =

⋃
0≤i≤n Σi, and Σ∗ =

⋃
0≤i Σi.

Let K be a commutative ring with 1 and let F = K ·Σ∗ be the free (associative)
algebra generated by Σ over K. F is the free K-module spanned by Σ∗ with
the multiplication induced by the monoid operation of Σ∗. An element f of F is
uniquely written as

(1) f =
n∑

i=1

kixi
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GRÖBNER BASES AND THE HOCHSCHILD COHOMOLOGY 1097

with ki ∈ K\{0} and different elements xi in Σ∗. We fix a compatible well-order
� on Σ∗, that is, � is a (strict) total order on Σ∗ such that there is no infinite
decreasing sequence x1 � x2 � . . . and for any x, y, z ∈ Σ∗, x � y implies xz � yz
and zx � zy. A typical such order is the length-lexicographic order �llex, namely,
x �llex y if either |x| > |y|, or |x| = |y| and y is smaller than x in the lexicographic
order based on a pre-given linear order on Σ.

Let f be an element of F written as (1). If x1 is the maximal among xi (i =
1, ..., n) with respect to �, k1x1 is called the leading term of f and denoted by lt(f).
Let rt(f) = f − lt(f). We extend the order � on Σ∗ to a (partial) order on F ,
which is also denoted by �, as follows. First, f � 0 for any f �= 0. Let f and g be
nonzero elements in F and let lt(f) = k · x and lt(g) = � · y with k, � ∈ K\{0} and
x, y ∈ Σ∗. Define f � g if and only if either x � y or x = y and rt(f) � rt(g). It is
easy to see that � is also well-founded on F , that is, there is no infinite sequence
f1 � f2 � · · · in F .

A (monic) rewriting rule is a pair (u, v), where u ∈ Σ∗ and v ∈ F with u � v. A
rule (u, v) is written as u → v. A (monic) rewriting system R is a (not necessarily
finite) set of rewriting rules. If f ∈ F has a nonzero term k · x and x = x1ux2

with x1, x2 ∈ Σ∗ and u → v ∈ R, the rule u → v can be applied to f and f is
transformed (or rewritten) to g = f − k · x1(u − v)x2. In this situation we write
f →R g, and we call →R the one-step reduction by R.

Let →∗
R denote the reflexive transitive closure of the one-step reduction relation

→R, and let ↔∗
R be the reflexive symmetric and transitive closure of →R. Set

GR = {u − v | u → v ∈ R}, and let I(R) be the (two-sided) ideal of F generated
by GR.

Here we depict the following basic results.

Proposition 2.1. The relation ↔∗
R is equal to the congruence on F modulo I(R),

that is,

f ↔∗
R g ⇔ f ≡ g (mod I(R))

for f, g ∈ F . In particular,

f ↔∗
R 0 ⇔ f ≡ 0 (mod I(R))

for f ∈ F , that is,

I(R) = {f ∈ F | f ↔∗
R 0}.

The quotient algebra A = F/I(R) = F/ ↔∗
R is said to be defined by the rewriting

system R. Two rewriting systems R1 and R2 on F are equivalent if ↔∗
R1

= ↔∗
R2

.
The equivalent systems define the same quotient, and thus, by Proposition 2.1, R1

and R2 are equivalent if and only if I(R1) = I(R2).
If f →R g, then, as easily seen, f � g by the compatibility of �. Since � is well-

founded, the relation →R is noetherian (terminating), that is, there is no infinite
sequence f1 →R f2 →R · · · →R fn →R · · · in F . If two elements f and g of F have
a common R-descendant, that is, there is h ∈ F such that f →∗

R h and f →∗
R h,

we say that f ↓R g holds. R is called confluent if for any f, g, h ∈ F such that
h →∗

R f and h →∗
R g, f ↓R g holds. In general, a noetherian and confluent system

is called complete, but in our situation here, a confluent system is complete because
a rewriting system we consider is always noetherian.
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Lemma 2.2. For f, g ∈ F , f − g →∗
R 0 implies f ↓R g.

Proof. Let h = f − g and suppose h →∗
R 0. We shall show f ↓R g by induction

on h with respect to the well-order �. If h = 0, then f = g and f ↓R g trivially
holds. If h �= 0, then h →R h′ →∗

R 0, where h has a term k · x with k ∈ K\{0} and
x ∈ Σ∗ such that x →R x′ and h′ = h − k · (x − x′). Because h = f − g, we have
k = k1 − k2, where k1 · x and k2 · x are terms of f and g respectively (one of k1,
k2 ∈ K is possibly zero). Let f ′ = f − k1(x − x′) and g′ = g − k2(x − x′), then,
f →R f ′ (or f = f ′ if k1 = 0), g →R g′ (or g = g′ if k2 = 0) and h′ = f ′ − g′.
Since h � h′, we see f ′ ↓R g′ by the induction hypothesis, and consequently we
have f ↓R g. �

The converse implication in Lemma 2.2 is not true in general. For example,
consider the rewriting system R = {ab → a, ba → b} over the alphabet Σ = {a, b}
and let f = aba + a and g = aba + aa. Then, f →R aa + a and g →R ab + aa →R

a+aa, that is, f ↓R g holds. But f −g = a−aa cannot be reduced to 0. However,
if R is confluent, the converse is also true (see Proposition 2.3 below).

An element f in F is irreducible (R-irreducible to specify R) if there is no g such
that f →R g. In particular, an irreducible monic monomial x ∈ Σ∗ is called an
irreducible word, and Irr(R) denotes the set of irreducible words. Clearly, Irr(R) =
Σ∗\Σ∗ · Dom(R) · Σ∗, where Dom(R) = {u |u → v ∈ R}, and f ∈ F is irreducible
if and only if f is a K-linear combination of irreducible words. An element f ∈ F
is R-reducible if it is not R-irreducible. A word x is a minimal R-reducible word if
it is R-reducible but any proper prefix of x is R-irreducible.

Since R is noetherian, for any f ∈ F there is an irreducible f̂ ∈ F such that
f →∗

R f̂ . If, moreover, R is confluent (so complete), such an f̂ is unique and
is called the normal form of f , and, as is well known in the theory of rewriting
systems, f ↔∗

R g if and only if f̂ = ĝ (Proposition 2.3 below).
A subset G of F is monic if every g ∈ G is monic, that is, the leading coefficient

of g is 1. Let I be an ideal of F . A set G of generators of I is called a Gröbner
base of I, if it is monic and the system RG = {lt(g) → −rt(g) | g ∈ G} associated
with G is a complete rewriting system. We usually confuse a Gröbner base G with
the associated rewriting system RG. Accordingly, when we write g = u − v ∈ G,
we implicitly assume that u = lt(g) and v = −rt(g), and we just write →G for the
relation →RG , for example. We say f ∈ F is G-irreducible if it is RG-irreducible,
and Dom(G) and Irr(G) denote Dom(RG) and Irr(RG) respectively.

We depict the fundamental results on complete rewriting systems and Gröbner
bases as follows (see [2], [4], [6], [8]).

Proposition 2.3. Let G be a Gröbner base of an ideal I of F , let A = F/I be the
quotient algebra of F by I, and let ρ : F → A be the canonical surjection. Then, ρ
is injective on Irr(G) and ρ(Irr(G)) forms a linear K-base of A = F/I. Any f has
the unique normal form f̂ , and we have

f̂ = ĝ ⇔ f ↔∗
G g ⇔ f − g →∗

G 0 ⇔ ρ(f) = ρ(g)

for any f, g ∈ F . In particular, we have

I = {f ∈ F |f̂ = 0} = {f ∈ F |f →∗
G 0}.
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Corollary 2.4. If G is a Gröbner base, the mapping ˆ sending f ∈ F to the normal
form f̂ ∈ F is K-linear;

(k · f + � · g)̂ = k · f̂ + � · ĝ
for k, � ∈ K and f, g ∈ F .

An algebra A over K is said to admit a Gröbner base if it is isomorphic to the
quotient F/I of some finitely generated free algebra F over K modulo an ideal I
with a Gröbner base. By Proposition 2.3 we have

Corollary 2.5. An algebra over K admitting a Gröbner base is free as a K-module.

Example 2.6. (1) A finitely generated algebra A over a field K admits a Gröbner
base. In fact, any ideal I of a free algebra F = KΣ∗ over K has a Gröbner base with
respect to a fixed compatible well-order � on Σ∗. If x ∈ Σ∗ is a linear combination
of xi ∈ Σ∗ with xi ≺ x over K modulo I;

x =
∑

kixi (mod I), ki ∈ K\{0},

choose one such combination and consider the element x −
∑

kixi. Let G be the
set of all such elements. Then, G is a Gröbner base of I.

(2) A monoid algebra A = K · M of a finitely generated monoid M over a
commutative ring K admits a Gröbner base. Let Σ be a set of generators and
ρ : Σ∗ → M the surjection. Let I be the kernel of the natural morphism KΣ∗ → A
induced by ρ. For x ∈ Σ∗, x̂ denotes the minimal element in Σ∗ with respect
to a fixed well-order � on Σ∗ in the congruence class ρ−1 (ρ(x)) of x. Then,
G = {x − x̂ |x ∈ Σ∗, x �= x̂} forms a Gröbner base of I.

(3) The enveloping algebra A of a Lie algebra L over K (L is free as a K-module)
admits a Gröbner base. Let Σ be a linear base of L over K. Then, A = KΣ∗/I for
an ideal I of KΣ∗. Let > be a linear order on Σ. Then, G = {ab− ba− [a, b] | a, b ∈
Σ, a > b} forms a Gröbner base of I.

Remark 2.7. In Example 2.6, the Gröbner bases G in (1) and (2) are usually infinite.
The Gröbner base in (3) is finite if Σ is finite.

Let R be a rewriting system on F = KΣ∗. Let u1 → v1, u2 → v2 ∈ R. Suppose
u1 overlaps properly with u2, that is, u1 = u′

1z, u2 = zu′
2 with u′

1, u′
2, z (�= 1) ∈ Σ∗.

We have two reductions p1 : u1u
′
2 → v1u

′
2 and p2 : u′

1u2 → u′
1v2 applying the

rules to u1u
′
2 = u′

1u2 in two different ways. We call (v1u
′
2, u′

1v2) a critical pair of
elements of overlapping type and (p1, p2) a critical pair of reductions. Next suppose
u1 contains u2 as a subword, that is, u1 = u′u2u

′′ with u′, u′′ ∈ Σ∗. Applying the
rules to u1 in two ways, we have a critical pair (v1, u

′v2u
′′) of elements of inclusion

type and a critical pair (u1 → v1, u
′u2u

′′ → u′v2u
′′) of reductions. For a critical

pair (x1, x2) of elements the difference x1 −x2 is called an S-polynomial. A critical
pair (x1, x2) is resolvable if x1 ↓R x2.

Since our system R is noetherian, R is complete, if it is locally confluent, that
is, for any f, g, h ∈ F , h → f and h → g imply f ↓ g ([4], [12]). The fundamental
result in the theory of rewriting systems is a so-called critical pair theorem, which
is a base of the completion procedure. The theorem asserts that a system is locally
confluent if all the critical pairs are resolvable. Because our situation is a little
different from the ones discussed in the literature, we give a proof sketch of the
result here.
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Proposition 2.8. A system R is complete if all the critical pairs for R are resolv-
able.

Proof. We shall show that for any f, g, h ∈ F , h → f and h → g imply f ↓ g
by induction on h with respect to the order � under the assumption that all the
critical pairs are resolvable. From the induction hypothesis that h′ → f ′, h′ → g′

and h′ ≺ h imply f ′ ↓ g′, we can easily show that
(i) h′ →∗ f ′, h′ →∗ g′ imply f ′ ↓ g′ for any f ′, g′, h′ ∈ F such that h′ ≺ h.
The following assertions can be proved by easy and direct calculations.
(ii) If two reductions h → f and h → g are made through applications of rules

of R to different terms of h ∈ F , then f ↓ g.
(iii) If f →∗ g for f, g ∈ F , then kxfy →∗ kxgy for any x, y ∈ Σ∗ and k ∈ K.
(iv) If f →∗ g for f, g ∈ F , then f + h →∗ g + h for any irreducible h ∈ F .
(v) If two reductions x → f and x → g are made through applications of rules

of R to disjoint subwords of x ∈ Σ∗, then f ↓ g.
Now, suppose h → f and h → g for f, g, h ∈ F . By (ii), in order to show f ↓ g,

we may suppose that h → f and h → g are through applications of rules to the
same term kx (k ∈ K, x ∈ Σ∗) of h. If h has a reducible term other than kx, then
h → h′ applying a rule to that term. Again by (ii), there are f1, g1 ∈ F such that
f →∗ f1, h

′ →∗ f1, g →∗ g1 and h′ →∗ g1. Since h′ ≺ h, we have f1 ↓ g1 by (i).
Consequently, we see that f ↓ g holds.

Therefore, we may assume that h = kx+h† with irreducible h† ∈ F . If rules are
applied to disjoint subwords of x and we obtain reductions kx → t and kx → t′,
then t ↓ t′ by (iii) and (v). Because f = t + h† and g = t′ + h†, we have f ↓ g
by (iv). Otherwise, f = kx′c1x

′′ + h† and g = ky′c2y
′′ + h† for some critical pair

(c1, c2), where x′, x′′, y′, y′′ ∈ Σ∗. Since c1 ↓ c2 by assumption, we have f ↓ g in the
same way as above. �
Proposition 2.9. For a rewriting system R the following statements are equivalent.

(1) R is complete.
(2) Every critical pair is resolvable.
(3) Every S-polynomial is reduced to 0.
(4) Every element in I(R) is reduced to 0.

Proof. (2) ⇒ (1): Proposition 2.8.
(1) ⇒ (4): Proposition 2.3.
(4) ⇒ (3): Because every S-polynomial is in I(R), it is reduced to 0.
(3) ⇒ (2): By Lemma 2.2, x1 − x2 →∗

R 0 implies x1 ↓R x2 for any critical pair
(x1, x2). �

A rewriting system R is normalized, if the right-hand side v of any rule u → v of
R is R-irreducible and the left-hand side u is (R\{u → v})-irreducible. A set G of
monic elements is normalized if RG is also. For any Gröbner base G we can always
get a normalized Gröbner base equivalent to G as follows.

Proposition 2.10. For any Gröbner base G on F , there exists a normalized
Gröbner base G′ equivalent to G. If G is finite, we can choose G′ to be finite.

Proof. First, if there are more than one elements in G with the same leading term,
take just one of them and throw out the others. Then, for each u− v remaining in
G, if u is reducible with respect to (G\{u − v}), remove it from G; on the other
hand, if u is (G\{u− v})-irreducible but v is G-reducible, then replace it by u− v̂,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GRÖBNER BASES AND THE HOCHSCHILD COHOMOLOGY 1101

where v̂ is the normal form of v with respect G. We shall show that the set G′

reformed from G in this way is a normalized Gröbner base equivalent to G.
Let I and I ′ be the ideals generated by G and G′ respectively. It is easy to see

that G′ ⊂ I and hence I ′ ⊂ I. We shall show that f →∗
G′ 0 for every f ∈ I. Let

f ∈ I and let f ′ be the irreducible descendant of f with respect to G′; f →∗
G′ f ′.

Since f − f ′ ∈ I ′ ⊂ I, we see f ′ ∈ I. Since RG is complete, f ′ →∗
G 0 by Proposition

2.3. So, if f ′ �= 0, a rule from RG must be applied to the leading term lt(f ′) = k ·x
(k ∈ K\{0}, x ∈ Σ∗) of f ′, that is, x = x1ux2, u → v ∈ RG. If u ∈ Irr(G\{u − v}),
then u − v̂ ∈ G′ contradicting G′-irreducibility of f ′. If u �∈ Irr(G\{u, v}), there is
an element u′ − v′ ∈ G different from u− v such that u′ is a factor of u; u = u1u

′u2

with u1, u2 ∈ Σ∗ and u′ − v̂′ ∈ G′. This again contradicts the G′-irreducibility of
f ′. Hence, we have f ′ = 0 and f →∗

G′ 0.
What we have shown above implies that I = I ′ and RG′ is complete by Propo-

sition 2.9. Clearly G′ is normalized by construction and it is finite if G is also. �

Note that if G is normalized, there is no critical pair of inclusion type. In fact,
for any u − v ∈ G, there is no u′ − v′ ∈ G different from u − v such that u′ is a
subword of u, because u is G\{u − v}-irreducible.

3. Gröbner bases for bimodules

Let K be a commutative ring with 1. Let A be a K-algebra. An A-bimodule M
is a K-module with left A-action and right A-action satisfying

(a · x) · b = a · (x · b),

for a, b ∈ A, x ∈ M , and the restrictions of left and right actions to K coincide with
the original K-module action. Let A◦ be the opposite algebra of A. An A-bimodule
M is naturally a left module over the enveloping algebra A ⊗K A◦ with the left
action

(a ⊗ b) · x = a · x · b
for a⊗b ∈ A⊗K A◦ and x ∈ M . Conversely, a left A⊗K A◦-module M is considered
to be an A-bimodule.

An A-bimodule is free, if it is free when we regard it as left A ⊗K A◦-module.
The free A-bimodule M generated by a set X is isomorphic to

A ⊗K KX ⊗K A,

where KX is the free K-module generated by X . An element f of M is written as
a finite sum

(2) f =
∑

ai ⊗ ξi ⊗ bi

with ai, bi ∈ A and ξi ∈ X , and for a, b ∈ A we have

a · f · b =
∑

aai ⊗ ξi ⊗ bib.

The free bimodule M is written simply as A · X · A and the element f in (2) is
written as

∑
ai[ξi]bi.

Now, let A be an algebra over K admitting a Gröbner base and let Σ be an
alphabet corresponding to the generating set of A. Let F = KΣ∗ be the free
algebra generated by Σ over K and let ρ : F → A be the surjection. Let G be a
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normalized Gröbner base of I = Ker(ρ) with respect to a fixed compatible well-
order � on Σ∗. In the rest of this section we discuss rewriting systems on free
F -bimodules in this situation.

Let X be a nonempty but possibly infinite set and we consider the free F -
bimodule F · X · F generated by X . Actually, F · X · F is the free K-module
generated by Σ∗ × X × Σ∗ with two-sided F -action. Let � be a well-order on the
set of terms x[ξ]y ∈ Σ∗ × X × Σ∗ with x, y ∈ Σ∗ and ξ ∈ X , which is compatible,
that is, f � f ′ in Σ∗ × X × Σ∗ implies a · f · b � a · f ′ · b for any a, b ∈ Σ∗, a � a′

in Σ∗ implies a · f � a′ · f for any f ∈ Σ∗ × X × Σ∗ and b � b′ implies f · b � f · b′
for any f ∈ Σ∗ × X × Σ∗. For example, starting with a linear order > on X , we
can define an order � on Σ∗ × X × Σ∗ as follows: x[ξ]y � x′[ξ′]y′ if (i) ξ > ξ′, or
(ii) ξ = ξ′ and xy � x′y′ on Σ∗, or (iii) ξ = ξ′, xy = x′y′ and y � y′ on Σ∗.

The order � can be extended to a partial order � on F ·X ·F in a similar manner
as we did on F in Section 2. An element f of F · X · F is uniquely written as

(3) f =
∑

kixi[ξi]yi,

with ki ∈ K\{0}, xi, yi ∈ Σ∗ and ξi ∈ X , where xi[ξi]yi are different elements
in Σ∗ × X × Σ∗. The leading term lt(f) of f is the term kixi[ξi]yi such that
xi[ξi]yi � xj [ξj ]yj for all j �= i. The element f is monic if the coefficient ki of the
leading term kixi[ξi]yi is 1. If, moreover, xi = 1, f is called very monic.

A rewriting rule is a pair (s, t) with s ∈ Σ∗ × X × Σ∗ and t ∈ F · X · F such
that s � t. A rewriting system T on F · X · F is a set of rewriting rules. If
f ∈ F · X · F has a term k · x[ξ]y, x = x′u, y = vy′ and s = u[ξ]v → t ∈ T , then
f →T f − k · x′(u[ξ]v − t)y′ by an application of the rule s → t.

A rule u → v (u − v ∈ G) in RG is also applied to a term k · x[ξ]y of f , if
x = x′ux′′ or y = y′uy′′. In the former case, f →G f − k · x′(u − v)x′′[ξ]y, and in
the latter, f →G f − k ·x[ξ]y′(u − v)y′′. The relation →G on F ·X ·F is complete,
because →G is complete on F . So, any f ∈ F · X · F has the unique normal form
f̂ with respect to →G. An element f written as (3) is G-irreducible, if and only if
every xi and yi are G-irreducible. Thus, we have f̂ =

∑
kix̂i[ξi]ŷi.

Let →T,G = →T ∪ →G, then →T,G is a noetherian relation on F ·X ·F because
f →T,G g implies f � g by the compatibility of �. Let →∗

T,G and ↔∗
T,G be the

reflexive transitive closure and the reflexive symmetric transitive closure of →T,G,
respectively. An element f ∈ F ·X ·F is (T, G)-irreducible, if no rule from T ∪ RG

is applied to f ; otherwise, f is (T, G)-reducible. Let L(T, G) be the F -subbimodule
of F · X · F generated by HT ∪ I · X ∪ X · I, where HT = {s − t | s → t ∈ T }. A
similar result to Proposition 2.1 holds.

Proposition 3.1. The relation ↔∗
T,G is equal to the F -bimodule congruence of

F · X · F modulo L(T, G); f ↔∗
T,G g ⇔ f ≡ g (mod L(T, G)). In particular,

L(T, G) = {f ∈ F · X · F | f ↔∗
T,G 0}.

Due to Proposition 3.1 the quotient M = M(T, G) = F · X · F/ ↔∗
T,G is an

F -bimodule equal to F · X · F/L(T, G). But, moreover, M is an A-bimodule in
a natural way because x ↔∗

G y implies x · f ↔∗
T,G y · f and f · x ↔∗

T,G f · y for
x, y ∈ F and f ∈ F · X · F . Let η : F · X · F → M be the natural surjection which
is a morphism of F -bimodules. Let ρX : F · X · F → A · X · A be the morphism of
K-modules defined by

ρX(x[ξ]y) = ρ(x)[ξ]ρ(y)
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for x, y ∈ Σ∗ and ξ ∈ X . Clearly, ρX is a morphism of F -bimodules. Since M is an
A-bimodule, we have a surjection η : A ·X ·A → M with the following commutative
diagram:

A · X · A
�

F · X · F
ρX

�η M

�
�

�
�

��

η
(4)

Hence, Ker(η) = ρX(L(T, G)) is an A-subbimodule of A · X · A, which is denoted
by LA(T ). LA(T ) is the A-subbimodule of A · X · A generated by ρX(HT ), and
M ∼= (A · X · A)/LA(T ). Thus

Proposition 3.2. The quotient M = M(T, G) = (F · X · F )/L(T, G) is an A-
bimodule with the actions induced from the actions of F to F ·X ·F . It is isomorphic
to (A · X · A)/LA(T ), where LA(T ) is the A-subbimodule of A · X · A generated by
ρX(HT ) = {ρX(s − t) | s → t ∈ T }.

If the rewriting system →T,G is complete on F · X · F , we say T is complete
modulo G. Similar results to Proposition 2.3 hold in this situation.

Proposition 3.3. If a rewriting system T on F ·X ·F is complete modulo G, then
for any f ∈ F ·X ·F , there is a unique (T, G)-irreducible element (the normal form
of f) f̃ ∈ F · X · F such that f →∗

T,G f̃ , and for any f, g ∈ F · X · F we have

f̃ = g̃ ⇔ f ↔∗
T,G g ⇔ f − g →∗

T,G 0 ⇔ η(f) = η(g).

Obviously, the empty set ∅ is complete modulo G, and →∅,G = →G and f̃ = f̂ .
Since f ↔∗

G g ⇔ ρX(f) = ρX(g) for f, g ∈ F ·X ·F , the morphism η : A ·X ·A → M
in (4) is an isomorphism in this case. Accordingly,

Ker(ρX) = L(∅, G) = { f ∈ F · X · F | f̂ = 0 } = I · X · F + F · X · I
is the F -subbimodule generated by I · X ∪ X · I. Let IX denote this subbimodule.
In general, L(T, G) contains IX .

A subset H of F · X · F is a Gröbner base (modulo G), if every element of
H is monic and the associated system TH = {lt(f) → −rt(f) | f ∈ H} is a
complete rewriting system on F · X · F modulo G. For an F -subbimodule L of
F · X · F , if H is a Gröbner base such that L = L(H, G) = L(TH , G), H is said
to be a Gröbner base of L. It is also called a Gröbner base for the A-subbimodule
ρX(L) of A · X · A. We write →H,G and →∗

H,G for →TH,G and →∗
TH,G

respec-
tively. A (→H,G)-(ir)reducible element is called (H, G)-(ir)reducible. The quotient
M(H, G) = (F · X · F )/L(H, G) = (A · X · A)/LA(H) is called the A-bimodule
defined by a pair (G, H) of Gröbner bases, where LA(H) = LA(TH).

Summarizing the above argument we have

Proposition 3.4. (1) The empty set ∅ is a Gröbner base of the F -subbimodule
IX = I · X · F + F · X · I of F · X · F modulo G, and A · X · A is the A-bimodule
defined by it. For f, g ∈ F · X · F it holds that f̂ = ĝ ⇔ ρX(f) = ρX(g).

(2) If H is a Gröbner base modulo G on F · X · F of an F -subbibmodule L of
F · X · F , then M(H, G) = F · X · F / L = A · X · A/ LA(H), any f ∈ F · X · F
has the unique normal form f̃ with respect to TH , and f̃ = g̃ ⇔ η(f) = η(g) in
M(H, G) for f, g ∈ F · X · F .
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4. Proper critical pairs and standard reductions

G is continued to be a normalized Gröbner base on the free algebra F over K. Let
T be a rewriting system on F ·X ·F and let H = HT = {s−t | s → t ∈ T }. We shall
consider critical pairs for T modulo G. To simplify the argument we consider only a
special type of systems which we need in this paper. We say T (and H) is very monic
if the left-hand side of each rule of T is very monic. Moreover, we can normalize T
as we did for rewriting systems on F in Section 3. T is normalized modulo G if for
any s → t ∈ T , t is (H, G)-irreducible and s is (H\{s− t}, G)-irreducible. We have
a similar result to Proposition 2.9, a proof of which is omitted.

Proposition 4.1. If an F -subbimodule L has a Gröbner base H modulo G, it has
a normalized Gröbner base H ′ modulo G. If H is finite (resp. very monic), we can
choose H ′ as finite (resp. very monic).

From now on T is a normalized very monic rewriting system on F · X · F . Let
[ξ]x → t ∈ T (t ∈ F · X · F and ξ ∈ X , x ∈ Σ∗) and u − v ∈ G. Suppose that x
overlaps with u, that is, x = x′z, u = zu′ with z �= 1. We can apply the rules on
[ξ]xu′ = [ξ]x′u in two ways, and obtain a critical pair

([ξ]xu′ →T tu′, [ξ]x′u →G [ξ]x′v)

of reductions and a critical pair (tu′, [ξ]x′v) of elements. The critical pair is resolv-
able if tu′ ↓T,G [ξ]x′v, that is, there is f ∈ F · X · F such that tu′ →∗

T,G f and
[ξ]x′v →∗

T,G f . The critical pair is proper if xu′ is a minimal G-reducible word,
that is, any proper prefix of xu′ is G-irreducible. For the (proper) critical pair
(tu′, [ξ]x′v) above, the difference tu′ − [ξ]x′v is a (proper) S-polynomial.

Proposition 4.2. A normalized very monic system T on F · X · F is complete
modulo G if all the proper critical pairs are resolvable.

Proof. As in the proof of Proposition 2.8, it suffices to show that, under the condi-
tion that all the proper critical pairs are resolvable, T is locally confluent. Again we
shall prove that f ↓T,G g holds for any f, g, h ∈ F · X · F such that h →T,G f and
h →T,G g by induction on h. For the same reason discussed in the proof of Proposi-
tion 2.8, we may suppose that h = kx[ξ]y + h†, where k ∈ K \ {0}, x, y ∈ Σ∗, ξ ∈ X
and h† is an irreducible element of F · X · F , and two reductions h →T,G f and
h →T,G g are made through applications of rules of T ∪ RG to the part [ξ]y. If
both are made through applications of rules from G, f ↓G g holds because RG is
complete. Since T is very monic and normalized, two different applications of rules
from T to [ξ]y is impossible.

Thus, we may suppose that y = y′y′′ = y1uy2, [ξ]y′ → t ∈ T , u − v ∈ G with
y′, y′′, y1, y2 ∈ Σ∗, and f = k·xty′′+h†, g = k·x[ξ]y1vy2+h†. If y′ and u are disjoint
in y, that is, y1 = y′z for some z ∈ Σ∗, then f = k ·xtzuy2 +h† →G k ·xtzvy2 +h†,
g = k · x[ξ]y′zvy2 + h† →T k · xtzvy2 + h†, and hence f ↓T,G g holds. If they
overlap, that is, y′ = y1z, with nonempty prefix z of u; u = zw, then we have a
critical pair ([ξ]y′w →T t · w, [ξ]y1u →G [ξ]y1v) of reductions. If this critical pair
is proper, then it is resolved by assumption and hence f ↓T,G g holds.

If it is not proper, y has a subword u′ with y′ = y3z
′, y′′ = w′y4 and u′ = z′w′,

such that u′ − v′ ∈ G and ([ξ]y′w′ →T t · w′, [ξ]y3u
′ →G [ξ]y3v

′) is a proper
critical pair of reductions. Since it is resolved by assumption, t · w′ →∗

T,G h′ and
[ξ]y3v

′ →∗
T,G h′ for some h′ ∈ F ·X ·F . Therefore, f = k · xty′′ + h† = k · xtw′y4 +
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h† →∗
T,G f ′ and k · x[ξ]y3v

′y4 + h† →∗
T,G f ′, where f ′ = k · xh′y4 + h†. On the

other hand, since h →G g, h →G k · x[ξ]y3v
′y4 + h† and TG is complete, g →∗

G g′

and k · x[ξ]y3v
′y4 + h† →G g′ for some g′ ∈ F · X · F . Moreover, f ′ and g′ have

the common ascendant k · x[ξ]y3v
′y4 + h† ≺ h. Hence, by the induction hypothesis

(the same as (i) in the proof of Proposition 2.8 holds), we have f ′ ↓T,G g′, and
consequently, we find that f ↓T,G g. �

Proposition 4.2 gives the following elaborated version of Proposition 2.9 for
rewriting systems on bimodules.

Proposition 4.3. For a normalized very monic rewriting system T on F · X · F
the following statements are equivalent.

(1) T is complete modulo G.
(2) Every critical pair is resolvable.
(2′) Every proper critical pair is resolvable.
(3) Every S-polynomial is reduced to 0.
(3′) Every proper S-polynomial is reduced to 0.
(4) Every element in L(T, G) is reduced to 0.

In calculating reduction sequences in F · X · F we have to be careful that a
rule from T ∪ RG must be applied to a whole term k · x[ξ]y (k ∈ K \ {0}) of an
element of F ·X ·F not to a part k′ · x[ξ]y (k′ = k − k′′, k′′ ∈ K \ {0}) of it in each
reduction step. Accordingly, for f, g, f ′g′ ∈ F ·X ·F the reductions f →∗

T,G f ′ and
g →∗

T,G g′ do not guarantee the reduction f + g →∗
T,G f ′ + g′, even if f ′ and g′ are

(T, G)-irreducible. In this sense the reduction in F ·X · F is not additive, and this
causes some difficulty in our calculation. Fortunately, considering a special type of
reduction we can avoid this difficulty.

A reduction

(5) f1 →T,G f2 →T,G · · · →T,G fn

is called standard, if for every i = 1, ..., n− 1,
(i) when fi is G-reducible, the reduction fi →T,G fi+1 is made through an

application of a rule from G, and
(ii) when fi is G-irreducible, a rule from T is applied to the smallest T -reducible

term of fi with respect to � in the reduction step fi →T,G fi+1.
If f1 is reduced to fn through a standard reduction as above, we write it as

f1 ⇒∗
T,G fn. A standard one-step reduction by a rule from T is denoted by ⇒T ,

that is, f ⇒T g if f is G-irreducible and g is obtained by applying a rule of T to
the smallest T -reducible term of f .

Since →G is complete, the standard reduction (5) can be rewritten as

f1 = g1 →∗
G ĝ1 ⇒T g2 →∗

G ĝ2 ⇒T · · · ⇒T gm →G ĝm = fn.

Since T is very monic and normalized, in the step ĝi ⇒T gi+1 in the above reduction
sequence, only one rule from T is applicable to the smallest T -reducible term of ĝi.
In this sense, a standard reduction from f to a (T, G)-irreducible element is unique.
Thus we have

Lemma 4.4. For any f ∈ F · X · F , there is a unique (T, G)-irreducible element
f ′ ∈ F · X · F such that f ⇒∗

T,G f ′. If T is complete modulo G, this f ′ is equal to
the normal form f̃ of f .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1106 YUJI KOBAYASHI

The additivity of the standard reduction is stated in the following lemma, which
will be extensively used in our calculations later. We abbreviate ⇒∗

T,G to ⇒∗.

Lemma 4.5. If f ⇒∗ f ′ and g ⇒∗ g′ for f, f ′, g, g′ ∈ F ·X ·F such that f ′ and g′

are (T, G)-irreducible, then k · f + � · g ⇒∗ k · f ′ + � · g′ for any k, � ∈ K.

Proof. Because f ⇒∗ f ′ implies k ·f ⇒∗ k ·f ′ for any k ∈ K, it suffices to prove the
additivity f +g ⇒∗ f ′ +g′. We shall prove this by induction on the pair (f, g) with
respect to �. If f = 0 or g = 0, the assertion trivially holds. So suppose that f

and g are nonzero. We have (f + g)̂ = f̂ + ĝ because G is complete (Corollary 2.4),
and f̂ ⇒∗ f ′ and ĝ ⇒∗ g′ by the definition of standard reduction. If f or g is G-
reducible, f � f̂ or g � ĝ holds, and by the induction hypothesis, f̂ + ĝ ⇒∗ f ′ + g′.
Hence f + g →∗

G (f + g)̂ = f̂ + ĝ ⇒∗ f ′ + g′.
Suppose f and g are G-irreducible, but f is T -reducible. Let k1 · f1 with k1 ∈

K\{0} and f1 ∈ Σ∗×X×Σ∗ be the smallest T -reducible term of f . Then, f1 ⇒T f ′
1,

f ⇒T k1 · f ′
1 + f2 and k1 · f ′

1 + f2 ⇒∗ f ′, where f2 = f − k1 · f1. If, here, g is
T -irreducible, then g = g′, f +g ⇒T k1 ·f ′

1+f2+g, and by the induction hypothesis,
(k1 · f ′

1 + f2) + g ⇒∗ f ′ + g. Consequently, f + g ⇒∗ f ′ + g′.
Next, suppose g is also T -reducible and let �1 · g1 with �1 ∈ K\{0} and let

g1 ∈ Σ∗ × X × Σ∗ be the smallest T -reducible term of g. As above g1 ⇒T g′1 and
�1 · g′1 + g2 ⇒∗ g′, where g2 = g − �1 · g1. If f1 = g1 and k1 + �1 �= 0, then f + g ⇒T

(k1+�1)·f ′
1+f2+g2, and (k1+�1)·f ′

1+f2+g2 = (k1 ·f ′
1+f2)+(�1 ·g′1+g2) ⇒∗ f ′+g′

by the induction hypothesis. If f1 = g1 and k1 + �1 = 0, then f + g = f2 + g2 =
(k1 ·f ′

1 + f2)+ (�1 · g′1 + g2) ⇒∗ f ′ + g′ by the induction hypothesis. If f1 ≺ g1, then
k1f1 is the smallest T -reducible term of f + g and hence f + g ⇒T k1 · f ′

1 + f2 + g.
The last element is reduced to f ′ + g′ through standard reduction by the induction
hypothesis. Finally, if f1 � g1, then f + g ⇒T f + �1g

′
1 + g2 ⇒∗ f ′ + g′. In every

possible case we have shown that f + g ⇒∗ f ′ + g′. �

The following will also be used in the next section.

Lemma 4.6. Let f, f ′ ∈ F · X · F and x ∈ Σ∗. If f ⇒∗ f ′ and f ′ is (T, G)-
irreducible, then x · f ⇒∗ (xf ′ )̂.

Proof. By K-linearity of standard reduction and the mappingˆ, we may suppose
that f is a monic monomial, that is, f = y[ξ]z with ξ ∈ X and y, z ∈ Σ∗. We proceed
by induction on f with respect to �. If f is G-reducible, f � f̂ and f̂ ⇒∗ f ′. By
the induction hypothesis x · f̂ ⇒∗ (xf ′)̂, and thus, x · f →∗

G x · f̂ ⇒∗ (xf ′ )̂. If
f is (T, G)-irreducible, then f = f ′ and the assertion holds. So assume that y
and z are G-irreducible but f is T -reducible. Then, z = z1z2 and [ξ]z1 → t ∈ T ,
f ⇒T y · t · z2 and y · t · z2 ⇒∗ f ′. Because all the terms in y · t · z2 are less than f ,
we see x(y · t · z2) →∗

G (xy)̂ · t · z2 ⇒∗ (xf ′ )̂ by the induction hypothesis. Thus, we
have the desired standard reduction

x · f →∗
G (xy)̂ · [ξ] · z ⇒T (xy)̂ · t · z2 ⇒∗ (xf ′ )̂. �

5. Gröbner bases made from critical pairs of reductions

As in Section 4, let G be a normalized Gröbner base of an ideal I of the free
algebra F , and let ρ : F → A = F/I be the surjection. Let H be a normalized
very monic Gröbner base modulo G of an F -subbimodule L of F · X · F , and let
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M = F · X · F/L be the A-bimodule defined by (H, G). We consider the free F -
bimodule F · H · F generated by the set H . For h ∈ H , [h] denotes the formal
generator of F · H · F corresponding to h ∈ H . Let δ : F · H · F → F · X · F be a
morphism of F -bimodules defined by

δ([h]) = h.

We have L = L(H, G) = Im(δ) + IX . In this section we shall construct a Gröbner
base on F ·H ·F , and in the next section we shall show that it is actually a Gröbner
base of Ker(δ) + IH , where IH = I · H · F + F · H · I.

We need to introduce an order � on Σ∗ × H × Σ∗ under the condition that
a compatible well-order � is already given on Σ∗ × X × Σ∗. For f = x[h]y and
g = x′[h′]y′ ∈ Σ∗ × H × Σ∗ with x, y, x′, y′ ∈ Σ∗ and h, h′ ∈ H , x · lt(h) · y and
x′ · lt(h′) · y′ are considered to be elements of Σ∗ × X × Σ∗. Define f � g if and
only if

(i) x · lt(h) · y � x′ · lt(h′) · y′ in Σ∗ × X × Σ∗, or
(ii) x · lt(h) · y = x′ · lt(h′) · y′ and |y| > |y′|, or
(iii) x · lt(h) · y = x′ · lt(h′) · y′, |y| = |y′| and |x| < |x′|.
This � is a total order. In fact, if x·lt(h)·y = x′ ·lt(h′)·y′, |y| = |y′| and |x| = |x′|,

then lt(h) = lt(h′) and hence h = h′ because H is normalized. Moreover, � is a
compatible well-order on Σ∗×H ×Σ∗ because it is defined through the compatible
well-order on Σ∗ ·X ·Σ∗. It is extended to the partial order � on F ·H ·F as before.

Now, we define a mapping β from F · X · F to F · H · F , which will play an
important role in the rest of the paper. For an element f = x · [ξ] · y ∈ Σ∗×X ×Σ∗

we define an element β(f) of F · H · F by induction with respect to �. First, if f

is (G ∪ H)-irreducible, let β(f) = 0. Next, if f is G-reducible, let β(f) = β(f̂ ) =
β(x̂[ξ]ŷ). Finally, suppose f is G-irreducible but H-reducible, that is, y = y′y′′ and
h = [ξ]y′ − t ∈ H . Because H is normalized, this h is unique. Because f � xty′′,
xty′′ is written as

∑
kixi[ξi]yi with xi[ξi]yi ≺ f . Hence every β(xi[ξi]yi) is already

defined by the induction hypothesis. Now, define

β(f) = x[h]y′′ +
∑

kiβ(xi[ξi]yi).

Moreover, for an element f of F · X · F expressed as (3) define

β(f) =
∑

kiβ(xi[ξi]yi).

By the definition we easily see

Lemma 5.1. (1) β is a morphism of K-modules, that is, β(kf + �g) = k · β(f) +
� · β(g) for k, � ∈ K and f, g ∈ F · X · F .

(2) β(f) = β(f̂) for f ∈ F · X · F , where f̂ is the normal form of f with respect
to G.

(3) β(f) is G-irreducible for f ∈ F · X · F .
(4) β(x · f) = (x · β(f))̂ for x ∈ Σ∗ and f ∈ F · X · F .

Let h = [ξ]x − t ∈ H and u′′ ∈ Σ∗ such that x = x′u′, u = u′u′′, u − v ∈ G and
xu′′ is a minimal G-reducible word. We have a proper critical pair ([ξ]xu′′ →H tu′′,
[ξ]x′u →G [ξ]x′v) of reductions and a proper S-polynomial p = tu′′ − [ξ]x′v. We
consider an element c of F · H · F corresponding to this critical pair defined by

(6) c = [h]u′′ + β(p) = [h]u′′ + β(tu′′) − β([ξ]x′v).
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Since [ξ]xu′′ � tu′′ and [ξ]xu′′ � [ξ]x′v, we see [h]u′′ � β(tu′′) − β([ξ]x′v) by the
definitions of β and our order � on Σ∗×H×Σ∗, that is, ht(c) = [h]u′′. In particular,
c is very monic.

Let C be the set of the elements c given as (6) for all proper critical pairs of
reductions. We have the rewriting system TC on F ·H ·F associated with C, which
is the set of all rules

[h]u′′ → β([ξ]x′v) − β(tu′′)
corresponding to proper critical pairs.

As stated in Lemma 5.1, (3), β(f) is G-irreducible for f ∈ F · X · F . Moreover,
it is also C-irreducible.

Lemma 5.2. For any f ∈ F · X · F , β(f) is (C, G)-irreducible.

Proof. By Lemma 5.1, (1) and (2), it suffices to show the assertion for a G-
irreducible monic monomial f = x[ξ]y (x, y ∈ Irr(G), ξ ∈ X). Since β(f) = 0
if f is H-irreducible, we may suppose that f is H-reducible. Let y = y′y′′,
h = [ξ]y′ − t ∈ H . Then, β(f) = x · [h] · y′′ + β(x · t · y′′) and f � x · t · y′′.
By the induction hypothesis β(x · t ·y′′) is (C, G)-irreducible. Assume that x · [h] ·y′′

is C-reducible, that is, y′′ = y1y2 and [h]y1 − s ∈ C. So, we have a proper criti-
cal pair ([ξ]y′y1 → t · y1, [ξ]y′

1y
′
2y1 → [ξ]y′

1v
′) of reductions, where y′ = y′

1y
′
2 and

y′
2y1−v′ ∈ G. But this means that y = y′

1y
′
2y1y2 is G-reducible, a contradiction. �

Now we shall prove one of the key results for our construction that C is a Gröbner
base on F · H · F . To this end we need the following technical lemma.

Lemma 5.3. For f ∈ F · X · F and x ∈ F we have a standard reduction

(7) β(f) · x ⇒∗
C,G β(f · x) − β(f̃ · x),

where f̃ is the normal form of f with respect to G ∪ H.

Proof. We prove the assertion by induction on f · x with respect to �. Since
the right-hand side of (7) is (C, G)-irreducible by Lemma 5.2 and the mappings β
and ˜ are K-linear, Lemma 4.5 tells us that we may suppose that f is a monic
monomial, that is, f = w[ξ]y with ξ ∈ X and w, y ∈ Σ∗. Moreover, due to Lemma
4.6 and Lemma 5.1, (2) and (4) we may suppose that w = 1 and y ∈ Irr(G).

If f is H-irreducible, then f = f̃ and β(f) = 0, and hence both sides of (7) are
zero. So, suppose that f is H-reducible, that is, y = y′y′′ and h = [ξ]y′ − t ∈ H .
By the definition of β we have

β(f) = [h]y′′ + β(t · y′′), [h]y′′ � β(t · y′′).

Since t · y′′ ≺ f , by the induction hypothesis we have

β(t · y′′) · x ⇒∗ β(t · y′′x) − β((t · y′′)̃ · x) = β(t · y′′x) − β(f̃ · x),

where ⇒∗ is the abbreviation of the standard reduction ⇒∗
C,G. Thus, to show (7)

it suffices to show

(8) [h]y′′x ⇒∗ β([ξ]yx) − β(t · y′′x),

again by the additivity of standard reduction in Lemma 4.5.
If yx is G-irreducible, we have β([ξ]yx) = [h]y′′x + β(t · y′′x), and we find that

both sides of (8) are equal. So, we suppose that yx = y′y′′x is G-reducible. We
need to consider two cases,

(i) y′′ = y1y2, y2 �= 1, x = x1x2, y2x1 − v ∈ G, and
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(ii) y′′x is G-irreducible and y′ = y1y2, y2 �= 1, x = x1x2, y2y
′′x1 − v ∈ G.

In case (i) we have

[ξ]yx →G [ξ]y′y1vx2 →∗
G [ξ]y′z,

t · y′′x →∗
G t · z,

and

(9) [h]y′′x →∗
G [h]z,

where z = (y′′x)̂ . By Lemma 5.1, (2) we have

(10) β([ξ]y′z) = β([ξ]yx), β(t · z) = β(t · y′′x).

Here, if y′z is G-irreducible, we have

β([ξ]y′z) = [h]z + β(t · z).

This together with (10) shows that the right-hand side of (9) is equal to β([ξ]yx)−
β(t · y′′x), as desired.

If y′z is G-reducible, then there is u′ − v′ ∈ G such that u′ = y4z1, y′ = y3y4,
z = z1z2. Here, we can choose the element u′ − v′ of G so that y′z1 is a minimal
G-reducible word, that is, ([ξ]y′z1 →H tz1, [ξ]y′z1 →G [ξ]y3v

′) is a proper critical
pair of reductions. Thus, we have the rule

[h]z1 → β([ξ]y3v
′) − β(t · z1)

in TC , and hence

[h]z = [h]z1z2 ⇒C β([ξ]y3v
′)z2 − β(t · z1)z2,

where ⇒C denotes a one-step standard C-reduction. Since f · x � [ξ]y3v
′ and

f · x � tz1z2, by the induction hypothesis we have

β([ξ]y3v
′)z2 ⇒∗ β([ξ]y3v

′z2) − β(([ξ]y3v
′ )̃z2)

and
β(t · z1)z2 ⇒∗ β(t · z1z2) − β((t · z1)̃z2).

Since ([ξ]y3v
′)̃ = (t · z1)̃ by the confluence of →H,G, we see

(11) [h]z ⇒∗ β([ξ]y3v
′z2) − β(t · z) = β([ξ]yx) − β(t · y′′x).

(9) and (11) yield the desired reduction (8).
In case (ii), again we may suppose that yx1 is a minimal G-reducible word, and

hence we have the rule

[h]y′′x1 → β([ξ]y1v) − β(t · y′′x1)

in TC . Since y′′x1x2 = y′′x is G-irreducible,

(12) [h]y′′x ⇒C β([ξ]y1v) · x2 − β(t · y′′x1) · x2.

By the induction hypothesis,

β([ξ]y1v) · x2 ⇒∗ β([ξ]y1vx2) − β(([ξ]y1v)̃x2)

and
β(t · y′′x1) · x2 ⇒∗ β(t · y′′x) − β((t · y′′x1 )̃x2).

Since (t ·y′′x1 )̃ = ([ξ]y1v)̃ and β([ξ]y1vx2) = β([ξ]yx), we get the reduction (8) from
(12) using Lemma 4.5. �
Theorem 5.4. C is a normalized very monic Gröbner base on F · H · F .
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Proof. We already know that C is very monic. Let c = [h]u′′+β(t·u′′)−β([ξ]x′v) be
an element of C given as (6), where h = [ξ]x− t ∈ H , x = x′u′, u = u′u′′, u−v ∈ G
and xu′′ is a minimal G-reducible word. Lemma 5.2 tells us that β(tu′′)−β([ξ]x′v) is
(C, G)-irreducible. Suppose that [h]u′′ is (C\{c})-reducible and there is c′ ∈ C \{c}
such that lt(c′) = [h]u′′

1 with a prefix u′′
1 of u′′. Thus, x = x′′u′′

2 and u′′
2u′′

1 ∈ Dom(G)
for some x′′, u′′

2 ∈ Σ∗. Because xu′′ has no subword from Dom(G) other than u, we
have u′′

2u′′
1 = u, but this implies c = c′, a contradiction. Therefore, lt(c) = [h]u′′ is

(C\{c})-irreducible, and we find that C is normalized.
To see the confluence of →C we need to consider critical pairs. Consider the

element c = [h]u′′+β(tu′′)−β([ξ]x′v) as above, and suppose u′′ = u1u2, u2u3−v′ ∈
G for some u1, u2, u3 ∈ Σ∗, then we have a critical pair (f1, f2) = (β([ξ]x′v−tu′′)·u3,
[h]u1v

′) for C. By Lemma 5.3 (and using Lemma 4.5) we have

f1 = β([ξ]x′v) · u3 − β(tu′′) · u3

⇒∗ β([ξ]x′vu3) − β(([ξ]x′v)̃u3) − β(tu′′u3) + β((tu′′ )̃u3)

= β([ξ]x′vu3) − β(tu′′u3) = β([ξ]xu1v
′) − β(tu1v

′)

= β([ξ]xz) − β(tz),

(13)

where z = (u1v
′)̂ .

If xz is G-irreducible, we have

β([ξ]xz) = [h]z + β(tz).

Hence, we see f1 ⇒∗ [h]z and f2 →∗
G [h]z, that is, f1 ↓C,G f2.

If xz is G-reducible, then x = x1x2, z = z1z2 and x2z1 − v′′ ∈ G, where xz1 is a
minimal G-reducible word. Hence, we have the rule

[h]z1 → β([ξ]x1v
′′) − β(tz1)

in TC . Thus, again by Lemma 5.3 we have
f2 →∗

G [h]z1z2

⇒C β([ξ]x1v
′′)z2 − β(tz1)z2

⇒∗ β([ξ]x1v
′′z2) − β(([ξ]x1v

′′ )̃z2) − β(tz1z2) + β((tz1 )̃z2)

= β([ξ]xz) − β(tz),

(14)

because β([ξ]xz) = β([ξ]x1v
′′z2) and ([ξ]x1v

′′ )̃ = (tz1)̃. The last element in (14) is
equal to the last element in (13), and we find f1 ↓C,G f2. Because any critical pair
for C is resolved, →C is complete modulo G by Proposition 4.3. �

6. Exact sequences of bimodules

Let H be a very monic normalized Gröbner base of an F -subbimodule L of
F · X · F modulo G. Then, L is the F -subbimodule generated by H and IX =
F ·X · I + I ·X ·F . We consider the free F -bimodule F ·H ·F generated by the set
H and define the morphism δ : F ·H · F → F ·X · F of F -bimodules by δ([h]) = h
for h ∈ H as in the last section. Also we have a morphism ∂ : A ·H ·A → A ·X ·A
of A-bimodules defined by ∂([h]) = ρX(h) for h ∈ H .

Let C be the Gröbner base made from proper critical pairs of H . We consider
the free F -bimodule F · C · F and the free A-bimodule A · C · A generated by
C. With [c] denoting the generator corresponding to c ∈ C, we have a morphism
δ′ : F ·C ·F → F ·H ·F of F -bimodules and a morphism ∂′ : A ·C ·A → A ·H ·A
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GRÖBNER BASES AND THE HOCHSCHILD COHOMOLOGY 1111

of A-bimodules defined by δ′([c]) = c, and ∂′([c]) = ρH(c). With these morphisms
we have a commutative diagram

(15)
F · C · F δ′

→ F · H · F δ→ F · X · F
↓ ρC ↓ ρH ↓ ρX

A · C · A ∂′
→ A · H · A ∂→ A · X · A.

We shall prove our second key result that the lower sequence in (15) is exact. To
this end we need the following lemma involving the K-linear mapping β : F ·X ·F →
F · H · F defined in the last section.

Lemma 6.1. For f ∈ F · X · F we have

(16) δ ◦ β(f) ≡ f − f̃ (mod IX).

Proof. By K-linearity of the mappings δ, β and ,̃ we may suppose that f = x[ξ]y
with x, y ∈ Σ∗ and ξ ∈ X . Since β(f) = β(f̂ ) and f − f̂ ≡ 0 (mod IX), we may
further suppose that x, y ∈ Irr(G). We prove the assertion by induction on f with
respect to �.

If f is H-irreducible, then β(f) = 0 and f = f̃ , and both sides of (16) are 0. On
the other hand, if f is H-reducible, then y = y′y′′, h = [ξ]y′ − t ∈ H . Since

β(f) = x[h]y′′ + β(xty′′)

by the definition of β, we have

δ ◦ β(f) = x([ξ]y′ − t)y′′ + δ ◦ β(xty′′).

Here, by the induction hypothesis we see

δ ◦ β(xty′′) ≡ xty′′ − (xty′′ )̃ (mod IX).

Because f = x[ξ]y′y′′ and f̃ = (xty′′ )̃, we obtain the desired congruence in (16). �

Lemma 6.2. ρX ◦ δ ◦ δ′ = 0.

Proof. Let h = [ξ]x − t ∈ H , x = x′u′, u = u′u′′, u − v ∈ G and x′u is a minimal
G-reducible word. Then we have an element

c = [h]u′′ + β(tu′′) − β([ξ]xu′′)

of C. By Lemma 6.1 we obtain

δ ◦ δ′([c]) = h · u′′ + δ ◦ β(tu′′) − δ ◦ β([ξ]xu′′)

≡ ([ξ]x − t)u′′ + tu′′ − (tu′′)̃ − [ξ]xu′′ + ([ξ]xu′′ )̃ (mod IX)

= −(tu′′)̃ + ([ξ]xu′′ )̃ = 0.

It follows that ρX ◦ δ ◦ δ′([c]) = 0, as desired. �

Lemma 6.3. We have Im(δ′) + IH ⊃ Ker(ρX ◦ δ).

Proof. Let f ∈ F ·H ·F such that ρX ◦δ(f) = 0. We shall show that f ∈ Im(δ′)+IH

by induction on f with respect to �. Let f =
∑

ki · xi[hi]yi with ki ∈ K\{0}, xi,
yi ∈ Σ∗ and hi = [ξi]zi − ti ∈ H , where ξi ∈ X , zi ∈ Irr(G), ti ∈ F · H · F and
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xi[hi]yi are different. Since f − f̂ ∈ IH , we may suppose that f is G-irreducible,
that is, xi, yi ∈ Irr(G) for all i. Suppose k1 ·x1[h1]y1 is the leading term of f . Since

ρX ◦ δ(f) = ρX(
∑

ki · xi([ξi]zi − ti)yi))

=
∑

ki · ρ(xi)[ξi]ρ(ziyi) −
∑

ki · ρX(xitiyi)

= 0,

the equality

(17)
∑

ki · xi[ξi](ziyi)̂ −
∑

ki · (xitiyi)̂ = 0

holds in F · X · F by Proposition 3.4, (1). This implies that the word z1y1 is G-
reducible. In fact, if z1y1 were G-irreducible, then k1x1[ξ1](z1y1)̂ = k1x1[ξ1]z1y1

would be greater than any other term in the left-hand side of (17) and would never
be cancelled to 0. Therefore, z1 = z′1z

′′
1 , y1 = y′

1y
′′
1 , z′′1 y′

1 − v ∈ G and z1y
′
1 has no

proper G-reducible prefix. Thus, we have the element

c = [h1]y′
1 + β(t1y′

1) − β([ξ1]z′1v)

in C. Set f ′ = f − δ′(k1x1[c]y′′
1 ), then f ′ ∈ Ker(ρX ◦ δ) by Lemma 6.2, and

f ′ = f − k1x1[h1]y1 − k1x1β(t1y′
1)y

′′
1 − k1x1β([ξ1]z′1v)y′′

1 ≺ f

because the leading term k1x1[h1]y1 of f is cancelled in f ′. By the induction
hypothesis, f ′ ∈ Im(δ′) + IH . It follows that f = f ′ + δ′(k1x1[c]y′′

1 ) is also in
Im(δ′) + IH . �

By Lemmas 6.2 and 6.3 we see

(18) Im(δ′) + IH = Ker(ρX ◦ δ) = Ker(δ) + IH .

Thus, δ′([C]) = C is a Gröbner base of Ker(δ)+ IH by Theorem 5.4, and we obtain
the main theorems in this section.

Theorem 6.4. C is a normalized very monic Gröbner base of Ker(δ) + IH on
F · H · F modulo G, that is, C is a Gröbner base for Ker(∂).

Theorem 6.5. Let M be defined by a normalized very monic Gröbner base H on
F · X · F modulo G. We have an exact sequence of the free A-bimodules

A · C · A ∂′
→ A · H · A ∂→ A · X · A η→ M → 0,

where η is the surjection in (4).

Proof. The morphism η is surjective, and Ker(η) = LA(H), which is generated by
ρX(H) by Proposition 3.2, is equal to Im(∂). Hence, the sequence is exact at M
and A ·X ·A. The equality (18) implies the sequence is also exact at A ·H ·A. �

7. Construction of free bimodule resolutions

Let M be an A-bimodule admitting a very monic Gröbner base, that is, M ∼=
M(X1, G), where X1 is a very monic Gröbner base modulo G on the free F -bimodule
F · X0 · F generated by a set X0 of generators of M . Due to Proposition 4.1, we
may suppose that X1 is normalized.

Let X2 be the Gröbner base on F ·X1 ·F made from proper critical pairs of X1.
By Theorem 6.5, we have an exact sequence of the free A-bimodules

(19) A · X2 · A
∂2→ A · X1 · A

∂1→ A · X0 · A → M → 0.
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GRÖBNER BASES AND THE HOCHSCHILD COHOMOLOGY 1113

By Theorem 6.4, X2 is a Gröbner base for Ker(∂1). So, again by Theorem 6.5,
with the Gröbner base X3 made from proper critical pairs of X2, we have an exact
sequence

A · X3 · A
∂3→ A · X2 · A

∂2→ A · X1 · A
∂1→ Im(∂1).

Combining this with (19) we have an exact sequence

A · X3 · A
∂3→ A · X2 · A

∂2→ A · X1 · A
∂1→ A · X0 · A → M → 0.

We can repeat this construction arbitrarily many times and we have a free A-
bimodule resolution of M

(20) X : · · · ∂n+1→ A · Xn · A ∂n→ · · · ∂1→ A · X0 · A → M → 0.

If G and X0 is finite, Xn are finite for all n, and hence all the free A-bimodules
in (20) are finitely generated. Summarizing:

Theorem 7.1. If an algebra A over K admits a Gröbner base G and an A-bimodule
M admits a Gröbner base X1 modulo G on a set X0 of generators of M , then we
have a free bimodule resolution X in (20) of M . If G, X0 and X1 are finite, all the
free bimodules in X are of finite rank.

We say an A-bimodule M has type FPn if it has a partial A-bimodule resolution

Fn
∂n→ · · · ∂1→ F0 → M → 0

such that Fi (0 ≤ i ≤ n) are free of finite rank. M has type FP∞ if it has type FPn

for all n ≥ 0.

Corollary 7.2. If an algebra A over K admits a finite Gröbner base G, then a
finitely generated A-bimodule with finite Gröbner base modulo G has type FP∞.

Now we perform this construction for the A-bimodule A. Without loss of gen-
erality, we may assume that Dom(G) ∩ Σ = ∅. First, we define the order � on the
product Σ∗ ×Σ∗ as follows. For x, y, x′, y′ ∈ Σ∗, (x, y) � (x′, y′) holds, if xy � x′y′

in Σ∗, or xy = x′y′ and |y| > |y′|. Clearly, this is a well-order and can be extended
to a well-founded partial order � on the free F -bimodule F · [ ] · F with a single
generator [ ], which is a K-space with base Σ∗ × Σ∗.

Let
X1 = {[ ]a − a[ ] | a ∈ Σ} ⊂ F · [ ] · F.

We have the augmentation mapping ε from the cyclic free A-bimodule A · [ ] ·A to
A,

ε : A · [ ] · A → A, ε(x[ ]y) = xy,

and the surjection
ρ[ ] : F · [ ] · F → A · [ ] · A.

Lemma 7.3. X1 is a normalized very monic Gröbner base on F · [ ] ·F for Ker(ε)
modulo G.

Proof. Since [ ]a � a[ ], [ ]a is the leading term of [ ]a−a[ ], and so X1 is normalized
and very monic. Next we show the confluence. Let u − v ∈ G and let a1 be the
first letter of u, then we have a proper critical pair ([ ]a1u

† → a1[ ]u†, [ ]u → [ ]v)
of reductions, where u† denotes the maximal proper suffix of u; u = a1u

†. Since

a1[ ]u† →∗
X1

u[ ] →G v[ ]
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and
[ ]v →∗

X1
v[ ],

the critical pair is resolvable. Hence, X1 is a Gröbner base, and clearly it generates
Ker(ε). �

Let F ·Σ·F (resp. A·Σ·A) be the free F -bimodule (resp. A-bimodule) generated
by Σ, and let [a]1 denote the generator of it corresponding to a ∈ Σ. In general,
for x = a1 · · ·an ∈ Σ∗, [x]1 denotes the element

[x]1 = [a1]1a2 · · ·an + a1[a2]1a3 · · ·an + · · · + a1 · · · an−1[an]1
of F · Σ · F . This [x]1 is also considered to be an element of A · Σ · A modulo IΣ.
We extend the mapping [ ]1 to the mapping [ ]1 : F → F · Σ · F , K-linearly. Let
δ1 : F · Σ · F → F · [ ] · F (resp. ∂1 : A · Σ · A → A · [ ] · A) be the morphism of
F -bimodules (resp. A-bimodules) defined by

δ1([a]1) = [ ]a − a[ ] (resp. ∂1([a]1) = [ ]a − a[ ] (mod I[ ])).

For the proper critical pair ([ ]a1u
† → a1[ ]u†, [ ]u → [ ]v) of reductions for

u− v ∈ G with u = a1u
† in the proof of Lemma 7.3 above, we associate an element

g = [a1]1u† + β(a1[ ]u†) − β([ ]v),

in F · [ ] ·F , where β : F · [ ] · F → F ·Σ · F is the morphism of K-modules defined
in Section 5. By definition we have

β(a1[ ]u†) = a1[a2]1a3 · · ·am + · · · + a1a2 · · · am−1[am]1 = a1[u†]1,

and
β([ ]v) = [v]1,

where u = a1a2 · · · am. Hence, we see

g = [a1]1u† + a1[u†]1 + [v]1 = [u]1 − [v]1.

Thus,

Lemma 7.4. X2 = {[u]1−[v]1 |u−v ∈ G} forms a normalized very monic Gröbner
base on F · Σ · F for Ker (∂1).

Define a morphism ∂2 : A · G · A → A · Σ · A by

∂2([g]2) = [u]1 − [v]1,

for g = u − v ∈ G, where [g]2 denotes the formal generator of the free A-bimodule
A · G · A corresponding to g ∈ G.

Next, we consider a pair c = (g1, g2) of rules in G such that g1 = u1 − v1,
g2 = u2 − v2 ∈ G, u1 = u′

1z, u2 = zu′
2, z �= 1, u′

1 = au†
1 and u†

1u
′
2 is a minimal

G-reducible word. We call such a pair (g1, g2) a proper critical pair of reductions
in G. Then, we have a rule

[g1]2 : [a]1u
†
1z → −a[u†

1z]1 + [v1]1
in X2 and a proper critical pair

([a]1u
†
1u2 → −a[u†

1z]1u′
2 + [v1]1u′

2, [a]1u
†
1u2 → [a]1u

†
1v2)

of reductions for X2. So we obtain a rule

[g1]2 · u′
2 → β([a]1u

†
1v2) + β(a[u†

1z]u′
2 − β([v1]1u′

2)

= β([u′
1]1v2) + β(u′

1[z]u′
2) − β([v1]1u′

2).
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on F · G · F . Here, since u′
1[z]u′

2 is (X2, G)-irreducible, β(u′
1[z]u′

2) = 0. Thus we
have a rule

[g1]2 · u′
2 → β([u′

1]1v2) − β([v1]1u′
2).

Let C be the set of all proper critical pairs of rules in G, and for c = (g1, g2) ∈ C
as above we associate the element

(21) c2 = [g1]2 · u′
2 + β([v1]1u′

2) − β([u′
1]1v2)

of F · G · F .

Lemma 7.5. The set X3 of the elements (21) corresponding to all elements c in
C forms a normalized very monic Gröbner base on F · G · F for Ker(∂2).

Defining a morphism ∂3 : A · C · A → A · G · A by ∂3([c]3) = ρG(c2) for c ∈ C,
where [c]3 denotes the formal generator of A ·C ·A corresponding to c and c2 is the
element given in (21), we have an exact sequence

A · C · A ∂3→ A · G · A ∂2→ A · Σ · A ∂1→ A · [ ] · A ε→ A → 0.

We can continue this construction further, but calculations become more and more
complex, so we stop here. Though it is difficult to give explicit forms of elements
of our Gröbner base in higher dimension, we can give the leading terms of elements
of the Gröbner base in a systematic way.

We define a directed graph Γ associated with G as follows. The set V of vertices
in Γ is the union of Σ and the set of nonempty proper suffixes of words in Dom(G).
For x, y ∈ V , there is an edge from x to y, if and only if xy is a minimal G-reducible
word, that is, x = x′x′′, x′′y ∈ G and xy has no proper G-reducible subword. Γ is
a finite graph if G is finite, but it is infinite in general. For n > 0, Cn denotes the
set of all directed paths in Γ of length n − 1 starting with some a ∈ Σ.

In particular, C1 is the set of trivial paths ιa at a for all a ∈ Σ. Thus, it is
bijective to Σ. C2 is the set of all edges a → u′ (a ∈ Σ, au′ ∈ Dom(G)) in Γ. It is
bijective to G. C3 is the set of all paths a → u′ → u′′ in Γ and it is bijective to the
set of all proper critical pairs of reductions in G.

Theorem 7.6. We have a free A-bimodule resolution of A:

(22) H : → A · Cn · A ∂n→ A · Cn−1 · A → · · · → A · C1 · A
∂1→ A · [ ] · A ε→ A.

Here, Ker(∂n−1) has a very monic normalized Gröbner base {hc | c ∈ Cn} on F ·
Cn−1 · F such that lt(hc) = [c′]vn−1 and ∂n([c]) = ρCn−1(hc), where c is a path
a → v1 → · · · → vn−2 → vn−1 of length n − 1 in Γ and c′ is the subpath a → v1 →
· · · → vn−2 of c of length n − 2.

Proof. By induction on n. Assume that the resolution is constructed up to n and
{hc|c ∈ Cn} forms a Gröbner base for Ker(∂n−1), where hc = [c′]vn−1 − t with t ∈
F ·Cn−1 ·F . Suppose that c is prolonged to a path c = a → v1 → · · · → vn−1 → vn

in Γ of length n, that is, there is vn ∈ Σ∗ such that vn−1vn is a minimal G-reducible
word. Then we have a proper critical pair ([c′]vn−1vn → tvn, [c′]vn−1vn →G [c′]v′)
of reductions. The collection of these elements

hc = [c]vn + β(t · vn) − β([c′]v′)

of F · Cn · F for c ∈ Cn+1 forms a Gröbner base for Ker(∂n), and the resolution is
prolonged up to n + 1 with ∂n+1 : A ·Cn+1 · A → A ·Cn ·A defined by ∂n+1([c]) =
ρXn(hc) in virtue of Theorems 6.4 and 6.5. �
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For two A-bimodules M and N let HomA,A(M, N) be the K-modules consisting
of all bimodule morphisms from M to N . Taking the functor HomA,A(., A) on (22),
we have a complex

HomA,A(H, A) : 0 → A
∂∗
1→ Ad1 → · · · → Adn−1

∂∗
n→ Adn

∂∗
n+1→ Adn+1 → · · · ,

where di = |Ci|. Since A is free as K-module by Corollary 2.5, the homology
group Hn(A) = Ker(∂∗

n+1)/Im(∂∗
n) is equal to the Hochschild cohomology of A of

dimension n.
Because A is a free K-module we can compute other (co)homology groups with

our complex H as below (see [7], Chaps. 9, 10). Because A·Cn·A = A⊗K KCn ⊗KA
is free as a left A-module, H is considered to be a free left A-module resolution
of A. Hence, for any right A-module M , the complex M ⊗A H is exact because
Hn(M ⊗A H) = TorA

n (M, A) = 0 for any n > 0. Moreover, if M is projective as
a K-module, then H ⊗A M is a projective resolution of M . Hence, we have the
following isomorphism of K-modules:

TorA
n (M, N) ∼= Hn(M ⊗A H ⊗A N)

for any left A-module N . For the same reason the complex HomA(H, M) is exact
for any left A-module M , and if M is K-projective, HomA(H, M) is a projective
resolution of M . Hence,

Extn
A(N, M) ∼= Hn(HomA(N, HomA(H, M))

for any left A-module N . Furthermore, since HomA(N, HomA(H, M)) is naturally
isomorphic to HomA,A(H, HomK(N, M)), we have

ExtnA(N, M) ∼= Hn(HomA,A(H, HomK(N, M))).

If A is a supplemented algebra over K with an augmentation ε : A → K, then K
itself is an A-bimodules via ε. Letting N = M = K in the above isomorphisms we
have

TorA
n (K, K) ∼= Hn(K ⊗A H ⊗A K)

and
Extn

A(K, K) ∼= Hn(HomA,A(H, K)).

8. Examples

In this section we compute our resolutions for some example algebras. Though
we do not attempt a systematical application of our methods, we show how our
construction works for a several typical types of algebras. Even if we get a resolu-
tion, it is not an easy task to calculate the Hochschild cohomology. So, we give a
detailed calculation of the cohomology only in the first example.

Example 8.1. (1) Let U be a subset of Σ2 and φ : U → K ·Σ⊕K be a mapping.
Let φ′ : K · Σ2 ⊕ K · Σ → K · Σ2 ⊕ K · Σ ⊕ K be the K-linear mapping defined by

φ′(u) =

{
φ(u) if u ∈ U,

u if u �∈ U,

for u ∈ Σ≤2. Suppose that

(23) φ′(φ(ab)c) = φ′(aφ(bc))
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holds for any a, b, c ∈ Σ such that ab, bc ∈ U . Let I be the ideal of the free
algebra F = K · Σ∗ generated by G = {u − φ(u)}, and let A = F/I. Then, G is a
Gröbner base of I. In fact, (23) guarantees the confluence of the rewriting system
{u → φ(u) |u ∈ U}.

For n ≥ 0, let Vn be the set of words v of length n such that any subword of
v of length 2 belongs to U . For example, V0 = {1}, V1 = Σ, V2 = U and V3 =
{abc | a, b, c ∈ Σ, ab, bc ∈ U}. As before, [v]n for v ∈ Vn denotes the formal generator
corresponding to v, and we extend this notation for any K-linear combination
x =

∑
kivi ∈ K ·Σn as [x]n =

∑
i ki[vi]n. In particular, [x]n = 0 for x ∈ Σ≤n \Vn.

Moreover, for x1, . . . , xn ∈ K · Σ ⊕ K, [x1 · · ·xn]n is defined by expanding the
product x1 · · ·xn to an element of K · Σ≤n.

Now, define an augmentation mapping ∂0 = ε : A · V0 · A → A and a morphism
∂n : A · Vn · A → A · Vn−1 · A of A-bimodules by ε([ ]) = 1, ∂1([a]1) = [ ]a − a[ ] for
a ∈ Σ, and for n ≥ 2,

∂n([a1 · · · an]n) = [a1 · · · an−1]n−1an + (−1)na1[a2 · · · an]n−1

+
n−1∑
i=1

(−1)n−i[a1 · · · ai−1φ(aiai+1)ai+2 · · · an]n−1,
(24)

where a1 · · ·an ∈ Vn.
We claim that (A·Mn ·A, ∂n) is a free A-bimodule resolution of A. More precisely,

we shall show that Hn = δn([Vn]n) forms a normalized very monic Gröbner base
for Ker(∂n−1) on F · Vn−1 ·F modulo G, where δn : F · Vn ·F → F · Vn−1 ·F is the
F -bilinear mapping defined as ∂n. Since lt(δn([a1 · · ·an]n)) = [a1 · · · an−1]n−1an,
Hn is very monic and normalized. We shall show that Hn is a Gröbner base for
Ker(∂n−1) by induction on n. First, the elements δ2([ab]2) = [a]1b+a[b]1− [φ(ab)]1
for ab ∈ U actually form a Gröbner base for Ker(∂1) as we already saw in Section
7, and the assertion is true for n ≤ 2.

Suppose that n ≥ 2 and Hn forms a Gröbner base for Ker(∂n−1). For x =
a1 · · ·an ∈ Vn and an+1 ∈ Σ such that anan+1 ∈ U , lt(δn([x]n)) = [a1 · · ·an−1]n−1an

overlaps with anan+1 and we have a proper critical pair of reductions

[a1 · · · an−1]n−1anan+1 →G [a1 · · ·an−1]n−1φ(anan+1)

and

[a1 · · ·an−1]n−1anan+1 →Hn − (−1)na1[a2 · · · an]n−1an+1

−
n−1∑
i=1

(−1)n−i[a1 · · · ai−1φ(aiai+1)ai+2 · · · an]n−1an+1.

Thus we have an element

[a1 · · · an]nan+1 − β([a1 · · ·an−1]n−1φ(anan+1)) − (−1)nβ(a1[a2 · · · an]n−1an+1)

−
n−1∑
i=1

(−1)n−iβ([a1 · · · ai−1φ(aiai+1)ai+2 · · ·an]n−1an+1)

= [a1 · · · an]nan+1 + (−1)n+1a1[a2 · · · an+1]n

+
n∑

i=1

(−1)n−i+1[a1 · · · ai−1φ(aiai+1)ai+2 · · · an+1]n
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of F · Vn · F . The collection of these elements gives rise to the Gröbner base Hn+1

for Ker(∂n) modulo G by Theorem 6.4.
(2) Here, we consider the extreme case where U = Σ2. Then, Σ∪{1} is a K-base

of A, φ′
|Σ2 = φ and (23) is just the associative law. Thus, φ : Σ → K · Σ ⊕ K is

nothing but a multiplication table for A. We have Vn = Σn and the resolution
· · · → A · Σn · A ∂n→ A · Σn−1 · A → · · · with the differentiations ∂n given by (24) is
the (modified) standard complex of A ([7], Chap. 9, Sect. 6). If Σ is restricted to a
finite alphabet, A is finite dimensional over K. However, our construction, in fact,
remains valid even if Σ is infinite. If we are allowed to use an infinite alphabet, any
algebra over K can be expressed in this way with a multiplication table. In this
sense formula (24) is general.

(3) Next, let us consider a very special example, where Σ = {a, b, c}, U =
{a2, ab, ac} and

φ(a2) = 1, φ(ab) = b, φ(ac) = −c.

It is easy to see that φ satisfies (23), and so G = {a2−1, ab− b, ac+ c} is a Gröbner
base on K · Σ∗. The algebra A = K · Σ∗/I(G) has a K-linear base

Irr(G) = {b, c}∗a ∪ {b, c}∗,

and any element x of A is uniquely written as

(25) x =
∑

ki · bxia +
∑

k′
i · cxia +

∑
�i · bxi +

∑
�′i · cxi + k · a + �

with ki, k
′
i, �i, �

′
i, k, � ∈ K and xi ∈ {b, c}∗, where only a finite number of ki, k

′
i, �i, �

′
i

are nonzero.
We have V0 = {1}, and Vn = {an, an−1b, an−1c} for n ≥ 1. The differentations

∂n : A · Vn · A → A · Vn−1 · A are given by specializing (24) as follows:

∂1([a]) = [ ]a − a[ ], ∂1([b]) = [ ]b − b[ ], ∂1([c]) = [ ]c − c[ ],

and

∂n([an]n) = [an−1]n−1a + (−1)na[an−1]n−1,

∂n([an−1b]n) = [an−1]n−1b + (−1)na[an−2b]n−1 − [an−2b],

∂n([an−1c]n) = [an−1]n−1c + (−1)na[an−2c]n−1 + [an−2c]

for n ≥ 2. Since |Vn| = 3 for n ≥ 1, we can give our resolution simply as

(26) · · · ∂→ A · Σ · A ∂→ A · Σ · A ∂→ · · · ∂→ A · Σ · A ∂→ A · Σ · A ∂1→ A[ ]A ε→ A,

where ∂ and ∂ are A-bimodule morphisms from A · Σ · A to A · Σ · A given by

∂([a]) = [a]a + a[b], ∂([b]) = [a]b + a[b] − [b], ∂([c]) = [a]c + a[c] + [c]

and

∂([a]) = [a]a − a[b], ∂([b]) = [a]b − a[b] − [b], ∂([c]) = [a]c − a[c] + [c].

Here, for simplicity, we assume that K is a field. First, suppose that the char-
acteristic of K is not equal to 2, and we shall compute the cohomology Hn(A).
Taking the functor HomA,A(., A) on (26), we have a complex

A
∂∗
1→ A3 ∂∗

→ A3 ∂
∗

→ A3 ∂∗
→ A3 ∂

∗

→ · · · ,
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where ∂∗
1 , ∂∗ and ∂

∗
are K-linear mappings given by

∂∗
1(x) = (xa − ax, xb − bx, xc − cx),

∂∗(x, y, z) = (xa + ax, xb + ay − y, xc + az + z),

∂
∗
(x, y, z) = (xa − ax, xb − ay − y, xc − az + z),

for x, y, z ∈ A. Let θ, θ, γ, γ, ηb and ηc be K-linear mappings from A to A defined
by

θ(x) = xa + ax, θ(x) = xa − ax,

γ(x) = x + ax, γ(x) = x − ax,

ηb(x) = xb, ηc(x) = xc

for x ∈ A. Then,

(27) ∂∗(x, y, z) = (θ(x),−γ(y) + ηb(x), γ(z) + ηc(x))

and

(28) ∂
∗
(x, y, z) = (θ(x),−γ(y) + ηb(x), γ(z) + ηc(x)).

We claim that

Ker(θ) = Im(θ) = K · b{b, c}∗(a − 1) ⊕ K · c{b, c}∗(a + 1),(29)

Ker(θ) = Im(θ) = K · b{b, c}∗(a + 1) ⊕ K · c{b, c}∗(a − 1) ⊕ K · {a, 1},(30)

Ker(γ) = Im(γ) = K · c{b, c}∗{a, 1} ⊕ K · (a − 1),(31)

Ker(γ) = Im(γ) = K · b{b, c}∗{a, 1} ⊕ K · (a + 1).(32)

In fact, let x be an element written as (25) and suppose that θ(x) = xa + ax = 0.
Then we have

xa + ax = Σ(ki + �i)bxi(a + 1) +
∑

(�′i − k′
i)cxi(a − 1) + 2�a + 2k = 0,

and hence
k = � = 0, ki + �i = 0, k′

i = �′i

for any i. It follows that Ker(θ) is equal to the right-hand side of (29). On the
other hand, for x ∈ A given as (25) we have

θ(z) = xa − ax = −Σ(ki − �i)bxi(a − 1) +
∑

(k′
i + �′i)cxi(a + 1).

This implies that Im(θ) is also equal to the right-hand side of (29). The other
equalities can be shown similarly.

From (27), (28) and equalities (29)–(32), we see that

Ker(∂∗) = Im(∂
∗
), Ker(∂

∗
) = Im(∂∗),

and we find
Hn(A) = 0

for every n ≥ 2.
Next we calculate H1(A). Since

∂1(x) = (θ(x), θ2(x)),
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where the K-linear mapping θ2 : A → A2 is defined by θ2(x) = (xb − bx, xc − cx)
for x ∈ A, we have

(33) H1(A) =
Ker(∂)
Im(∂1)

∼=
Ker(γ) ⊕ Ker(γ)

θ2(Ker(θ))
.

Let x ∈ Ker(θ), then, by (30), x is written as

x =
∑

kibxi(a + 1) +
∑

�icxi(a − 1) + ka + �.

We have

xb − bx =
∑

kib(2xib − bxi(a + 1)) −
∑

�ibcxi(a − 1) − kb(a − 1).

Thus, we can show that b2, b3, . . . , bi, . . . are linearly independent elements in Ker(γ)
modulo {xb − bx |x ∈ Ker(θ)}. In virtue of (33), we find that H1(A) is infinite
dimensional over K;

H1(A) = K∞.

Finally, it is easy to see that

H0(A) = Ker(∂1) = K.

Next, suppose char(K) = 2. In this case, by the generator change a → a + 1,
we have a new presentation KΣ∗/I(G′) with G′ = {a2, ab, ac} for A. Using this
Gröbner base G′, we have a free resolution

· · · ∂→ A · Σ · A ∂→ · · · ∂→ A · Σ · A ∂1→ A[ ]A ε→ A,

where the differentiation ∂ is given by

∂([a]) = [a]a + a[a], ∂([b]) = [a]b + a[b], ∂([c]) = [a]c + a[c].

Using this resolution, though we omit the calculation, we can get

H0(A) = K

and
Hn(A) = K∞

for n ≥ 1.
Summarizing, we have

H0(A) = K, H1(A) = K∞,

Hn(A) =
{

0 if char(K) �= 2,
K∞ if char(K) = 2,

for n ≥ 2.

Example 8.2. Let U be an overlap-free subset of Σ∗ \ {1}, that is,
(i) any u ∈ U is not a subword of another word in U , and
(ii) any u and v in U do not overlap, that is, u = u′t and v = tv′ with u′, v′, t ∈ Σ∗

imply t = 1.
Let G be a monic subset of F = KΣ∗ such that the mapping sending g to lt(g)

is a bijection from G to U . Then G is a normalized Gröbner base on F . There is
no critical pairs for G by condition (ii). Thus, Cn = ∅ for all n ≥ 3 in Theorem 7.6,
and we have a resolution

0 → A · U · A → A · Σ · A → A · [ ] · A → A.

Hence, Hn(A) = 0 for n ≥ 3.
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Example 8.3. Let U be a subset of Σ≥2 satisfying (i) in Example 8.2. Then, U
is a normalized Gröbner base considered as a subset of F consisting of only monic
monomials. We have a monomial algebra A = F/I(U) with augmentation mapping
ε : A → K defined by ε(a) = 0 for all a ∈ Σ. Here, we assume that U satisfies the
following additional condition:

(iii) There are no words u, v, w, x ∈ U , z1, z2, z3, z5, z6, z7 ∈ Σ+ and z4 ∈ Σ∗ such
that u = z1z2z3, v = z2z3z4z5, w = z3z4z5z6 and x = z5z6z7.

For n ≥ 1 let Cn be the set of sequences [a, u1, . . . , un−1] of length n such that
au1 ∈ U and uiui+1 is a minimal U -reducible word, that is, ui = u′

iwi ∈ U for
some wi ∈ Σ∗ and wiui+1 is an only subword of uiui+1 from U for i = 1, . . . , n− 2.
Suppose that n ≥ 3 and let w1u2 = bu†

2 with b ∈ Σ and u†
2 ∈ Σ+. By condition (iii)

we see [b, u†
2, u3, . . . , un−1] ∈ Cn−1.

Now, our construction gives a resolution

(34) · · · → A · Cn · A ∂n→ A · Cn−1 · A → · · · → A · C1 · A
∂1→ A · [ ] · A → A

with

∂1([a]) = [ ]a − a[ ],

∂2([a, u1]) = [a]u1 + a[a2]a3 · · · al + · · · + aa2 · · · al−1[al],

where u1 = a2 · · · al, and for n ≥ 3,

∂n([a, u1, · · · , un−1]) = [a, u1, · · · , un−2]un−1 + (−1)nau′
1[b, u

†
2, · · · , un−1].

Tensoring the complex (34) with K over A from both sides, we have a complex

· · · → K · Cn
∂n→ K · Cn−1 → · · · → K · C1,

∂1→ K · [ ] → K,

where all the differentiations ∂n are 0. Hence,

TorA
n (K, K) = Kcn

for all n ≥ 1, where cn is the cardinality of the set Cn. This, in particular, means
that the resolution (34) is minimal.

Example 8.4. Let Λ = K · Σ be a Lie algebra over K, which is a free K-module
generated by a well-ordered set (Σ, >). For different a, b ∈ Σ, the Lie product [a, b]
is a linear combination �(a, b) of elements of Σ over K. The enveloping algebra A
of L is the associative algebra which is the quotient algebra of F = K · Σ∗ modulo
the ideal generated by G = {ab − ba − �(a, b) | a > b}. We can easily check that G
is a normalized Gröbner base for A with respect to the order �llex defined through
the order > on Σ. For n ≥ 0 let Cn be the set of words a1 · · ·an ∈ Σ∗ with
a1 < a2 · · · < an of length n. Then, we have an A-bimodule resolution

· · · → A · Cn · A ∂n→ A · Cn−1 · A → · · · → A · C2 · A
∂2→ A · Σ · S ∂1→ A[ ]A → A → 0.

Here, Ker(∂n−1) has a Gröbner base Hn = {hv | v ∈ Cn} on F ·Cn−1 ·F modulo G
such that lt(hv) = [a1a2 · · ·an−1]an, and ∂p([v]) = ρCn−1(hv).

To describe the differential mapping ∂ neatly we identify the K-space K · Cn

with the component
∧

n(Λ) of degree n of the exterior algebra
∧

(Λ) of Λ over
K. Following our construction we get the differential mapping ∂ : A ·

∧
(Λ) · A =
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A ⊗K

∧
(Λ) ⊗K A → A ·

∧
(Λ) · A given by

∂(x1 ∧ · · · ∧ xn) =
∑

(−1)ixi ⊗ x1 ∧ · · · ∧ x̌i ∧ · · ·xn

−
∑

(−1)ix1 ∧ · · · ∧ x̌i ∧ · · · ∧ xn ⊗ xi

+
∑
i<j

(−1)i+j�(xi, xj) ∧ x1 ∧ · · · ∧ x̌i ∧ · · · ∧ x̌j ∧ · · · ∧ xn.

This is a two-sided version of the standard complex for Λ ([7], Chap. 8, Theorem
7.1).

For example, let A be the enveloping algebra of the Lie algebra so(3) generated
by Σ = {a, b, c} subject to the relations

[a, b] = c, [b, c] = a, [a, c] = −b.

Then, we have the Gröbner base

G = {g1 = ab − ba − c, g2 = bc − cb − a, g3 = ac − ca + b}
on F = KΣ∗ for A and the resolution

0 → A · [h] · A ∂3→ A · G · A ∂2→ A · Σ · A ∂1→ A[ ]A → A,

where

∂2([g1]) = [a]b + a[b] − [b]a − b[a] − [c],

∂2([g2]) = [b]c + b[c] − [c]b − c[b] − [a],

∂2([g3]) = [a]c + a[c] − [c]a − c[a] + [b],

∂3([h]) = [g1]c − c[g1] − a[g2] + [g2]a + b[g3] − [g3]b.

Finally, we consider an algebra that admits no finite Gröbner base. The following
example is taken from Kobayashi [17].

Example 8.5. Let Σ = {a, b, c}. Let I be the ideal of F = K · Σ∗ generated by
{ba− ab, bc− aca, acc} and let A = F/I. Consider the weight function ω : Σ∗ → N
defined by ω(a) = ω(c) = 1, ω(b) = 2. Let � be the order on Σ∗ given as follows.
For x, y ∈ Σ∗ define x � y if and only if either ω(x) < ω(y) or ω(x) = ω(y) and
x is lexicographically smaller than y. By the Knuth-Bendix completion procedure
[15] (see also Kapur and Narendran [14]) based on this well-ordering, we have a
normalized infinite Gröbner base of I:

{ba− ab, bc− aca, ancan−1c |n = 1, 2, . . . }.
In [17] it is proved that A has no Gröbner base G such that Dom(G) forms a regular
language, a fortiori, A has no finite Gröbner base. Set

G = {α, β, γn |n = 1, 2, . . .},
where α, β and γn correspond to the elements ba − ab, bc − aca and ancan−1c,
respectively, and for p ≥ 1 set

Hp = {α(m1, . . . , mp), γ(n1, . . . , np, np+1) |m1 > · · · > mp > 0,

n1 > · · · > np+1 > 0}.
Our construction gives the following resolution of A:
(35)

· · · → A·Hp·A
∂p+2→ A·Hp−1·A → · · · ∂4→ A·H1·A

∂3→ A·G·A ∂2→ A·Σ·A ∂1→ A·[ ]·A ε→ A,
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where

∂1([a]) = [ ]a − a[ ], ∂1([b]) = [ ]b − b[ ], ∂1([c]) = [ ]c − c[ ],

∂2([α]) = [b]a + b[a] − [a]b − a[b], ∂2([β]) = [b]c + b[c] − [a]ca − a[c]a − ac[a],

∂2([γn]) = [a]an−1can−1c + · · · + an−1[a]can−1c + an[c]an−1c + anc[a]an−2c

+ · · · + ancan−2[a]c + ancan−1[c],

∂3([α(n)]) = [α]an−1can−1c − b[γn] + [γn+1] + a[α]an−2can−1c

+ · · · + an−1[α]can−1c + an[β]an−1c,

∂3([γ(n, m)]) = [γn]am−1c − ancan−m−1[γm],

and for p ≥ 2,

∂p+2([α(n1, n2, . . . , np)]) = [α(n1, . . . , np−1)]anpc

+ (−1)pb[γ(n1, n2, . . . , np)] + (−1)p−1[γ(n1 + 1, n2, . . . , np)],

∂p+2([γ(n1, n2, . . . , np, np+1)]) = [γ(n1, n2, . . . , np)]anp+1c

+ (−1)pan1can1−n2−1[γ(n2, . . . , np, np+1)].

Via the augmentation mapping ε : A → K defined by ε(a) = ε(b) = ε(c) = 0,
K is the A-bimodule. Tensoring (35) with K over A from both sides, we have a
complex

· · · → K · Hp
∂p→ K · Hp−1 → · · · → K · H1

∂3→ K · G ∂2→ K · Σ ∂1→ K · [ ] → 0,

where ∂1 = ∂2 = 0, ∂3([α(n)]) = [γn+1], ∂3([γ(n, m)]) = 0, and

∂p+2([α(n1, n2, . . . , np)]) = (−1)p−1[γ(n1 + 1, n2, . . . , np)],

∂p+2([γ(n1, n2, . . . , np, np+1)]) = 0

for p ≥ 2. Thus, we have

TorA
n (K, K) = Ker(∂n) / Im(∂n+1) =




K if n = 0,

K3 if n = 1, 2,
K∞ if n ≥ 3.

Remark 8.6. The Hochschild cohomology of finite dimensional algebras over a field
has been extensively studied (see [10], [19] for example). Since a finite dimensional
algebra has a finite Gröbner base, we can apply our method, but it is not a clever
way. For example, even the one-arrow quiver algebra is presented as the quotient
of the free algebra generated by two elements a and b modulo the ideal generated
by the Gröbner base {a2, ab, b2 − b, ba − a}. The resolution constructed on this
base is not neat at all. Instead, by considering Gröbner bases on path algebras and
projective bimodules, we can construct simpler resolutions for algebras presented
as quotients of path algebras. This will be discussed in a forthcoming paper.
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