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Abstract. Given a category C of a combinatorial nature, we study the following funda-
mental question: how does the combinatorial behavior of C affect the algebraic behavior of
representations of C? We prove two general results. The first gives a combinatorial criterion
for representations of C to admit a theory of Gröbner bases. From this, we obtain a criterion
for noetherianity of representations. The second gives a combinatorial criterion for a general
“rationality” result for Hilbert series of representations of C. This criterion connects to the
theory of formal languages, and makes essential use of results on the generating functions of
languages, such as the transfer-matrix method and the Chomsky–Schützenberger theorem.

Our work is motivated by recent work in the literature on representations of various
specific categories. Our general criteria recover many of the results on these categories that
had been proved by ad hoc means, and often yield cleaner proofs and stronger statements.
For example: we give a new, more robust, proof that FI-modules (originally introduced by
Church–Ellenberg–Farb), and a family of natural generalizations, are noetherian; we give
an easy proof of a generalization of the Lannes–Schwartz artinian conjecture from the study
of generic representation theory of finite fields; we significantly improve the theory of ∆-
modules, introduced by Snowden in connection to syzygies of Segre embeddings; and we
establish fundamental properties of twisted commutative algebras in positive characteristic.
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1. Introduction

Informally, a combinatorial category is a category whose objects are finite sets, possibly
with extra structure, and whose morphisms are functions, possibly with extra structure. A
representation of such a category over a ring k is a functor to the category of k-modules.
Typically, a representation can be thought of as a sequence of representations of certain
finite groups together with transition maps satisfying certain conditions. Some examples of
interest include:

• The category FI of finite sets with injections. A representation of this category can be
thought of as a sequence (Mn)n≥0, where Mn is a representation of the symmetric group
Sn, together with transition maps Mn → Mn+1 satisfying certain compatibilities. This
category was studied in [CEF, CEFN], where many examples of representations occurring
in algebra and topology are discussed, and from a different point of view in [SS1].

• Variants of FI. In [Sn], modules over twisted commutative algebras are studied; these can
be viewed (in certain cases) as representations of a category FId generalizing FI. In [Wi]
analogs of FI for other classical Weyl groups are studied. In [WG] the category FA of
finite sets with all maps is studied.

• The category FSG of finite sets with G-surjections, G being a finite group (see §11.1.2 for
the definition). Really, it is the opposite category that is of interest. A representation
of FSop

G can be thought of as a sequence (Mn)n≥0, where Mn is a representation of the
wreath product Sn o G, together with transition maps Mn → Mn+1 satisfying certain
compatibilities (quite different from those in the FI case). As we show below, the theory
of FSop

G representations, with G a symmetric group, is essentially equivalent to the theory
of ∆-modules studied in [Sn].

• The category VAFq of finite-dimensional vector spaces over a finite field Fq with all linear
maps. Representations of this category (in particular when k = Fq) have been studied in
relation to algebraic K-theory, rational cohomology, and the Steenrod algebra, see [K4] for
a survey and additional references.

The referenced works use a variety of methods, often ad hoc, to study representations.
However, one is struck by the fact that many of the results appear to be quite similar. For
instance, each proves (or conjectures) a noetherianity result. This suggests that there are
general principles at play, and leads to the subject of our paper:

Main Problem. Find practical combinatorial criteria for categories that
imply interesting algebraic properties of their representations.

We give solutions to this problem for the algebraic properties of noetherianity and rationality
of Hilbert series. Our criteria easily recover and strengthen most known results, and allow us
to resolve some open questions. Without a doubt, they will be applicable to many categories
not yet considered.

In the remainder of the introduction, we summarize our results and applications in more
detail, and indicate some interesting open problems. See §1.6 for a guide for the paper.

1.1. Noetherianity. We say that a representation of the category C is noetherian if any
subrepresentation is finitely generated; for the definition of “finitely generated,” see §4.1.
We say that the category Repk(C) of all representations of C is noetherian if all finitely
generated representations are noetherian. This is a fundamental property, and has played a
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crucial role in all applications. The first main theoretical result of this paper is a combina-
torial criterion on C that ensures Repk(C) is noetherian, for any left-noetherian ring k. We
now explain this criterion, and the motivation behind it.

We start by recalling a combinatorial proof of the Hilbert basis theorem. For simplicity
of exposition, we show that k[x1, . . . , xn] is a noetherian ring when k is a field. Pick an
admissible order on the monomials, i.e., a well-order compatible with multiplication. Using
the order, we can define initial ideals, and reduce the study of the ascending chain condition
to monomial ideals. Now, the set of monomial ideals is naturally in bijection with the set of
ideals in the posetNr. Thus noetherianity of the ring k[x1, . . . , xn] follows from noetherianity
of the poset Nr (Dixon’s lemma), which is a simple combinatorial exercise: given infinitely
many vectors v1, v2, . . . in Nr one must show that vi ≤ vj for some i 6= j, where ≤ means
coordinate-by-coordinate comparison.

To apply this method to Repk(C) we must first make sense of what “monomials” are.
Given an object x of C, define a representation Px of C by Px(y) = k[Hom(x, y)], i.e., Px(y)
is the free k-module with basis Hom(x, y). We call Px the principal projective at x. These
representations take the place of free modules; in fact, one should think of Px as the free
representation with one generator of degree x. Given a morphism f : x → y in C, there is
a corresponding element ef of Px(y). A monomial is an element of Px(y) of the form λef ,
where λ is a non-zero element of k. A subrepresentation M of Px is monomial if M(y) is
spanned by the monomials it contains, for all y ∈ C.

We now carry over the combinatorial proof of the Hilbert basis theorem. For simplicity of
exposition, we assume that k is a field and C is directed, i.e., if f : x→ x is an endomorphism
in C then f = idx. For an object x of C, we write |Cx| for the set of isomorphism classes of
morphisms x → y. This can be thought of as the set of monomials in Px. Suppose that C
satisfies the following condition:

(G1) For each x ∈ C, the set |Cx| admits an admissible order ≺, that is, a well-order
compatible with post-composition, i.e., f ≺ f ′ implies gf ≺ gf ′ for all g.

Given a subrepresentation M of a principal projective Px, we can use ≺ to define the initial
subrepresentation init(M). This allows us to reduce the study of the ascending chain
condition for subrepresentations of Px to monomial subrepresentations. Monomial subrepre-
sentations are naturally in bijection with ideals in the poset |Cx|, where the order is defined
by f ≤ g if g = hf for some h. (Note: ≺ and ≤ are two different orders on |Cx|; the former is
chosen, while the latter is canonical.) We now assume that C satisfies one further condition:

(G2) For each x ∈ C, the poset |Cx| is noetherian.
Given this, we see that ascending chains of monomial subrepresentations stabilize, and we
conclude that Px is a noetherian representation. One easily deduces from this that Repk(C)
is a noetherian category.

The above discussion motivates one of the main definitions in this paper:

Definition 1.1.1. A directed category C is Gröbner if (G1) and (G2) hold. �
We can summarize the previous paragraph as: if C is a directed Gröbner category then

Repk(C) is noetherian. In the body of the paper, we give a slightly more sophisticated
definition of Gröbner that does not require directed. However, it still precludes non-trivial
automorphisms. Unfortunately, many of the categories of primary interest do have non-
trivial automorphisms, and therefore cannot be Gröbner. This motivates a weakening of the
above definition:
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Definition 1.1.2. A category C is quasi-Gröbner if there is a Gröbner category C ′ and an
essentially surjective functor C ′ → C satisfying property (F) (see Definition 4.2.1). �

Property (F) is a finiteness condition that intuitively means C ′ locally has finite index in
C. Our main combinatorial criterion for noetherianity is the following theorem:

Theorem 1.1.3. If C is a quasi-Gröbner category then Repk(C) is noetherian, for any left-
noetherian ring k.

This is a solution of an instance of the Main Problem: “(quasi-)Gröbner” is a purely
combinatorial condition on C, which can be checked easily in practice, and the above theorem
connects it to an important algebraic property of representations.

Example 1.1.4. Recall that FI is the category whose objects are finite sets and whose mor-
phisms are injections. The automorphism groups in this category are non-trivial: they are
symmetric groups. Thus FI is not a Gröbner category. Define OI to be the category whose
objects are totally ordered finite sets and whose morphisms are order-preserving injections.
This category is directed. We show that OI is a Gröbner category; this is a special case
of Theorem 7.1.1. There is a natural functor OI → FI given by forgetting the total order.
This functor is essentially surjective and satisfies property (F), so FI is a quasi-Gröbner
category. In particular, we see that Repk(FI) is noetherian for any left-noetherian ring k.
See Remark 7.1.4 for the history of this result and its generalizations. �

The above example is a typical application of the theory of Gröbner categories: The main
category of interest (in this case FI) has automorphisms, and is therefore not Gröbner. One
therefore adds extra structure (e.g., a total order) to obtain a more rigid category. One
then shows that this rigidified category is Gröbner, which usually comes down to an explicit
combinatorial problem (in this case, Dixon’s lemma). Finally, one deduces that the original
category is quasi-Gröbner, which is usually quite easy.

1.2. Hilbert series. A norm on a category C is a function ν : |C| → N, where |C| is the
set of isomorphism classes of C. Suppose that C is equipped with a norm and M is a
representation of C over a field k. We then define the Hilbert series of M by

HM(t) =
∑
x∈|C|

dimkM(x) · tν(x),

when this makes sense, i.e., when the coefficient of tn is finite for all n. The second main
theoretical result of this paper is a combinatorial condition on (C, ν) that ensures HM(t) has
a particular form, for any finitely generated representation M .

The key idea is to connect to the theory of formal languages. Let Σ be a finite set (an
alphabet), and let Σ? denote the set of all finite words in Σ (i.e., the free monoid generated
by Σ). A language on Σ is a subset of Σ?. Given a language L, we define its Hilbert
series by

HL(t) =
∑
w∈L

t`(w),

where `(w) is the length of the word w. There are many known results on Hilbert series
of languages: for example, regular languages have rational Hilbert series and unambiguous
context-free languages have algebraic Hilbert series (Chomsky–Schützenberger theorem). We
review these results, and establish some new ones, in §3.
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Let P be a class of languages. A P-lingual structure on C at x consists of a finite
alphabet Σ and an injection i : |Cx| → Σ? such that the following two conditions hold: (1)
for any f : x → y in |Cx| we have ν(y) = `(i(f)); and (2) if S is a poset ideal of |Cx| then
the language i(S) is of class P . The first condition essentially means that we can interpret
monomials of Px as words in some alphabet in such a way that their norm agrees with the
length of the word. We say that C is P-lingual if it admits a P-lingual structure at every
object. A special case of our main result on Hilbert series is then:

Theorem 1.2.1. Suppose that C is a P-lingual Gröbner category and let M be a finitely
generated representation of C. Then HM is a Z-linear combination of series of the form HL,
where each L is a language of class P.

This too is a solution of an instance of the Main Problem: “P-lingual” is a purely combi-
natorial condition on (C, ν), which can be easily checked in practice, and the above theorem
connects it to an important algebraic property of representations.

Example 1.2.2. Define a norm on OI by ν(x) = #x. We show that (OI, ν) is P-lingual,
where P is the class of “ordered languages” introduced in §3.3. Let us briefly indicate the
main idea. Let x be an object of OI of cardinality k. Then a morphism x→ [n] in OI can be
recorded by marking k elements of [n]. We can think of such a marking as a word of length
n in the alphabet Σ = {0, 1}, where 0 indicates a marked spot and 1 an unmarked spot.
We have thus defined an injection i : |OIx| → Σ∗. Showing that this defines a P-lingual
structure at x is routine; we refer to Theorem 7.1.1 for the details.

As a consequence of the above result, we show that if M is a finitely generated FI-module

then HM(t) is of the form p(t)
(1−t)k

where p(t) is a polynomial and k ≥ 0 is an integer. In

particular, the function n 7→ dimkM([n]) is eventually polynomial. See Remark 7.1.7 for
the history of this result and its generalizations. �

Remark 1.2.3. In the body of the paper, we allow norms to take values in Nr, which leads
to multivariate Hilbert series. �

1.3. Applications. We apply our theory to prove a large number of results about categories
of interest. We mention three of these results here.

1.3.1. Lannes–Schwartz artinian conjecture. This conjecture, which first appears in print
as [K2, Conjecture 3.12], is equivalent to the statement that RepFq

(VAFq) is noetherian.
(The conjecture asserts the dual statement that the principal injectives are artinian.) Some
previous work on this conjecture appears in [Dj1, Dj2, Dj3, K3, Po1, Po2, Po3].

The conjecture is a special case of our result (Corollary 8.3.6) that Repk(VAR) is noe-
therian for any left-noetherian ring k and finite commutative ring R. One of the original
motivations for this conjecture is that it implies that Ext modules between finitely generated
functors are finite-dimensional (equivalently every finitely generated functor has a resolution
by finitely generated projectives — this was previously only known for the restricted class of
“finite” functors). See [FFSS] for some general results and calculations for these Ext groups.
A similar (but distinct) proof of this conjecture appears in [PS].

1.3.2. Syzygies of Segre embeddings. In [Sn], the p-syzygies of all Segre embeddings (with any
number of factors of any dimensions, but with p fixed) are assembled into a single algebraic
structure called a ∆-module. The two main results of [Sn] state that, in characteristic 0,
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this structure is finitely generated and has a rational Hilbert series. Informally, these results
mean that the p-syzygies of Segre embeddings admit a finite description.

We improve the results of [Sn] in three ways. First, we show that the main theorems
continue to hold in positive characteristic. It is not clear if one would expect this a pri-
ori, since the syzygies of the Segre embeddings are known to behave differently in positive
characteristic (see, for example, [Has] for the case of determinantal ideals, which for 2 × 2
determinants are special cases of Segre embeddings). On the other hand, while we only work
with ∆-modules over fields, one can work over Z and show that for any given syzygy module,
the type of torsion that appears is bounded.

Second, we greatly improve the rationality result for the Hilbert series and give an affir-
mative answer to [Sn, Question 5]. Finally, we remove a technical assumption from [Sn]:
that paper only dealt with “small” ∆-modules, whereas our methods handle all finitely gen-
erated ∆-modules. This is useful for technical reasons: for instance, it shows that a finitely
generated ∆-module admits a resolution by finitely generated projective ∆-modules.

1.3.3. Twisted commutative algebras in positive characteristic. A twisted commutative al-
gebra (tca) is a graded algebra on which the symmetric group Sn acts on the nth graded
piece in such a way that the multiplication is commutative up to a “twist” by the symmetric
group. In characteristic 0, one can use Schur–Weyl duality to describe tca’s in terms of large
commutative algebras equipped with an action of GL(∞), and we have fruitfully exploited
this to obtain many results [Sn, SS2, SS1, SS3]. This method is inapplicable in positive char-
acteristic, and consequently we know much less about tca’s there. In [CEFN], the univariate
tca k〈x〉 was analyzed, for any ring k, and certain fundamental results (such as noetherian-
ity) were established. Here we establish many of the same results for the multivariate tca
k〈x1, . . . , xd〉. See §7.3 for details.

1.4. Relation to previous work.

• The idea of reducing the problem of showing that some algebraic structure is noetherian
to showing that some poset is noetherian has been used before in different contexts. We
highlight [Co] for an example in universal algebra and [Hi] for examples in abstract algebra.

• Many of the categories that we are interested in come with nontrivial automorphism
groups, which interfere with the application of Gröbner basis techniques. The first step in
our proofs is to define a certain subcategory which does not have automorphisms and to
apply Gröbner methods there. A similar idea of “breaking symmetry” was used in [DK1]
to develop a theory of Gröbner bases for symmetric operads by passing to the weaker
structure of shuffle operads. This idea is used in [KP] to study Hilbert series of operads
with well-behaved Gröbner bases.

• A related topic (and one that serves as motivation for us) is the notion of “noetherianity up
to symmetry” in multilinear algebra and algebraic statistics. We point to [DE, DrK, HM,
HS] for some applications of noetherianity and to [Dr] for a survey and further references.
An important topic that comes up is equivariant Gröbner bases for polynomial rings:

the setup is a monoid acting on a polynomial ring in infinitely many variables and the
problem is to develop a Gröbner basis theory that makes use of the monoid action. One
main difference between this and our work can, loosely speaking, be summarized by saying
that we consider Gröbner bases for all projective (free) modules, and not just ideals.
While preparing this article, we discovered that an essentially equivalent version of

Proposition 8.2.1 is proven in the proof of [DrK, Proposition 7.5].
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1.5. Open problems. We close the introduction with some open problems.

1.5.1. Krull dimension. There is a notion of Krull dimension for abelian categories [Ga,
Ch. IV] generalizing that for commutative rings. If k is a field of characteristic 0, then
Repk(FA) has Krull dimension 0 [WG], Repk(FI) has Krull dimension 1 [SS1, Corollary
2.2.6], and Repk(OI) has infinite Krull dimension (easy). These results hold in positive
characteristic as well: Repk(FA) is handled in Theorem 8.4.4, Repk(OI) remains easy, and
Repk(FI) is an as yet unpublished result of ours.

One would like a combinatorial method to compute the Krull dimension of Repk(C). In
Proposition 5.2.11 we give a criterion for dimension 0, but it is probably far from optimal. For
higher dimension, we have some partial results, but none that apply to the main categories
of interest. One difficulty is that there is not an obvious way to reduce to Gröbner categories,
as the above examples indicate (FI and OI have very different Krull dimensions).

1.5.2. Enhanced Hilbert series. Our definition of the Hilbert series of M ∈ Repk(C) only
records the dimension of M(x), for each object x. One could attempt to improve this by
recording the representation of Aut(x) on M(x). We can formalize this problem as follows.
Suppose R is a ring and for each x ∈ |C| we have an additive function µx : Rk(Aut(x)) → R
(Rk denotes the Grothendieck group). We define the enhanced Hilbert series of M by

H̃M =
∑
x∈|C|

µx([M(x)]),

where [M(x)] is the class of M(x) in Rk(Aut(x)), when this sum makes sense. For example,
if C = FI and k has characteristic 0, we define maps µx to R = QJt1, t2, . . .K in [SS1, §5.1],
and prove a sort of rationality result there. We can now prove the analogous result for
FId-modules as well. In this paper, we define an enhanced Hilbert series for FSop

G -modules,
and prove a rationality result (see §11.2). Is it possible to prove a general rationality result?

1.5.3. Minimal resolutions and Poincaré series. Suppose C is a weakly directed category (i.e.,
any self-map is invertible) and k is a field. Suppose furthermore that the automorphism
groups in C are finite and have order invertible in k. There is then a notion of minimal
projective resolution for representations of C. One would like to understand the nature of
these resolutions combinatorially.

We now give a slightly more specific problem. For a representation M of C, let Ψ(M) be
the representation of C defined as follows: Ψ(M)(x) is the quotient ofM(x) by the images of
all maps M(y) → M(x) induced by non-isomorphisms y → x in C. One can think of Ψ(M)
as analogous to tensoringM with the residue field in the case of modules over an augmented
algebra. The left-derived functors of Ψ exist, and one can read off from LiΨ(M) the ith
projective in the minimal resolution of M . Assuming C is normed, define the Poincaré
series of M by

PM(t, q) =
∞∑
i=0

HLiΨ(M)(t)(−q)i.

This contains strictly more information than the Hilbert series, but is much more subtle
since it does not factor through the Grothendieck group. What can one say about the form
of this series? We proved a rationality theorem for Poincaré series of FI-modules in [SS1,
§6.7], when k has characteristic 0, and can now generalize this result to FId-modules (still in
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characteristic 0). Preliminary computations with VIFq -modules (defined in §8.3) have seen
theta series come into play; it is not clear yet if there is a deeper meaning to this.

1.5.4. Noetherianity results for other categories. There are combinatorial categories which
are expected to be noetherian, but do not fall into our framework. For example: Let C be the
category whose objects are finite sets, and where a morphism S → T is an injection f : S → T
together with a perfect matching on T \ f(S). When k has characteristic 0, Repk(C) is
equivalent to the category of Sym(Sym2(k∞))-modules with a compatible polynomial action
of GL∞(k). See also [SS3, §4.2] for a connection between Repk(C) (where C is called (db))
and the stable representation theory of the orthogonal group.

We expect Repk(C) is noetherian, but cannot prove it. We note that passing to the
directed category D where the objects are ordered finite sets and the maps f : S → T
are order-preserving does not work since the principal projective P∅ is not noetherian: if
Mn : ∅ → [2n] is the perfect matching on {1, . . . , 2n} consisting of the edges (i, i+ 3) where
i = 1, 3, . . . , 2n−3 and the edge (2n−1, 2), thenM3,M4,M5, . . . are pairwise incomparable.
Is there a way to extend the scope of the methods of this paper to include these categories?

1.5.5. Coherence. The category Repk(C) is coherent if the kernel of any map of finitely
generated projective representations is finitely generated. This is a weaker property than
noetherianity, and should therefore be easier to prove. We have some partial combinatorial
results on coherence, but none that apply in cases of interest. We would be especially
interested in a criterion that applies to the category mentioned in §1.5.4.

1.5.6. Optimal results for Hilbert series of FSop
G -modules. Let G be a finite group whose

order is invertible in the field k, and let M be a finitely generated FSop
G -module. Consider

the minimal subfield F of C with the following property: HM(t) can be written in the form
f(t)/g(t) where f ∈ F [t] and g(t) factors as

∏
(1−λi) where each λi is a linear combination

of the t with coefficients in the ring of integers OF .
When k is algebraically closed, we prove F ⊆ Q(ζN), where N is the exponent of G. When

G is the symmetric group, we show (Corollary 11.3.4) that F = Q. It would be interesting to
determine F in general. This is related to the question of finding optimal good collections of
subgroups of G in the sense of §11.2, although it is probably necessary to find an alternative
approach.

1.5.7. Hilbert series of ideals in permutation posets. There are many algebraic structures not
mentioned in this paper which lead to interesting combinatorial problems. As an example,
consider the poset S of all finite permutations, i.e., the disjoint union of all finite symmetric
groups. Represent a permutation σ in one-line notation: σ(1)σ(2) · · · σ(n). Say that τ ≤ σ
if there is a consecutive subword σ(i)σ(i + 1) · · ·σ(i + r − 1)σ(i + r) which gives the same
permutation as τ , i.e., σ(j) > σ(j′) if and only if τj > τj′ for all j 6= j′. (In the literature, τ
is a consecutive pattern in σ.) If we drop the condition “consecutive,” then this becomes
the poset of pattern containment (see [B, §7.2.3]) which is known to have infinite anti-chains
([B, Theorem 7.35]) and hence the same is true for the weaker relation of consecutive pattern
containment. But we can still ask about the behavior of Hilbert series of finitely generated
ideals in this poset. For example, are they always D-finite (see [St2, §6.4] for the definition)?
(This is asked for the pattern containment poset in [B, Conjecture 5.8].) The corresponding
algebraic setup is monomial ideals in the free shuffle algebra (see [Ro, Example 2.2(b)] or
[DK2, §2.2, Example 2]).
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1.5.8. A reconstruction problem. Let G and H be finite groups and let k be an algebraically
closed field. Suppose Repk(FS

op
G ) and Repk(FS

op
H ) are equivalent as k-linear abelian cate-

gories. Are G and H isomorphic?

1.6. Guide for the paper. Here we provide a roadmap to the contents of this paper. We
have divided the paper into two parts: theory and applications.

The first part on theory begins with background results on noetherian posets §2 and
formal languages §3. The material on posets is standard and we have included proofs to
make it self-contained. This is essential for our applications to noetherian conditions on
representations of categories which come later. The section on formal languages is a mixture
of review and some new material on ordered and quasi-ordered languages. This material is
essential for our applications to rationality properties of Hilbert series of finitely generated
representations.

In §4 we introduce basic terminology and properties of representations of categories and
functors between them. We state criteria for noetherian conditions on representations which
will be further developed in later sections. The next section §5 introduces and develops
the main topic of this paper: Gröbner bases for representations of categories. We give a
criterion for categories to admit a Gröbner basis theory and relate noetherian properties
of representations to those of posets. We encapsulate the key properties into the notion of
(quasi-)Gröbner categories. The final theory section §6 is concerned with Hilbert series of
representations of categories. Here we introduce the notion of lingual structures on categories
and connect properties of Hilbert series with formal languages. We are most concerned with
when the Hilbert series is a rational or algebraic function, and refinements of those results.

The second part of the paper is concerned with applications of the theory developed in
the first part. The first section §7 is about categories of finite sets and injective functions
of different kinds. This has two sources of motivation: the theory of FI-modules [CEF] and
the theory of twisted commutative algebras [SS2]. We recover and strengthen known results
on noetherianity and Hilbert series for these categories and related ones.

§8 is about categories of finite sets and surjective functions. These categories are much
more complicated than their injective counterparts. A significant application of the results
here is the proof of the Lannes–Schwartz artinian conjecture (discussed in §1.3.1). The
proof mainly relies on Proposition 4.2.6, Theorem 8.1.1 (the proof of which is in §8.2), and
Theorem 8.1.2, so the reader mainly interested in the proof of this conjecture need only read
those results and their minor preliminaries.

The next main topic of the paper in §9 is applications to ∆-modules (introduced by the
second author in [Sn]). We prove that finitely generated ∆-modules are noetherian over any
field, thus significantly improving the results of [Sn] where it is only shown in characteristic 0
under a further “smallness” assumption. The main result needed for the noetherian condition
is contained in the section on surjections mentioned above. For Hilbert series of ∆-modules,
we affirmatively resolve and strengthen [Sn, §6, Question 5] by proving a stronger rationality
result.

In §11, we study G-equivariant versions of the category of finite sets with injections or
surjections for G a finite group. From the perspective that those categories are about rep-
resentations of symmetric groups, these categories can be thought of as a wreath product
generalization. We originally developed these results for applications to ∆-modules (see
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Remark 11.1.12), but that approach is no longer needed. We keep these sections for inde-
pendent interest. In fact, the case G = Z/2Z appears in the literature [Wi]. The technical
results needed to study Hilbert series is developed in §10, which deals with weighted sets
and surjections (and can be thought of as the case when G is abelian). We highlight §11.3
which contains a group theory problem which we think is of interest in its own right.

Finally, we end with some examples that illustrate features of the theory not seen in the
other examples. All of the categories studied so far have the property that their finitely
generated representations have rational Hilbert series. In §12, we study a category related
to the category of finite sets and injections such that finitely generated representations have
algebraic (but non-rational) Hilbert series. In §13 we study two examples of categories with
infinite hom sets (all of the other examples we have studied have finite hom sets) and prove
that finitely generated representations are noetherian: a linear-algebraic category built out
of upper unitriangular integer matrices, and the category of finite sets and G-injections when
G is a polycyclic-by-finite group.

1.7. Notation and quick reference. We list the categories that we study (see the indicated
paragraph for the definition of the category):

(1) OId, FId §7.1
(2) FA §7.4
(3) OSop, FSop §8.1

(4) FAop §8.4
(5) VIR, VAR §8.3
(6) OWSop

Λ , FWSop
Λ §10.1

(7) FIG, FAG §11.1.1
(8) FSop

G §11.2
(9) B+

Z , BZ §13

For each category C above, we show that Repk(C) is noetherian when k is left-noetherian.
Except for BZ, all categories are shown to be quasi-Gröbner. We also prove results about
Hilbert series for most of these categories.

Finally, we list some commonly used notation:

• If Σ is a set, let Σ? denote the set of words in Σ, i.e., the free monoid generated by
Σ. For w ∈ X?, let `(w) denote the length of the word.

• For a non-negative integer n ≥ 0, set [n] = {1, . . . , n}, with the convention [0] = ∅.
• Let n be an element of Nr. We write |n| for the sum of the coordinate of n and n!
for n1! · · ·nr!. We let [n] be the tuple ([n1], . . . , [nr]) of finite sets. Given variables
t1, . . . , tr, we let tn be the monomial tn1

1 · · · tnr
r .

• For each positive integer N , we fix a primitive Nth root of unity ζN .

• Ŝym denotes the completion of Sym with respect to the homogeneous maximal ideal,

i.e., Ŝym(V ) =
∏

n≥0 Sym
n(V ).

• Let G be a finite group. The Grothendieck group of all, resp. projective, finitely
generated k[G]-modules is denoted Rk(G), resp. Pk(G).

Acknowledgements. We thank Aurélien Djament, Benson Farb, Nicholas Kuhn, Andrew
Putman, and Bernd Sturmfels for helpful discussions and comments.

Part 1. Theory

2. Partially ordered sets

In this section, we state some basic definitions and properties of noetherian posets. This
section can be skipped and referred back to as necessary since it serves a technical role only.
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Let X be a poset. We say that X satisfies the ascending chain condition (ACC) if
every ascending chain in X stabilizes, i.e., given x1 ≤ x2 ≤ · · · in X we have xi = xi+1

for i sufficiently large. The descending chain condition (DCC) is defined similarly. An
anti-chain in X is a sequence x1, x2, . . . such that xi ≤| xj for all i 6= j. An ideal in X is a
subset I of X such that x ∈ I and x ≤ y implies y ∈ I. We write I(X) for the set of ideals
of X, given the structure of a poset by inclusion. For x ∈ X, the principal ideal generated
by x is {y | y ≥ x}. An ideal is finitely generated if it is a finite union of principal ideals.
The following result is standard.

Proposition 2.1. The following conditions on X are equivalent:

(a) The poset X satisfies DCC and has no infinite anti-chains.
(b) Given a sequence x1, x2, . . . in X, there exists i < j such that xi ≤ xj.
(c) The poset I(X) satisfies ACC.
(d) Every ideal of X is finitely generated.

Definition 2.2. The poset X is noetherian if the above conditions are satisfied. �

Remark 2.3. Where we say “X is noetherian,” one often sees “≤ is a well-quasi-order” in
the literature. Similarly, where we say “X satisfies DCC” one sees “≤ is well-founded.” �

Proposition 2.4. Let X be a noetherian poset and let x1, x2, . . . be a sequence in X. Then
there exists an infinite sequence of indices i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · .

Proof. Let I be the set of indices such that i ∈ I and j > i implies that xi ≤| xj. If I is
infinite, then there is i < i′ with i, i′ ∈ I such that xi ≤ xi′ by definition of noetherian and
hence contradicts the definition of I. So I is finite; let i1 be any number larger than all
elements of I. Then by definition of I, we can find xi1 ≤ xi2 ≤ · · · . �

Proposition 2.5. Let X and Y be noetherian posets. Then X × Y is noetherian.

Proof. Let (x1, y1), (x2, y2), . . . be an infinite sequence in X × Y . Since X is noetherian,
there exists i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · (Proposition 2.4). Since Y is noetherian,
there exists ij < ij′ such that yij ≤ yij′ , and hence (xij , yij) ≤ (xij′ , yij′ ). �

Let X and Y be posets and let f : X → Y be a function. We say that f is order-
preserving if x ≤ x′ implies f(x) ≤ f(x′). We say that f is strictly order-preserving
if x ≤ x′ is equivalent to f(x) ≤ f(x′). Suppose f is strictly order-preserving. Then it is
necessarily injective; indeed, if f(x) = f(x′) then f(x) ≤ f(x′) and f(x′) ≤ f(x), and so
x ≤ x′ and x′ ≤ x, and so x = x′. We can thus regard X as a subset of Y with the induced
order. In particular, if Y is noetherian then so is X.

Let F = F(X, Y ) be the set of all order-preserving functions f : X → Y . We partially
order F by f ≤ g if f(x) ≤ g(x) for all x ∈ X.

Proposition 2.6. We have the following.

(a) If X is noetherian and Y satisfies ACC then F satisfies ACC.
(b) If F satisfies ACC and X is non-empty then Y satisfies ACC.
(c) If F satisfies ACC and Y has two distinct comparable elements then X is noetherian.

Proof. (a) Suppose X is noetherian and F does not satisfy ACC. Let f1 < f2 < · · · be an
ascending chain in F . For each i, choose xi ∈ X such that fi(xi) < fi+1(xi). Since X is
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noetherian, by passing to a subsequence we can assume x1 ≤ x2 ≤ · · · (Proposition 2.4).
Let yi = fi(xi). Then

yi = fi(xi) < fi+1(xi) ≤ fi+1(xi+1) = yi+1,

and so y1 < y2 < · · · shows that Y does not satisfy ACC.
(b) Now suppose F satisfies ACC and X is non-empty. Then Y embeds into F as the set

of constant functions, and so Y satisfies ACC.
(c) Finally, suppose F satisfies ACC and Y contains elements y1 < y2. Given an ideal I

of X, define χI ∈ F by

χI(x) =

{
y2 x ∈ I

y1 x 6∈ I
.

Then I 7→ χI defines an embedding of I(X) into F , and so I(X) satisfies ACC, and so X
is noetherian. �

Finally, we end with Higman’s lemma. Given a poset X, let X? be the set of finite words
x1 · · ·xn with xi ∈ X. We define x1 · · ·xn ≤ x′1 · · ·x′m if there exist 1 ≤ i1 < · · · < in ≤ m
such that xj ≤ x′ij for j = 1, . . . , n.

Theorem 2.7 (Higman [Hi]). If X is a noetherian poset, then the same is true for X?.

Proof. Suppose that X? is not noetherian. We use Nash-Williams’ theory of minimal bad
sequences [NW] to get a contradiction. A sequence w1, w2, . . . of elements in X? is bad if
wi ≤| wj for all i < j. We pick a bad sequence minimal in the following sense: for all
i ≥ 1, among all bad sequences beginning with w1, . . . , wi−1 (this is the empty sequence for
i = 1), `(wi) is as small as possible. Let xi ∈ X be the first element of wi and let vi be the
subword of wi obtained by removing xi. By Proposition 2.4, there is an infinite sequence
i1 < i2 < · · · such that xi1 ≤ xi2 ≤ · · · . Then w1, w2, . . . , wi1−1, vi1 , vi2 , . . . is a bad sequence
because vij ≤ wij for all j, and vij ≤ vij′ would imply that wij ≤ wij′

. It is smaller than our
minimal bad sequence, so we have reached a contradiction. Hence X? is noetherian. �

3. Formal languages

In this section we give basic definitions and results on formal languages. In particular,
we define a few classes of formal languages (regular, ordered, quasi-ordered, unambiguous
context-free) which will be used in this paper along with results on their generating functions.
We believe that the material in §§3.3, 3.4 on ordered and quasi-ordered languages is new.
The rest of the material is standard.

3.1. Generalities. Fix a finite set Σ (which we also call an alphabet). A language on
Σ is a subset of Σ?. Let L and L′ be two languages. The union of L and L′, denoted
L ∪ L′, is simply their union as subsets of Σ?. The concatenation of L and L′, denoted
LL′, is the language consisting of all words of the form ww′ with w ∈ L and w′ ∈ L′. The
Kleene star of L, denoted L?, is the language consisting of words of the form w1 · · ·wn with
w1, . . . , wn ∈ L, i.e., the submonoid (under concatenation) of Σ? generated by L.

Let Σ be an alphabet. A norm on Σ is a monoid homomorphism ν : Σ? → NI , for some
finite set I, such that elements of Σ map to basis vectors. (This condition could be omitted,
but is convenient for us.) Obviously, specifying a norm is equivalent to giving a function
Σ → I. By a norm on a language L over Σ, we mean a function L → NI which is the
restriction of a norm on Σ. Every language admits a canonical norm over N, namely, the
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length function ` : L → N. We say that a norm ν is universal if the map Σ → I is injective.
The concept is important for the following reason: if ν is a universal norm with values in
NI , and ν ′ is some other norm with values in NJ , then there is a function f : I → J such
that ν ′(w) = f∗(ν(w)), where f∗ : N

I → NJ is the homomorphism induced by f .
Let L be a language equipped with a norm ν with values in NI . Let t = (ti)i∈I be

indeterminates. The Hilbert series of L (with respect to ν) is

HL,ν(t) =
∑
w∈L

tν(w),

when this makes sense (i.e., the coefficient of tn is finite for all n). The coefficient of tn in
HL,ν(t) is the number of words of norm n. We omit the norm ν from the notation when it
is not needed.

There are two special cases of interest. When ν = `, the coefficient of tn in HL counts the
number of words of length n in L. This series is often called the generating function of L
in the literature. When ν is a universal norm, we say that the series is a universal Hilbert
series. Any Hilbert series of L (under any norm) is a homomorphic image of a universal
Hilbert series of L.

3.2. Regular languages. The set of regular languages on Σ is the smallest set of lan-
guages on Σ containing the empty language and the singleton languages {c} (for c ∈ Σ), and
closed under finite union, concatenation, and Kleene star.

A deterministic finite-state automata (DFA) for the alphabet Σ is a tuple (Q, T, σ,F)
consisting of:

• A finite set Q, the set of states.
• A function T : Σ×Q→ Q, the transition table.
• A state σ ∈ Q, the initial state.
• A subset F ⊂ Q, the set of final states.

Fix a DFA. We write α
c→ β to indicate T (c, α) = β. Given a word w = w1 · · ·wn, we write

α
w→ β if there are states α = α0, . . . , αn = β such that

α0
w1→ α1

w2→ · · · wn−1→ αn−1
wn→ αn.

Intuitively, we think of α
w→ β as saying that the DFA starts in state α, reads the word w,

and ends in the state β. We say that the DFA accepts the word w if σ
w→ τ with τ a final

state. The set of accepted words is called the language recognized by the DFA.
The following result is standard; see [HU, Ch. 2], for example.

Theorem 3.2.1. A language is regular if and only if it is recognized by some DFA.

The following result is also standard, but we include a proof since it is short and we will
need to refer to it later. We refer to [St1, Theorem 4.7.2] for a more detailed treatment.

Theorem 3.2.2. If L is regular then HL,ν(t) is a rational function of t, for any norm ν.

Proof. Choose a DFA recognizing L. Let A be the Q×Q matrix given by

Aα,β =
∑
α

w→β
`(w)=1

tν(w).
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A simple computation shows that

(Ak)α,β =
∑
α

w→β
`(w)=k

tν(w).

Thus if τ1, . . . , τs are the final states then

HL,ν(t) =
s∑

i=1

∞∑
k=0

(Ak)σ,τi =
s∑

i=1

(−1)σ+τi det(1− A : τi, σ)

det(1− A)
,

where the notation (1− A : τi, σ) means that we remove the τith row and σth column from
1− A (for this to make sense, we pick a bijection between Q and the set {1, . . . , |Q|}). �

Example 3.2.3. Consider the language L = {0, 11}? on the alphabet X = {0, 1}. Let Ln be
the words of length n in L. There are maps Ln−2 → Ln and Ln−1 → Ln, given by appending
11 and 0, respectively. Together, these define a bijection Ln

∼= Ln−1 q Ln−2. It follows that
#Ln is the nth Fibonacci number, and so

HL,`(t) =
1

1− t− t2
. �

3.3. Ordered languages. The set of ordered languages on Σ is the smallest set of lan-
guages on Σ that contains the singleton languages and the languages Π?, for Π ⊆ Σ, and that
is closed under finite union and concatenation. We have not found this class of languages
considered in the literature.

A DFA is ordered if the following condition holds: if α and β are states and there exists
words u and w with α

u→ β and β
w→ α, then α = β. The states of an ordered DFA admit a

natural partial order by α ≤ β if there exists a word w with α
w→ β.

We prove two theorems about ordered languages. The first is the following.

Theorem 3.3.1. A language is ordered if and only if it is recognized by some ordered DFA.

Proof. Suppose L is an ordered language. Then we can write L = L1 ∪ · · · ∪ Ln, where
each Li is a concatenation of singleton languages and languages of the form Π? with Π ⊂ Σ.
By Lemmas 3.3.4 and 3.3.5 below, each Li is recognized by an ordered DFA. Thus by
Lemma 3.3.2 below, L is recognized by an ordered DFA.

The converse is proved in Lemma 3.3.6. �

Lemma 3.3.2. Suppose that L and L′ are languages recognized by ordered DFA’s. Then
L ∪ L′ is recognized by an ordered DFA.

Proof. Suppose (Q, T, σ,F) is an ordered DFA recognizing L and (Q′, T ′, σ′,F ′) is an ordered
DFA recognizing L′. Let Q′′ = Q × Q′. Let T ′′ : Σ × Q′′ → Q′′ be defined in the obvious
manner, i.e.,

T ′′(c, (α, α′)) = (T (c, α), T ′(c, α′)).

Let σ′′ = (σ, σ′), and let

F ′′ = (F ×Q′) ∪ (Q×F ′).

Then (Q′′, T ′′, σ′′,F ′′) is a DFA recognizing L∪L′. Note that (α, α′)
w→ (β, β′) if and only if

α
w→ β and α′ w→ β′, and so this DFA is ordered. �
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Lemma 3.3.3. Suppose that L is a non-empty language recognized by an ordered DFA. Then
we can write L = L1 ∪ · · · ∪Ln where each Ln is recognized by an ordered DFA with a single
final state.

Proof. Suppose L is recognized by the ordered DFA (Q, T, σ,F). Enumerate F as {τ1, . . . , τn}.
Let Li be the set of words w ∈ L for which σ

w→ τi. Then L is clearly the union of the Li.
Moreover, Li is recognized by the ordered DFA (Q, T, σ, {τi}). �

Lemma 3.3.4. Let L be a language recognized by an ordered DFA and let L′ = {c} be a
singleton language. Then the concatentation LL′ is recognized by an ordered DFA.

Proof. Suppose first that L is recognized by the ordered DFA (Q, T, σ,F), where F = {τ}
has a single element. If T (c, τ) = τ , then nothing needs to be changed; indeed, in this case,
L = LL′. Suppose then that T (c, τ) = ρ 6= τ . Let Q′ = Q q {τ ′}, and define a transition
function T ′ as follows. First, T ′(b, α) = T (b, α) if α ∈ Q, unless α = τ and b = c. We
define T ′(c, τ) = τ ′. Finally, we define T ′(b, τ ′) = ρ, for any b. One easily verifies that
(Q′, T ′, σ, {τ ′}) is an ordered DFA recognizing LL′.

We now treat the general case. If L is the empty language, the result is easy, so assume
this is not the case. Write L = L1∪· · ·∪Ln, where each Li is recognized by an ordered DFA
with a single final state, which is possible by Lemma 3.3.3. Then LL′ = (L1L′)∪· · ·∪(LnL′).
Each LiL′ is recognized by an ordered DFA by the previous paragraph. Thus LL′ is as well,
by Lemma 3.3.2. �

Lemma 3.3.5. Let L be a language recognized by an ordered DFA and let L′ = Π? for some
subset Π of Σ. Then the concatentation LL′ is recognized by an ordered DFA.

Proof. Suppose first that L is accepted by the ordered DFA (Q, T, σ,F), where F = {τ}.
Let Q′ = Qq{τ ′, ρ}, and define a transition function T ′ as follows. First, T ′(c, α) = T (c, α)
for α ∈ Q \ {τ}. Let ∆ be the set of elements c ∈ Σ such that T (c, τ) = τ . We define

T ′(c, τ) =


τ if c ∈ ∆

τ ′ if c ∈ Π \∆
ρ if c 6∈ Π ∪∆

, T ′(c, τ ′) =

{
τ ′ if c ∈ Π

ρ if c 6∈ Π
.

Finally, we define T ′(c, ρ) = ρ for all c ∈ Σ. One easily verifies that (Q′, T ′, σ, {τ, τ ′}) is
an ordered DFA accepting LL′. The deduction of the general case from this special case
proceeds exactly as the corresponding argument in the proof of Lemma 3.3.4. �

Lemma 3.3.6. The language recognized by an ordered automata is ordered.

Proof. Let (Q, T, σ,F) be an ordered automata, and let L be the language it recognizes.
We show that L is ordered, following the proof of [HU, Thm. 2.4]. Enumerate the states
Q as {α1, . . . , αs} in such a way that if αi ≤ αj then i ≤ j. Let Lk

i,j be the set of words
w = w1 · · ·wn such that

αi = β0
w1→ β1

w2→ · · · wn→ βn = αj,

with

β1, . . . , βn−1 ∈ {α1, . . . , αk}.
In other words, w ∈ Lk

i,j if it induces a transition from αi to αj via intermediate states of

the form α` with ` ≤ k. We prove by induction on k that each Lk
i,j is an ordered language.
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To begin with, when k = 0 no intermediate states are allowed (i.e., n = 1), and so Lk
i,j is a

subset of Σ, and therefore an ordered language. For k ≥ 1, we have

Lk
i,j = Lk−1

i,k (Lk−1
k,k )?Lk−1

k,j ∪ Lk−1
i,j .

Since there is no way to transition from αk to αi with i < k, any word in Lk−1
k,k must have

length 1. Thus Lk−1
k,k is a subset of Σ, and so (Lk−1

k,k )? is an ordered language. The above

formula then establishes inductively that Lk
i,j is ordered for all k.

Let F = {αj}j∈J be the set of final states, and let σ = αi be the initial state. Then
L =

⋃
j∈J Ls

i,j, and is therefore an ordered language. �
The following is our second main result about ordered languages. To state it, we need

one piece of terminology: we say that a subset Π of Σ is repeatable with respect to some
language L if there exist w and w′ in Σ? such that wΠ?w′ ⊂ L.

Theorem 3.3.7. Suppose L is an ordered language equipped with a norm. Let Π1, . . . ,Πr be
the repeatable subsets of Σ, and let λi =

∑
c∈Πi

tν(c), an N-linear combination of the t’s. Then
HL(t) = f(t)/g(t) where f(t) and g(t) are polynomials, and g(t) factors as

∏r
i=1(1 − λi)

ei

where ei ≥ 0.

Proof. Choose an ordered DFA recognizing L. We can assume that every state is ≥ the initial
state. Call a state α prefinal if there exists a final state τ such that α ≤ τ . Enumerate
the states as α1, . . . , αs such that the following conditions hold: (1) α1 is the initial state;
(2) if αi ≤ αj then i ≤ j; and (3) there exists n such that {α1, . . . , αn} is the set of prefinal
states. Let A be as in the proof of Theorem 3.2.2, thought of as an s × s matrix. Then A
is upper-triangular. Furthermore, the diagonal entry at (i, i) is

∑
c∈Π tν(c), where Π is the

set of letters c which induce a transition from αi to itself. It is clear that if αi is prefinal
then the set Π is one of the Πj’s, and so the diagonal entry at (i, i) is one of the λj’s. If
αt1 , . . . , αts are the final states then, as in the proof of Theorem 3.2.2, we have

HL(T) =
s∑

i=0

∞∑
k=0

(Ak)1,ts .

It is clear that this is of the stated form. �
Corollary 3.3.8. Suppose L is an ordered language. Then HL,`(t) can be written in the form
f(t)/g(t) where f(t) and g(t) are polynomials, and g(t) factors as

∏r
a=1(1 − at)e(a) where

e(a) ≥ 0 and r is the cardinality of the largest repeatable subset of Σ with respect to L.

Remark 3.3.9. The above result can be used to show that a language is not ordered. For
example, the language considered in Example 3.2.3 is not ordered. �

We now give a slight variant of the above theorem that will be convenient for applications.
Let L be a language on Σ equipped with a norm ν with values in NI . A subpartition of I
is an ordered collection I• = (I1, . . . , Ir) of disjoint subsets of I (i.e., a partition of a subset
of I). A language L is adapted to a subpartition I• of I if there exists an integer N with
the following property: every word in L can be written in the form w1 · · ·wr where all but
at most N letters of wj belong to ν−1(Ij).

Theorem 3.3.10. Suppose that L is an ordered language equipped with a norm ν valued in
NI adapted to a subpartition {I1, . . . , Ir}. Then HL,ν(t) can be written in the form f(t)/g(t)
where f(t) and g(t) are polynomials, and g(t) factors as

∏n
k=1(1−αk), where for each k there
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exists an index j such that αk is a linear combination of the ti, for i ∈ Ij, with non-negative
coefficients.

Proof. It is clear that every repeatable set is contained in one of the sets ν−1(Ij). �

3.4. Quasi-ordered languages. Let Λ be a finite abelian group and let ϕ : Σ → Λ be a
function. Extend ϕ to a monoid homomorphism on Σ?. Given a subset S of Λ, let Σ?

ϕ,S

be the set of all words w ∈ Σ? for which ϕ(w) ∈ S. We say that a language L ⊂ Σ? is a
congruence language if it is of the form Σ?

ϕ,S for some Λ, ϕ and S. The modulus of a
congruence language is the exponent of the group Λ. (Recall that the exponent of a group
is the least common multiple of the orders of all elements in the group.)

Let F (t) be a power series in variables t = (t1, . . . , tr). An N-cyclotomic translate of
F is a series of the form F (ζ1t1, . . . , ζrtr), where ζ1, . . . , ζr are Nth roots of unity.

Lemma 3.4.1. Let Λ be a finite abelian group of exponent N , let S be a subset of Λ, and
let ψ : Zr

≥0 → Λ be a monoid homomorphism. Suppose that F (t) =
∑

n∈Nr ant
n is a power

series over C. Let G(t) =
∑
ant

n, where the sum is extended over those n ∈ N for which
ψ(n) ∈ S. Then G is a Q(ζN)-linear combination of N-cyclotomic translates of F .

Proof. We have G(t) =
∑

n∈Nr χ(ψ(n))ant
n, where χ : Λ → {0, 1} is the characteristic

function of S. To obtain the result, simply express χ as a Q(ζN)-linear combination of
characters of Λ. �
Proposition 3.4.2. Let L be a language on Σ equipped with a universal norm ν with values
in NI , let K be a congruence language on Σ of modulus N , and let L′ = L∩K. Then HL′,ν(t)
is a Q(ζN)-linear combination of N -cyclotomic translates of HL,ν(t).

Proof. Choose ϕ : Σ → Λ and S ⊂ Λ so that K = Σ?
ϕ,S. Since ν is universal, the map

ϕ : Σ? → L can be factored as ψ ◦ ν, where ψ : NI → Λ is a monoid homomorphism. Thus
if HL(t) =

∑
n∈NI ant

n, then HL′(t) is obtained by simply discarding the terms for which
ψ(n) 6∈ S. The result now follows from Lemma 3.4.1. �

A quasi-ordered language (of modulus N) is the intersection of an ordered language
and a congruence language (of modulus N). Quasi-ordered languages are regular. The class
of quasi-ordered languages is not closed under unions, intersections, or concatenations.

Our main result on quasi-ordered languages is the following theorem.

Theorem 3.4.3. Let L be a quasi-ordered language of modulus N equipped with a norm
valued in NI adapted to a subpartition {I1, . . . , Ir}. Then HL(t) can be written in the form
f(t)/g(t), where f(t) and g(t) are polynomials with coefficients in Q(ζN), and g(t) factors
as

∏n
i=1(1−λk), where for each k there exists a j such that λk is a Z[ζN ]-linear combination

of the ti, for i ∈ Ij.

Proof. This follows immediately from Theorem 3.3.10 and Proposition 3.4.2. �
Definition 3.4.4. Let N ≥ 1 be an integer. We say that a series h ∈ QJt1, . . . , trK is of class
KN if it can be expressed in the form f(t)/g(t) where f and g are polynomials in the ti with
coefficients in Q(ζN) and g factors as

∏n
k=1(1− λi), where λi is a Z[ζN ]-linear combination

of the ti.
There is also a coordinate-free version of the definition. Suppose Ξ is a finite free Z-module

and f ∈ Ŝym(ΞQ). We say that f is KN if there is a Z-basis t1, . . . , tr of Ξ so that f is KN
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as a series in the ti. This is independent of the choice of basis. We drop the N from the
notation if it is irrelevant. �
Lemma 3.4.5. Let i : Ξ → Ξ′ be a split injection of finite free Z-modules, and let f be a

series in Ŝym(ΞQ). Suppose that i(f) ∈ Ŝym(Ξ′
Q) is KN . Then f is KN .

Proof. Let j : Ξ′ → Ξ be a splitting of i. Then f = j(i(f)). Since j clearly takes KN functions
to KN functions, it follows that f is KN . �

3.5. Unambiguous context-free languages. Let Σ be a finite alphabet, which we also
call terminal symbols. Let N be another finite set, disjoint from Σ, which we call the
non-terminal symbols. A production rule is n→ P (n) where n ∈ N and P (n) is a word
in Σ∪N . A context-free grammar is a tuple (Σ, N,P, n0), where Σ and N are as above,
P is a finite set of production rules, and n0 is a distinguished element of N . Given such a
grammar, a word w in Σ is a valid n-expression if there is a production rule n → P (n),
where P (n) = c1 · · · cr, and a decomposition w = w1 · · ·wr (with r > 1), such that wi

is a valid ci-expression if ci is non-terminal, and wi = ci if ci is terminal. The language
recognized by a grammar is the set of valid n0-expressions, and a language of this form is
called a context-free language. A grammar is unambiguous if for each valid n-expression
w the production rule n→ P (n) and decomposition of w above is unique. An unambiguous
context-free language is one defined by such a grammar. See [St2, Definition 6.6.4] for
an alternative description.

Theorem 3.5.1 (Chomsky–Schützenberger [CS]). Let L be an unambiguous context-free
language equipped with a norm ν. Then HL,ν(t) is an algebraic function.

Proof. Let L be a context-free language and pick a grammar that recognizes L. Consider the
modified Hilbert series

∑
w∈L awt

ν(w) where ν is the universal norm and aw is the number
of ways that w can be built using the production rules. This is an algebraic function [St2,
Theorem 6.6.10]. If L is unambiguous, then we can pick a grammar so that aw = 1 for all
w ∈ L, and we obtain the usual Hilbert series. �

4. Representations of categories

This section introduces the main topic of this paper: representations of categories. Our
goal is to lay out the main definitions and basic properties of representations and functors
between categories of representations and to state some criteria for representations to be
noetherian. More specifically, definitions are given in §4.1, properties of functors between
categories are in §4.2, and tensor products of representations are discussed in §4.3.

4.1. Basic definitions and results. Let C be a category. If C is essentially small, we
denote by |C| the set of isomorphism classes in C. For an object x of C, we let Cx be the
category of morphisms from x; thus the objects of Cx are morphisms x→ y (with y variable),
and the morphisms in Cx are the obvious commutative triangles. We say that C is directed
if every self-map in C is the identity. If C is directed then so is Cx, for any x. If C is essentially
small and directed, then |C| is naturally a poset by defining x ≤ y if there exists a morphism
x→ y. We say that C is Hom-finite if all Hom sets are finite.

Fix a nonzero ring k (not necessarily commutative) and let Modk denote the category of
left k-modules. A representation of C (or a C-module) over k is a functor C → Modk.
A map of C-modules is a natural transformation. We write Repk(C) for the category of
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representations, which is abelian. Let M be a representation of C. By an element of M
we mean an element of M(x) for some object x of C. Given any set S of elements of M ,
there is a smallest subrepresentation of M containing S; we call this the subrepresentation
generated by S. We say that M is finitely generated if it is generated by a finite set
of elements. For a morphism f : x → y in C, we typically write f∗ for the given map of
k-modules M(x) →M(y).

Let x be an object of C. Define a representation Px of C by Px(y) = k[Hom(x, y)], i.e., Px(y)
is the free left k-module with basis Hom(x, y). For a morphism f : x→ y, we write ef for the
corresponding element of Px(y). If M is another representation then Hom(Px,M) = M(x).
This shows that Hom(Px,−) is an exact functor, and so Px is a projective object of Repk(C).
We call it the principal projective at x. One easily sees that an object of Repk(C) is
finitely generated if and only if it is a quotient of a finite direct sum of principal projective
objects.

An object of Repk(C) is noetherian if every ascending chain of subobjects stabilizes; this
is equivalent to every subrepresentation being finitely generated. The category Repk(C) is
noetherian if every finitely generated object in it is.

Proposition 4.1.1. The category Repk(C) is noetherian if and only if every principal pro-
jective is noetherian.

Proof. Obviously, if Repk(C) is noetherian then so is every principal projective. Conversely,
suppose every principal projective is noetherian. LetM be a finitely generated object. Then
M is a quotient of a finite direct sum P of principal projectives. Since noetherianity is
preserved under finite direct sums, P is noetherian. And since noetherianity descends to
quotients, M is noetherian. This completes the proof. �
4.2. Pullback functors. Let Φ: C → C ′ be a functor. There is then a pullback functor on
representations Φ∗ : Repk(C ′) → Repk(C). In this section, we study how Φ∗ interacts with
finiteness conditions. The following definition is of central importance:

Definition 4.2.1. We say that Φ satisfies property (F) if the following condition holds:
given any object x of C ′ there exist finitely many objects y1, . . . , yn of C and morphisms
fi : x → Φ(yi) in C ′ such that for any object y of C ′ and any morphism f : x → Φ(y) in C ′,
there exists a morphism g : yi → y in C such that f = Φ(g) ◦ fi. �
Proposition 4.2.2. Suppose Φ: C1 → C2 and Ψ: C2 → C3 satisfy property (F). Then the
composition Ψ ◦ Φ satisfies property (F).

Proof. Let x be an object of C3. Let fi : x→ Ψ(yi), for i in a finite set I, be the morphisms
in C3 provided by property (F). For each i ∈ I, let gi,j : yi → Φ(zi,j), for j in a finite
set Ji, be the morphisms in C2 provided by property (F). Let hi,j : x → Ψ(Φ(zi,j)) be the
composition Ψ(gi,j) ◦ fi. Suppose we are given a morphism h : x → Ψ(Φ(z)). Then we can
write h = Ψ(h′) ◦ fi for some i ∈ I, where h′ : yi → Φ(z). We can then write h′ = Φ(h′′) ◦ gi,j
for some j ∈ Ji, where h′′ : zi,j → z. Thus h = Ψ(Φ(h′′)) ◦ hi,j, and so Ψ ◦ Φ satisfies
property (F). �
Proposition 4.2.3. Let Φ: C1 → C2 and Ψ: C2 → C3 be functors. Suppose that Φ is
essentially surjective and Ψ ◦ Φ satisfies property (F). Then Ψ satisfies property (F).

Proof. Let x be an object of C3, and let fi : x → Ψ(Φ(zi)) be the morphisms in C3 provided
by property (F). Let yi = Φ(zi). Suppose f : x → Ψ(y) is a morphism in C3. Since Φ is
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essentially surjective, we can assume y = Φ(z). Thus there is a map g : zi → z in C1 such
that f = Φ(Ψ(g)) ◦ fi. Letting g′ = Φ(g), we obtain f = Φ(g′) ◦ fi, which shows that Ψ
satisfies property (F). �

Proposition 4.2.4. Suppose Φ: C → C ′ satisfies property (F). Then Φ∗ takes finitely gen-
erated objects of Repk(C ′) to finitely generated objects of Repk(C).

Proof. It suffices to show that Φ∗ takes principal projectives to finitely generated represen-
tations. Thus let Px be the principal projective of Repk(C ′) at an object x. Note that
Φ∗(Px)(y) has for a basis the elements ef for f ∈ HomC′(x,Φ(y)). Let fi : x → Φ(yi) be as
in the definition of property (F). We claim that the efi generate Φ∗(Px). Indeed, given any
f : x → y, we have f = Φ(g)fi for some g : yi → y in C, and so ef = g∗(efi). Thus every ef
belongs to the submodule generated by the efi , which proves the proposition. �

Proposition 4.2.5. Suppose that Φ: C → C ′ is an essentially surjective functor. Let M be
an object of Repk(C ′) such that Φ∗(M) is finitely generated (resp. noetherian). Then M is
finitely generated (resp. noetherian).

Proof. Let S be a set of elements of Φ∗(M). Let S ′ be the correspond set of elements
of M . (Thus if S contains m ∈ Φ∗(M)(y) then S ′ contains m ∈ M(Φ(y)).) If N is a
subrepresentation ofM containing S ′ then Φ∗(N) is a subrepresentation of Φ∗(M) containing
S. It follows that if N (resp. N ′) is the subrepresentation of M (resp. Φ∗(M)) generated by
S ′ (resp. S), then N ′ ⊂ Φ∗(N). Thus if S generates Φ∗(M) then Φ∗(N) = Φ∗(M), which
implies N =M since Φ is essentially surjective, i.e., S generates M . In particular, if Φ∗(M)
is finitely generated then so is M .

Now suppose that Φ∗(M) is noetherian. Given a subrepresentation N of M , we obtain
a subrepresentation Φ∗(N) of Φ∗(M). Since Φ∗(M) is noetherian, it follows that Φ∗(N) is
finitely generated. Thus N is finitely generated, and so M is noetherian. �

Proposition 4.2.6. Let Φ: C → C ′ be an essentially surjective functor satisfying prop-
erty (F) and suppose Repk(C) is noetherian. Then Repk(C ′) is noetherian.

Proof. Let M be a finitely generated representation of C ′. Then Φ∗(M) is finitely generated
by Proposition 4.2.4, and therefore noetherian, and so M is noetherian by Proposition 4.2.5.

�

4.3. Tensor products. Suppose k is a commutative ring. Given representations M and N
of categories C and D over k, we define their external tensor product, denoted M �N ,
to be the representation of C × D given by (x, y) 7→ M(x) ⊗k N(y). One easily sees that if
M and N are finitely generated then so is M �N . If C = D then we define the pointwise
tensor product of M and N , denoted M � N , to be the representation of C given by
x 7→M(x)⊗kN(x). The two tensor products are related by the identityM�N = ∆∗(M�N),
where ∆: C → C × C is the diagonal functor.

We say that a category C satisfies property (F) if the diagonal functor ∆: C → C × C
satisfies property (F). Explicitly, this means that for every pair of objects x and x′, we
can find objects y1, . . . , yn and morphisms fi : x → yi and f

′
i : x

′ → yi such that given any
morphisms f : x → y and f ′ : x′ → y there exists a morphism g : yi → y, for some i, such
that f = g ◦ fi and f ′ = g ◦ f ′

i .
The following result follows immediately from the above discussion and Proposition 4.2.4.
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Proposition 4.3.1. Suppose C satisfies property (F). Then for any commutative ring k, the
pointwise tensor product of finitely generated representations is finitely generated,

5. Noetherianity and Gröbner categories

This section introduces another main topic of this paper: Gröbner bases for representations
of categories. Definitions and basic properties of Gröbner bases and initial submodules are
given in §5.1 and we state a Gröbner-theoretic approach to proving the noetherian property.
In §5.2, we introduce the notions of Gröbner and quasi-Gröbner categories, which are those
categories for which the formalism of the first section can be applied. Nearly all the categories
that we study in this paper are (quasi-)Gröbner.

5.1. Gröbner bases. Let C be an essentially small category and let Set be the category of
sets. Fix a functor S : C → Set, and let P = k[S], i.e., P (x) is the free k-module on the set
S(x). The purpose of this section is to develop a theory of Gröbner bases for P , and use
this theory to give a combinatorial criterion for P to be noetherian.

We begin by defining a partially ordered set |S| associated to S, which is one of the main
combinatorial objects of interest. We say that a subfunctor of S is principal if it is generated
by a single element. (Here we use “element” and “generated” as with representations of C.)
We define |S| to be the set of principal subfunctors of S, partially ordered by reverse inclusion.

We can describe this poset more concretely as follows, at least when C is small. Let S̃ be

the set of all elements of S, i.e., S̃ =
⋃

x∈C S(x). Given f ∈ S(x) and g ∈ S(y), define f ≤ g

if there exists h : x → y with h∗(f) = g. Then ≤ defines a quasi-order on S̃, i.e., an order
which is transitive and reflexive, but not necessarily anti-symmetric. Define an equivalence

relation on S̃ by f ∼ g if f ≤ g and g ≤ f . The poset |S| is the quotient of S̃ by ∼, with
the induced partial order.

Given f ∈ S(x), we write ef for the corresponding element of P (x). We say that an
element of P is a monomial if it is of the form λef for some λ ∈ k and f ∈ S(x). A
subrepresentation M of P is monomial if M(x) is spanned by the monomials it contains,
for all objects x.

We now classify the monomial subrepresentations of P in terms of |S|. Given f ∈ S̃, let
IM(f) be the set of all λ ∈ k such that λef belongs to M . Then IM(f) is an ideal of k.
If f ≤ g then IM(f) ⊂ IM(g). Indeed, suppose f ∈ S(x) and g ∈ S(y), and let h : x → y
satisfy h∗(f) = g. If λ ∈ IM(f) then λef belongs to M(x), and so h∗(λef ) = λeg belongs to
M(y), and so λ belongs to IM(g). In particular, IM(f) = IM(g) if f ∼ g.

Let I(k) be the poset of left-ideals in k and let M(P ) be the poset of monomial sub-
representations of P . Given M ∈ M(P ), we have constructed an order-preserving function
IM : |S| → I(k), i.e., an element of F(|S|, I(k)) (see §2).
Proposition 5.1.1. The map I : M(P ) → F(|S|, I(k)) is an isomorphism of posets.

Proof. Suppose that for every f ∈ |S| we have a left-ideal I(f) of k such that for f ≤ g
we have I(f) ⊆ I(g). We then define a monomial subrepresentation M of P by M(x) =∑

f∈S(x) I(f)ef . This defines a function F(|S|, I(k)) → M(P ), which is clearly inverse to I.
It is clear from the constructions that I and its inverse are order-preserving, and so I is an
isomorphism of posets. �
Corollary 5.1.2. The following are equivalent (assuming P is non-zero).

(a) Every monomial subrepresentation of P is finitely generated.
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(b) The poset M(P ) satisfies ACC.
(c) The poset |S| is noetherian and k is left-noetherian.

Proof. The equivalence of (a) and (b) is standard, while the equivalence of (b) and (c) follows
from Propositions 5.1.1 and 2.6. (Note: |S| is non-empty if P 6= 0, and I(k) contains two
distinct comparable elements, namely the zero and unit ideals.) �

To connect arbitrary subrepresentations of P to monomial subrepresentations, we need a
theory of monomial orders. Let WO be the category whose objects are well-ordered sets
and whose morphisms are strictly order-preserving functions. There is a forgetful functor
WO → Set. An ordering on S is a lifting of S to WO. More concretely, an ordering on S
is a choice of well-order on S(x), for each x ∈ C, such that for every morphism x → y in C
the induced map S(x) → S(y) is strictly order-preserving. We write � for an ordering. We
say that S is orderable if it admits an ordering.

Suppose � is an ordering on S. Given non-zero α =
∑

f∈S(x) λfef in P (x), we define the

initial term of α, denoted init(α), to be λgeg, where g = max�{f | λf 6= 0}. The initial
variable of α, denoted init0(α), is g. Now let M be a subrepresentation of P . We define the
initial subrepresentation of M , denoted init(M), as follows: init(M)(x) is the k-span of
the elements init(α) for non-zero α ∈M(x). The name is justified by the following result.

Proposition 5.1.3. Notation as above, init(M) is a subrepresentation of M .

Proof. Let α =
∑n

i=1 λiefi be an element of M(x), ordered so that fi ≺ f1 for all i > 1.
Thus init(α) = λ1ef1 . Let g : x → y be a morphism. Then g∗(α) =

∑n
i=1 λieg∗(fi). Since

g∗ : S(x) → S(y) is strictly order-preserving, we have g∗(fi) ≺ g∗(f1) for all i > 1. Thus
init(g∗(α)) = λ1egf1 , or, in other words, init(g∗(α)) = g∗(init(α)). This shows that g∗ maps
init(M)(x) into init(M)(y), which completes the proof. �
Proposition 5.1.4. Suppose N ⊆ M are subrepresentations of P and init(N) = init(M).
Then M = N .

Proof. Assume that M(x) 6= N(x) for some object x of C. Let K ⊂ S(x) be the set of all
elements which appear as the initial variable of some element ofM(x) not belonging to N(x).
Then K is non-empty, and therefore has a minimal element f with respect to �. Let α be
an element of M(x) not belonging to N(x) with init0(α) = f . By assumption, there exists
β ∈ N with init(α) = init(β). But then α − β is also an element of M(x) not belonging to
N(x), and init0(α− β) ≺ init0(α), a contradiction. Thus M = N . �

Let M be a subrepresentation of P . A set G of elements of M is a Gröbner basis of M
if {init(α) | α ∈ G} generates init(M). Note that M has a finite Gröbner basis if and only
if init(M) is finitely generated. As usual, we have:

Proposition 5.1.5. Let G be a Gröbner basis of M . Then G generates M .

Proof. Let N ⊆M be the subrepresentation generated by G. Then init(N) contains init(α)
for all α ∈ G, and so init(N) = init(M). Thus M = N by Proposition 5.1.4. �

We now come to our main result:

Theorem 5.1.6. Suppose k is left-noetherian, S is orderable, and |S| is noetherian. Then
every subrepresentation of P has a finite Gröbner basis. In particular, P is a noetherian
object of Repk(C).
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Proof. Let M ⊆ P be a subrepresentation. By Lemma 5.1.2, init(M) is finitely generated,
so M has a finite Gröbner basis. Then M is finitely generated by Proposition 5.1.5, so P is
noetherian. �
Remark 5.1.7. We have not touched on the important topic of algorithms for Gröbner
bases, which is one of the most attractive features of the theory! See [Ei, Chapter 15] for a
self-contained exposition of this theory for the classical situation of modules over polynomial
rings. Two important results are Buchberger’s criterion using S-pairs for determining if a
set of elements is actually a Gröbner basis, and Schreyer’s extension of this idea to calculate
free resolutions. These ideas can be extended to our settings and will be developed in future
work. There is one important difference to mention: for monomials in a polynomial ring,
the LCM is well-defined, but in our setting, one has to replace the LCM of two morphisms
with a set of morphisms in general. �
5.2. Gröbner categories. Let C be an essentially small category. For an object x, let
Sx : C → Set be the functor given by Sx(y) = Hom(x, y). Note that Px = k[Sx].

Definition 5.2.1. We say that C is Gröbner if, for all objects x, the functor Sx is orderable
and the poset |Sx| is noetherian. We say that C is quasi-Gröbner if there exists a Gröbner
category C ′ and an essentially surjective functor C ′ → C satisfying property (F). �

The following theorem is one of the two main theoretical results of this paper. It connects
the purely combinatorial condition “(quasi-)Gröbner” with the algebraic condition “noether-
ian” for representations.

Theorem 5.2.2. Let C be a quasi-Gröbner category. Then for any left-noetherian ring k,
the category Repk(C) is noetherian.

Proof. First suppose that C is a Gröbner category. Then every principal projective of Repk(C)
is noetherian, by Theorem 5.1.6, and so Repk(C) is noetherian by Proposition 4.1.1.

Now suppose that C is quasi-Gröbner, and let Φ: C ′ → C be an essentially surjective
functor satisfying property (F), with C ′ Gröbner. Then Repk(C ′) is noetherian, by the
previous paragraph, and so Repk(C) is noetherian by Proposition 4.2.6. �
Remark 5.2.3. If the functor Sx is orderable, then the group Aut(x) = Sx(x) admits a
well-order compatible with the group operation, and is therefore trivial. Thus, in a Gröbner
category, there are no non-trivial automorphisms. �

The definition of Gröbner is rather abstract. We now give a more concrete reformulation
when C is a directed category, which is the version we will apply in practice. Let x be an
object of C. An admissible order on |Cx| is a well-order� satisfying the following additional
condition: given f, f ′ ∈ Hom(x, y) with f ≺ f ′ and g ∈ Hom(y, z), we have gf ≺ gf ′.

Proposition 5.2.4. Let C be a directed category. Then C is Gröbner if and only if for all x
the poset |Cx| is noetherian and admits an admissible order.

Proof. It suffices to treat the case where C is small. Let x be an object of C. The sets

Ob(Cx) and S̃x are equal: both are the set of all morphisms x → y. In |Cx|, two morphisms
f and g are identified if g = hf for some isomorphism h. In |Sx|, two morphisms f and
g are identified if there are morphisms h and h′ such that g = hf and f = h′g. Since C
is directed, h and h′ are necessarily isomorphisms. So |Cx| and |Sx| are the same quotient
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of Ob(Cx) = S̃x. The orders on each are defined in the same way, and thus the two are
isomorphic posets. Thus |Cx| is noetherian if and only if |Sx| is.

Now let � be an admissible order on |Cx|. Since C is directed, the natural map Sx(y) → |Cx|
is an injection. We define a well-ordering on Sx(y) by restricting � to it. One readily verifies
that this defines an ordering of Sx.

Finally, suppose that � is an ordering on Sx. Let C0 be a set of isomorphism class
representatives for C. Since C is directed, the natural map

∐
y∈C0 Sx(y) → |Cx| is a bijection.

Choose an arbitrary well-ordering � on C0. Define a well-order � on
∐

y∈C0 Sx(y) as follows.

If f : x → y and g : x → z then f � g if y ≺ z, or y = z and f ≺ g as elements of Sx(y).
One easily verifies that this induces an admissible order on |Cx|. �

In the remainder of this section, we establish some formal properties of (quasi-)Gröbner
categories.

Proposition 5.2.5. The cartesian product of two (quasi-) Gröbner categories is (quasi-)
Gröbner.

Proof. Let C and D be Gröbner categories. Given x ∈ C and y ∈ D, we have S(x,y) = Sx×Sy.
(Here we write Sx for the pullback to C ×D of the functor Sx on C.) Given well-ordered sets
X and Y , the set X × Y is well-ordered via (x, y) � (x′, y′) if x ≺ x′, or x = x′ and y � y′.
This construction defines a functor WO × WO → WO lifting the product on Set. Since
Sx and Sy are orderable, it follows that S(x,y) is as well. The poset |S(x,y)| = |Sx| × |Sy| is
noetherian by Proposition 2.5. We conclude that C × D is Gröbner.

Now suppose that C and D are quasi-Gröbner. Let Φ: C ′ → C and Ψ: D′ → D be
essentially surjective functors satisfying property (F), with C ′ and D′ Gröbner. Then Φ ×
Ψ: C ′×D′ → C×D is essentially surjective and satisfies property (F). As C ′×D′ is Gröbner,
by the first paragraph, we find that C × D is quasi-Gröbner. �
Proposition 5.2.6. Suppose that Φ: C ′ → C is an essentially surjective functor satisfying
property (F) and C ′ is quasi-Gröbner. Then C is quasi-Gröbner.

Proof. Let Ψ: C ′′ → C ′ be an essentially surjective functor satisfying property (F), with C ′′

Gröbner. Then Φ◦Ψ is essentially surjective and satisfies property (F) by Proposition 4.2.2,
which completes the proof. �
Definition 5.2.7. We say that a functor Φ: C ′ → C satisfies property (S) if the following
condition holds: if f : x→ y and g : x→ z are morphisms in C ′ and there exists a morphism

h̃ : Φ(y) → Φ(z) such that Φ(g) = h̃Φ(f) then there exists a morphism h : y → z such that
g = hf . A subcategory C ′ ⊂ C satisfies property (S) if the inclusion functor does. �
Proposition 5.2.8. Let Φ: C ′ → C be a faithful functor satisfying property (S) and suppose
C is Gröbner. Then C ′ is Gröbner.

Proof. Let x be an object of C ′. We first claim that the natural map i : |Sx| → |SΦ(x)| induced
by Φ is strictly order-preserving. Indeed, let f : x → y and g : x → z be elements of |Sx|
such that i(f) ≤ i(g). Then there exists h̃ : Φ(y) → Φ(z) such that h̃Φ(f) = Φ(g). By
property (S), there exists h : y → z such that hf = g. Thus f ≤ g, establishing the claim.
It follows from this, and the noetherianity of |SΦ(x)|, that |Sx| is noetherian. Finally, an
ordering on SΦ(x) obviously induces one on SΦ(x)|C′ , and this restricts to one on Sx. (Note
that Sx is a subfunctor of SΦ(x)|C′ since Φ is faithful.) �
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We end with a simple combinatorial criterion for Repk(C) to have Krull dimension 0. Our
criterion is far from necessary, but applies in at least one case of interest (see Theorem 8.4.4).
Assume that k is a field. Given M ∈ Repk(C), let M∨ ∈ Repk(Cop) be defined by M∨(x) =
Homk(M(x),k).

Definition 5.2.9. We say that C satisfies property (D) if the following condition holds:
for every object x of C there exist finitely many objects {yi}i∈I and finite subsets Si of
Hom(x, yi) such that if f : x → z is any morphism then there exists i ∈ I and a morphism
g : z → yi such that g−1

∗ (Si) = {f}, where g∗ is the map Hom(x, z) → Hom(x, yi). �

Proposition 5.2.10. Suppose that C is Hom-finite and satisfies property (D), and k is a
field. Then for any object x, the representation P∨

x of Cop is finitely generated.

Proof. The space Px(y) has for a basis the elements ef . We let e∗f be the dual basis of P∨
x (y).

We note that the e∗f generate P∨
x as a representation. Let yi and Si be as in the definition

of property (D). For i ∈ I, define ϕi ∈ k[Hom(x, yi)]
∗ by ϕi =

∑
f∈Si

e∗f . We claim that
the ϕi generate P

∨
x . To see this, let f : x → y be an arbitrary morphism and let g : y → yi

satisfy g−1
∗ (Si) = {f}. To avoid confusion, let g′ : yi → y be the morphism g in Cop. Then

g′∗(ϕi) = g∗(ϕi) = e∗f , which completes the proof. �

Proposition 5.2.11. Assume that k is a field. Suppose that C is Hom-finite and satisfies
property (D), and that C and Cop are both quasi-Gröbner. Then Repk(C) has Krull dimension
0, that is, every finitely generated representation of C has finite length.

Proof. Let M be a finitely generated representation of C. Since C is quasi-Gröbner, M is
noetherian. It suffices to show that M is also artinian, so let M ⊇ M1 ⊇ M2 ⊇ · · · be a
descending chain. Choose a surjection P → M , where P is a finite direct sum of principal
projectives. Then M∨ is a subrepresentation of P∨, and is therefore noetherian since P∨ is
finitely generated (Proposition 5.2.10) and Repk(Cop) is noetherian. Let Ki be the kernel of
the surjection M∨ → M∨

i dual to the inclusion Mi ⊆ M . Then we have an ascending chain
K1 ⊆ K2 ⊆ · · · ⊆M∨. This chain stabilizes by the noetherian property, so the same is true
for the descending chain Mi, and hence M is artinian. �

6. Hilbert series and lingual categories

In this section we use the theory of formal languages (discussed in §3) together with
the Gröbner techniques in §5 to study Hilbert series of representations of quasi-Gröbner
categories. Our goal is to introduce norms, Hilbert series, lingual structures, and lingual
categories and to prove a few basic properties about lingual categories.

6.1. Normed categories and Hilbert series. Let C be an essentially small category. A
norm on C is a function ν : |C| → NI , where I is a finite set. A normed category is a
category equipped with a norm. Fix a category C with a norm ν with values in NI . As in
§3.1, we let {ti}i∈I be indeterminates. Let M be a representation of C over a field k. We
define the Hilbert series of M as

HM,ν(t) =
∑
x∈|C|

dimkM(x) · tν(x),

when this makes sense. We omit the norm ν from the notation when possible.
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Remark 6.1.1. Suppose ν : |C| → NI has finite fibers, M is finitely generated, and C is
Hom-finite. Then the Hilbert series of M makes sense, i.e., the coefficient of tn is finite for
any n ∈ NI . �
6.2. Lingual structures. We return to the set-up of §5.1: let S : C → Set be a functor,
and let P = k[S]. However, we now also assume that C is directed and normed over NI . We

define a norm on |S| as follows: given f ∈ |S|, let f̃ ∈ S(x) be a lift, and put ν(f) = ν(x).

This is well-defined because C is ordered: if f̃ ′ ∈ S(y) is a second lift then x and y are
necessarily isomorphic. Let P be a class of languages (e.g., regular languages).

Definition 6.2.1. A lingual structure on |S| is a pair (Σ, i) consisting of a finite alphabet
Σ normed over NI and an injection i : |S| → Σ? compatible with the norms, i.e., such
that ν(i(f)) = ν(f). A P-lingual structure is a lingual structure satisfying the following
additional condition: for every poset ideal J of |S|, the language i(J) is of class P . �
Theorem 6.2.2. Suppose C is directed, S is orderable, |S| is noetherian, and |S| admits a
P-lingual structure. Let M be a subrepresentation of P . Then HM(t) is of the form HL(t),
where L is a language of class P.

Proof. Choose an ordering on S and let N be the initial subrepresentation ofM . Then N(x)
is an associated graded of M(x), for any object x, and so the two have the same dimension.
Thus M and N have the same Hilbert series. Let J ⊂ |S| be the set of elements f for which
ef belongs to N . Then N and the language i(J) have the same Hilbert series. �
Remark 6.2.3. We abbreviate “ordered,” “quasi-ordered of modulus N ,” “regular,” and
“unambiguous context-free” to O, QON , R, and UCF. Thus an R-lingual structure is one
for which the language i(I) is always regular. �
Remark 6.2.4. If |S| admits a lingual structure then S(x) is finite for all x. Indeed, given
n ∈ NI , let Σ?

n denote the set of words of norm n; this is a finite set since all such words
have length |n|. Since i maps S(x) injectively into Σ?

ν(x), we see that S(x) is finite. �
Remark 6.2.5. Let I• be a subpartition of I. We say that a lingual structure on |S| is
adapted to I• if for every poset ideal J the language i(J) is adapted to I•. Clearly then,
the language L of Theorem 6.2.2 is adapted to I•. �
6.3. Lingual categories. Recall that Sx denotes the functor HomC(x,−).

Definition 6.3.1. A directed normed category C is P-lingual if |Sx| admits a P-lingual
structure for all objects x. �

The following theorem is the second main theoretical result of this paper. It connects the
purely combinatorial condition “P-lingual” with the algebraic invariant “Hilbert series.”

Theorem 6.3.2. Let C be a P-lingual Gröbner category and let M be a finitely generated
representation of C. Then HM(t) is a Z-linear combination of series of the form HL(t) where
L is a language of class P. In particular,

• If P = R, then HM(t) is a rational function of the ti.
• If P = O, then HM(t) is a rational function f(t)/g(t), where g(t) factors as

∏n
j=1(1−

λj) and each λj is a N-linear combination of the ti.
• If P = QON , then HM(t) is KN , i.e., is a rational function f(t)/g(t), where f(t)
and g(t) are polynomials with coefficients in Q(ζN) and g(t) factors as

∏n
j=1(1− λj)

and each λj is a Z[ζN ]-linear combination of the ti.
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• If P = UCF, then HM(t) is an algebraic function of the ti.

Proof. If M is a subrepresentation of a principal projective then the first statement fol-
lows from Theorem 6.2.2. As such representations span the Grothendieck group of finitely
generated representations, the first statement holds.

The remaining statements follow from the various results about Hilbert series of P-
languages: in the regular case, Theorem 3.2.2; in the ordered case, Theorem 3.3.7; in the
quasi-ordered case, Theorem 3.4.3; and in the unambiguous context-free case, the relevant
result is Theorem 3.5.1. �

Remark 6.3.3. Let I• be a subpartition of I. We say that C admits a P-lingual structure
adapted to I• if each |Sx| does. In this case, we can be more precise about the factorization
of the denominator in the ordered and quasi-ordered cases. �

Remark 6.3.4. Another rich class of generating functions is the D-finite functions (see
[St2, §6.4] for the definition). The above result suggests that there might be a property P of
languages coming from a natural class of Gröbner categories which yields D-finite generating
functions. See [MZ] for some ideas on such a class of languages. �

In the remainder of this section, we investigate the compatibility of the P-lingual condition
with products. We first must define the product of normed categories. Suppose C1 is normed
over NI1 and C2 is normed over NI2 . We give C = C1×C2 the structure of a normed category
over NI , where I = I1 q I2, by ν(x, y) = ν(x) + ν(y). Here we have identified |C| with
|C1| × |C2|. We call C, with this norm, the product of C1 and C2.

Proposition 6.3.5. Let C1 and C2 be P-lingual normed categories. Suppose that the posets
|C1,x| and |C2,y| are noetherian for all x and y and that P is stable under finite unions and
concatenations of languages on disjoint alphabets. Then C1 × C2 is also P-lingual.

Proof. Keep the notation from the previous paragraph. Let x be an object of C1, and let
i1 : |C1,x| → Σ?

1 be a P-lingual structure at x. Similarly, let y be an object of C2, and let
i2 : |C2,y| → Σ?

2 be a P-lingual structure at y. Let Σ = Σ1 q Σ2, normed over NI in the
obvious manner. Then the following diagram commutes:

|C(x,y)| |C1,x| × |C2,y|
i1×i2 //

��

Σ?
1 × Σ?

2
//

��

Σ?

��
NI1 ⊕NI2 NI1 ⊕NI2 NI

The top right map is concatenation of words. We let i : |C(x,y)| → Σ∗ be the composition
along the first line, which is clearly injective. We claim that this is a P-lingual structure on
|C(x,y)|. The commutativity of the above diagram shows that it is a lingual structure. Now
suppose S is an ideal of |C(x,y)|. Since this poset is noetherian (Proposition 2.5), it is a finite
union of principal ideals S1, . . . , Sn. Each Sj is of the form Tj×T ′

j , where Tj is an ideal of C1,x
and T ′

j is an ideal of C2,y. By assumption, the languages i1(Tj) and i2(T
′
j) satisfy property P .

Regarding i1(Tj) and i2(T
′
j) as languages over Σ, the language i(Sj) is their concatentation,

and therefore satisfies P . Finally, i(S) satisfies P , as it is the union of the i(Sj). �

Remark 6.3.6. It is clear that the P-lingual structure on constructed above is C1 × C2
adapted to the partition I1 q I2. In fact, if C1 admits a P-lingual structure adapted to a
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subpartition (J1, . . . , Jr), and C2 one adapted to (J ′
1, . . . , J

′
s), then C1×C2 admits one adapted

to (J1, . . . , Jr, J
′
1, . . . , J

′
s). �

The above result does not directly apply when P = QO, as this is not stable under unions
(but it is stable under concatenations of languages on disjoint alphabets). However, we have
the following work-around that applies in our cases of interest.

A normed category C is strongly QON-lingual if for each object x there exists a lingual
structure i : |Sx| → Σ? and a congruence language K on Σ such that for every poset ideal I
of |Sx|, the language i(I) is the intersection of an ordered language with K. (If we drop the
adjective “strongly,” then the congruence language K is allowed to depend on the ideal I.)
We have the following variant of Proposition 6.3.5:

Proposition 6.3.7. Let C1 and C2 be strongly QON -lingual normed categories. Suppose
the posets |C1,x| and |C2,y| are noetherian for all x and y. Then C1 × C2 is also strongly
QON -lingual.

Proof. We just indicate the necessary changes to the proof of Proposition 6.3.5. Let K1 and
K2 be the given congruence languages of modulus N on Σ1 and Σ2, regarded as languages
on Σ. Write Ki = (Σ?

i )ϕi,Si
, where ϕi : Σi → Λi. Let ϕ : Σ → Λ1 ⊕ Λ2 be the map defined

by ϕ(x) = (ϕ1(x), 0) for x ∈ Σ1, and ϕ(x) = (0, ϕ2(x)) for x ∈ Σ2, let S = S1 × S2, and
let K = Σ?

ϕ,S. Then K is a congruence language on Σ of modulus N and has the following
property: if L1 and L2 are any languages on Σ1 and Σ2 then (L1∩K1)(L2∩K2) = L1L2∩K.
Let I be a poset ideal of |C(x,y)| which is a union of principal ideals S1 = T1 × T ′

1, . . . , Sn =
Tn × T ′

n. Then i1(Tj) is the intersection of an ordered language with K1, while i2(T
′
j) is

the intersection of an ordered language with K2. It follows that i(Sj) is the intersection of
an ordered language with K. Thus i(I) is the intersection of an ordered language with K,
completing the proof. �

Part 2. Applications

7. Categories of injections

In this first applications section, we study the category FI of finite sets and injective
functions along with generalizations and variations. The main results are listed in §7.1, proofs
are in §7.2, applications to twisted commutative algebras are in §7.3, and complementary
results (one such is on the cohomology of configuration spaces of disconnected spaces) are
listed in §7.4.

7.1. The categories OId and FId. Let d be a positive integer. Define FId to be the
following category. The objects are finite sets. Given two finite sets S and T , a morphism
S → T is a pair (f, g) where f : S → T is an injection and g is a d-coloring of the complement
of the image of f , i.e., a function T \f(S) → {1, . . . , d}. Define OId to be the ordered version
of FId: its objects are totally ordered finite sets and its morphisms are pairs (f, g) with f
an order-preserving injection (no condition is placed on g). We norm FId and OId over N
by ν(x) = #x.

Our main result about OId is the following theorem.

Theorem 7.1.1. The category OId is O-lingual and Gröbner.
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We defer the proof of this theorem to the next section, and use it now to study FId. Let

Φ: OId → FId

be the natural forgetful functor.

Theorem 7.1.2. The category FId is quasi-Gröbner.

Proof. We claim that Φ satisfies property (F). Let x = [n] be a given object of FId. If y

is any totally ordered set, then any morphism f : x → y can be factored as x
σ→ x

f ′
→ y,

where σ is a permutation and f ′ is order-preserving. It follows that we can take y1, . . . , yn!
to all be [n], and fi : x → Φ(yi) to be the ith element of the symmetric group Sn (under
any enumeration). This establishes the claim. Since OId is Gröbner, this shows that FId is
quasi-Gröbner. �
Corollary 7.1.3. If k is left-noetherian then Repk(FId) is noetherian.

Remark 7.1.4. This result was first proved (in a slightly different language) for k a field of
characteristic 0 in [Sn, Thm. 2.3], though the essential idea goes back to Weyl; see also [SS2,
Proposition 9.2.1]. It was reproved independently for d = 1 (and k a field of characteristic
0) in [CEF]. It was then proved for d = 1 and k an arbitrary commutative ring in [CEFN]
(although, as they note, commutativity is probably not necessary for their methods). The
result is new if d > 1 and k is not a field of characteristic 0.

The main advantage our approach has over that of [CEFN] is that it can be generalized
to other situations. For example, it is remarked after [CEFN, Proposition 2.12] that the
techniques there cannot handle linear analogues of FI; we handle these in Theorem 8.3.1. �
Corollary 7.1.5. Let M be a finitely generated FId-representation over a field k. Then the
Hilbert series

HM(t) =
∞∑
n=0

dimkM([n]) · tn

is of the form f(t)/g(t), where f(t) and g(t) are polynomials and g(t) factors as
∏d

j=1(1−jt)ej
where ej ≥ 0. In particular, if d = 1 then n 7→ dimkM([n]) is eventually polynomial.

Proof. The Hilbert series of M agrees with the Hilbert series of Φ∗(M), where Φ is as above.
The statement follows from Theorems 7.1.1 and 6.3.2 except that it only guarantees that
g(t) =

∏r
j=1(1− jt)ej for some r. But, as we will see in §7.2, for each set x = [n], the lingual

structure on |Sx| (in the notation of §6.3) is built on the set Σ = {0, . . . , d} and {1, . . . , d}
is the largest repeatable subset, so we can refine this statement using Corollary 3.3.8. �
Remark 7.1.6. Equivalently, one can say that the exponential Hilbert series

H′
M(t) =

∞∑
n=0

dimkM([n]) · t
n

n!

is a polynomial in t and et. �
Remark 7.1.7. This result has a history similar to Corollary 7.1.3. It was first proved for
char(k) = 0 in [Sn, Thm. 3.1]. It was then independently reproved for d = 1 and char(k) = 0
in [CEF]. In this case, refinements and deeper properties were discovered for these Hilbert
series in [SS1] (see for example [SS1, §6.8]). It was then proved for d = 1 and any k in
[CEFN]. The result is new if d > 1 and k has positive characteristic. �
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7.2. Proof of Theorem 7.1.1. It is clear that C = OId is directed. Let n be a non-negative
integer, and regard x = [n] as an object of C. Let Σ = {0, . . . , d}, and let L be the language
on Σ in which 0 appears exactly n times. Partially order L using the subsequence order, i.e.,
if s : [i] → Σ and t : [j] → Σ are words then s ≤ t if there exists I ⊆ [j] such that s = t|I .

Lemma 7.2.1. The poset L is noetherian and every ideal is an ordered language.

Proof. Noetherianity is an immediate consequence of Higman’s lemma (Theorem 2.7). Let
w = w1 · · ·wn be a word in L. Then the ideal generated by w is the language

Π?w1Π
?w2 · · ·Π?wnΠ

?,

where Π = Σ \ {0}, and is therefore ordered. As every ideal is a finite union of principal
ideals, and a finite union of ordered languages is ordered, the result follows. �

Pick (f, g) ∈ HomC([n], [m]). Define h : [m] → Σ to be the function which is 0 on the
image of f , and equal to g on the complement of the image of f . One can recover (f, g) from
h since f is required to be order-preserving and injective. This construction therefore defines
an isomorphism of posets i : |Cx| → L. It follows that |Cx| is noetherian. Furthermore, the
lexicographic order on L (using the standard order on Σ) is easily verified to restrict to an
admissible order on |Cx|. Thus C is Gröbner. For f ∈ |Cx| we have |f | = `(i(f)), and so
(Σ, i) is a lingual structure on |Cx| if we norm words in Σ? by their length. Finally, an ideal
of |Cx| gives an ordered language over Σ, and so this is an O-lingual structure.

Remark 7.2.2. The results about OI1 can be made more transparent with the following
observation: the set of order-increasing injections f : [n] → [m] is naturally in bijection with

monomials in x0, . . . , xn of degree m−n by assigning the monomial mf =
∏n

i=0 x
f(i+1)−f(i)−1
i

using the convention f(0) = 0 and f(n + 1) = m + 1. Given g : [n] → [m′], there is a
morphism h : [m] → [m′] with g = hf if and only if mf divides mg. Thus the monomial
submodules of Pn are in bijection with monomial ideals in the polynomial ring k[x0, . . . , xn].
The statements about noetherianity and Hilbert series follow immediately. �
7.3. Twisted commutative algebras. We now discuss the relationship between FId and
certain variants of commutative algebras called twisted commutative algebras. We begin by
recalling the definition:

Definition 7.3.1. A twisted commutative algebra (tca) over a commutative ring k is
an associative and unital graded k-algebra A =

⊕∞
n=0An equipped with an action of Sn on

An such that:

(a) the multiplication map An⊗Am → An+m is (Sn×Sm)-equivariant (where we use the
standard embedding Sn × Sm ⊂ Sn+m for the action on An+m); and

(b) given x ∈ An and y ∈ Am we have xy = (yx)τ , where τ = τm,n ∈ Sn+m is defined by

τ(i) =

{
i+ n if 1 ≤ i ≤ m,

i−m if m+ 1 ≤ i ≤ n+m.

This is the “twisted commutativity” condition. �
Definition 7.3.2. A module over a tca A is a graded A-module M =

⊕∞
n=0Mn (in the

ordinary sense) equipped with an action of Sn on Mn such that the multiplication map
An ⊗Mm →Mn+m is (Sn × Sm)-equivariant. �
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Example 7.3.3. Let x1, . . . , xd be indeterminates, each regarded as having degree 1. We
define a tca A = k〈x1, . . . , xd〉, the polynomial tca in the xi, as follows. As a graded
k-algebra, A is just the non-commutative polynomial ring in the xi. The Sn-action on An is
the obvious one: on monomials it is given by σ(xi1 · · · xin) = xiσ(1)

· · ·xiσ(n)
. �

We now give a more abstract way to define tca’s, which clarifies some constructions. Define
a representation of S∗ over k to be a sequence M = (Mn)n≥0, where Mn is a representation
of Sn over k. Given S∗-representations M and N , we define an S∗-representation M ⊗N by

(M ⊗N)n =
⊕
i+j=n

IndSn
Si×Sj

(Mi ⊗k Nj).

There is a symmetry of the tensor product obtained by switching the order of M and N
and conjugating Si × Sj to Sj × Si in Sn via τi,j. This gives the category Repk(S∗) of S∗-
representations the structure of a symmetric abelian tensor category. The general notions of
commutative algebra and module in such a category specialize to tca’s and their modules.

Example 7.3.4. For an integer n ≥ 0 let k〈n〉 be the S∗-representation which is the regular
representation in degree n and 0 in all other degrees. The tca k〈x1, . . . , xd〉 can then be
identified with the symmetric algebra on the object k〈1〉⊕d. The symmetric algebra on k〈n〉
is poorly understood for n > 1 (although some results are known for n = 2). �

If k is a field of characteristic 0 then Repk(S∗) is equivalent to the category of polyno-
mial representations of GL(∞) over k, as symmetric abelian tensor categories. Under this
equivalence, tca’s correspond to commutative associative unital k-algebras equipped with
a polynomial action of GL(∞). For example, the polynomial tca k〈x〉 corresponds to the
polynomial ring k[x1, x2, . . .] in infinitely many variables, equipped with its usual action
of GL(∞). This point of view has been exploited by us [Sn, SS2, SS1, SS3] to establish
properties of tca’s in characteristic 0.

There is an obvious notion of generation for a set of elements in a tca or a module over a
tca. We say that a tca is noetherian if every submodule of a finitely generated module is
again finitely generated.

Proposition 7.3.5. Let A = k〈x1, . . . , xd〉. Then ModA is equivalent to Repk(FId).

Proof. Pick M ∈ Repk(FId) and let Mm = M([m]). Then Mm has an action of Sm. To
define An ⊗Mm → Mn+m, it is enough to define how xi1 · · ·xin acts by multiplication for
each (i1, . . . , in). Let (f, g) : [m] → [n+m] be the morphism in FId where f : [m] → [n+m]
is the injection i 7→ n+ i and g : [n] → [d] is the function g(j) = ij and let the multiplication
map be the induced map M(f,g) : Mm → Mn+m. By definition this is (Sn × Sm)-equivariant
and associativity follows from associativity of composition of morphisms in FId.

It is easy to reverse this process: given an A-module M , we get a functor defined on the
full subcategory of FId on objects of the form [n] (note that every morphism [m] → [n+m]
is a composition of the injections we defined above with an automorphism of [n +m]). To
extend this to all of FId, pick a total ordering on each finite set to identify it with [n]. The
two functors we have defined are quasi-inverse to each other. �
Remark 7.3.6. In particular, the category of FI-modules studied in [CEF] and [CEFN] is
equivalent to the category of modules over the univariate tca k〈x〉. �
Corollary 7.3.7. If k is noetherian then any tca over k finitely generated in degree 1 is
noetherian.
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Proof. A tca finitely generated in degree 1 is a quotient of k〈x1, . . . , xd〉 for some d, and
noetherianity passes to quotients. �
Remark 7.3.8. The same techniques also prove that a twisted graded-commutative algebra
finitely generated in degree 1 is noetherian. �

Suppose k is a vector space. We define the Hilbert series of a module M over a tca by

H′
M(t) =

∞∑
n=0

dimkM([n])
tn

n!
.

As the equivalence in Proposition 7.3.5 is clearly compatible with Hilbert series, we obtain:

Corollary 7.3.9. LetM be a finitely generated k〈x1, . . . , xd〉-module. Then H′
M(t) ∈ Q[t, et].

7.4. Additional results.

Proposition 7.4.1. The category FI1 satisfies property (F) (see Definition 4.2.1)

Proof. Let x and x′ be sets, and consider maps f : x→ y and f ′ : x′ → y. Let y be the union
of the images of f and f ′. Let g : y → y be the inclusion, and write f for the map x → y

induced by f , and similarly for f
′
. Then f = g ◦ f and f ′ = g ◦ f ′

. Since #y ≤ #x +#x′,

it follows that there are only finitely many choices for (y, f , f
′
), up to isomorphism. This

completes the proof. �
Corollary 7.4.2. For any commutative ring k, the pointwise tensor product of finitely gen-
erated representations of FI1 is finitely generated.

Proof. This follows from Proposition 4.3.1. �
Remark 7.4.3. This reproves [CEF, Proposition 2.61]. �
Remark 7.4.4. The above corollary is false for FId for d > 1. It follows that these categories
do not satisfy property (F). To see this, consider M = P1 � P1. Then dimkM([n]) = (d2)n,
so the Hilbert series is HM(t) = (1 − d2n)−1. By Corollary 7.1.5, the Hilbert series of a
finitely generated FId-module cannot have this form if d > 1. �
Example 7.4.5 (A variant of FId). Let FI

≤1
d be the category whose objects are finite sets,

and where a morphism S → T is a pair (f,m) where f : S → T is an injection and m is a
monomial in commuting variables x1, . . . , xd of total degree #(T \ S). Consider the functor
Φ: FId → FI≤1

d taking a morphism (f, g) to (f,m), where m = xe11 · · ·xedd with ei = #g−1(i).

One easily sees that Φ is essentially surjective and satisfies property (F), and so FI≤1
d is

quasi-Gröbner. Equipped with the obvious norm over N, the ordered category OI≤1
d is O-

lingual. In fact, one can show that if M is a finitely generated FI≤1
d module then H′

M(t) is
of the form p(t)et + q(t) with p, q ∈ Q[t]. Thus n 7→ dimkM([n]) is eventually polynomial.

In the language of tca’s, Repk(FI
≤1
d ) is the category of modules over the tca whose under-

lying graded ring is the commutative polynomial ring k[x1, . . . , xd] and where the Sn actions
are trivial. If k is a field of characteristic 0, then the associated GL(∞)-algebra is the coor-
dinate ring of the rank ≤ 1 matrices (Segre variety) in kd ⊗ k∞ where GL(∞) only acts on
the k∞ factor. �

The next results concern the category FA of finite sets, with all functions as morphisms.

Theorem 7.4.6. The category FA is quasi-Gröbner.
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Proof. Let Φ: FI1 → FA be the inclusion functor. We claim that Φ satisfies property (F).
Let x be a given set. Let fi : x → yi be representatives for the isomorphism classes of
surjective maps from x; these are finite in number. Then any morphism f : x→ y factors as
f = g ◦ fi for some i and some injective map g : yi → y. This establishes the claim. Since
FI1 is quasi-Gröbner, the result now follows from Proposition 5.2.6. �
Corollary 7.4.7. If k is left-noetherian then Repk(FA) is noetherian.

We greatly improve this result in Theorem 8.4.4, using our results on FSop.
Suppose k is a field. By what we have shown, the Hilbert series of a finitely generated

FA-module is of the form f(t)/(1− t)d for some polynomial f and d ≥ 0. Equivalently, the
function n 7→ dimkM([n]) is eventually polynomial. In fact, one can do better:

Theorem 7.4.8. If k is a field and M is a finitely generated FA-module, then the function
n 7→ dimkM([n]) agrees with a polynomial for all n > 0. Equivalently, the Hilbert series of
M is of the form f(t)/(1− t)d where deg f ≤ d.

Proof. Let FA◦ be the category of nonempty finite sets, so that every FA-module gives
an FA◦-module by restriction. Introduce an operator Σ on FA◦-modules by (ΣM)(S) =
M(S q {∗}). It is easy to see that ΣM is a finitely generated FA◦-module if the same is
true for M . For every nonempty set S, the inclusion S → S q {∗} can be split, and so the
map M(S) → (ΣM)(S) is an inclusion for all S. Define ∆M = ΣM/M . Since Σ is exact, it
follows that ∆M → ∆M ′ is a surjection if M →M ′ is a surjection.

Define hM(n) = dimkM([n]). We recall that a function f : Z>0 → Z is a polynomial of
degree ≤ d if and only if the function g defined by g(n) = f(n+1)− f(n) is a polynomial of
degree ≤ d−1. Since h∆M(n) = hM(n+1)−hM(n), we get that hM is a polynomial function
of degree ≤ d if and only if ∆d+1M = 0. Pick a surjection P →M → 0 with P a direct sum
of principal projectives PS. Since hPS

(n) = n|S| is a polynomial function, P is annihilated by
some power of ∆ (in fact, ∆PS

∼=
⊕

T$S PT where the sum is over all proper subsets of S).

Since ∆ preserves surjections, the same is true for M , and so hM(n) is a polynomial. �
Remark 7.4.9. The category of representations Repk(FA) is studied in [WG] in the case
that k is a field of characteristic 0, and Theorems 7.4.8 and 8.4.4 are proved.

Set-valued functors on FA are studied in [Do], and the functions n 7→ |F ([n])| that arise
are characterized. �
Remark 7.4.10. The analogue of [K1, Proposition 4.10] for FA holds with the same proof,
i.e., if deg hM(n) = r, then the lattice of FA-submodules of M is isomorphic to the lattice
of k[End([r])]-submodules of M([r]). So one can prove Theorem 8.4.4 from Theorem 7.4.8.
We will give a different proof using Gröbner methods. �

The paper [CEF] gives many examples of FI1-modules appearing “in nature.” We now
give some examples of FId-modules. First a general construction. Let M1, . . . ,Md be FI1-
modules over a commutative ring k. We define N = M1 ⊗ · · · ⊗Md to be the following
FId-module: on sets S, it is defined by

N(S) =
⊕

S=S1q···qSd

M1(S1)⊗ · · · ⊗Md(Sd).

Given a morphism (f : S → T, g : T \ f(S) → [d]) in FId, let Ti = g−1(i) and define N(S) →
N(T ) to be the sum of the maps

M1(S1)⊗ · · · ⊗Md(Sd) →M1(S1 q T1)⊗ · · · ⊗Md(Sd q Td).
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It is clear that ifM1, . . . ,Md are finitely generated then the same is true for N . Furthermore,
there is an obvious generalization where we allow each Mi to be a FIni

-module and N is a
FIn1+···+nd

-module.

Example 7.4.11. For simplicity, we assume that k is a field. For a topological space Y and
finite set S, let ConfS(Y ) be the space of injective functions S → Y . For any r ≥ 0, we get
an FI1-module S 7→ Hr(ConfS(Y );k), which we denote by Hr(Conf(Y )). Let X1, . . . , Xd be
connected topological spaces, and let X be their disjoint union. The Künneth theorem gives

Hr(ConfS(X);k) =
⊕

p1+···+pd=r

⊕
S=S1q···qSd

Hp1(ConfS1(X1);k)⊗ · · · ⊗ Hpd(ConfSd
(Xd);k).

In particular, we can write

Hr(Conf(X)) =
⊕

p1+···+pd=r

Hp1(Conf(X1))⊗ · · · ⊗ Hpd(Conf(Xd)),

so that we can endow Hr(Conf(X)) with the structure of an FId-module. Under reasonable
hypotheses on the Xi, each Hr(Conf(Xi)) is a finitely generated FI1-module (see [CEFN,
Theorem E]), and so Hr(Conf(X)) will be finitely generated as an FId-module. �

8. Categories of surjections

In this section, we study FSop, the (opposite of the) category of finite sets with surjective
functions and variations. The ideas used here are similar to those used in the previous section,
though the category of surjective functions behaves quite differently from the category of
injective functions. The main results are stated in §8.1 and the proofs are in §8.2. The
results on FSop are powerful enough to prove the Lannes–Schwartz artinian conjecture from
the generic representation theory of finite fields; this is done in §8.3. Finally, we give some
complementary results in §8.4: one such result is that finitely generated representations over
a field of the category FA of finite sets with all functions have finite length.

8.1. The categories OS and FS. Define FS to be the category whose objects are non-
empty finite sets and whose morphisms are surjections of finite sets. We define an ordered
version OS of this category as follows. The objects are totally ordered finite sets. A mor-
phism S → T in OS is a surjective map f : S → T such that for all i < j in T we have
min f−1(i) < min f−1(j). We call such maps ordered surjections. We norm FS and OS
over N by ν(x) = #x.

Our main result about OS is the following theorem.

Theorem 8.1.1. The category OSop is O-lingual and Gröbner.

Again, we defer the proof to the next section and use the result to study FS. Let

Φ: OSop → FSop

be the natural forgetful functor.

Theorem 8.1.2. The category FSop is quasi-Gröbner.

Proof. As in the proof of Theorem 7.1.2, one can show that Φ satisfies property (F). Now
use Proposition 5.2.6. �
Corollary 8.1.3. If k is left-noetherian then Repk(FS

op) is noetherian.
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Corollary 8.1.4. Let M be a finitely generated FSop-representation over a field k. Then
the Hilbert series

HM(t) =
∞∑
n=0

dimkM([n]) · tn

has the form f(t)/g(t) where f(t) and g(t) are polynomials, and g(t) factors as
∏r

j=1(1−jt)ej
for some r and ej ≥ 0. If M is generated in degree ≤ d, then we can take r = d.

Proof. The Hilbert series of M agrees with the Hilbert series of Φ∗(M), where Φ is as above.
The result then follows from Theorems 8.1.1 and 6.3.2. To prove the last statement, we note
that it follows from §8.2 that for a finite set x = [n], the lingual structure on |Sx| (in the
notation of §6.3) is built on the set {1, . . . , n}. Now use Corollary 3.3.8. �

Remark 8.1.5. Using partial fraction decomposition, a function f(t)/g(t) where g(t) =∏r
j=1(1−jt)ej can be written as a sum

∑r
j=1 fj(t)/(1−jt)ej for some polynomials fj(t) ∈ Q[t].

So Corollary 8.1.4 says that ifM is a finitely generated FSop-module over a field k, then there
exist polynomials p1, . . . , pr so that the function n 7→ dimkM([n]) agrees with

∑r
j=1 pj(n)j

n

for n� 0. �

Example 8.1.6. Let a ≥ 0 be an integer, and letM be the FSop-module defined byM(y) =
k[HomFA(y, [a])]. (Recall that the morphisms in FA are all functions.) One readily verifies
that M is finitely generated. Clearly, M([n]) has dimension an, and so HM(t) = (1− at)−1.
Thus the quantity r appearing in the corollary can be arbitrarily large, in contrast to what
happens for FId. �

Remark 8.1.7. Let Γ be the category of finite sets with a basepoint and basepoint-preserving
functions. It is shown in [Pi] that Repk(FS

op) is equivalent to the category of functors
Γop → Modk that send the one-point set to the zero module. �

We record the following more general form of the corollary for later use.

Corollary 8.1.8. Let M be a finitely generated (FSop)r-representation over a field k. Then
the Hilbert series

HM(t) =
∑
n∈Nr

dimkM([n]) · tn

is a rational function f(t)/g(t), where g(t) factors as
∏r

i=1

∏∞
j=1(1 − jti)

ei,j , where all but
finitely many ei,j are 0. Equivalently, the exponential Hilbert series

H′
M(t) =

∑
n∈Nr

dimkM([n]) · t
n

n!
,

is a polynomial in the ti and the eti. (Here n! = n1! · · ·nr!.)

Proof. The category (OSop)r is normed over [r], and, as explained in Remark 6.3.6, it has
an O-lingual structure adapted to the partition [r] = {1} q · · · q {r}. It follows that the
Hilbert series of a finitely generated (OSop)r-module is of the form f(t)/g(t) where f and

g are polynomials, and g(t) factors as
∏N

k=1(1 − λk), where each λk is a positive integral
multiple of some ti. This proves the statement about HM . The exponential version follows
from simple algebra. �
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8.2. Proof of Theorem 8.1.1. Let Σ be a finite set. Let s : [n] → Σ and t : [m] → Σ be
two elements of Σ?. We define s ≤ t if there exists an order-preserving injection ϕ : [n] → [m]
such that for all i ∈ [n] we have si = tϕ(i), and for all j ∈ [m] there exists j′ ≤ j in the image
of ϕ with tj = tj′ . This defines a partial order on Σ?.

Proposition 8.2.1. The poset Σ? is noetherian and every ideal is an ordered language.

Proof. Suppose that Σ? is not noetherian. We use the notion of bad sequences from the
proof of Theorem 2.7.

Given x ∈ Σ? call a value of x exceptional if it appears exactly once. If x has a non-
exceptional value, then let m(x) denote the index, counting from the end, of the first non-
exceptional value. Note that m(x) ≤ #Σ. Also, `(x) > #Σ implies that x has some
non-exceptional value, so m(xi) is defined for i � 0. (Note: `(xi) → ∞, as there are
only finitely many sequences of a given length.) So we can find an infinite subsequence of
x1, x2, . . . on which m is defined and is constant, say equal to m0. We can find a further
infinite subsequence where the value in the position m0 is constant. Call this subsequence
xi1 , xi2 , . . . and let yij be the sequence xij with the m0th position (counted from the end)
deleted. By construction, the sequence x1, . . . , xi1−1, yi1 , yi2 , . . . is not bad and so some pair
is comparable. Note that yij ≤ xij , so xi and yij are incomparable, and so we have j < k
such that yij ≤ yik . But this implies xij ≤ xik , contradicting that x1, x2, . . . forms a bad
sequence. Thus Σ? is noetherian.

We now show that a poset ideal of Σ? is an ordered language. It suffices to treat the case
of principal ideals. For this, simply note that the principal ideal generated by w = w1 · · ·wn

is the language

w1Π
?
1w2Π

?
2 · · ·wnΠ

?
n,

where Πi = {w1, . . . , wi}, which is clearly ordered. �
Proof of Theorem 8.1.1. It is clear that C = OSop is directed. Let n be a non-negative
integer, and regard x = [n] as an object of C. A morphism f : [m] → [n] can be regarded
as a word of length m in the alphabet Σ = [n]. In this way, we have an injective map
i : |Cx| → Σ?. This map is strictly order-preserving with respect to the order on Σ? defined
above, and so Proposition 8.2.1 implies that |Cx| is noetherian. The lexicographic order on
words induces an admissible order on |Cx|. For f ∈ |Cx| we have m = ν(f) = `(i(f)), and so
we have a lingual structure on |Cx| if we norm words in Σ? by their length. Finally, an ideal
of |Cx| gives an ordered language over Σ by Proposition 8.2.1, and so this is an O-lingual
structure. �

8.3. Linear categories. Let R be a finite commutative ring. A linear map between free
R-modules is splittable if the image is a direct summand. Let VAR (resp. VIR) be the
category whose objects are finite rank free R-modules and whose morphisms are splittable
maps (resp. splittable injections).

Theorem 8.3.1. The category VIR is quasi-Gröbner.

Proof. Define a functor Φ: FSop → VIR by S 7→ HomR(R[S], R) = R[S]∗. It is clear that Φ
is essentially surjective. We claim that Φ satisfies property (F). Fix U ∈ VIR. Pick a finite
set S and a splittable injection f : U → R[S]∗. Dualize this to get a surjection R[S] → U∗.
Letting T ⊆ U∗ be the image of S under this map, the map factorizes as R[S] → R[T ] → U∗

where the first map comes from a surjective function S → T . So we can take y1, y2, . . . to
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be the set of subsets of U∗ which span U∗ as an R-module (there are finitely many of them
since R is finite) and fi : U → R[T ]∗ to be the dual of the natural map R[T ] → U∗. This
establishes the claim. Since FSop is quasi-Gröbner (Theorem 8.1.2), the theorem follows
from Proposition 5.2.6. �

Remark 8.3.2. The above idea of using the functor Φ in the above proof was communicated
to us by Aurélien Djament after a first version of these results was circulated. The original
version of the above proof involved working with a version of VIR consisting of spaces with
ordered bases and “upper-triangular” linear maps. This idea is no longer needed to prove
the desired properties for VIR, but is still needed in [PS] to prove noetherianity of a related
category VICR (splittable maps plus a choice of splitting). �

Corollary 8.3.3. If k is left-noetherian then Repk(VIR) is noetherian.

Corollary 8.3.4. Let M be a finitely generated VIR-representation over a field k. Then the
Hilbert series

HM(t) =
∞∑
n=0

dimMk([n]) · tn

is a rational function of the form f(t)/g(t) where g(t) factors as
∏r

j=1(1− jt)er , for some r.

Theorem 8.3.5. The category VAR is quasi-Gröbner.

Proof. Let Φ: VIR → VAR be the inclusion functor. As in the proof of Theorem 7.4.6, one
can show that Φ satisfies property (F). �

Corollary 8.3.6. If k is left-noetherian then Repk(VAR) is noetherian.

Remark 8.3.7. When R = k is a finite field, Corollary 8.3.6 proves the Lannes–Schwartz
artinian conjecture [K2, Conjecture 3.12]. This is also a consequence of the results in [PS],
and so a similar, but distinct, proof of the artinian conjecture appears there as well. �

Remark 8.3.8. When R is a finite field and char(R) is invertible in k, the category
Repk(VAR) is equivalent to the category of functors

∐
n≥0 GLn(R) → Modk [K5]. �

Remark 8.3.9. While preparing this article, we learned that Corollary 8.3.3 is proven in
[GL] in the special case that R is a field and k is a field of characteristic 0. �

Remark 8.3.10. Consider the category RepFq
(VAFq). Since VAFq is like a linear version of

FA, it is tempting to find a linear analogue of Theorem 8.4.4 below, but this is not possible.
An explicit description of the submodule lattice of P∨

Fq
is given in [K4, Theorem 6.4]. In

particular, one can read off from this description that the Krull dimension of PFq is 1. It is
conjectured that the Krull dimension of PW is dim(W ) in general [K4, Conjecture 6.8]. �

8.4. Additional results. Recall that FA is the category of finite sets.

Theorem 8.4.1. The category FAop is quasi-Gröbner.

Proof. The proof is similar to that of Theorem 7.4.6; the role of FI1 is played by FSop. �

Corollary 8.4.2. If k is left-noetherian then Repk(FA
op) is noetherian.

Proposition 8.4.3. The category FA satisfies property (D) (see Definition 5.2.9).
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Proof. Let x be a given finite set. Let y = 2x be the power set of x, and let S ⊂ Hom(x, y) be
the set of maps f for which a ∈ f(a) for all a ∈ x. Let f : x → z be given. Define g : z → y
by g(a) = f−1(a). If f ′ : x → z is an arbitrary map then g(f ′(a)) = f−1(f ′(a)) contains a if
and only if f(a) = f ′(a). Thus g∗(f

′) belongs to S if and only if f = f ′. We conclude that
g−1
∗ (S) = {f}, which establishes the proposition. �
We can now give our improvement of Corollary 7.4.7:

Theorem 8.4.4. If k is a field, then every finitely generated FA-module is artinian, and so
has a finite composition series. In other words, Repk(FA) has Krull dimension 0.

Proof. This follows from the criterion of Proposition 5.2.11, together with the fact that FA
is quasi-Gröbner (Theorem 7.4.6), FAop is quasi-Gröbner (Theorem 8.4.1), and FA satisfies
property (D) (Proposition 8.4.3). �
Remark 8.4.5. It is not true that Repk(FA

op) is artinian. The principal projective PS in
FA grows like a polynomial of degree |S|, i.e., |HomFA(S, T )| = |T ||S|, but the principal
projectives in FAop grow like exponential functions, so there is no chance for the duals of
projective objects in FAop to be finitely generated FA-modules (and so the projective objects
of FAop have infinite descending chains of submodules). In particular, FAop does not satisfy
property (D). �
Remark 8.4.6. Given a functor from FAop to finite sets, we can construct a functor to vector
spaces by applying the free module construction. A characterization, which is attributed to
George Bergman, of the Hilbert functions that can arise in this way is given in [Do, Theorem
1.3] and [Pa, Corollary 4.4]. Note that there is no guarantee that the resulting FAop-modules
are finitely generated. �
Proposition 8.4.7. The category FSop satisfies property (F).

Proof. Let x1 and x2 be given finite sets. Given surjections f1 : y → x1 and f2 : y → x2, let
y′ be the image of y in x1 × x2, and let g : y → y′ be the quotient map. Then fi = pi ◦ g,
where pi : x1 × x2 → xi is the projection map. Since there are only finitely many choices for
(y′, p1, p2) up to isomorphism, the result follows. �
Corollary 8.4.8. For any commutative ring k, the pointwise tensor product of finitely gen-
erated representations of FSop is finitely generated.

We record the following results for later use.

Proposition 8.4.9. The functor Φ: FSop × FSop → FSop given by disjoint union satisfies
property (F).

Proof. Pick a finite set S. Let f : T1 q T2 → S be a surjection. Then this can be factored as
T1 q T2 → f(T1) q f(T2) → S where the first map is the image of a morphism (T1, T2) →
(f(T1), f(T2)) under Φ

op. So for the y1, y2, . . . in the definition of property (F), we take the
pairs (T, T ′) of subsets of S whose union is all of S. �
Proposition 8.4.10. Let S be a finite set and let M be the FSop-module defined by M(T ) =
k[HomFA(T, S)]. Then M is finitely generated, and hence noetherian.

Proof. Let S1, . . . , Sn be the subsets of S. Then M(T ) =
⊕n

i=1 k[HomFS(T, Si)]. The ith
summand is exactly the principal projective at Si. �
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9. ∆-modules

We now apply our methods to the theory of ∆-modules, originally introduced by the
second author in [Sn]. In §9.1, we recall the definitions, the results of [Sn], and state our
new results. In §9.2, we explain how our results yield new information on syzygies of Segre
embeddings. The remainder of §9 is devoted to the proofs.

9.1. Background and statement of results. A ∆-module is a sequence (Fn)n≥0, where
Fn is an Sn-equivariant polynomial functor Vecn → Vec, equipped with transition maps

(9.1.1) Fn(V1, . . . , Vn−1, Vn ⊗ Vn+1) → Fn+1(V1, . . . , Vn+1)

satisfying certain compatibilities. (See §9.3 below for background on polynomial functors.)
To state these compatibilities succinctly, it is convenient to introduce an auxiliary category
Vec∆. Objects of this category are finite collections of vector spaces {Vi}i∈I . A morphism
{Vi}i∈I → {Wj}j∈J consists of a surjection f : J → I together with, for each i ∈ S, a linear
map ηi : Vi →

⊗
f(j)=iWj. A ∆-module is then a polynomial functor F : Vec∆ → Vec, where

polynomial means that the functor Fn : Vec
n → Vec given by (V1, . . . , Vn) 7→ F ({Vi}i∈[n]) is

polynomial for each n. We write Mod∆ for the category of ∆-modules.
Let F be a ∆-module. By an element of F , we mean an element of F ({Vi}i∈I) for some

object {Vi} of Vec∆. Given a set S of elements of F , there is a smallest ∆-submodule of F
containing S. We call it the submodule of F generated by S. We say that F is finitely
generated if it is generated by a finite set of elements. We say that F is noetherian if
every ∆-submodule of F is finitely generated.

Let Λ be the ring of symmetric functions (see [St2, Chapter 7] for background). Given
a finite length polynomial representation V of GL(∞)n over k, we define its character

c̃h(V ) ∈ Λ⊗n by

c̃h(V ) =
∑

λ1,...,λn

dimk(Vλ1,...,λn) ·mλ1 ⊗ · · · ⊗mλn ,

where the sum is over all tuples of partitions, Vλ1,...,λn denotes the (λ1, . . . , λn) weight space
of V , and mλ denotes the monomial symmetric function indexed by λ. We let ch(V ) be the

image of c̃h(V ) in Symn(Λ), a polynomial of degree n in the mλ. If V is an Sn-equivariant

representation then c̃h(V ) belongs to (Λ⊗n)Sn , and so passing to ch(V ) does not lose in-
formation. We extend the above definition to polynomial functors by evaluating on k∞.
Precisely, if F : Vecn → Vec is a finite length polynomial functor, then we define ch(F ) to
be ch(F (k∞, . . . ,k∞)).

Suppose now that F = (Fn)n≥0 is a ∆-module, and each Fn has finite length. The Hilbert
series of F is

H′
F (t) =

∞∑
n=0

ch(Fn)

n!
.

This is an element of Ŝym(ΛQ) ∼= QJmK. We also define a non-exponential version:

HF (t) =
∞∑
n=0

ch(Fn).

If F is finitely generated, then each Fn is finite length; moreover, only finitely many of the
mλ appear in HF (t).
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In [Sn], a ∆-module is called “small” if it appears as a submodule of a ∆-module (Fn)
generated by F1, and the following abstract result is proved:

Theorem 9.1.2 (Snowden). Suppose k has characteristic 0 and F is a finitely generated
small ∆-module. Then F is noetherian and HF (t) is a rational function of the mλ.

Our main result, which we prove below, is the following:

Theorem 9.1.3. Let F be a finitely generated ∆-module. Then F is noetherian and H′
F (t)

is a polynomial in the mλ and the emλ.

This result improves Theorem 9.1.2 in three ways:

(1) there is no restriction on the characteristic of k;
(2) there is no restriction to small ∆-modules; and
(3) the Hilbert series statement is significantly stronger.

To elaborate on point (3), our result can be rephrased as: HF (t) is of the form f(t)/g(t),
where f and g are polynomials in the mλ and g =

∏n
i=1(1 − λi), where each λi is a non-

negative integer multiple of some mλ. Thus it gives very precise information on the form of
the denominator of HF (t). This stronger result on Hilbert series answers [Sn, Question 5]
affirmatively, and even goes beyond what is asked there. We remark that this question is
phrased in terms of Schur functions rather than monomial symmetric functions, but the two
of them are related by a change of basis with integer coefficients [St2, Corollary 7.10.6].

9.2. Applications. The motivating example of a ∆-module comes from the study of syzy-
gies of the Segre embedding. Define the Segre product of two graded k-algebras A and B
to be the graded k-algebra A�B given by

(A�B)n = An ⊗k Bn.

Given finite dimensional k-vector spaces V1, . . . , Vn, put

R(V1, . . . , Vn) = Sym(V1)� · · ·� Sym(Vn), S(V1, . . . , Vn) = Sym(V1 ⊗ · · · ⊗ Vn).

Then R is an S-algebra, and the corresponding map on Proj’s corresponds to the Segre
embedding

i(V1, . . . , Vn) : P(V1)× · · · ×P(Vn) → P(V1 ⊗ · · · ⊗ Vn).

Fix an integer p ≥ 0, and define

Fn(V1, . . . , Vn) = TorS(V1,...,Vn)
p (R(V1, . . . , Vn),k).(9.2.1)

This is the space of p-syzygies of the Segre. The factorization

i(V1, . . . , Vn+1) = i(V1, . . . , Vn−1, Vn ⊗ Vn+1) ◦ (id× i(Vn, Vn+1)),

combined with general properties of Tor, yield transition maps as in (9.1.1). In this way, the
sequence F = (Fn)n≥0 naturally has the structure of a ∆-module.

Theorem 9.2.2. For every p ≥ 0 and field k, the ∆-module F defined by (9.2.1) is finitely
generated and H′

F (t) is a polynomial in the mλ and the emλ.

Proof. The Tor modules are naturally Z≥0-graded and are concentrated between degrees p
and 2p: to see this, we first note that the Segre variety has a quadratic Gröbner basis and
the dimensions of these Tor modules is bounded from above by those of the initial ideal.
The Taylor resolution of a monomial ideal gives the desired bounds [Ei, Exercise 17.11].
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Using the Koszul resolution of k as an S-module, each graded piece of F can be realized
as the homology of a complex of finitely generated ∆-modules. So the result follows from
Theorem 9.1.3. �

The finite generation statement means that there are finitely many p-syzygies of Segres
that generate all p-syzygies of all Segres under the action of general linear groups, symmetric
groups, and the maps (9.1.1), i.e., pullbacks along Segre embeddings. The statement about
Hilbert series means that, with a single polynomial, one can store all of the characters of the
GL actions on spaces of p-syzygies. We refer to the introduction of [Sn] for a more detailed
account.

Remark 9.2.3. The syzygies of many varieties related to the Segre, such as secant and
tangential varieties of the Segre, also admit the structure of a ∆-module. See [Sn, §4]. In
fact, the argument in Theorem 9.2.2 almost goes through: one can show that each graded
piece of each Tor module is finitely generated and has a rational Hilbert series, but there are
few general results about these Tor modules being concentrated in finitely many degrees.

The results that we know of are in characteristic 0: [Ra] proves that the ideal of the secant
variety of the Segre is generated by cubic equations, and [OR] proves that the tangential
variety of the Segre is generated by equations of degree ≤ 4. �

9.3. Polynomial functors. We now recall some background on polynomial functors. This
material is standard (and first appeared in [FS]), but we could not find a convenient reference
for multivariate functors, so we give a compact self-contained treatment here. Fix a field k
and let Vec be the category of finite dimensional vector spaces over k.

A (strict) polynomial functor F : Vec → Vec of degree d is a functor such that for all
V and W , the map

Homk(V,W ) → Homk(F (V ), F (W ))

is given by homogeneous polynomial functions of degree d.

Lemma 9.3.1. Let F be a polynomial functor of degree d taking values in finite-dimensional
vector spaces. The function n 7→ dimk F (k

n) is weakly increasing and is a polynomial of
degree ≤ d. In particular, if F (kd) = 0, then F = 0.

Proof. This is similar to the proof of Theorem 7.4.8. Define hF (n) = dimk F (k
n). Define ΣF

by V 7→ F (V ⊕k). There is a natural splitting ΣF = F⊕∆F , so h∆F (n) = hF (n+1)−hF (n),
and hF (n) is a weakly increasing function. It follows from the definition that ∆F is a
polynomial functor of degree < d, so ∆d+1F = 0. Thus h∆F (n) is a polynomial of degree
≤ d. For the last sentence, if F (kd) = 0, then the above says that hF (n) = 0 for n = 0, . . . , d.
Since hF (n) is a polynomial of degree ≤ d, it must be identically 0. �

A polynomial functor is a direct sum of polynomial functors of degree d for various d.
Recall that a map of finite-dimensional vector spaces U → U ′ that is polynomial of degree d
can be written as an element of Symd(U∗)⊗U ′, or equivalently, as a linear map Dd(U) → U ′,
where D is the divided power functor. Hence we can rephrase the definition as follows. Let
Dd(Vec) be the category whose objects are finite-dimensional k-vector spaces and

HomDd(Vec)(U,U
′) = DdHomk(U,U

′).

Then a polynomial functor of degree d is a linear functor Dd(Vec) → Vec.
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We also extend this definition to functors with multiple arguments. A (strict) polyno-
mial functor F : Vecn → Vec of total degree d is a functor such that for all V1, . . . , Vn and
W1, . . . ,Wn, the map

Homk(V1,W1)× · · · × Homk(Vn,Wn) → Homk(F (V1, . . . , Vn), F (W1, . . . ,Wn))

is given by homogeneous polynomial functions of total degree d. A polynomial functor is a
direct sum of polynomial functors of degree d for various d. Using the fact that

Dd(U1 ⊕ · · · ⊕ Un) =
⊕

d1+···+dn=d

Dd1(U1)⊗ · · · ⊗Ddn(Un),

we can define polynomial functors of multidegree d = (d1, . . . , dn), and as above, we de-
fine a category Dd(Vec) whose objects are n-tuples of vector spaces V = (V1, . . . , Vn) and
morphisms are

HomDd(Vec)(V ,W ) = Dd1(Homk(V1,W1))⊗ · · · ⊗Ddn(Homk(Vn,Wn)).

So polynomial functors of multidegree d are equivalent to linear functors Dd(Vec) → Vec.
Given vector spaces U = (U1, . . . , Un), define a polynomial functor PU by

PU(V ) = HomDd(Vec)(U, V ).

For a partition λ = (λ1, . . . , λs), set D
λ(V ) = Dλ1(V ) ⊗ · · · ⊗ Dλs(V ). For a sequence of

partitions Λ = (λ1, . . . , λn), define DΛ ∈ Vecn → Vec by

DΛ(V1, . . . , Vr) = Dλ1

(V1)⊗ · · · ⊗Dλn

(Vn).

Proposition 9.3.2. The DΛ are projective generators for the category of polynomial functors
Vecn → Vec.

Proof. Every polynomial functor Vecn → Vec naturally breaks up as a direct sum of poly-
nomial functors of a given multidegree, so it suffices to fix a multidegree d.

The functor PU is projective by Yoneda’s lemma. When n = 1, there is a natural map
F (U)⊗ PU → F whose image F ′ satisfies F ′(U) = F (U). So if dim(U) ≥ d, then F/F ′ = 0
by Lemma 9.3.1, and hence PU is a projective generator in this case. Similarly, PU is a
projective generator if dim(Ui) ≥ di for all i. Since PU is isomorphic to a direct sum of
functors of the form DΛ, they are also projective generators. �
9.4. Proof of Theorem 9.1.3: noetherianity. Let N be a positive integer and define a
functor ΦN : FSop → Vec∆ as follows. Given a finite set S, we let ΦN(S) be the family {Vi}i∈S
where Vi = kN for all i. Given a surjection f : S → T , we let ΦN(f) be the map ΦN(T ) →
ΦN(S) that is f on index sets, and where the linear map ηt : k

N →
⊗

f(s)=t k
N takes the basis

vector ei to the basis vector
⊗

f(s)=t ei. We thus obtain a functor Φ∗
N : Mod∆ → Repk(FS

op).

Let d = (d1, . . . , dr) be a tuple of positive integers. Define a ∆-module T d by

T d({Vi}i∈I) =
⊕

α : I�[r]

⊗
i∈I

V
⊗dα(i)

i ,

where the sum is over all surjections α from I to [r].
We now proceed to show that T d is a noetherian ∆-module and that every finitely gen-

erated ∆-module is a subquotient of a finite direct sum of T d’s. This will show that finitely
generated ∆-modules are noetherian.

Lemma 9.4.1. For all N , the representation Φ∗
N(T d) of FSop is noetherian.
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Proof. Put M = Φ∗
N(T d). We have

M(S) =
⊕

α : S�[r]

⊗
i∈S

(kN)⊗dα(i) .

Let F(d) be the set of all functions [d] → [N ]. This set naturally indexes a basis of (kN)⊗d.
The spaceM(S) has a basis indexed by pairs (α, β), where α is a surjection S → [r] and β is a
function assigning to each element i ∈ S an element of F(dα(i)). Write e(α,β) for the basis vec-
tor corresponding to (α, β). This basis behaves well with respect to functoriality: if f : T → S
is a surjection and f ∗ : M(S) → M(T ) is the induced map then f ∗(e(α,β)) = e(f∗(α),f∗(β)). A
pair (α, β) defines a function S → [r]×F , where F is the disjoint union of F(d1), . . . ,F(dr).
The previous remark shows that M is a subrepresentation of the representation defined by
T 7→ k[HomFA(T, [r] × F)]. This functor is noetherian (Proposition 8.4.10), so the result
follows. �

Proposition 9.4.2. The ∆-module T d is noetherian.

Proof. Let M be a submodule of T d. We claim that M is generated by its restriction
to the subcategory ΦN(FS

op), where N = max(di). To see this, pick an element v ∈
Mn(k

s1 , . . . ,ksn) for some si. Then v is a linear combination of weight vectors, so it suffices
to consider the case where v is a weight vector. The point is that any weight vector in
T d(ks1 , . . . ,ksn) can use at most N basis vectors from each space. Thus there is an element
g ∈

∏n
i=1 GL(si) (in fact, we just need each factor to be a permutation matrix) such that

gv ∈ T d(kN , . . . ,kN). This proves the claim.
The lemma now follows easily. Indeed, since M is generated by its restriction to the

subcategory ΦN(FS
op), it follows that if M ⊂M ′ is a proper containment of submodules of

T d then Φ∗
N(M) ⊂ Φ∗

N(M
′) is also a proper containment. Thus a strictly ascending chain

in T d would give one in ΦN(T d). Since the latter is noetherian, no such chain exists. Thus
T d is noetherian. �

We now start on the second part of our plan. Let T be the category whose objects are
sequences F = (Fn)n≥0 where Fn is a polynomial functor Vecn → Vec, with no extra data.
Given an object F of this category, we define a ∆-module Γ(F ) by

Γ(F )({Vi}i∈I) =
|I|⊕
n=0

⊕
α : I�[n]

Fn(U1, . . . , Un),

where Uj =
⊗

α(i)=j Vi and the second sum is over all surjective functions α : I → [n].

Proposition 9.4.3. We have the following:

(a) Γ is the left adjoint of the forgetful functor Mod∆ → T.
(b) Γ is an exact functor.

Proof. (a) Pick G ∈ Mod∆ and F ∈ T and a morphism f : F → G in T. Suppose that
{Vi}i∈I is an object of Mod∆ and α : I → [n] is a surjection; let Uj be as above. We have
maps

Fn(U1, . . . , Un) → Gn(U1, . . . , Un) → G({Vi}),
where the first is f and the second uses functoriality of G with respect to the morphism
{Uj}j∈[n] → {Vi}i∈I in Vec∆ corresponding to α (and the identity maps). Summing over
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all choices of α, we obtain a map (ΓF )({Vi}) → G({Vi}), and thus a map of ∆-modules
Γ(F ) → G.

(b) A ∆-module is a functor Vec∆ → Vec, so exactness can be checked pointwise. Similarly,
exactness of a sequence of objects in T can be checked pointwise since they are functors
on

∐
n≥0Vec

n. So let 0 → F1 → F2 → F3 → 0 be an exact sequence in T and pick

{Vi}i∈I ∈ Vec∆. The sequence

(ΦF1)({Vi}) → (ΦF2)({Vi}) → (ΦF3)({Vi})
is the direct sum of sequences of the form

F1(U1, . . . , Un) → F2(U1, . . . , Un) → F3(U1, . . . , Un)

for surjective functions α : I � [n]. The latter are exact by assumption, so our sequence of
interest is also exact. �

Define DΛ to be the ∆-module Γ(DΛ), where DΛ (defined in §9.1) is regarded as an object
of T concentrated in degree r.

Proposition 9.4.4. The DΛ are projective generators for Mod∆.

Proof. By Proposition 9.3.2, the functors DΛ are projective generators for T. Since Φ is the
left adjoint of an exact functor, and DΛ is projective, it follows that DΛ is projective. Given
a ∆-module M and an element x ∈M , there is a map DΛ →M in T whose image contains
x, and therefore a map of ∆-modules DΛ → M whose image contains x. Thus the DΛ are
generators. �
Corollary 9.4.5. A finitely generated ∆-module is a subquotient of a finite direct sum of
T d’s.

Proof. Given d = (d1, . . . , dr), let T
d : Vecr → Vec be the functor given by

Td(V1, . . . , Vr) = V ⊗d1
1 ⊗ · · · ⊗ V ⊗dr

r .

Then T d = Γ(Td). Since DΛ is a subobject of Td, where di = |λi|, it follows that DΛ is
a submodule of T d. As every finitely generated ∆-module is a quotient of a finite sum of
DΛ’s, the result follows. �

The above corollary and Proposition 9.4.2 prove the noetherianity statement in Theo-
rem 9.1.3.

9.5. Proof of Theorem 9.1.3: Hilbert series. By Corollary 9.4.5, the Grothendieck
group of finitely generated ∆-modules is spanned by the classes of submodules of T d. There-
fore, it suffices to analyze the Hilbert series of a submodule M of T d.

Let N = max(di), and write Φ = ΦN . The space Φ∗(M)(S) has an action of the group
GL(N)S that we exploit. Let λ1, . . . , λn be the partitions of size at most N . These are
the only partitions that appear as weights in (kN)⊗di . Let (S1, . . . , Sn) be a tuple of finite
(possibly empty) sets and let S be their disjoint union. Define Ψ(M)(S1, . . . , Sn) to be the
subspace of Φ∗(M)(S) where the torus in the ith copy of GL(N) acts by weight λj, where
i ∈ Sj. It is clear that if fi : Si → Ti are surjections, and f : S → T is their disjoint union,
then the map f∗ : Φ∗(M)(T ) → Φ∗(M)(S) carries Ψ(M)(T1, . . . , Tn) into Ψ(M)(S1, . . . , Sn).
Thus Ψ(M) is a representation of (FSop)n. If M ′ is a subrepresentation of Ψ(M) then S 7→⊕

S=S1q···qSn
M ′(S1, . . . , Sn) is an FSop-submodule of Φ∗(M). Since Φ∗(M) is noetherian, it

follows that Ψ(M) is noetherian. In particular, Ψ(M) is finitely generated.
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Let e1, . . . , en be non-negative integers summing to e. The coefficient of me1
λ1
· · ·men

λn
in

H′
M(t) is then

1

e!

∑
µ1,...,µe

dimk(Vµ1,...,µe),

where V =Me(k
N , . . . ,kN) and the µj are partitions such that exactly ei of them are equal

to λi for each i. Now, no matter what the µj’s are, the space Vµ1,...,µe is isomorphic to
Ψ(M)([e1], . . . , [en]). Thus we see that the coefficient is equal to

1

e1! · · · en!
dimk(Ψ(M)([e1], . . . , [en])).

It follows that H′
M(t) is equal to H′

Ψ(M)(t), and so the theorem follows from Corollary 8.1.8.

10. Categories of weighted surjections

In this section we study a generalization of the category of finite sets with surjective
functions by considering weighted sets. This is mostly preparatory material for the next
section.

10.1. The categories OWSΛ and FWSΛ. Let Λ be a finite abelian group. A weighting
on a finite set S is a function ϕ : S → Λ. A weighted set is a set equipped with a weighting;
we write ϕS to denote the weighting. Suppose ϕ is a weighting on S, and let f : S → T be a
map of sets. We define f∗(ϕ) to be the weighting on T given by f∗(ϕ)(y) =

∑
x∈f−1(y) ϕ(x).

A map of weighted sets S → T is a surjective function f : S → T such that f∗(ϕS) = ϕT .
We let FWSΛ denote the category of weighted sets.

As usual, we require an ordered version of the category as well. LetOWSΛ be the following
category. The objects are totally ordered weighted sets. The order and weighting are not
required to interact in any way. The morphisms are ordered maps of weighted sets, i.e., a
morphism S → T is a surjective function f : S → T such that f∗(ϕS) = ϕT , and for all
x < y in T we have min f−1(x) < min f−1(y). We define a norm on OWSΛ as follows.
Enumerate Λ as λ1, . . . , λr, so that we can identify NΛ with Nr. Then ν(S) = (n1, . . . , nr),
where ni = #ϕ−1

S (λi).
Our main result about OWSΛ is:

Theorem 10.1.1. The category OWSop
Λ is Gröbner and strongly QON -lingual, where N is

the exponent of Λ.

We prove this in the next section, and now use it to study FWSΛ.

Theorem 10.1.2. The category FWSop
Λ is quasi-Gröbner.

Proof. The forgetful functor Φ: OWSΛ → FWSΛ is easily seen to satisfy property (F), and
so the result follows from Theorem 10.1.1. �
Corollary 10.1.3. If k is left-noetherian then Repk(FWSop

Λ ) is noetherian.

Let M be a finitely generated representation of FWSop
Λ1

× · · · × FWSop
Λr
. Enumerate Λi

as {λi,j}, and let ti,j be a formal variable corresponding to λi,j. Given n ∈ N#Λi , let [n] be
the Λi-weighted set where nj elements have weight λi,j. When k is a field, define the Hilbert
series of M by

HM(t) =
∑

n(1),...,n(r)

Cn(1) · · ·Cn(r) dimkM([n(1)], . . . , [n(r)]) · tn(1)1 · · · tn(r)r ,
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where for n ∈ Nk we write Cn for the multinomial coefficient

Cn =
|n|!
n!

=
|n|!

n1! · · ·nk!
.

The following theorem is the main result we need in our applications, and follows immediately
from Theorem 10.1.1 and the functor Φ used in the proof of the previous theorem. (Note:
the reason the multinomial coefficient appears is that there are Cn isomorphism classes in
OWSΛi

which map to the isomorphism class of [n] in FWSΛi
.)

Theorem 10.1.4. In the above situation, HM(t) is KN (see Definition 3.4.4).

10.2. Proof of Theorem 10.1.1. Fix a finite set L and let Σ = L × Λ. Given a ∈ L and
α ∈ Λ, we write a

α
for the corresponding element of Σ. We denote elements of Σ? by s

σ
,

where s ∈ L? and σ ∈ Λ? are words of equal length. For a ∈ L, we define wa : Σ
? → Λ by

wa

(
s1 · · · sn
σ1 · · ·σn

)
=

∑
si=a

σi.

We let w : Σ? → ΛL be (wa)a∈L. For θ ∈ ΛL, we let Kθ be the set of all s
σ
∈ Σ? with

w( s
σ
) = θ. This is a congruence language of modulus N (the exponent of Λ).

We now define a partial order on Σ?. Let s
σ
: [n] → Σ and t

τ
: [m] → Σ be two words.

Define s
σ
≤ t

τ
if there exists an ordered surjection f : [m] → [n] such that t = f∗(s) and

σ = f∗(τ). Note that if s
σ
≤ t

τ
then w( s

σ
) = w( t

τ
).

Lemma 10.2.1. The poset Σ? is noetherian.

Proof. We modify the proof of Proposition 8.2.1, and use the notion of exceptional value
defined there (applied to the numerator of an element of Σ?). Suppose that Σ? is not
noetherian and choose a minimal bad sequence x1 =

s1
σ1
, x2 =

s2
σ2
, . . . .

We can find an infinite subsequence xi1 , xi2 , . . . such that m(sij) is defined and is constant,
say equal to m0 (assume we pick the subsequence maximal with this property, i.e., we do

not leave out any of the xi which satisfy the property). Let wij =
tij
τij

be the subword of xij

of elements (except for the first instance) whose numerator is m0. For j � 0, we can find a
subword w′

ij
of wij such that the sum of the elements in the denominator sum to 0. These

subwords cannot form a bad sequence, or else, denoting by k the first j where w′
ij
exists, the

sequence x1, x2, . . . , xik−1, w
′
ik
, . . . is bad (we cannot have w′

ik′
≥ xi or else the numerator of

xi is the constant word m0 and its denominator sums to 0 which means it would be one of
the wij) and contradicts minimality. So we pick a further subsequence of the xij so that the
w′

ij
form a weakly increasing sequence.

Let yij =
s′ij
σ′
ij

be the result of removing the subword w′
ij

from
sij
σij

. Then yij ≤ xij by

construction of w′
ij
. If x1, . . . , xi1−1, yi1 , yi2 , . . . is a bad sequence, it violates minimality of

x1, x2, . . . , so we must have yij ≤ yik for some j < k (xi ≤ yij implies xi ≤ xij from what
we just said). This inequality is witnessed by an ordered surjection f : [`(yik)] → [`(yij)],
i.e., s′ik = f ∗(s′ij) and σ′

ij
= f∗(σ

′
ik
). We also have an inequality w′

ij
≤ w′

ik
so we can take

the disjoint union of the two ordered surjections to get a surjection (which is still ordered
because we removed the initial instance of m0 from wij above) that witnesses the inequality
xij ≤ xik . This is a contradiction, so we conclude that minimal bad sequences do not exist
and that Σ? is noetherian. �
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Let s
σ
= s1···sn

σ1···σn
be a word in Kθ. Put

Πi =
{

s1
∗ , · · · ,

si
∗

}
,

where ∗ means any element of Λ. Define a language L( s
σ
) by

L( s
σ
) = ( s1

σ1
)Π?

1 · · · ( snσn
)Π?

n.

It is clear that L( s
σ
) is an ordered language.

Lemma 10.2.2. If t
τ
∈ L( s

σ
) ∩ Kθ then s

σ
≤ t

τ
.

Proof. Let t
τ
: I → Σ? in L( s

σ
) ∩ Kθ be given. Write t

τ
= ( s1

σ1
)w1 · · · ( snσn

)wn, with wi ∈ Π?
i .

Let J ⊂ I be the indices occurring in the words w1, . . . , wn and let K be the complement
of J , so that t

τ
|K = s

σ
. We now define a map f : I → [n]. On K, we let f be the unique

order-preserving bijection. For a ∈ {s1, . . . , sn}, let r(a) ∈ [n] be minimal so that sr(a) = a.
Now define f on J by f(j) = r(tj). It is clear that f is an ordered surjection and that
f ∗(s) = t. Since w( s

σ
) = w( t

τ
) = θ, it follows that w( t

τ
|J) = 0. From the way we defined f ,

it follows that f∗(τ |J) = 0. Thus f∗(τ) = σ, which completes the proof. �
We say that a word σ1 · · ·σn ∈ Λ? is minimal if no non-empty subsequence of σ2 · · ·σn

sums to 0. Note that we started with the second index. As any sufficiently long sequence in
Λ? contains a subsequence summing to 0, there are only finitely many minimal words. Let
s
σ
in Kθ be given. We say that t

τ
: [m] → Σ? is minimal over s

σ
: [n] → Σ? if there is an

ordered surjection f : [m] → [n] such that t = f∗(s) and σ = f∗(τ) and for every i ∈ [n] the
word τ |f−1(i) is minimal. If t

τ
is minimal over s

σ
then the length of t

τ
is bounded, so there are

only finitely many such minimal words.

Lemma 10.2.3. Let s
σ
≤ r

ρ
be words in Kθ. Then there exists t

τ
minimal over s

σ
such that

r
ρ
∈ L( t

τ
).

Proof. Let [n] and [m] be the index sets of s
σ
and r

ρ
, and choose a witness f : [m] → [n] to

s
σ
≤ r

ρ
. Let I ⊂ [m] be the set of elements of the form min f−1(i) for i ∈ [n]. Let K ⊂ [m]

be minimal subject to I ⊂ K and f∗(ρ|K) = σ. Then ρ|f−1(i)∩K is minimal for all i ∈ [n].
Indeed, if it were not then we could discard a subsequence summing to 0 and makeK smaller.
We thus see that t

τ
= r

ρ
|K is minimal over s

σ
. If i ∈ [m] \K then there exists j < i in I with

ti = tj, and so r
ρ
∈ L( t

τ
). �

Lemma 10.2.4. Every poset ideal of Kθ is of the form L ∩ Kθ, where L is an ordered
language on Σ.

Proof. It suffices to treat the case of a principal ideal. Thus consider the ideal S generated
by s

σ
∈ Kθ. Let

ti
τi
for 1 ≤ i ≤ n be the words minimal over s

σ
, and let L =

⋃n
i=1 L(

ti
τi
). Then

L is an ordered language, by construction. If r
ρ
∈ L∩Kθ then

r
ρ
∈ L( ti

τi
)∩Kθ for some i, and

so s
σ
≤ ti

τi
≤ r

ρ
by Lemma 10.2.2, and so r

ρ
∈ S. Conversely, suppose r

ρ
∈ S. Then r

ρ
∈ L( ti

τi
)

for some i by Lemma 10.2.3, and of course r
ρ
∈ Kθ, and so r

ρ
∈ L ∩ Kθ. �

Proof of Theorem 10.1.1. The category C = OWSop
Λ is clearly directed. Let x = ([n], θ) be

an object of C. We apply the above theory with L = [n]. Suppose f : x → y is a map in
C, with y = ([m], ϕ); note that this means that f is a surjection [m] → [n]. We define a
word [m] → Σ? by mapping i ∈ [m] to (f(i), ϕ(i)). Obviously, one can reconstruct f from
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this word, and so this defines an injection i : |Cx| → Σ?. In fact, the image lands in Kθ. It is
clear from the definition of the order on Σ? that i is strictly order-preserving. Thus |Cx| is
noetherian by Lemma 10.2.1. Lexicographic order on Σ? induces an admissible order on |Cx|.
This follows since Σ? is a subposet of the partial ordering on Σ? defined in §8.2. Finally,
since i maps ideals to ideals, we see that it gives a strong QON -lingual structure on |Cx| by
Lemma 10.2.4. �

11. Categories of G-surjections

In this section, we study categories of functions that are decorated by a finite group. In
§11.1.2 we give the definitions. The injective version of the category has a simple structure
which is summarized in §11.1.1. The rest of the section is devoted to studying the surjective
version: the noetherian property is deduced in §11.1.2 and results on Hilbert series are stated
in §11.2. The rest of the section is devoted to proving the Hilbert series results. These results
essentially recover our results on ∆-modules when the group is the symmetric group, and in
general represent a significant generalization.

11.1. Categories of G-maps and their representations. Let G be a group. A G-map
S → T between finite sets S and T is a pair (f, σ) consisting of a function f : S → T and a
function σ : S → G. Given G-maps (f, σ) : S → T and (g, τ) : T → U , their composition is
the G-map (h, η) : S → U with h = g ◦ f and η(x) = σ(x)τ(f(x)), the product taken in G.
In this way, we have a category FAG whose objects are finite sets and whose morphisms are
G-maps. The automorphism group of [n] in FAG is Sn oG = Sn nGn. Let FSG (resp. FIG)
denote the subcategory of FAG containing all objects but only those morphisms (f, σ) with
f surjective (resp. injective). In this section, we will always assume that G is finite.

11.1.1. Representations of FIG. We have the following basic property about representations
of FIG:

Proposition 11.1.1. There are natural functors FA → FAG and FI → FIG that satisfy
property (F).

Proof. Define a functor Φ: FA → FAG that sends a set to itself and a function f : S → T
to (f, 1) where 1 : S → G is the constant map sending every element to the identity of G.
To see that Φ satisfies property (F), pick a set x of size n, set y1, . . . , yn|G| all equal to x and
let f1, . . . , fn|G| correspond to all automorphisms of x in FAG under some enumeration.

For the second functor, note that Φ restricts to a functor FI → FIG. �
Corollary 11.1.2. The categories FAG and FIG are quasi-Gröbner.

Proof. This follows from Proposition 5.2.6 and Theorems 7.4.6, 7.1.2. �
Corollary 11.1.3. If k is left-noetherian then Repk(FAG) and Repk(FIG) are noetherian.

Corollary 13.2.5 improves this result by allowing G to be any polycyclic-by-finite group.

Remark 11.1.4. Define a category FId,G of finite sets whose morphisms are pairs (f, σ)
where f is a decorated injection as in the definition of FId and σ is as in the definition of
FIG. As above, there is a natural functor FId → FId,G satisfying property (F). �

The category Repk(FIG) only depends on Repk(G) as an abelian category equipped with
the extra structure of the invariants functor Repk(G) → Modk. (See Proposition 13.2.3 for
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a precise statement.) Thus Repk(FIG) “sees” very little of G. In good characteristic, we can
be more explicit. Let FB be the groupoid of finite sets (maps are bijections).

Proposition 11.1.5. Suppose k is a field in which the order of G is invertible. Then
representations of FIG are equivalent to representations of FI×FBr, where r is the number
of non-trivial irreducible representations of G over k.

Proof. Let V1, . . . , Vr be the non-trivial irreducible representations of G, and let V0 be the
trivial representation. Suppose M is an FIG-module. We can then decompose M(S) into
isotypic pieces for the action of GS:

(11.1.6) M(S) =
⊕

S=S0q···qSr

N(S0, . . . , Sr)⊗ (V �S0
0 � · · ·� V �Sr

r ),

where N is a multiplicity space. Suppose now that f : S → T is an injection. To build a
morphism in FIG we must also choose a function σ : S → G. However, if σ and σ′ are two
choices then (f, σ) and (f, σ′) differ by an element of Aut(T ), namely an automorphism of
the form (idT , τ) where τ restricts to σ′σ−1 on S. Thus it suffices to record the action of
(f, 1). Note that if τ : T → G restricts to 1 on S then (idT , τ)(f, 1) = (f, 1). It follows that
(f, 1) must map M(S) into the GT\S-invariants of M(T ). In other words, under the above
decomposition, (f, 1) induces a linear map

N(S0, S1, . . . , Sr) → N(S0 q (T \ S), S1, . . . , Sr).

Thus, associated to M we have built a representation N of FI×FBr. The above discussion
makes clear that no information is lost in passing fromM to N , and so this is a fully faithful
construction. The inverse construction is defined by the formula (11.1.6). �

By the proposition, an FIG-module can be thought of as a sequence (Mn)n∈Nr , where each
Mn is an FI-module equipped with an action of Sn. There are no transition maps, so in a
finitely generated FIG-module, all but finitely many of the Mn are zero. Thus, at least in
good characteristic, FIG-modules are not much different from FI-modules, and essentially
any result about FI-modules (e.g., noetherianity) carries over to FIG-modules.

Remark 11.1.7. The category FIZ/2Z is equivalent to the category FIBC defined in [Wi,
Defn. 1.2]. It is possible to define and prove properties about modified versions of our
categories to include her category FID, but since we will not have any use for this, we leave
the modifications to the reader. �
11.1.2. Representations of FSop

G . The situation with Repk(FS
op
G ) is completely different:

since the diagonal map on G appears in FSG, representations of FSop
G “know” about the

tensor structure on Repk(G) (when k is commutative), and therefore “see” a lot of G. It
seems plausible that one can recover G from the abelian category Repk(FS

op
G ), see §1.5.8.

The remainder of §11 is devoted to studying representations of FSop
G , and products of

categories of this form. Actually, the bulk of this section is devoted to the study of Hilbert
series; noetherianity is easy, given what we have already proved:

Proposition 11.1.8. There is a natural functor FSop → FSop
G that satisfies property (F).

Proof. Let Φ: FS → FSG be the functor taking a function f : S → T to the G-function
(f, σ) : S → T where σ = 1. The “natural functor” in the statement of the proposition is
Φop. Let x ∈ FSG be given. Say that a morphism (f, σ) : y → x is minimal if the function
(f, σ) : y → x × G is injective. There are finitely many minimal maps up to isomorphism.
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Now consider a map (f, σ) : y → x in FSG. Define an equivalence relation on y by a ∼ b
if f(a) = f(b) and σ(a) = σ(b), and let g : y → y′ be the quotient. Then the induced map
(f ′, σ) : y′ → x is minimal. Furthermore, (f, σ) = (g, 1)(f ′, σ) = Φ(g)(f ′, σ). Flipping all the
arrows, we see that Φop satisfies property (F). �

Given a finite collection G = (Gi)i∈I of finite groups, we write FSG for the product
category

∏
i∈I FSGi

.

Corollary 11.1.9. The category FSop
G is quasi-Gröbner.

Proof. This follows from Propositions 5.2.5, 5.2.6 and Theorem 8.1.2. �

Corollary 11.1.10. If k is left-noetherian then Repk(FS
op
G ) is noetherian.

We now give an interesting source of examples of FSop
G -modules, which provides motivation

for the general study of FSop
G -modules.

Example 11.1.11 (Segre products of simplicial complexes). Let X and Y be simplicial
complexes on finite vertex sets X0 and Y0. Define a simplicial complex X ∗ Y on the vertex
set X0 × Y0 as follows. Let p1 : X0 × Y0 → X0 be the projection map, and similarly define
p2. Then S ⊂ X0 × Y0 is a simplex if and only if p1(S) and p2(S) are simplices of X and Y
and have the same cardinality as S. We call X ∗ Y the Segre product of X and Y . It is
functorial for maps of simplicial complexes. It is not a topological construction, and depends
in an essential way on the simplicial structure.

Fix a finite simplicial complex X, equipped with an action of a group G. The diagonal
map X0 → X0 ×X0 induces a map of simplicial complexes X → X ∗X. We thus obtain a
functor from FSop

G to the category of simplicial complexes by S 7→ X∗S. Fixing i, we obtain
a representation Mi of FS

op
G by S 7→ Hi(X

∗S;k). It is not difficult to directly show that
S 7→ Ci(X

∗S;k) is a finitely generated representation of FSop
G , where Ci denotes the space

of simplicial i-chains. Thus by Corollary 11.1.10, Mi is a finitely generated representation of
FSop

G . Theorem 11.2.1 below gives information about the Hilbert series of Mi.
The case where X is just a single d-simplex is already extremely complicated and inter-

esting, and is closely related to syzygies of the Segre embedding. �

We close this section by connecting FSop
G -modules to ∆-modules.

Remark 11.1.12 (Generalized ∆-modules). Let A be an abelian category equipped with
a symmetric “cotensor” structure, i.e., a functor A → A⊗A, and analogous data opposite
to that of a tensor structure. (Here we are using the Deligne tensor product of abelian
categories [De].) Given a surjection f : T → S of finite sets, there is an induced functor
f ∗ : A⊗S → A⊗T by cotensoring along the fibers of f . A ∆-module over A is a rule M that
assigns to each finite set S an object MS of A⊗S and to each surjection f : T → S of finite
sets a morphism Mf : f

∗(MS) → MT , such that if f : T → S and g : S → R are surjections,
then the diagram

g∗(MS)
Mg

##HHHHHHHHH

(gf)∗(MR)

f∗(Mg)
88qqqqqqqqqq Mgf // MT

commutes. There are two main examples relevant to this paper:
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• Let A be the category of polynomial functors Vec → Vec. Then A⊗2 is identified
with the category of polynomial functors Vec2 → Vec. There is a comultiplication
A → A⊗2 taking a functor F to the functor (U, V ) 7→ F (U ⊗ V ), and this gives A
the structure of a symmetric cotensor category. ∆-modules over A are ∆-modules as
defined in §9.

• Let A be the category of representations of a finite group G. Then A⊗2 is identified
with the category of representations of G×G. There is a comultiplication A → A⊗2

taking a representation V of G to the representation IndG×G
G (V ) of G× G, where G

is included in G×G via the diagonal map. This gives A the structure of a symmetric
cotensor category. ∆-modules over A are representations of FSop

G .

If n! is invertible in the base field then the category of polynomial functors of degree ≤ n
is equivalent, as a cotensor category, to the category

∏n
k=0 Rep(Sn). We thus find that ∆-

modules of degree at most n (in the sense of §9) coincide with representations of
∏n

k=0 FS
op
Sk
.

Thus our results on FSop
G can be loosely viewed as a generalization of our results on ∆-

modules (“loosely” because in bad characteristic the results are independent of each other).
It seems possible that our results could generalize to ∆-modules over any “finite” abelian
cotensor category. �
11.2. Hilbert series. Let M be a finitely generated representation of FSop

G over a field k.

Let n ∈ NI , and write [n] for ([ni])i∈I . Then M([n]) is a finite dimensional representation
of Gn. Let [M ]n denote the image of the class of this representation under the map

Rk(G
n) =

⊗
i∈I

Rk(Gi)
⊗ni → Sym|n|(Rk(G)),

where

Rk(G) =
⊕
i∈I

Rk(Gi).

Note that one can recover the isomorphism class of M([n]) as a representation of Gn from
[M ]n due to the Sn-equivariance. If {Li,j} are the irreducible representations of the Gi, then
[M ]n can be thought of as a polynomial in corresponding variables {ti,j}. Define the Hilbert
series of M by

HM(t) =
∑
n∈NI

[M ]n.

This is an element of the ring Ŝym(Rk(G)Q) ∼= QJti,jK. This definition does not fit into
our framework of Hilbert series of normed categories, though it can be seen as an enhanced
Hilbert series, as discussed in §1.5.2.

The following is a simplified version of our main theorem on Hilbert series. Recall the
definition of KN from Definition 3.4.4.

Theorem 11.2.1. Let M be a finitely generated representation of FSop
G over an algebraically

closed field k. Then HM(t) is a rational function of the t. In fact, it is a KN function of the
t, where N is the least common multiple of the exponents of the Gi.

Stating the full result requires some additional notions. Let G be a finite group and let k
be an arbitrary field. Let {Hj}j∈J be a collection of subgroups whose orders are invertible
in k, and let Hab

j be the abelianization of Hj. There is a functor Repk(Hj) → Repk(H
ab
j )

given by taking coinvariants under [Hj, Hj]. This functor is exact since the order of Hj is
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invertible in k, and thus induces a homomorphism Rk(Hj) → Rk(H
ab
j ). There are also

homomorphisms Rk(G) → Rk(Hj) given by restriction. We say that the family {Hj} is
good if the composite

Rk(G) →
⊕
j∈J

Rk(Hj) →
⊕
j∈J

Rk(H
ab
j )

is a split injection (i.e., an injection with torsion-free cokernel). We say that G is N-good
if it admits a good family {Hj} such that the exponent of each Hab

j divides N . We say that
a family G of finite groups is N -good if each member is. These notions depend on k.

The following is our main theorem on Hilbert series. The proof is given in §11.4.
Theorem 11.2.2. Suppose that G is N-good and k contains the N th roots of unity. Let M
be a finitely generated FSop

G -module over k. Then HM(t) is a KN function of the ti,j.

Using Brauer’s theorem, we show that over an algebraically closed field, every group is N -
good for some N (Proposition 11.3.2), and so Theorem 11.2.1 follows from Theorem 11.2.2.
We show that symmetric groups are 2-good if n! is invertible in k, which essentially recovers
our results on Hilbert series of ∆-modules in good characteristic. For general groups, we
know little about N . Finding some results could be an interesting group-theory problem;
see §1.5.6.
Example 11.2.3. Let G be a finite group and let {Vi}i∈I be the set of irreducible represen-
tations of G over C. Define an FSop

G -module Mi by

Mi(S) = IndGS

G (Vi),

where G → GS is the diagonal map. Let C be the set of conjugacy classes in G, χi be the
character of Vi, and ti be an indeterminate corresponding to Vi. A computation similar to
that in [Sn, Lem. 5.7] gives

HMi
(t) =

1

#G

∑
c∈C

#c · χi(c)

1− (
∑

j∈I χj(c)tj)
.

This is a KN function of the ti, as predicted by Theorem 11.2.1, where N is such that all
characters of G take values in Q(ζN). �
11.3. Group theory. Let p = char(k). If p = 0 then every group has order prime to p, and
the only p-group is the trivial group. We say that a collection {Hi}i∈I of subgroups of G is
a covering if the map on Grothendieck groups

Rk(G) →
⊕
i∈I

Rk(Hi)

is a split injection. Recall that if ` is a prime, then an `-elementary group is one that is
the direct product of an `-group and a cyclic group of order prime to `. An elementary
group is a group which is `-elementary for some prime `.

Lemma 11.3.1. The following result holds over any field k:

(a) Let {Hi}i∈I be a covering of G, and for each i let {Kj}j∈Ji be a covering of Hi, and
let J = qi∈IJi. Then {Kj}j∈J is a covering of G.

(b) Let {Hi}i∈I be a covering of G, and suppose each Hi is N -good. Then G is N-good.
(c) Suppose that H is a p-elementary group and write H = H1 ×H2, where H1 is cyclic

of order prime to p and H2 is a p-group. Then {H1} is a covering of H.
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The following hold if k is algebraically closed:

(d) The collection of elementary subgroups {Hi}i∈I of G is a covering of G.
(e) Let H be a group of order prime to p. Then H is N-good for some N .

Proof. (a) and (b) are clear.
(c) The only simple k[H2]-module is trivial, so Rk(H) → Rk(H1) is an isomorphism.
(d) Let α : Rk(G) →

⊕
Rk(Hi) be the restriction map. Let Pk(G) be the Grothendieck

group of finite-dimensional projective k[G]-modules. The map Rk(G)×Pk(G) → Z given by
(V,W ) 7→ dimkHomG(V,W ) is a perfect pairing [Se, §14.5]. Combining this with Frobenius
reciprocity, it follows that the dual of α can be identified with the induction map

⊕
Pk(Hi) →

Pk(G). This map is surjective by Brauer’s theorem [Se, §17.2, Thm. 39]. Since the dual of
α is surjective, it follows that α is a split injection, which proves the claim.

(e) Indeed, arguing with duals and Frobenius reciprocity again, it is enough to find sub-
groups {Ki}i∈I of H such that the induction map

⊕
i∈I Rk(K

ab
i ) → Rk(H) is surjective.

(Note that Rk = Pk for groups of order prime to p.) This follows from Brauer’s theorem
[Se, §10.5, Thm. 20]. �

Proposition 11.3.2. Suppose k is algebraically closed and G is a finite group. Then G is
N-good for some N .

Proof. By parts (a), (c), and (d) of Lemma 11.3.1, G has a covering by its subgroups of order
prime to p. For each of these groups, its set of subgroups is good by part (e). Now finish by
applying (b). �

We now construct a good collection of subgroups for the symmetric group Sn in good
characteristic. Given a partition λ = (λ1, . . . , λn) with

∑
i λi = n, let Sλ = Sλ1 × · · · × Sλn

be the corresponding Young subgroup of Sn.

Proposition 11.3.3. Suppose n! is invertible in k. Then {Sλ} is a good collection of sub-
groups of the symmetric group Sn.

Proof. Under the assumption on char(k), the representations of Sn are semisimple. Using
Frobenius reciprocity, the restriction map on representation rings is dual to induction. We
claim that each irreducible character of Sn is a Z-linear combination of the permutation
representations of Sn/Sλ (this implies {Sλ} is a good collection of subgroups). Recall that
the irreducible representations of Sn are indexed by partitions of n (we will denote them
Mλ). Also, recall the dominance order on partitions: λ ≥ µ if λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi

for all i. An immediate consequence of Pieri’s rule [SS2, (2.10)] is that the permutation
representation Sn/Sλ contains Mλ with multiplicity 1 and the remaining representations
Mµ that appear satisfy µ ≥ λ. This proves the claim. �

Corollary 11.3.4. Let k be a field in which n! is invertible. Then Sn is 2-good.

Proof. The group Sab
λ has exponent 1 or 2 for any λ. �

11.4. Proof of Theorem 11.2.2. The idea is to first use the good family of subgroups
to reduce to the case where each Gi is abelian of invertible order. For such G, we identify
representations of FSop

G with representations of FWSop
Λ , where Λ is the group of characters

of G. The theorem then follows from our results for Hilbert series of representations of
FWSop

Λ . We now go through the details.
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Lemma 11.4.1. Let G = (Gi)i∈I be finite groups. For each i, let Hi be a subgroup of Gi

whose order is invertible in k. Define a functor

Φ: Repk(FS
op
G ) → Repk(FS

op

Hab)

by letting Φ(M)(S) be the [H,H]S-coinvariants of M(S). Then we have the following:

(a) Φ(M) is a well-defined object of Repk(FS
op

Hab).

(b) If M is finitely generated then so is Φ(M).
(c) Let ϕi : Rk(Gi) → Rk(H

ab
i ) be the map induced by restricting to Hi followed by taking

[Hi, Hi]-coinvariants, and let ϕ : Rk(G) → Rk(H
ab) be the sum of the ϕi. Then HΦ(M)

is the image of HM under the ring homomorphism Ŝym(Rk(G)Q) → Ŝym(Rk(H
ab)Q)

induced by ϕ.

Proof. (a) For a tuple S = (Si)i∈I of sets, let K(S) be the k-subspace of M(S) spanned by
elements of the form gm−m with g ∈ [H,H]S and m ∈M(S). If f : S → T is a morphism
in FSI then the induced map f ∗ : M(T ) → M(S) carries gm −m to f∗(g)f ∗(m) − f∗(m).
Thus K is a (FSop)I-submodule of M , and so M/K is a well-defined (FSop)I-module. The
group actions clearly carry through, and so Φ(M) is well-defined.

(b) Suppose M ∈ Repk(FS
op
G ) is finitely generated. Then the restriction of M to (FSop)I

is finitely generated by Propositions 11.1.8 and 4.2.4. The restriction of Φ(M) to (FSop)I is
a quotient of the restriction of M , and is therefore finitely generated. Thus Φ(M) is finitely
generated, by Proposition 4.2.5.

(c) This is clear. �
Lemma 11.4.2. Let G = (Gi)i∈I be groups, let f : J → I be a surjection, and let f ∗(G) be
the resulting family of groups indexed by J . Let Φ: FSop

f∗(G) → FSop
G be the functor induced

by disjoint union, i.e., Φ({Sj}j∈J) = {Ti}i∈I where Ti =
∐

j∈f−1(i) Sj.

(a) Φ satisfies property (F); in particular, if M is finitely generated then so is Φ∗(M).
(b) Let ϕi : Rk(Gi) →

⊕
j∈f−1(i)Rk(Gj) be the diagonal map, and let ϕ : Rk(G) →

Rk(f
∗(G)) be the sum of the ϕi. Then HΦ∗(M) is the image of HM under the ring

homomorphism Ŝym(Rk(G)Q) → Ŝym(Rk(f
∗(G))Q) induced by ϕ.

Proof. (a) Consider the commutative diagram of categories

FSop
f∗(G)

Φ // FSop
G

(FSop)J
Φ′

//

OO

(FSop)I

OO

The functor Φ′ is defined just like Φ; it satisfies property (F) by Proposition 8.4.9. The
vertical maps satisfy property (F) by Proposition 11.1.8. Thus Φ satisfies property (F) by
Propositions 4.2.2 and 4.2.3.

(b) This is clear. �
Lemma 11.4.3. Suppose that G = (Gi)i∈I is a family of commutative groups of exponents
dividing N . Suppose that N is invertible in k and that k contains the N th roots of unity.
Let Λi = Hom(Gi,k

×) be the group of characters of Gi, and let Λ = (Λi)i∈I . Then there is
an equivalence Φ: Repk(FS

op
G ) → Repk(FWSop

Λ ) respecting Hilbert series, i.e., HM = HΦ(M)

for M ∈ Rep(FSop
G ).



GRÖBNER METHODS FOR REPRESENTATIONS OF COMBINATORIAL CATEGORIES 55

Before giving the proof, we offer two clarifications. First, FWSΛ denotes the category∏
i∈I FWSΛi

. An object of this category is a tuple of sets S = (Si)i∈I equipped with a
weight function ϕi : Si → Λi for each i. Second, HM and HΦ(M) are both series in variables
indexed by the characters of the Gi. This is why they are comparable.

Proof. Let M be a representation of FSop
G . Let S = (Si)i∈I be a tuple of sets. Then we have

a decomposition

MS =
⊕

MS,ϕ,

where the sum is over weightings ϕ of S, and MS,ϕ is the subspace of MS on which GS acts

through ϕ. If f : S → T is a morphism in FSop
G then the map f∗ : MS → MT carries MS,ϕ

into MT ,f∗(ϕ). We define Φ(M) to be the functor on FWSop
Λ which assigns to a weighted

set (S, ϕ) the space MS,ϕ. This construction can be reversed: given a representation M of

FWSop
Λ , we can build a representation of FSop

G by defining MS to be the sum of the MS,ϕ.
We leave to the reader the verification that these constructions are quasi-inverse to each
other. This shows that Φ is an equivalence. It is clear that it preserves Hilbert series: we
note that the multinomial coefficients in the definition of HΦ(M) count, for each MS,ϕ, the
number of MS,ϕ′ where ϕ′ is a permutation of ϕ. �

Proof of Theorem 11.2.2. Let M be a finitely generated representation of FSop
G , where G =

(Gi)i∈I . For each i ∈ I, let {Hj}j∈Ji be a good collection of subgroups of G such that the
exponent of each Hab

j divides N . Let J =
∐

i∈I Ji and let f : J → I be the projection map.
Then we have functors

Repk(FS
op
G ) → Repk(FS

op
f∗(G)) → Repk(FS

op

Hab).

Let M ′ be the image of M under the composition. By Lemmas 11.4.1 and 11.4.2, M ′ is
finitely generated and HM ′ is the image of HM under the ring homomorphism corresponding
to the natural additive map Rk(G) → Rk(H

ab). By Lemma 11.4.3 and Theorem 10.1.4,
HM ′ is KN . Thus by Lemma 3.4.5, HM is KN . This completes the proof. �

12. An example with non-regular languages

Let OI=d be the subcategory of OId containing all objects but only those morphisms (f, g)
for which all fibers of g have the same size (in other words, each of the d “colors” are used
the same number of times). One easily sees that the inclusion OI=d ⊂ OId satisfies prop-
erty (S) (Definition 5.2.7), and so OI=d is Gröbner by Proposition 5.2.8 and Theorem 7.1.1.
Endow OI=d with the restricted norm from OId. Obviously, OI=1 = OI1, which is O-lingual
(Theorem 7.1.1). We now examine what happens for larger d.

Proposition 12.1. The normed category OI=2 is UCF-lingual.

Proof. Let C = OI=2 and let C ′ = OI2. Let x = [n] be an object of C and let Σ = {0, 1, 2}. We
regard |Cx| as a subset of |C′

x| with the induced order, which is admissible by Proposition 5.2.8.
Define the map i : |C′

x| → Σ? as in the proof of Theorem 7.1.1. As shown there, if T is a
poset ideal of |C′

x|, then i(T ) is a regular language. Now, if T is a poset ideal of |Cx| and
S is the poset ideal of |C ′

x| it generates, then T = S ∩ |Cx|. Thus i(T ) is the intersection of
the regular language i(S) with the language L = i(|Cx|). The language L consists of those
words in Σ that contain exactly n 0’s and use each of the symbols 1 and 2 the same number
of times. This is a deterministic context-free (DCF) language (the proof is similar to [HU,
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Exercise 5.1]). As the intersection of a DCF language and a regular language is DCF [HU,
Thm. 10.4], we see that i(T ) is DCF. Finally, DCF implies UCF (this is well-known, and
follows from the proof of [HU, Thm. 5.4]), and so i(T ) is UCF. �

Corollary 12.2. If M is a finitely-generated representation of OI=2 then HM(t) is an alge-
braic function of t.

Example 12.3. Let d ≥ 1 be arbitrary. Let Md ∈ Repk(OI=d ) be the principal projective at
[0], and let Hd be its Hilbert series. The space Md([n]) has for a basis the set of all strings
in {1, . . . , d} of length n in which the numbers 1, . . . , d occur equally. The number of strings
in which i occurs exactly ni times is the multinomial coefficient

(n1 + · · ·+ nd)!

n1! · · ·nd!
.

It follows that

Hd(t) =
∞∑
n=0

(dn)!

n!d
tdn.

In particular,

H1(t) =
1

1− t
and H2(t) =

1√
1− 4t2

,

but Hd(t) is not algebraic for d > 2 [WS, Thm. 3.8]. �

Corollary 12.4. If d > 2 then the normed category OI=d is not UCF-lingual.

Let FI=d be the subcategory of FId defined in a way similar to OI=d with the induced
norm. Then FI=d is quasi-Gröbner and the (non-exponential) Hilbert series of a finitely
generated FI=2 -module is algebraic. We can interpret FI=d in terms of twisted commutative
algebras. We just explain over the complex numbers. Given vector spaces V1, . . . , Vd, there
is a natural map V1 ⊗ · · · ⊗ Vd → Symd(V1 ⊕ · · · ⊕ Vd). Specializing to Vi = C∞, we obtain
a map (C∞)⊗d → Symd((C∞)⊕d). We thus have a map of algebras

Sym((C∞)⊗d) → Sym((C∞)⊕d).

Let A be the image of this map. This is a bounded tca (see [SS2, §9]) generated in degree
d. Then RepC(FI

=
d ) is equivalent to the category of A-modules. It follows that the (non-

exponential) Hilbert series of a finitely generated A-module is algebraic when d = 2.

Remark 12.5. We have shown, by very different means, that the Hilbert series of a finitely
generated FI=d -module over C is a D-finite function, for any d ≥ 1. �

13. Examples of categories with infinite hom sets

We end with some examples of categories which have noetherian representation categories,
and have infinite hom sets, in contrast to all of the examples previously studied. In §13.1 we
study a linear-algebraic category built out of upper-unitriangular integer matrices. In §13.2
we introduce a generalization of FI-modules and prove a noetherianity result. As a special
case, we improve Corollary 11.1.3 by allowing the group G to now be any polycyclic-by-finite
group.
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13.1. Integral Borel categories. If n ≤ m, then a Borel matrix is an m × n integer
matrix which is “upper unitriangular” in the sense that there exists 1 ≤ s1 < · · · < sn ≤ m
such that the (si, i) entries are all 1 (call these pivots), and the (j, i) entry is 0 if j > si. A
non-negative Borel matrix is a Borel matrix whose entries are all non-negative.

Let BZ be the category whose objects are the non-negative integers 0, 1, 2, . . . and where
HomBZ

(n,m) is the set of m×n Borel matrices. Composition is defined by matrix multipli-
cation. Let B+

Z be the subcategory of BZ where we only use non-negative Borel matrices.
Note that EndBZ

(n) is the group of upper unitriangular integer matrices, while EndB+
Z
(n)

is its “positive part.”

Proposition 13.1.1. The category B+
Z is Gröbner.

Proof. Let x = n be a non-negative integer, thought of as an object of B+
Z . We claim that

the poset |Sx| (Definition 5.2.1) is noetherian. A given non-negative Borel matrix m × n
generates all other non-negative Borel matrices which are obtained by inserting rows and
also by increasing the values of any non-pivot entry which is allowed to be nonzero. The
second point follows from the fact that the action of End(m) allows us to apply non-negative
upwards row operations to the Borel matrix. For the first point, we explain how to insert a
single row in position i: this follows from constructing a special (m + 1) ×m Borel matrix
which is obtained from the identity m × m matrix by inserting the same row in position
i with some extra 0’s (we leave the details to the reader). So |Sx| is a subposet of (Zn

≥0)
?

where Zn
≥0 is a poset with componentwise comparison. So |Sx| is noetherian by Higman’s

lemma (Theorem 2.7).
Finally, we construct an ordering � on Sx. First, pick a total ordering on Zn

≥0 which
extends the componentwise ordering. Let ψ and ψ′ be non-negative Borel matrices of sizes
m× n and m′ × n, respectively. Then we compare them as follows:

• If m < m′, then ψ � ψ′.
• Otherwise m = m′. Let s1 < · · · < sm be the pivots of ψ and let s′1 < · · · < s′m be
the pivots of ψ′. If {s1, . . . , sm} < {s′1, . . . , s′m} in lexicographic order, then ψ � ψ′.

• If m = m′ and the pivots of ψ and ψ′ are the same, then we compare their rows
lexicographically using the chosen ordering on Zn

≥0.

Then � extends the poset structure on |Sx|, so B+
Z is Gröbner. �

Corollary 13.1.2. If k is left-noetherian then Repk(B
+
Z ) is noetherian.

Theorem 13.1.3. If k is left-noetherian then Repk(BZ) is noetherian.

Proof. Let n be a non-negative integer, thought of as an object of BZ, and let Pn be the
principal projective module at n. We claim that given x =

∑r
i=1 aifi ∈ Pn(m), there exists

g ∈ EndB+
Z
(m) such that g · f1, . . . , g · fr are non-negative Borel matrices. We prove this

by induction on r. So let h ∈ EndB+
Z
(m) be such that h · f1, . . . , h · fr−1 are non-negative.

It is easy to find g ∈ EndB+
Z
(m) so that g · (h · fr) is non-negative: to construct g, we can

perform arbitrary non-negative upwards row operations, so we can use the pivots to increase
all negative values to non-negative ones. Then g · (h · fi) is non-negative for i < r since h · fi
is non-negative. This proves the claim.

Finally, pick a submodule M ⊆ Pn and pick generators x1, x2, . . . . By the claim, we
can replace each xi by yi, which is a linear combination of non-negative Borel matrices
so that y1, y2, . . . also generates M (xi and yi differ by an invertible operator). Then the
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B+
Z -submodule generated by y1, y2, . . . can be identified with a submodule for the princi-

pal projective of B+
Z and hence is noetherian by Corollary 13.1.2. We conclude that it is

generated by finitely many yi, say y1, . . . , yN . But then x1, . . . , xN generates M . �

Remark 13.1.4. The group ring k[GLn(Z)] is not noetherian for n ≥ 2, so this already
implies that Repk(VIZ) is not noetherian. We give a quick proof of this fact now.

Given a subgroup H ⊆ GLn(Z), we get a left ideal IH ⊂ k[GLn(Z)] which is the kernel
of the surjection k[GLn(Z)] → k[GLn(Z)/H]. Then H $ H ′ implies IH $ IH′ , so it suffices
to show that there is an infinite ascending chain of subgroups in GLn(Z). This follows from
the existence of free subgroups of rank 2 in GLn(Z) (for example, when n = 2, take the

subgroup generated by

(
1 2
0 1

)
and

(
1 0
2 1

)
). �

13.2. FIR-modules. Let k be a ring. Let (R, ε) be an augmented (k ⊗ kop)-algebra, that
is, a (k ⊗ kop)-algebra R equipped with a surjection of (k ⊗ kop)-algebras ε : R → k. Note
that if k is commutative, then a k-algebra structure on R is the same as a (k⊗kop)-algebra
structure. We let a be the kernel of ε, the augmentation ideal. For an R-module M we
let Γ(M) be the k-submodule of M annihilated by a. For a finite set x, we write R⊗x for
the x-fold tensor product of R (over k). If M is an R⊗y-module and x is a subset of y, we
write Γx(M) for the subspace of M annihilated by a⊗x.

An FIR-module is a rule M that attaches to every finite set x an R⊗x-module M(x) and
to every injection f : x → y of finite sets a map of R⊗x-modules f∗ : M(x) → Γy\f(x)(M(y))
such that (gf)∗ = g∗f∗ in the obvious sense. Here we regard Γy\f(x)(M(y)) as an R⊗x-
module via the homomorphism f∗ : R

⊗x → R⊗y. Note that we have not actually defined a
category FIR, but we still speak of FIR-modules. We write Repk(FIR) for the category of
FIR-modules. There are the usual notions of finite generation and noetherianity.

Let x be a finite set. We define the principal projective FIR-module at x by:

Px(y) =
⊕

f : x→y

(R⊗y/a⊗y\f(x)) · ef ,

where the sum is over injections f . Thus Px(y) is spanned by the ef , the annihilator of ef
is exactly a⊗y\f(x), and there are no other relations between the ef . Note that Px(x) has a
canonical element ex, corresponding to the identity map x→ x. The following result justifies
calling Px the principal projective at x:

Lemma 13.2.1. Let M be an FIR-module. Then the natural map HomFIR(Px,M) →M(x)
given by evaluating on ex is an isomorphism.

Proof. It is clear that ex generates Px, and so the map is injective. Conversely, suppose that
m is an element of M(x). Given an injection of finite sets f : x → y, the element f∗(m) of
M(y) is annihilated by a⊗y\f(x), by definition. We therefore have a well-defined map of R⊗y

modules Px(y) → M(y) given by ef 7→ f∗(m). One readily verifies that this defines a map
of FIR-modules taking ex to m, which establishes surjectivity of the map in question. �

The above lemma shows that the Px are projective, and that every finitely generated
FIR-module is a quotient of a finite direct sum of the Px’s. We now come to our main result:

Theorem 13.2.2. Suppose that R⊗n is left-noetherian for all n ≥ 0. Then Repk(FIR) is
noetherian.
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Proof. It suffices to show that the principal projective Px is noetherian. Let P ′
x : FI →

ModR⊗x be the principal projective representation of FI at x over the ring R⊗x. Thus P ′
x(y)

is the free R⊗x-module with basis HomFI(x, y). Suppose that f : x → y is an injection of
finite sets. Then f∗ induces an isomorphism f∗ : R

⊗x → R⊗y/a⊗y\f(x). It follows that there is
a natural isomorphism ϕy : P

′
x(y) → Px(y) given by λef 7→ f∗(λ)ef . One readily verifies that

if M is an FIR-submodule of Px then y 7→ ϕ−1
y (M(y)) is a subobject of P ′

x in the category
RepR⊗x(FI). The noetherianity of this category (Corollary 7.1.3) now implies that Px is
noetherian, which completes the proof. �

We now relate FIR-modules to FIG modules:

Proposition 13.2.3. Let G be a group and let R = k[G] be its group algebra (augmented in
the usual manner). Then Repk(FIR) is canonically equivalent to Repk(FIG).

Proof. Let M be an FIG-module. Then for each finite set x, we have a representation M(x)
of Gx, which can be thought of as an k[Gx] = R⊗x-module. Given an injection f : x → y of
finite sets, we have a map f∗ : M(x) → M(y) of k-modules. This map lands in the Gy\f(x)

invariants ofM(y), and is Gx equivariant when Gx acts on the target via the homomorphism
Gx → Gy induced by f . We therefore have a map M(x) → Γy\f(x)(M(y)) of R⊗x-modules.
This shows that giving an FIG-module is exactly the same as giving an FIR-module. �
Corollary 13.2.4. Let G be a group such that the group algebra k[Gn] is noetherian for all
n ≥ 0. Then Repk(FIG) is noetherian.

Recall that a group G is polycyclic if it has a finite composition series 1 = G0 ⊆ G1 ⊆
· · · ⊆ Gr = G such that Gi/Gi−1 is cyclic for i = 1, . . . , r, and it is polycyclic-by-finite
if it contains a polycyclic subgroup of finite index. It is known [Hal, §2.2, Lemma 3] that
the group ring of a polycyclic-by-finite group over a left-noetherian ring is left-noetherian
(there it is stated for the integral group ring, but the proof works for any left-noetherian
coefficient ring). In fact, there are no other known examples of noetherian group algebras,
but see [Iv] for related results. As the product of two polycyclic-by-finite groups is again
polycyclic-by-finite the above corollary gives:

Corollary 13.2.5. Let G be a polycyclic-by-finite group and let k be a left-noetherian ring.
Then Repk(FIG) is noetherian.

Remark 13.2.6. The proof of this corollary uses the fact that FI-modules over the non-
commutative ring k[Gn] are noetherian. This is the first real use of FI-modules over non-
commutative rings that we are aware of. �
Remark 13.2.7. Everything in this section also applies to FId-versions of the categories. �
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