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Abstract. The goal of this paper is to study the Koszul property and the property of having a
Grobner basis of quadrics for classical varieties and algebras as canonical curves, finite sets
of points and Artinian Gorenstein algebras with socle in low degree. Our approach is based
on the notion of Grobner flags and Koszul filtrations. The main results are the existence of a
Grobner basis of quadrics for the ideal of the canonical curve whenever it is defined by quadrics,
the existence of a Grobner basis of quadrics for the defining ideal of s < 2n points in general
linear position in P”, and the Koszul property of the ‘generic’ Artinian Gorenstein algebra of
socle degree 3.
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Introduction

A standard graded K-algebra R is Koszul if K has a linear resolution as an R-module.
The algebra R is said to be quadratic if its defining ideal [ is generated by polynomials
of degree 2 and it is said to be G-quadratic if I has a Grobner basis of quadrics in
some coordinate system and with respect to some term order. It is well known that
G-quadratic algebras are Koszul, that Koszul algebras are quadratic, and that these
implications are generally strict. These properties appear naturally in various con-
texts and their study have attracted the attention of many researchers in the last
three decades. For instance, many classical varieties (Grassmannians, Schubert
varieties, flag manifolds, etc.) are Koszul and even G-quadratic in their natural
embedding and any projective variety can be embedded in such a way that it is
G-quadratic, see [12, 18]. The study of the Koszulness and of the G-quadraticity
of semigroup rings (i.e. toric varieties) and their relation with the underlying
combinatorial objects gave rise to beautiful theories and results, see, for instance,
[3, 16, 22, 28]. The relation between the Koszul property (and more generally
the study of the resolution of the residue field) and the structure of the Yoneda Hopf
algebra Exty(K, K) is another important aspect of the theory, see [20, 21, 26].

In this paper we are mainly concerned with the study of the G-quadraticity and of
the Koszulness of three classes of algebras: coordinate rings of canonical curves,
coordinate rings of finite sets of points and Artinian Gorenstein algebras with socle
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in degree 3. Our approach is based on the notion of Koszul filtrations and Grébner
flags. Koszul filtrations have been introduced in [7]. Roughly speaking, a Koszul
filtration for an algebra R is a family of ideals of R generated by linear forms such
that any ideal of the family can be filtered in such a way that all the successive colon
ideals belong to the family. If an algebra has a Koszul filtration then it is necessarily
Koszul. A Grobner flag is just a Koszul filtration supported on a single complete flag
of linear forms. In Section 2 it is proved that if an algebra has a Grobner flag then it is
G-quadratic.

Section 3 is devoted to points in projective space. Let X be a set of s points in
general linear position in P" with s < 2n and let R be its coordinate ring. Kempf
proved in [19] that R is Koszul and in [7] it is proved that R has a Koszul filtration.
The Koszul filtration of R given in [7] is not supported on a flag, but we show
how to modify the argument of [7] to get a Grobner flag, hence proving that R
is G-quadratic.

Section 4 contains a discussion of whether the above-mentioned results for points
can be extended to a larger number of points in linear general position. It is proved
in [7] that s points in P" with generic coordinates are Koszul if and only if
s <14 n+(n?/4). So one may ask whether Kempf’s theorem can be extended to
2n+ 1 (or more) points in linear general position with a quadratic defining ideal.
The answer is negative. We show that there exists a set of 9 points in P* which
are in general linear position and are quadratic but not Koszul. These 9 points have
been obtained, with the help of the computer algebra system CoCoA [6], as a generic
lifting of a quadratic Artinian algebra, described by Roos in [25], with Hilbert series
1 + 4z + 4z which is not Koszul. The points of the above set are in linear general
position; even more, we have checked that the minimal free resolution over the poly-
nomial ring of any subset of the 9 points is the generic one.

Butler [5] and Polishchuk [24] asked whether the homogeneous coordinate ring of
a projectively normal, smooth, connected, complex curve is Koszul, provided it
is quadratic. Sturmfels gave a negative answer to this question, see [29]. His example
is a curve in P° with a Hilbert series, say P(z), such that 1/P(—z) has a negative
coefficient and it is known that no algebra with this Hilbert series can be Koszul.
We show that Roos’s example can be lifted also to get a quadratic non-Koszul
smooth curve in P° such that 1/P(—z) has positive coefficients.

The goal of Section 5 is to show that the coordinate ring of a canonical curve is
G-quadratic provided it is quadratic. Let C be a smooth algebraic curve of genus
g over an algebraically closed field of characteristic zero. If C is not hyperelliptic,
then the canonical sheaf on C gives a canonical embedding C — P¢~! and the
coordinate ring R¢ of C in this embedding is the canonical ring of C. It is known
that Rc is quadratic unless C is a trigonal curve of genus g > 5 or a plane quintic.
Vishik and Finkelberg [30] proved that R¢ is Koszul if it is quadratic (see also [24]
and [23]). We prove that if R¢ is quadratic then it has a Grobner flag.

Artinian Gorenstein algebras with socle in degree 3 are in bijective correspondence
with cubic forms via the so-called Macaulay inverse system. Explicitly, every cubic
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form F € K[y1,...,yn] corresponds to the Artinian Gorenstein algebra Rp =
K[xi,...,x,]/Ir which has the socle in degree 3. Here Ir is the ideal of the
polynomials G(xi, ..., x;,) such that the G(3/dyy, ..., 9/3y,)(F) = 0. The aim of Sec-
tion 6 is to study the Koszulness and the G-quadraticity of Rr. To avoid trivial
cases, we assume that » > 2 and that F is not a cone (i.e. F cannot be represented
as a form with less than n variables). In general Ry need not be quadratic and
we do not know a simple description of those F such that Rg is quadratic. It is
not difficult to show that if F is smooth then Ry cannot be G-quadratic. Our main
result is that Ry has a Koszul filtration if F is generic and that Rr has a Grobner
flag if F is singular and generic.

Subsection 6.1 is devoted to plane cubics (i.e. n = 3). It is easy to see that R is
quadratic if and only if it is a complete intersection of quadrics, so that Rg is
quadratic if and only if it is Koszul. We show that Ry is quadratic if and only
if no polar quadric of F is a double line, i.e. the space of the first derivatives of
F does not contain a rank 1 quadric. Further we show that Ry is G-quadratic if
and only if F is singular and no polar quadric of F is a double line. Recall that
a plane cubic F is said to be anharmonic if it is in the Zariski closure of the
PGL;-orbit of Fermat cubic yj 4+ y3 + y3. Dolgachev and Kanev shown that F is
anharmonic if and only if F has a polar quadric which is a double line, see [10].
Therefore we have that Ry is quadratic if and only if F is not anharmonic and that
Rp is G-quadratic if and only if F is not anharmonic and singular. The first of this
two statements has been observed also by Eisenbud and Stillman (unpublished),
see [11].

Subsection 6.2 is devoted to space cubics (i.e. n = 4). We show that Rr is quadratic
if and only if Rp is Koszul and this is equivalent to the fact that no polar quadric of F
is a double line. Also we show that Ry is G-quadratic if and only if no polar quadric
of F is a double line and F is singular.

We do not know whether in higher embedding dimension (i.e. n > 4) the
quadraticity of Ry implies already its Koszulness and whether the quadraticity
of Rr can be characterized in terms of ranks of polar quadrics. But for n > 5
the fact that no polar quadric is a double line does not suffice to have the quadraticity
of RF.

1. Notation and Generalities

Let K be a field. For the sake of simplicity we will always assume that K is algebraic-
ally closed of characteristic 0.

A graded commutative Noetherian K-algebra R = ®;cnR; is said to be standard
graded if Ry = K and R is generated (as a K-algebra) by elements of degree 1.
We may present such an algebra R as a quotient of a polynomial ring
K[xi,...,x,] by a homogeneous ideal /. The presentation is minimal if n =
dim R, and in this case the ideal I is non-degenerate, i.e. I C (x,...,x,)°. The
Hilbert function of R is defined as Hg(f) = dimg(R;) with ¢ € N.
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The Hilbert series Pr(z) of R is by definition Pr(z) =}, ( Hr(?)z".

A standard graded algebra R is said to be Koszul if K has a linear resolution as a
graded R-module. This means that the graded R-module Tor®(K, K) is zero in degree
j for all j # i and for all i > 0.

Anideal I of a polynomial ring is said to be quadratic if it is generated by quadrics,
i.e. homogeneous polynomials of degree 2. A standard graded algebra R is said to be
quadratic if it can be presented as a quotient K[xy, ..., x,]/I where I is quadratic.
Since we want a polynomial ring to be a quadratic algebra, in the previous definitions
I is allowed to be 0.

A standard graded algebra R is said to be G-quadratic if it can be presented as a
quotient K[xy, ..., x,]/I where I is an ideal with the following property: there exists
a set of coordinates x, ..., x,, (linear combinations of xi, ..., x,) and a monomial
order with respect to which 7/ has a Grobner basis of quadrics.

It is well known that a G-quadratic algebra is Koszul and that a Koszul algebra is
quadratic. None of these implications can be reversed in general. For instance, it is
known that certain generic complete intersections of quadrics are not G-quadratic
[12, Corollary 20], although every complete intersection of quadrics is a Koszul
algebra. For an updated survey and a rich bibliography on these topics, we refer
the reader to the recent paper of Froberg [15].

2. Koszul Filtrations and Grébner Flags

Let us recall the definition of Koszul filtration:

DEFINITION 2.1. Let R be a standard graded K-algebra. A family F of ideals of R
is said to be a Koszul filtration of R if:

(1) Every ideal I € F is generated by linear forms.

(2) The ideal 0 and the maximal homogeneous ideal M of R belong to F.

(3) Forevery I € F different from 0, there exists J € F such that J C I, I/J is cyclic
and J:I € F.

This notion has been introduced in [7]. It was inspired by the work of Herzog, Hibi
and Restuccia on strongly Koszul algebras [16]. It has been proved in [7], Prop.1.2,
that if R has a Koszul filtration F then all the ideals of F have a linear R-free res-
olution. In particular R is Koszul.

We now present the notion of Grobner flag.

DEFINITION 2.2. Let R be a standard graded K-algebra. A Grobner flag of Ris a
complete flag of Ry, say F:Vy=0Cc VycVrcC...C V,.1 CV, =Ry, where V;
is a space of dimension 7, such that the ideals (V) form a Koszul filtration of R,
that is, for every i =1, ..., n, there exists j; such tat (V;—1): (V) = (V},).
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This is equivalent to say that there exists an ordered system of generators /i, ..., /,
of R; (a basis of the flag) such that for every i = 1,...,n we have

(117 ] 11—1):ll = (ll’ 127 cr lll)'

The sequence of numbers ji, j», ..., Jj, will be denoted by j(F).
We need the following auxiliary result.

LEMMA 2.3. Let R be a standard graded algebra and assume that R has a Grobner
flag F. Then the Hilbert series of R depends only on j(F).
Proof. For every i = 1,...,n we have short exact sequences

0— R/(V)[-1] = R/(Vi-1) > R/(V)) — 0.

It is clear that Pgyy,(z) =1 and n>j; >i—1 for every i =1, ..., n. Hence
l+z ifj,=n
Priy, n@)={§ 1 .. .
— ifj,=n—1
1—z

Similarly, one proves, by decreasing induction on 7, that for every 7 the Hilbert series
of R/(V;) depends only on j(F). O

The importance of Grobner flags is explained by the following theorem.

THEOREM 2.4. Let R be a standard graded algebra. If R has a Gréobner flag, then R is
G-quadratic.

Proof. Let F:Vy=0CcViCcVoC...CV,_1 CV,=R; bea Grobner flag of R
with j(F) =i, ...,J.. Let [, ..., [, be a basis of the flag. Consider the presentation
K[xy,...,x,]/I ~ R of R obtained by sending x; to /;. For every i=1,...,n by
assumption we have (/i,...,L_1):i=(h,bh,...,[;). Hence, for all k with
i < k <j; we get arelation [/; = Zj;ll IyLy i, where Ly ;, € Ry. Therefore for every
i=1,...,n and every k with i<k <j;, in [ there are quadrics Q;x =
XX — Z};ll xpLy i, where the Ly, are linear forms. Now consider a term order
7 on K[xy, ..., x,] such that in.(Q;x) = x;xx. For example one can take the degree
reverse lexicographic order induced by the total order x,, > x,_; > ... > x;. We want
to prove that the Q;x are a Grobner basis of I with respect to 7. Let
J=(xp: 1 <i<nandi<k<j;). It suffices to show that K[xy,...,x,]/J and R
have the same Hilbert series. This follows from 2.3 if we show that
K[xi,...,x,]/J has a Grobner flag G with j(G) =j(F). The Grobner flag of
K[x1,...,x,]/Jisgivenby G:0 = Wy C W) C W, C ... C W, where W; is the space

generated by the residue classes of xy, ..., x;. To show that G is a Grobner flag with
J(G) =j(F) one has to show that (J + (x1,...,x-1)):x; =J + (x1, ..., x;,) and this
is a simple exercise on monomial ideals. O
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The following proposition contains a characterization of the algebras which have a
Grobner flag, in terms of their initial ideals. This result has been obtained indepen-
dently also by Blum in [5].

PROPOSITION 2.5. Let R be a standard graded algebra. The following conditions
are equivalent:

(1) R has a Grobner flag,

(2) there exists a presentation of R say R >~ K[xi, ..., x,]/L such that if t is the degree
reverse lexicographic order induced by the total order x, > x,—1 > ... > xy, then
in. (1) is generated by monomials of degree 2 and if x,x; € in.(I) with a < b then
XoXe € in (1) for all a < ¢ < b.

Proof. That (1) implies (2) is a consequence of the proof of Theorem 2.4. In order
to show that (2) implies (1) let us set:

A;=1{b:i<b<n and x;x; €in.(I)}.

Then set j; = max 4; if A; # @ and j; =i — 1 otherwise. It is enough to prove that
4y xim)ixi =1+ (x5, 0.0, X5).

We start with the inclusion (I 4+ (x,...,xi—1):x; 2T+ (x1,...,x;). If ji=i—1
there is nothing to prove. So assume that j; > i and let & any number between i
and j;. Since x;x; € in. (1), there exists f € I such that in(f) = x;x; and we may take
f to be reduced in the sense that among the terms of f only the initial one belongs
to iny(I). Then f = Jx;xx +g with 1 € K* and g € (xq,..., x;_1). It follows that
xXp € (I + (X1, ..., Xxi—1)): X;.

As for the other inclusion, let f € (I + (xy,...,x;_1)):Xx; and assume by con-
tradiction that f & [ + (x1, ..., x;;). We may assume that no term of /" belongs either
to in.() or to (xi, ..., Xx;). Since fx; € I + (x1,...,x;_1), we have that fx;=g+#h
withg e Iand /i € (xy, ..., x;_1). Then by construction in(f)x; = in(g) € in.(/). Since
in(f) & in,(I), we have that x; times one of the variables of in(f) belongs to in.({).
Note that the variables of f and hence of in(f) have indices > j;. This is a con-
tradiction because of the definition of j;. O

We have seen that an algebra with a Grobner flag is G-quadratic. The following
example shows that the converse does not hold.

EXAMPLE 2.6. Let R be the algebra Kl[x, y, z]/(x?, xy, yz, z%). Clearly R is G-
quadratic. We claim that R does not have a Grobner flag. Assume, by contradiction,
that 0 = Vy C V, C V5, C V3 = R; is a Grobner flag of R. Since the depth of Ris 0,
the ideal 0: (V) cannot be 0 and hence V| must be generated by an element whose
square is 0. It follows that either V; = (x) or V; = (z) (where by abuse of notation
we denote by x, z, ... the classes of x, z, ... in R). By symmetry we may assume that
V1 = (x). Then 0:(V}) = (x, ). It follows that V, = (x, y). But (V1):(V2) = (x, 2)
and this is a contradiction since V; # (x, z).
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Let us mention also that to have a Koszul filtration is a stronger property than just
being Koszul. A necessary condition for an Artinian algebra R = 4/I to have a
Koszul filtration is that the ideal I contains a reducible quadric. Now if 7 is the
ideal generated by 5 generic quadrics in 5 variables, then R = A/1 is Koszul because
it is a complete intersection. On the other hand a dimensional argument shows that 7
does not contain reducible quadrics and hence R does not have a Koszul filtration.
Explicitely, the ideal

2 2 2 2 2
I = (x] — X3X4, X5 — X1 X5, X3 — XoXs5, X5 — X[ X2, X5 — 3X1X4)

in A = K[x1, x3, X3, X4, X5] is a complete intersection of quadrics, but one can check
that every nonzero linear combination of the above quadratic forms is a quadric
of rank at least three.

The first instance where Grobner flags arise is described in the following lemma.

LEMMA 2.7. Let R be a standard graded algebra. If there exists a nonzero element
[ € Ry such that I> =0 and IR; = R, then R has a Grébner flag.

Proof. Since 0:1 D (I) D Ry, then 0:/ does not have generators in degree > 1.
Therefore we have 0:/=(/,L,...,l) for suitable independent linear forms
b,...,I, in R;. We can complete /,l,...,l. to a basis {/, b, ..., L, L+1,...,1,} of
R;. We claim that the flag associated to this ordered basis is a Grobner flag of
R. To this end one has just to note that, by construction, we have 0:/ =
(I,L,...,I,)and if i = 2, then (I, b, ..., [;i_1):l; = M because R, C (/). O

Let R be a standard graded K-algebra. Given an element / € R;, the short exact
sequence
0— R/(0:l)(-1) > R— R/IR— 0
gives
PRr(z) = Prjr(z) + zPRrjou)(2) (1
Let ¢: Ry 2 R, be the map given by multiplication by /. We let
rank(/) = dimg(/R|) = dimg Image(¢).
One has
Hpz(1) = rank(/) + dimg(0: /);. 2)

In order to determine the existence of Koszul filtrations and of Grobner flags we
need to detect linear forms with small rank or/and linear forms whose square is
0. One has:

LEMMA 2.8. Let R be a standard graded algebra with Hr(1) = n and Hg(2) = m.
(1) Let V be a subspace of Ry. Set a=dim V, b =dim VR;, ¢ = dim(0:g, V).
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Ifa+b+c—n—2=>=0, then there exists anonzero l € V such that rank(l) < b. In
particular.

(1.1) If m = 2 then there exists | € Ry with rank(/) < m.
(1.2)Letl € Ry, # 0and V = O, I. If rank(/) < dim VR, then there exists a nonzero
[y € V such that rank(l}) < dim VR;.

(2) If m < n, then there exists a nonzero | € Ry such that I> = 0.

Proof. (1) Set W = 0:g, V and let x € V. The multiplication by x from R; to R,
factors through R;/W and its image is contained in VR;. Therefore the rank of
x is the rank of the map from R;/W to VR, given by multiplication by x. Let
X1,...,X, beabasisof V, zj,...,z,_. be a basis of Rj/W and yy, ..., y, be a basis
of VR,; we have relations

(k
2= 4.
k

with /lg-‘) € K. Let us consider the projective space P(V) = P*"!, and use coordinates
t,...,t, for it. Hence we write x = ), #;x; for an element x € V.

If n — ¢ < b then all the linear forms of 7 have rank < ». Hence we may assume
that n — ¢ = b. We have

ZiX = ZZ,’lej = Z(Z )ngl-{)lj)yk.

J k J

The matrix associated to the map ¢: R;/ W > VR, with respect to the given basis is
the b x (n — ¢) matrix M whose (j, k) entry is Zj ig‘)tj. It follows that the set of
elements x € R; such that rank(x) < b is the variety X in P(V) defined by the
b x b minors of M. This determinantal variety has codimension at most (n — ¢)—
b+ 1 so that

dmX >a—-1-(n—c)—b+1)=a+b+c—n—-2=0.

This proves (1). To prove (1.1) one just takes V' = R;. To prove (1.2), one just notes
that dim V' = n — rank(/) and / € {x € R;: xV = 0}, so that the corresponding c is
positive.

(2) Let xq, ..., x, be a basis Ry, and yy, ..., y,, be a basis of R;. We have relations
XiXjp =D p ig-c)yk. Let x =), #;x; be an element in R;; then

x2 = Z tithij = Z Z ig'c)titj Vk-

1<ij<n k 1<ij<n

Hence the elements / € P(R;) with /> = 0 form a variety X in P(R;) defined by the
quadrics Ok = 31 <1< },g‘)litj, with k =1,..., m. It follows that the codimension

of X in P""! is at most m, so that dim X >n — 1 —m > 0. This proves (2). O
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The Hilbert series of elements of small rank is easily related to that of R. An
element / of rank 0 is a linear form which annihilates R;. Thus, if rank(/) = 0, then
Prjo:1)(2) =1 so that by (1)

Pr(z) = Pryr(z) + z.

Under the assumption that R is quadratic and Artinian, we have similar results for
the elements of rank one.

LEMMA 2.9. Let R be a quadratic and Artinian graded algebra and let | be a linear
form of R. If rank(l) = 1, then

Pr(2) = Prir(z) + 2 + 22, Prion(z) =1+z.

Proof. Let V = (0:1); = {x € Ry: x] = 0}. By assumption V is a space of codimen-
sion 1 in R;. We have (V) C 0:/. Since R is quadratic and Artinian we have that
R/(V) is also quadratic and Artinian. Further the embedding dimension of
R/(V) is 1. It follows that

R/(V) = K[x]/(x?).

This implies that Pgyy)(z) =14 z. Since Pry)(z) = Pryo.1)(z) and the ideals (0:/)
and (V) coincide in degree 1, we get (0:/) = (V). The conclusion follows by (1).[]

We recall that if R = @!_ R, is an Artinian graded algebra with R, # 0, then the
ideal 0: Ry of R is called the socle of R. The dimension of 0: R; as a vector space
is denoted by 7(R) and is called the Cohen-Macaulay type of R. Since
R; C 0: Ry, the integer s is called the socle degree of R.

LEMMA 2.10. If Ris a quadratic and Artinian graded algebra and Hr(2) = 1, then R
has socle degree 2.
Proof. Since Ry # 0 thereis an element / € R; such that rank(/) = 1. By Lemma 2.9

Pr(z) = Prur(z) + z + 2*

The conclusion follows since Pr/r(z) =14 (n — 1)z. O

LEMMA 2.11. Let R be a standard graded algebra and let | be a linear form of R. If
one of the following conditions holds:

@ (0:))=0ie lisregularin R,
(® (0:0) =),
() (0:/)=M ie rank(l) =0,

then every Grébner flag of R/IR can be lifted to a Grébner flag of R.
Proof. Let b, ..., 1, be a basis of a Grobner flag of R/IR. Then one easily shows
that /, /5, ..., 1, is a basis of a Grobner flag of R. [
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Using these results we can establish the following useful criteria:

PROPOSITION 2.12. Let R be a standard graded algebra with Pg(z) = 1 + nz + 22,
n = 2. The following conditions are equivalent:

(a) R has a Grébner flag,
(b) R is quadratic,
(¢) ©(R) <n.

Proof. If R has a Grobner flag, then R is G-quadratic, and hence quadratic. Now
we prove that (b) implies (c). If, by contradiction, ©(R)=n, then R =
(X1, ..., Xu_1, X,) Where xi,...,x,_; are in the socle. Then the Hilbert series of
R/(x1,...,x,—1) would be 1+ z + z> which is impossible for a quadratic algebra.
Finally we prove that (c) implies (a). By Lemma 2.8, (2), there exists an element
[ € Ry such that /> = 0. If rank(/) = 1, then R has a Grobner flag by Lemma 2.7.
If rank(/)=0 then Pryr(z)=1+n—1)z+2> and ©(R/IR)=t(R)—1 <n—1.
Hence we get the conclusion by induction and Lemma 2.11, (¢), after remarking
that, if » = 2, then R is Gorenstein so that / cannot be in the socle and thus has
rank 1. [

PROPOSITION 2.13. Let R be a standard graded algebra with Pgr(z) =1+ nz+
nz> 4+ 2% and n > 3. Assume that R is either quadratic or Gorenstein. Then we have:

(@) If there exists | € Ry such that I> = 0 and rank(l) = n — 1, then R has a Grébner
flag.

(b) If there exist I,m € Ry such that Im = 0 and rank(l) = rank(m) = n — 1, then R
has a Koszul filtration.

Proof. Let | be a linear form with rank(/) =n— 1. Then it is clear that
Hpyr(0) =1, Hgur(l)=n—1, Hgyr(2)=1. If R is quadratic, then R/IR is
quadratic and by Lemma 2.10 its socle degree is 2. If R is Gorenstein, then
IR, = Rj (since otherwise / would be in the socle) and this implies that R//R has
socle degree equal to 2. Hence, in both cases, we have Pg/r(z) =1+ (n—1)z+
2%, and, by (1), Pryon(z) = 1+ (n — 1)z + z2. Further it is well known (and easy
to see) that if Ris Artinian Gorenstein then R/(0:/) is also Gorenstein for all nonzero
linear form /.

Let us prove (a). If 2 = 0, then (0: /) 2 (/) so that (0: /) = (/) because they have the
same Hilbert function. If R is Gorenstein then R//R = R/(0:1) is also Gorenstein,
while if R is quadratic then R/IR is quadratic. By Proposition 2.12 R/IR has a
Grobner flag in both cases. By Lemma 2.11, (b), this Grobner flag can be lifted
to a Grobner flag of R.

We prove now (b). We have (/) € (0:m) and (m) C (0: /) so that (/) = (0:m) and
(m) = (0: /) since they have the same Hilbert function. This implies, as above, that
R/IR and R/mR have a Grobner flag. Let {X7,...,X,_1} be a basis of a Grobner
flag of R/IR, and let {y71,...,7,_1} be a basis of a Grobner flag of R/mR. Then
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it is easy to see that

F = {(0)1 (1)7 (Wl), ([9 xl)’ (Wl, yl)a (l, X1, Xz), (I’}’l, ylyyZ)a ey M}
is a Koszul filtration of R. OJ

3. Quadratic Grobner Bases for Ideals of Points

In this section we prove:

THEOREM 3.1. Let X be a set of s distinct points in general linear position in P". If
s < 2n then the coordinate ring R of X has a Grébner flag.

Under the same assumptions Kempf [19] proved that R is Koszul and later Conca,
Trung and Valla [7] proved that R has a Koszul filtration. The Koszul filtration of R
given in [7] is not supported on a flag, but we show how to modify the argument to get
a Grobner flag.

Given a set X of distinct points Py, ..., P;in P", we denote by I its defining ideal in
A = K[xg, ..., x,]. We can write I = g1 Ny N...N g; where g; is the prime ideal
corresponding to P;. The homogeneous coordinate ring of X is the standard graded
algebra R = A4/I.

One says that the points are in general linear position if any subset of X that lies on
a d-dimensional linear subspace has cardinality <d + 1.

Proof. [of 3.1] If s < n+ 1, the general linear position property implies Pg(z) =
(1 4+ sz)/(1 — z). Hence any Artinian reduction of R has a Grobner flag. It follows
from Lemma 2.11 that such a flag can be lifted to a flag of R.

Lets>=n+1; wehave I=pNgnN...Ngpyand we let J =p NgrN...N @,

By the general linear position assumption there exists a linear form L € A4 such
that the hyperplane L = 0 contains the points Py, ..., P, and avoids the points
P,y1, ..., Py. Similarly there exists a linear form M € A such that the hyperplane
M =0 contains the points P,.1,..., P; and avoids the points Py,..., P,. Then
LM €] and L+ M is regular on R = A/I and also on A/J.

As in [7], Lemma 2.2, one proves that / + (L) = J so that

Pajavwmny(@) = Payarwsmy(@) = (1 = 2)Pyyy(2) = 1 +(n— 1)z, 3)

Denote by S the ring A/I + (L + M) and by / and m the classes of L and M in S.
We have 0 = (I +m)l = [>. Since S/(I)= A/I + (L, M), by (3) we have IS} = S,.
Then, by Lemma 2.7, S has a Grobner flag. By virtue of 2.11, (a), this flag can
be lifted to a Grobner flag of R since L + M is a regular element on R. O

4. Non-Koszul Points and Curves

One may ask whether the above result for ideals of points can be improved. In [7] it
was proved that if X is a set of s points with ‘generic coordinates’ in P”, then R
is Koszul if and only if s < 1 4 n + (#?/4). Here having generic coordinates means
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that the coordinates of the points are algebraically independent over Q. So, for
example, 9 points with generic coordinates in P* are Koszul.

The goal of this section is to present a set X of 9 points in P* which are in linear
general position, are intersection of quadrics but not Koszul. We will also see that
any subset of X has the expected generic graded Betti numbers over the polynomial
ring.

This set of points arises in the following way. J. E. Roos made an extensive study of
quadratic algebras of embedding dimension 4. He published in [25] the list of all the
possible homological behaviours for the algebras of this class. According to Roos’s
list, there are four homological behaviours for a quadratic algebra with Hilbert series
1 + 4z + 422 they are number (54), (55), (56) and (57) in the list. For each class he
gave a specific example. The algebras of the class (54) are Koszul. The typical
example of an algebra of the class (55) is the algebra K]x, y, z, 1]/J defined by

J:(ﬁ:x2+xy, f2=y2, f3=xz+yt, f4=zz, fs = xt, f6=Zt+l2)

Our goal is to lift J to an ideal of points, (i.e. a radical ideal of dimension 1). There is
a standard way to lift monomial ideals to points. On the other hand, for a
non-monomial ideal as J there is no reason (a priori) to believe that such an ideal
can be lifted. Nevertheless we have been able, by using CoCoA [6], to lift J to a
radical ideal 7 in K][x, y, z, t, w]. Let us sketch the argument. First deform each f;
by adding a linear form times the new variable w: F; = f; + w(aj x + apy + apz+
aist + a;sw) and set [ = (F), ..., Fg). Let Lift (J) be the subset of the affine space
A(a;;) whose points are those collections of (a;) such that w is a regular element
modulo /. Let t be any term order on K[x, y, z, f] and let 7’ be the degree reverse
lexicographic product of t with the term order on K[w]. This means that 7’ is
the term order of K[x, y, z, t, w] defined as follows: if m; and m; are monomials
in the variables x,y,z, ¢, then mw' > mow with respect to 7 if and only if
deg(mw') > deg(myw’) or deg(mw’) =deg(mw’) and i<j or deg(mw') =
deg(mow'), i = j and m; > m, with respect to 7. Then it is not difficult to prove that
w is a regular element modulo 7 if and only if in.(J) = iny (/). This implies that Lift
(J) is an affine variety and its defining equations can be computed by imposing that
the Buchberger algorithm applied to the F; produces only initial terms which are
in in.(J). After this is done, one just takes a random point on Lift (J) and hopes
to get a reduced ideal. In this way we have found that the ideal I generated by
following quadrics:

Fi=fi+w—x+y—z—t—w), F=f+wx-2p+2z+1—2w),
F=f+w2x+2y+z+1+w), Fi=fi+w-=x-3y—z+1-2w),
Fs=fs+wQx+1+4w), Fo=fs+w2x+2y+2z+1—6w),

defines a set of 9 distinct points in P* (over the rationals) which are not Koszul. One
can prove that I does not contain quadrics of rank 2, thus proving that the corre-
sponding points are in general linear position. Just one of these 9 points has rational
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coordinates, it is (x=0,y=0,z=3,7=—4,w=1). One can look for a prime
number p such that the 9 points given by I have coordinates in Z/(p). This boils
down to finding a p such that the univariate polynomial x® + 6x7 + 16x° + 6x°—
57x* — 83x® + 7x% 4+ 43x — 3 (obtained by eliminating y, z, ¢ from 7 4+ (w — 1) and
then getting rid of the trivial root x = 0) has 8 roots in Z/(p). This can be done
by using the factorization package written by J. Abbott and available in CoCoA.
We have found that p = 30341 is such a prime, so that over the finite field
Z./(30341) one can explicitly determine the coordinates of the points. We have
checked that every subset of this set of points has the generic Betti numbers over
the polynomial ring.

Summing up: 9 points in P* with ‘generic coordinates’ are Koszul, while the above
set of very ‘general’ 9 points are not Koszul. This example suggests that it is hard to
guess a generalization of Kempf’s theorem, describing the Koszul locus in geometric
terms, for sets of 2n + 1 points in P".

We have tried to lift also the examples (56) and (57) in Roos’s list. Lifting the
example (57) and taking, as before, a random point of the lifting variety, we got
9 points in P* in general linear position which are not Koszul and have a different
homological behaviour than that of the previous example.

On the contrary, lifting the example (56) we always got 9 points in P* with this
configuration: 5 points on a P* and 4 points on a P?. This may of course depend
on the specific example and we cannot exclude that there exist 9 points in P* in linear
general position and whose homological behaviour corresponds to number (56) in
Roos’ list.

Butler [5], Problem 5, and Polishchuk [24], p. 123, asked whether the homogeneous
coordinate algebra of a projectively normal, smooth, connected, complex curve is
Koszul, provided it is quadratic. Sturmfels [29], Thm. 3.1, gave a negative answer
to this question. He considered the prime ideal o C K[a, b, ¢, d, e, f] generated by

al(c+d)—=bf,b(b+f)—ce,cla+c+f)—d(c+d),df —elb+)),
e —ala+c+f).

This ideal defines a smooth, projectively normal curve in P° of genus 7, degree 11,
which is quadratic but not Koszul. The Hilbert series of K[a, b, ¢, d, e, f]/g is:

1 +4z+522+23
(127

It is well-known (and easy to prove) that for a Koszul algebra S the Poincaré series
of the Tor’s

Ts(z) = Y _ dimg Tor} (K, K)Z'

i=0
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and the Hilbert series Pg(z) satisfy the following relation:
Ts(z) = 1/Ps(—2)

Since the coefficient of z° in the series (1 + z)*/(1 — 4z + 522 — z%) is negative (it is
equal to —1220), no algebra with Hilbert series (1 + 4z + 522 + 2%)/(1 — z)* can
be Koszul.

At this point one can ask whether the question of Butler and Polishchuk has a
positive answer under the additional assumption that all the coefficients of the series
1/Pgr(—z) are positive. The answer is negative. We have lifted the above radical ideal
I to a prime ideal g in K][x, y, z, ¢, w, u] by using the same methods as before. We got
an arithmetically Cohen—-Macaulay, smooth, reduced, irreducible curve in P’ which
has degree 9, genus 4, it is intersection of quadrics but is not Koszul. The Hilbert
series is P(z) = (1 4 4z 4 4z%)/(1 — z)? and all the coefficients of P(—z)~! are positive.
Note that this curve has maximal genus with respect to the classical Castelnuovo
bound. Explicitly, over Q the generators of g are:

G =F +u(—2x+ 4y + 8z + 8t — 20w — 40u),
Gy =F +u(+2x — 11y + 8¢ — 18w — 6u),

Gy =F +u(+2x+4y +4z — t + 6w+ S2u),
Gy =Fys+u(—2x+2y —4z 4t + 4w — 8u),
Gs = Fs + u(+4x + 4t — 8w + 48u),

G = Fs +u(—4x — 4y + 4z + 2t — 12w + 16u).

5. A Grobner Bases of Quadrics for the Ideal of the Canonical Curve

In this section we prove the following:

THEOREM 5.1. Let C be a smooth, non-hyperelliptic, non-trigonal curve of genus
g = 5 which is not a plane quintic and let R¢ be its canonical ring. Then R has a
Grobner flag.

Under the additional assumption that C is not bielliptic, Vishik and Finkelberg in
[30] proved that R; is a Koszul algebra. Later Polishchuk in [24] and Pareschi
and Purnaprajna in [23], gave different proofs of the result of Vishik and Finkelberg,
which work also in the bielliptic case.

Let C be a smooth algebraic curve of genus g over an algebraically closed field of
characteristic zero. If C is not hyperelliptic, then the canonical sheaf on C gives
a canonical embedding C — P?!. The image of this embedding is a non degenerate
smooth algebraic curve of degree 2g — 2 whose extrinsic geometry reflects intrinsic
properties of the abstract curve C.
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The homogeneous coordinate ring Ry of this embedding is called the canonical
ring of the curve C. For a description of the properties of R¢ in algebraic terms
we refer the reader to the paper of Eisenbud [11]. We just recall that R is a
Gorenstein domain of dimension 2 with Hilbert series:

1+(g—2)z+(g—2)2+7
(1-2y '

According to Petri’s theorem (see [1], pg. 131), R¢ is quadratic if and only if C is
non-hyperelliptic, non-trigonal and not a plane quintic. Hence 5.1 says that Re
is G-quadratic provided it is quadratic.

We will need the following:

LEMMA 5.2. Let C be a non-hyperelliptic, non-trigonal curve which is not a plane
quintic and let K be its canonical class. Then there exist two effective divisors D
and D, of degree g — 1 on C such that D\ + D, = K and |D;| and |D;| are base-
point-free linear systems of dimension 1.

Under the additional assumption that C is non bielliptic, Lemma 5.2 has been
proved in [30], Lemma 1.1, as a consequence of theorems of Mumford and Martens.
However, as remarked in [23], the arguments used in [30] also work for bielliptic
curves.

As noticed in [30], a corollary of 5.2 is that there exists a hyperplane section of C,
say Z=CNH, such that Z=XUY c P2 where X and Y are sets of points
of cardinality g — 1 with the properties:

(i) The points of X are contained on a unique hyperplane H; of P¢~2. Furthermore
H, does not contain points of Y.

(ii) The points of Y are contained on a unique hyperplane H, of P¢~2. Furthermore
H; does not contain points of X.

By virtue of 2.11, (a), to prove 5.1 it suffices to show that the coordinate ring of the
set of points Z has a Grobner flag. This follows from:

THEOREM 5.3. Let X be a set of 2n + 2 distinct points in P", n = 3. Denote by R the
coordinate ring of X and assume that

@ Pr(z)=0+nz+nz2+2)/(1—-2),

(b) R is quadratic (or Gorenstein),

(¢) X hasadecompositionas X = X| U X, where, fori = 1,2 X;isasetofn+ 1points
such that there exists an unique hyperplane H; containing X;. Further H; does not
contain points of X; if j # 1.

Then R has a Grobner flag.
Proof. Let A = K[xo, ..., x,]. Let I; be the defining ideal of X; and let I be that of
X, so that I = I; N ;. Let L; be the linear form defining H;. Then L; € I; and it
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isregular on A/1;,j # i. Further L; + L, is regular on R. Since the pointsin X; lieona
unique hyperplane, we have

l+(m—1Dz+22

Py (2) = Payr(2) = —-

We have
I L, = ([1 N Iz)ILl = (]]ZL]) n (122 L]) =0LL=D.
From (1) of Section 2 we get

l+(m—1Dz+22

Pajavw(2) = Paji(z) = 2P4y1(2) = .

Therefore, since I + (L;) C I; and they have the same Hilbert function, we get
I+ (Ly)=1. Since L, is regular on A/I;, we have

Py =1+ @n—Dz+ 2%

Let S = A/I + (L + L,) and denote by /; the class of L; in S. Since L1L, € I, we
get that 0 = ([} + b))}, = 112. The Hilbert series of S'is 1 + nz + nz> 4+ z*> and we have
seen that

Ps/i5(2) = Pajasts 1)@ = 1+ (n— Dz + 22

which in turn says that /; has rank n — 1 in S.

Summing up, S is a quadratic (or Gorenstein) algebra with Hilbert series
1 +nz+nz* 423 and /) is a linear form of S with /2 =0 and rank(/;)) =n— 1. It
follows from 2.13, (a), that S has a Grobner flag. Then by Lemma 2.11, (a), also
R has a Grobner flag. O

6. Gorenstein Algebras of Socle Degree 3

The aim of this section is the study of the Koszul property and the existence of
quadratic Grobner basis for Artinian graded algebras which are Gorenstein of socle
degree 3.

As we have seen in the preceding section, these algebras arise as Artinian reduction
of the canonical ring of a curve. They arise also as Artinian reduction of the homo-
geneous coordinate ring of a set of self associated points (see [9] and [14]).

Every Artinian Gorenstein graded algebra R = K[x1, ..., x,]/I of socle degree j,
corresponds, up to scalars, to a form F of degree j in another set of variables as
follows. Let 4 = K[xy,...,x,] and B = K[yy,...,y,]. Regard B as a A-module
via the action x; o F = dF/dy;; then every element G € 4 acts as a differential
operator on the elements of B:

GoF =G/, ...,0/dy)F).
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Given a form F € B of degree j, we denote by Ir the ideal of the elements of 4 which
annihilate F:

Ir={GeAd | GoF=0).

Set Rp = A/Ifp. It is easy to see that Ry is a standard graded Artinian Gorenstein
algebra of socle degree j. Moreover, every ideal I/ C 4 which defines a standard
graded Artinian Gorenstein algebra of socle degree j arises in this way.

This construction gives a bijective correspondence between the set of Artinian
graded Gorenstein quotients of 4 of socle degree j and forms (up to scalars) of degree
j in B. This correspondence is compatible with the action of GL,(K). Furthermore
cones (i.e. forms that can be represented with less than n variables) correspond
to degenerate ideals (i.e. ideals containing a linear form).

This correspondence is sometime called the ‘inverse systems’ of Macaulay. The
study of the geometric objects arising from this correspondence between forms
and ideals is a classical theme in algebraic geometry and commutative algebra.
For a modern treatment and an updated list of references, the reader can consult
the recent book of Iarrobino and Kanev [17].

Our goal is the study of the Koszulness and G-quadraticity of the Artinian graded
Gorenstein algebras of socle degree 3. Hence, from now on, F will be a cubic form of
B and we will always consider the non-degenerate situation. We may hence identify
the degree 1 part of Ry with 4. In the case n = 2 the algebra Ry is never quadratic,
hence we will always assume that n > 3.

Every linear form [ € Ay, say [ = a;x; + ayx + ... + a,x,, can be considered as a
point P = (aj, as, ..., a,) € P(4;) = P"~'. The polar quadric of F with respect to
P, denoted by Qp, is the quadric of B:

“ OF
Qp =/[oF = ai—.

The unique symmetric matrix associated to Qp will be denoted by M p; note that 2Mp

is just the Hessian matrix

*F
Her) = <3y‘8y')
i9j

of F evaluated at P.
The following lemma contains well-known facts. They can be found for instance in
[10]. We include them for ease of reference.

LEMMA 6.1. Let | = a;x; and m =) _ bix; be linear forms and let P and P’ be the
corresponding points of P"~'. Then we have

(1) Im e Ip<P € Sing(Qp).
(2) > elr < PeSing(Qp) & P e Sing(F).
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(3) rank(/) = rank(Mp) = rank(He(F)p), where rank(l) is the rank of l in Rr. In par-
ticular, the variety of the linear forms of rank < tin Ry is defined by the ideal of the
t x t-minors of the Hessian matrix He(F).

As a consequence of these simple facts, we have:

PROPOSITION 6.2. If F is a smooth cubic, then Rg is not G-quadratic.

Proof. Let us assume by contradiction that Ry is G-quadratic. This means thatin a
specific system of coordinates, say xi, ..., x,, and with respect to a suitable term
order, the ideal Ir has a Grobner basis of quadrics. We may assume that
X| > Xp > -+ > X, so that xi is the smallest monomial of degree 2. Since Rf is
Artinian and in(/r) is generated in degree 2, we must have x? € in(Ir) for all i,
and in particular x> € in(/f). Since x2 is the smallest monomial of degree 2, it follows
that x2 € Ir. Then, by the Lemma 6.1(2), the point (0,0, ..., 0, 1) is singular for F, a
contradiction. ]

Since we are assuming that F is not a cone, the Hilbert series of Ry is
1 + nz + nz* 4 z°. Hence the rank of a linear form is bounded above by 7. The variety
of the linear forms of rank < 7 is defined by the determinant det He(F') of the Hessian
matrix of F.

If we take a point on the Hessian hypersurface det He(F) = 0 of F, say P, then the
corresponding form / has rank < n in Ry and so it must annihilate another linear
form, say m, which also has rank(m) < n. If we can find such an / and m so that
their rank is exactly n — 1, then by 2.13, (b), we may conclude that Ry has a Koszul
filtration. This is what happens for a generic F.

THEOREM 6.3. Let F be a generic cubic. Then Rp has a Koszul filtration.

Moreover, if F is singular then any singular point P corresponds to a linear form /
such that /> = 0 and hence rank(/) < n. As above, if we can find such an / so that
rank(/) = n — 1, then we may conclude by virtue of 2.13, (a), that Rr has a Grobner
flag. This is what happens for a generic singular F.

THEOREM 6.4. Let F be a generic singular cubic. Then Rp has a Grébner flag.
Before embarking in the proof of 6.3 and 6.4, let us introduce some notation. The

space of cubics of A is a projective space P(A43) and the set of the singular cubics
SC is a Zariski closed subset of P(43). Let F be a cubic. Denote by

X(F)={l € P(4,): the rank of /in Rpis <n—1}.

Note that X(F) is the determinantal locus given by the (n — 1)-minors of the Hessian
matrix of F. Further set

Y(F) = {(I, m) € P(4)) x P(4,):Im = 0 in Ry}
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and
Z(F)={(,m) e P(4)) x P(4)):]l € X(F) or m € X(F)}.

By the above discussion we have that the Theorems 6.3 and 6.4 follow if we show
that:

CLAIM 6.5. There is a nonempty Zariski open subset U of P(A3) such that for all
F € U one has Y(F) € Z(F).

and

CLAIM 6.6. There is a nonempty Zariski open subset U of SC such that for all F € U
one has Sing(F) € X(F).

In order to prove the two claims one argues like this: first one shows that the
property under consideration is open and then one presents a concrete example
to ensure that the relevant open set is not empty. The first part of the argument
is standard since the properties under discussion are described in terms of inclusions
between varieties and we leave the details to the reader. We just present the two
examples. Consider first the following cubic:

G=01+05+yi+.. )+ +m+ri+yi+...+y.

It is clear that dG/dy, and aG/dy, are quadrics of rank » — 1 and that x;x; € I and
hence that Y(G) € Z(G). Also, in order to be sure that the example is not too special
one has to check that Y (G) has the smallest possible dimension (which is n — 2). But
this follows easily from the fact that G is non-singular. This proves Claim 6.5.
As for 6.6, consider the following cubic:

H=yp1(03+03 4+ 40D =2/303+05 ... +2).

Note that dH/dy; is a quadric of rank n — 1 and that x} € I;. This shows that
Sing(H) € X(H). This time to be sure that the example is general enough one
has to check that H has just one singular point and that the Hilbert function of
the ring defined by its jacobian ideal is equal to 1 in large degrees. The reader
can check that this is indeed the case. This concludes the proof of 6.6.

In the study of the correspondence between Artinian Gorenstein algebras with
socle in degree 3 and cubics, a natural problem is to find geometric properties
of the cubic hypersurface F = 0 which imply (or are equivalent) to the quadraticity
of Rp. It follows from 6.3 that for a generic F the ring Ry is quadratic. Note that
the smoothness of F does not imply that Ry is a quadratic algebra. Take for example
the Fermat cubic F = y% + y% +...+’. Then F is smooth and not quadratic since
the ideal Iy is minimally generated by x;x; with i <j and x} — x3 with i < n.

The next lemma gives two necessary conditions for Rr to be quadratic.

https://doi.org/10.1023/A:1013160203998 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013160203998

114 ALDO CONCA ET AL.

LEMMA 6.7. Let F be a cubic in n variables. We have:

(@) If Rp is quadratic then for every nonzero linear form | € Rp one has rank(/) > 2,
i.e. the codimension of the ideal of the 2 x 2 minors of the Hessian matrix
He(F) of F is n.

(b) Assume that, in some coordinate system, F has a decomposition F = G + H where
G and H are cubics on disjoint sets of variables. Then Rg is not quadratic.

Proof. (a) Since Ry is Gorenstein, the socle of Rp is concentrated in degree 3.
Hence rank(/) > 1 for every nonzero linear form / € Rr. Since Ry is quadratic,
if for some linear form / € Ry we have rank(/) = 1, then by Lemma 2.9 the Hilbert
series of Rp/IRp is 14 (n— 1)z + (n—1)z> + 3. This implies /R, =0, a con-
tradiction.

(b) By assumption we have that F splits as G+ H where G is a cubicin yy, ..., y;
and H is a cubic in yjiq,...,y, with 1 <j < n. Assume, by contradiction, that
Rp is quadratic. We may assume that F is not a cone so that G and H are not
cones in their embedding. Let I/; and Iy be the ideals of K[xi,...,x;] and
K[xjt1, ..., x,] which correspond to G and H respectively and let Rg and Ry be
the corresponding quotients. Let J be the ideal of 4 = K[xy, ..., x,] defined by:

=01, X)X, e X)) F LgA I AL

By construction J C Ir. Note that 4A/J in any positive degree i is isomorphic to
(Rg); ® (Ry); (i.e. A/J is the fiber product of Rz and Ry). It follows that the
dimension of A/J in degree 2 is j+ (n —j) = n, which is also the dimension of
Rp is degree 2. Then J and Ip coincide in degree 2. Since we are assuming that
Rp is quadratic, we may conclude that /r = J. But the dimension of 4/J in degree
3isgiven by 1 + 1 = 2 and this is a contradiction since the dimension of Ry in degree
3is 1. O

Remark 6.8. With the notation of the proof of 6.7 part (b), the ideal Iy equals to
J + (G — H') where G’ is a cubic of K[xi, ..., x;] with G'o G =1 and H’ is a cubic
of K[Xj41,...,x,] with H' o H = 1.

Remark 6.9. The two conditions of 6.7 are independent in general. For instance, if
F = y133 — y2)3, then in Ry there is an element of rank 1 (namely x;) but F does not
split since its Hessian determinant is 8y3. On the other hand if F = y1y2y3 + yaysys
then in Ry there is no linear form of rank 1 since this property clearly holds for
the cubic y1yyys.

We do not know an example of a cubic F such that Ry is quadratic and not Koszul.
So we ask the following:

QUESTION 6.10. Let F be a cubic such that Ry is quadratic. Is Rr a Koszul algebra?
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We will see that if n = 3 or n = 4 the answer to this question is positive and we will
also prove that, in these cases, Ry is quadratic if and only if every nonzero linear
form in Ry has rank at least two.

We also remark that one could try to attack the above question by using Prop-
osition 2.13. The first step in this approach would be to prove the existence of a
linear form in Rz of rank n — 1. Unfortunately, there are cubics F such that no linear
form of Rr has rank n — 1, see for instance [27], p. 173. Hence this approach breaks
down completely.

6.1. PLANE CUBICS

Let F be a cubic form of K[y, 32, y3]. We assume as usual that F is non-degenerate,
so that its zero locus is a plane cubic. For simplicity we will say that F itself is
a plane cubic. The ideal Ir contains three independent quadrics and it has
codimension 3. Hence the following conditions are equivalent:

(1) Rp is a complete intersection,
(2) Ry is Koszul,
(3) Rp is quadratic.

If Rr is quadratic, then by Lemma 6.7, (a), rank(/) > 2 for every nonzero linear
form / € Rr. The converse holds:

PROPOSITION 6.11. Let F be a plane cubic. Then:

(1) Ry is quadratic (and hence a complete intersection) if and only if rank(x) = 2 for
every nonzero linear form x € Ry, if and only if the ideal of the 2 x 2 minors of
the Hessian matrix He(F) has codimension three.

(2) Rris G-quadratic ifand only if Rr has a Grobner flag, ifand only if F is singular and
rank(x) = 2 forevery nonzero linear form x € R, ifand only if F is singular and the
ideal of the 2 x 2 minors of the Hessian matrix He(F) has codimension three.

Proof. Since by 6.1(3) the condition that rank(x) > 2 for every nonzero linear
form x € Ry is equivalent to the condition that the ideal of the 2 x 2 minors of
the Hessian matrix He(F) has codimension three, in order to prove the first assertion
we need only to prove that if rank(x) > 2 for every nonzero linear form x € Ry then
Ry is quadratic. We have already seen that there exist nonzero linear forms
X,y € Rp such that xy =0 and rank(x), rank(y) <n—1=2. Hence rank(x) =
rank(y) = 2 and by Proposition 2.13, (b), the algebra Ry has a Koszul filtration.
In particular Ry is quadratic.

Also for the second assertion, we need only to prove that if F is singular and
rank(x) > 2 for every nonzero linear form x € Ry then Rr has a Grobner flag.
But we know from Lemma 6.1(2) that every singular point of F corresponds to
a linear form x such that x> = 0 and rank(x) < n — 1 = 2. Hence, by assumption,
rank(x) = 2, so that by Proposition 2.13, (a), the algebra Ry has a Grobner flag.[]
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A plane cubic F is said to be anharmonic if it is in the closure of the orbit of the
Fermat cubic x* 4 )3 4+ z* under the action of PGL3(K). In the projective space
of the plane cubics, the set of anharmonic cubics is the hypersurface defined by
a polynomial of degree 4, the Aronhold invariant I of degree 4 of plane cubics.
If F is given in the form

F = ax® + by* 4+ ¢z° + 3dx%y + 3ex?z + 3fxy* + 3gy*z
+ 3hxz? + 3iyz? + 6jxyz,
then the Aronhold invariant is
Iy = abcj — (bede + cafg + abhi) — j(agi + bhe + cdf )+
+ (afi® + ahg® + bdh® + bie* + cgd* + cef?) — j*+
+ 2/%(fh + id + eg) — 3j(dgh + efi) — (f*h* + *d* + *g*)+
+ (ideg + egfh + fhid).

It is known that a plane cubic F is anharmonic if and only if F has a polar conic
which is a double line, see [10], Prop. 5.13.2. But by 6.1(3), this is equivalent to
the fact that rank(/) < 2 for some nonzero linear form / € Rp.

Summing up, Proposition 6.11 together with the above mentioned result of
Dolgachev and Kanev implies that:

COROLLARY 6.12. Let F be a plane cubic. Then Ry is quadratic if and only if F is
not anharmonic. Furthermore Ry is G-quadratic if and only if F is not anharmonic
and singular.

The first of these two assertions has been observed also by Eisenbud and Stillman
(unpublished), see [11], Section IV.

EXAMPLE 6.13. Let F = x* 4+ 3 + 23 + 6jxyz with j € K. The Aronhold invariant
of F is j* —j. Furthermore it is known (and easy to see) that F is singular if
and only if 8/* +1 = 0. It follows that Ry is quadratic if and only if j* #j and
Ry is G-quadratic if and only if 87 = —1. For instance, the form F = x’+
¥ + 23 4+ 6xyz corresponds to a non-quadratic algebra, the form F = x* + )3+
23 + xyz corresponds to a quadratic but not G-quadratic algebra and the form
F = x3+ 3 + 23 — 3xyz corresponds to a G-quadratic algebra.

Note that Proposition 6.11 gives, in the case of plane cubics, the answer to the
problem of finding conditions on F such that Ry is a complete intersection. This
question was mentioned by Iarrobino and Kanev in [17].

6.2. SPACE CUBICS

The goal of this section is to characterize the Koszulness, the quadraticity, and the
G-quadraticity of Rp for space cubics (i.e. cubics in 4 variables). We need the
following:
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LEMMA 6.14. Let R be a standard graded Gorenstein algebra with Hilbert series
1 + 4z + 422 + 23. Assume that rank(x) > 2 for every nonzero linear form x in R. Then
one has:

(1) Let V be a space of linear forms of R Then dim(0:g, V') + dim VR, = 4. Further if
dim V' > 1 then there exists x € V such that rank(x) < dim VR;.

(2) Let V be a space of linear forms of R If dim V =2 then dim VR, = 3 and if
dim V =3 then VR = R».

(3) Let x € Ry with rank(x) = 2. Then there exists a space V of linear forms of R such
that x € V, dim V =2 and dim VR, = 3.

(4) Let V be a space of linear forms of R such that dim V = 2 and dim VR, = 3. Then
there exists x € V such that rank(x) = 2.

(5) Let x € Ry with rank(x) = 2. Then the ideal 0: x is generated by a 2-dimensional
space V of linear forms such that dim VR = 3.

Proof. (1) The first assertion is a consequence of the standard duality which holds
in a Gorenstein Artinian ring. The second follows from 2.8, (1).

(2) Assume first that dim V' = 2. If, by contradiction, dim V'R; < 3 then by (1)
there exists a nonzero x € V such that rank(x) < dim VR; < 2. This contradicts
the assumption. Assume now that dim V" = 3. If, by contradiction, dim VR; < 4 then
by (1) the space 0:g, V' is nonzero and hence there exists in R an element of rank 1, a
contradiction.

(3) Let x € Ry with rank(x) = 2. The Hilbert series of R/xis 1 + 3z 4 2z%. Then by
2.8, 1.1), there exists a nonzero linear form y € R/xR with rank(y) < 1. If
rank(y) = 0, then dim(x, y) R; = 2 and this contradicts 2). Hence rank(y) = 1, which
means dim({x, y)R; = 3.

(4) Let V be a space of linear forms of R such that dim ' = 2 and dim VR; = 3. By
1) there exists x € V' such that rank(x) < 3 and hence rank(x) = 2.

(5) Set V' =(0:x);. Then dim V' =2 and VR; < (0: x),. But dim(0: x), = 3 and
hence by (2) we may conclude that VR, = (0: x), and this proves the assertion.[]

We are ready to prove:
THEOREM 6.15. Let F be a space cubic. The following conditions are equivalent:
(1) Rp is Koszul,
(2) Ry is quadratic,
(3) rank(x) = 2 for every nonzero linear form x in R,
(4) The ideal of the 2 x 2 minors of the Hessian matrix He(F) has codimension four.
Proof. For simplicity of notation set R = Rg. The implications (1) = (2) = (3)

hold, no matter what n is, and (3) is equivalent to (4) by 6.1 (3). We have to show
that (3) = (1). To this end, assume that every nonzero linear form of R has rank
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at least two. Consider the following family of ideals F = {(0)} U F; U F,, where

F1={(x) | x € Ry, rank(x) = 2},

F»={I | I is generated by linear forms and
3 V C I such that dim V' =2 and dim VR, = 3}.

Itis enough to prove that F is a Koszul filtration of R. First of all we must prove that
M e F, that is M € F».

Since the Hessian matrix He(F)is a 4 x 4 symmetric matrix, the ideal generated by
its 3 x 3 minors has codimension not greater than 3. Therefore there are always
linear forms of rank < 2 (and hence 2 by assumption). Let x be a linear form of
rank 2. By Lemma 6.14, (3), there exists a space V of linear forms such that
xeV,dimV =2 and dim VR; = 3. Since M contains V' we may conclude that
M e Fo.

We have now to prove that condition (3) in the Definition 2.1 of Koszul filtration
holds for F. Let us start with an ideal I € Fy, that is I = (x) with rank(x) = 2.
We have to prove that 0: x € F. This is a consequence of Lemma 6.14, (5), which
implies that 0:x € F,. Let now I € F,. By assumption there exists a subspace
V C I of linear forms such that dim V' =2 and dim VR, = 3. Let us first consider
the case I = (V). By 6.14, (4), we know that there exists x € IV such that
rank(x) = 2. Choose an element y so that x, y is a basis of V. Since (x) € F1, we
need only to prove that (x):(y) € F». Denote by W the degree 1 part of (x):(y).
By comparing dimensions one has that dim W =3 and hence by 6.14, (2), one
has (x): (y) = (W). It remains to show that W contains a 2-dimensional subspace
W withdim W R, = 3. Set S = R/xR and denote by y the class of yin S. It is enough
to show that 0:5 ¥ contains a linear form w whose rank in S'is 1. Since dim VR; = 3
the rank of 7 in S is 1. By Lemma 2.8, (1.2), we know that there exists in 0:gy
a linear form w such that rank(w) < 1. If rank(w) = 0 in S, then dim(x, w)R; =2
which contradicts 6.14, (2). Then rank(w) = 1 and we are done.

It remains to consider the case in which (V) is a proper subideal of 7. If / = M then
let W be any 3-dimensional space containing V. Then (W) € F, by construction and
(W): M = M since by 6.14, (2), WR| = R,. Finally we have to consider the case in
which [ is generated by a 3-dimensional space of linear forms, that is
I =(V)+(z) where z is a linear form not in V. We need only to prove that
(V):z € F. By dimension considerations one has that (7): z contains a 3-dimensional
space W of linear forms. By 6.14, (2), we have that W generates (V): z. Since clearly
V c W we may conclude that (V):z € F». O

Note that Theorem 6.15 is in accordance with what Roos predicts in [25] for an
algebra of this type. As far as G-quadraticity is concerned, we have:

THEOREM 6.16. Let F be a space cubic. The following conditions are equivalent:
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() Rp is G-quadratic,

(2) F is singular and rank(x) = 2 for every nonzero linear form x in Rp.

(3) F is singular and the ideal of the 2 x 2 minors of the Hessian matrix He(F) has
codimension four.

Proof. We have seen already that (2) is equivalent to (3) and (1) = (2) holds for
any n. To prove that (2) = (1) we argue as follows: let P be a singular point for
F and let x be the corresponding linear form in Rp. Then either rank(x) = 3 or
rank(x) = 2. If rank(x) = 3, then we have seen already that Ry has a Grobner flag
(it is the argument that works for the generic singular cubic). We are left with
the case in which rank(x) =2. Set S = Rp/(x). The Hilbert series of S is
1 + 3z 4222, By 6.15, we know that Ry is quadratic and hence S is quadratic. It
has been shown in [8] that any quadratic Artinian algebra 4 with dim A, = 2 admits
a linear form y such that y*> = 0 and yA4, = A4,. Therefore there exists a linear form
7 € S such that 37 =0 and 7S; = S,. We extend x,y to a basis of the vector
space of linear forms in Ry with, say, z,¢ and consider the presentation
K[x1, x2, x3, Xx4] = Rp of Rp obtained by sending x; to x, x; to y, x3 to z and x4
to t. By the above discussion we know that the defining ideal Iz of Ry contains
polynomials of the form:

x3, xiL, X3 +x1Ly,
x% + x1Ly +x2L3, Xx3x4+ X114+ X2Ls, xﬁ + x1L¢ + x21L7

where L is a nonzero linear form in x;, x3, x4 and L; is a linear form in xy, x2, X3, X4
for every i=1,...,7. Consider the reverse lexicographic order induced by
X4 > X3 > X > x;. We have that in(Ir) contains x3,x3, x3, x3x4, x; and xjin(L),
where in(L) is either x; or x3 or x4. But in(L) cannot be x;, otherwise Rr would
be 0 in degree 3. Hence in(L) is either x3 or x4 and this implies that the given
equations form a Grobner basis of Iy, because the Hilbert function of their initial

terms is the right one. [

Remark 6.17. We have seen that for a planar cubic F the ring Ry has a Grobner
flag as soon as it is G-quadratic. This is not the case for space cubics. To see this,
consider a space cubic F with exactly one singular point P. Let x be the correspond-
ing linear form and assume that x has rank 2 in Rr. Should F have a Grobner flag,
say 0 C V1 C Vo C V3 C Vg, then V7 would be equal to (x). Since x has rank 2,
the ideal 0:x must be equal to (V). This would imply that (0:x)* € (x) since
V> C (V1): (V). The inclusion (0: x)> C (x) does not always hold. For example, let

F = 6xyz +3y*t =322t + 1 € Q[x, y, z, 1.
Then
Ir = (12 —yz, tz + yx, Z2 +y2, ty — zx, tx, xz)

and it is easy to see that (1,0, 0,0) is the only singular point of F and that the
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corresponding linear form x has rank 2 in Rr. In Ry one has 0: x = (x, £) and /> ¢ (x).
Hence Ry does not have a Grobner flag.

Note that according to 6.16 the algebra Ry is G-quadratic. The proof of 6.16
indicates how to get an explicit Grobner basis of quadrics. One has to detect a linear
form, say L, such that L> = 0in Rr/(x) and L has rank 2 in Rz /(x). One easily checks
that L=z+1¢ is such a form. Then in the coordinate system ¢ =y,z; =z,
y1 =t+2z,x; =x and with respect to the rev.lex. order induced by #; > z; >
y1 > X1, the ideal Ir has a Grobner basis of quadric. Namely, in the new coordinates,
the ideal Ir is generated by

—B+z1 =221+, —A+zn+ax, 4+,
—tz1 + t1y1 — zZ1X1, —Z1X1 + Y1X1, x%

and the reduced Grobner basis of Iy is, as predicted by 6.16, the following:

X3, Z1X1 — Y1X1, i+ 28,
Z% —Ziy1 — hXxy, tizy —tyr +yix, l% +zZ1y1 + hx1
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