
Subscriber access provided by MPI FUR BIOPHYS CHEM

Journal of Chemical Theory and Computation is published by the American Chemical

Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Article

GROMACS 4: Algorithms for Highly Efficient,
Load-Balanced, and Scalable Molecular Simulation

Berk Hess, Carsten Kutzner, David van der Spoel, and Erik Lindahl

J. Chem. Theory Comput., 2008, 4 (3), 435-447• DOI: 10.1021/ct700301q • Publication Date (Web): 02 February 2008

Downloaded from http://pubs.acs.org on March 23, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information

• Links to the 7 articles that cite this article, as of the time of this article download

• Access to high resolution figures

• Links to articles and content related to this article

• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ct700301q

GROMACS 4: Algorithms for Highly Efficient,

Load-Balanced, and Scalable Molecular Simulation

Berk Hess*

Max-Planck Institute for Polymer Research, Ackermannweg 10,

D-55128 Mainz, Germany

Carsten Kutzner

Department of Theoretical and Computational Biophysics, Max-Planck-Institute of

Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany

David van der Spoel

Department of Cell and Molecular Biology, Uppsala UniVersity, Husargatan 3,

Box 596, SE-75124 Uppsala, Sweden

Erik Lindahl

Stockholm Center for Biomembrane Research, Stockholm UniVersity,

SE-10691 Stockholm, Sweden

Received November 7, 2007

Abstract: Molecular simulation is an extremely useful, but computationally very expensive tool

for studies of chemical and biomolecular systems. Here, we present a new implementation of

our molecular simulation toolkit GROMACS which now both achieves extremely high performance

on single processors from algorithmic optimizations and hand-coded routines and simultaneously

scales very well on parallel machines. The code encompasses a minimal-communication domain

decomposition algorithm, full dynamic load balancing, a state-of-the-art parallel constraint solver,

and efficient virtual site algorithms that allow removal of hydrogen atom degrees of freedom to

enable integration time steps up to 5 fs for atomistic simulations also in parallel. To improve the

scaling properties of the common particle mesh Ewald electrostatics algorithms, we have in

addition used a Multiple-Program, Multiple-Data approach, with separate node domains

responsible for direct and reciprocal space interactions. Not only does this combination of

algorithms enable extremely long simulations of large systems but also it provides that simulation

performance on quite modest numbers of standard cluster nodes.

I. Introduction

Over the last few decades, molecular dynamics simulation

has become a common tool in theoretical studies both of

simple liquids and large biomolecular systems such as

proteins or DNA in realistic solvent environments. The

computational complexity of this type of calculations has

historically been extremely high, and much research has

therefore focused on algorithms to achieve single simulations

that are as long or large as possible. Some of the key early

work was the introduction of holonomic bond length

constraints1 and rigid-body water models2,3 to enable longer

integration time steps. However, one of the most important

general developments in the field was the introduction of

parallel molecular simulation implementations during the late

435J. Chem. Theory Comput. 2008, 4, 435-447

10.1021/ct700301q CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/02/2008

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-000.png&w=313&h=50

1980s and early 1990s.4-7 The NAMD program by the

Schulten group8 was the first to enable scaling of large

molecular simulations to hundreds of processors, Duan and

Kollman were able to complete the first microsecond

simulation of a protein by creating a special parallel version

of Amber, and more recently Fitch et al. have taken scaling

to the extreme with their BlueMatter code which can use all

tens of thousands of nodes on the special BlueGene

hardware.9

On the other hand, an equally strong trend in the field has

been the change of focus to statistical properties like free

energy of solvation or binding of small molecules and, e.g.,

protein folding rates. For this class of problems (limited by

sampling) the main bottleneck is single-CPU performance,

since it is typically always possible to achieve perfect scaling

on any cluster by starting hundreds of independent simula-

tions with slightly different initial conditions. This has always

been a central theme in GROMACS development and

perhaps best showcased by its adoption in the Folding@Home

project, where it is running on hundreds of thousands of

independent clients.10 GROMACS achieves exceptional

single-CPU performance because of the manually tuned SSE,

SSE2, and ALTIVEC force kernels, but there are also many

algorithmic optimizations, for instance single-sum virials and

strength-reduced algorithms to allow single-precision float-

ing-point arithmetic in all places where it still conserves

energy (which doubles memory and cache bandwidth).11,12

In the benchmark section we show that GROMACS in single

precision matches the energy conservation of a double

precision package.

Unfortunately it is far from trivial to combine raw single-

CPU performance and scaling, and in many cases there are

inherent tradeoffs. It is for instance straightforward to

constrain all bond lengths on a single CPU, but in parallel it

is usually only applied to bonds involving hydrogens to avoid

(iterative) communication, which in turn puts a lower limit

on the possible time step.

In this paper, we present a completely reworked parallel-

ization algorithm that has been implemented in GROMACS.

However, rather than optimizing relative scaling over N

CPUs we have focused on (i) achieving the highest possible

absolute performance and (ii) doing so on as few processors

as possible since supercomputer resources are typically

scarce. A key challenge has therefore been to make sure all

algorithms used to improve single-CPU performance through

longer time steps such as holonomic bond constraints,

replacing hydrogens with virtual interaction sites,13 and

arbitrary triclinic unit cells also work efficiently in parallel.

GROMACS was in fact set up to run in parallel on 10Mbit

ethernet from the start in 19927 but used a particle/force

decomposition that did not scale well. The single-instruction-

multiple-data kernels we introduced in 2000 made the relative

scaling even worse (although absolute performance improved

significantly), since the fraction of remaining time spent on

communication increased. A related problem was load

imbalance; with particle decomposition one can frequently

avoid imbalance by distributing different types of molecules

uniformly over the processors. Domain decomposition, on

the other hand, requires automatic load balancing to avoid

deterioration of performance. This load imbalance typically

occurs in three cases: The most obvious reason is an uneven

distribution of particles in space, such as a system with a

liquid-vapor coexistence. A second reason is imbalance due

to different interaction densities. In biomolecular systems

the atom density is usually nearly uniform, but when a united-

atom forcefield is used hydrocarbon segments (e.g., in lipid

chains) have a three times lower particle density and these

particles have only Lennard-Jones interactions. This makes

the computation of interactions of a slab of lipids an order

of magnitude faster than a slab of water molecules. Interac-

tion density imbalance is also an issue with all-atom force

fields in GROMACS, since the program provides optimized

water-water loops for standard SPC/TIP3P/TIP4P waters

with Lennard-Jones interactions only on the oxygens.2,3 (In

principle it is straightforward to introduce similar optimiza-

tion for the CHARMM-style modified TIP water models with

Lennard-Jones interactions on the hydrogens too, but since

there is no clear advantage from the extra interactions we

have not yet done so.) A third reason for load imbalance is

statistical fluctuation of the number of particles in a domain

decomposition cell. This primarily plays a role when cells

only contain a few hundred atoms.

Another major issue for simulation of large molecules such

as proteins was the fact that atoms connected by constraints

could not be split over processors (holonomic constraints) a

problem shared with all other biomolecular simulation

packages (the alternative being shorter time-steps, possible

coupled with multiple-time-step integration). This issue is

more acute with domain decomposition, since even small

molecules in general do not reside in a single domain.

Finally, the last challenge was the nonimpressive scaling

of the Particle Mesh Ewald (PME) electrostatics14 as

implemented in the previous GROMACS version. Since

PME involves two 3D fast Fourier transforms (FFTs), it

requires global all-to-all communication where the number

of messages scale as the square of the number of nodes

involved. There have been several attempts at parallelizing

PME using iterative solvers instead of using FFTs. A

different algorithm that reduces communication is fast

multipole expansion.15 However, presently none of these

methods combine the efficiency of PME using FFTs with

good scaling up to many processors.

We have addressed these four issues by devising an eighth-

shell domain decomposition method coupled to a full

dynamic load-balancing algorithm with a minimum amount

of communication, a parallel version of the constraint

algorithm LINCS that enables holonomic constraints without

iterative communication, and splitting off the PME calcula-

tion to dedicated PME processors. These four key advances

will be described in the next three sections, followed by a

description of other new features and a set of benchmarks

to illustrate both absolute performance and relative scaling.

II. Domain Decomposition

Recently, the D. E. Shaw group has performed several studies

into general zonal methods16 for parallelization of particle-

based interactions. In zonal (or neutral territory) methods,

forces between particles i and j are not necessarily calculated

436 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

on a processor where either of particles i or j resides.

Somewhat paradoxically, such methods can be significantly

more efficient than traditional domain decomposition meth-

ods since they reduce the total amount of data communicated.

Two methods achieve the least communication when the

domain size is not extremely small compared to the cutoff

radius; these two methods were termed eighth shell17 and

midpoint methods18 by Shaw and co-workers. In the half shell

method, interactions between particle i and j are calculated

in the cell where i or j resides. The minimum communication

required for such a method is half of the volume of a

boundary of a thickness equal to the cutoff radius. The eighth

shell method improves on this by also calculating interactions

between particles that reside in different communicated

zones. The communicated volume of the eighth shell method

is thus a subset of that of the half shell method, and it also

requires less communication steps which helps reduce

latency.

The basic eighth shell method was already described in

1991 by Liem et al.,19 who implemented communication with

only nearest neighbors. In GROMACS 4 we have extended

this method for communication with multiple cells and

staggered grids for dynamic load balancing. The Shaw group

has since chosen to use the midpoint method in their

Desmond code since it can take advantage of hardware where

each processor has two network connections that simulta-

neously send and receive. After quite stimulating discussions

with the Shaw group we chose not to switch to the midpoint

method, primarily not only because we avoid the calculation

of the midpoint, which has to be determined binary identi-

cally on multiple processors, but also because not all

hardware that GROMACS will run on has two network

connections. With only one network connection, a single pair

of send and receive calls clearly causes less latency than

two such pairs of calls.

Before going into the description of the algorithm, the

concept of charge groups needs to be explained; these were

originally introduced to avoid electrostatic artifacts. By

grouping several partially charged atoms of a chemical group

into a neutral charge group, charge-charge interactions

entering and leaving the cutoff are effectively replaced by

short-range dipole-dipole interactions. The location of a

charge group in GROMACS is given by the (non-mass-

weighted) average of the coordinates of the atoms. With the

advent of the PME electrostatics method this is no longer

an issue. But charge groups can also speed up the neighbor

search by an order of magnitude; given a pair of water

molecules for instance, we only need to determine one

distance instead of nine (or sixteen for a four-site water

model). This is particularly important in GROMACS since

the neighbor searching is much slower than the force loops,

for which we typically use tuned assembly code. Since charge

groups are used as the basic unit for neighbor searching, they

also need to be the basic unit for the domain decomposition.

In GROMACS 4, the domains are rebuilt every time neighbor

searching is performed, typically every 10 steps.

The division of the interactions among processors is

illustrated in Figure 1. Consider the processor or cell that

has the charge groups in zone 0 as home charge groups, i.e.,

it performs the integration of the equations of motion for

the particles in these charge groups. In the eighth shell

method each cell should determine the interactions between

pairs of charge groups of which, for each dimension, the

minimum cell index of the two charge groups corresponds

to the index of that cell. This can be accomplished by the

following procedure. Cell 0 receives the coordinates of the

particles in the dashed zones 1 to 7, by communication only

in one direction for each dimension. When all cells dimen-

sions are larger than the cutoff, each zone corresponds to

part of a single, neighboring cell. But in general many cells

can contribute to one zone. Each processor calculates the

interactions between charge groups of zone 0 with zones 0

to 7, of zone 1 with zones 3 to 6, of zone 2 with zone 5, and

of zone 3 with zones 5 and 6. If this procedure is applied

for all processors, all pair interactions within the cutoff radius

are calculated.

Interactions involving three or more atoms cannot be

distributed according to the scheme described above. Bonded

interactions are distributed over the processors by finding

the smallest x, y, and z coordinate of the charge groups

involved and assigning the interaction to the processor with

the home cell where these smallest coordinates residesnote

that this does not require any extra communication between

the processors. This procedure works as long as the largest

distance between charge groups involved in bonded interac-

tions is not larger than the smallest cell dimension. To check

if this is the case, we count the number of assigned bonded

interactions during domain decomposition and compare it

to the total number of bonded interactions in the system.

When there are only two cells in a certain dimension and

the corresponding box length is smaller than four times the

cutoff distance, a cutoff criterion is required for any pair of

particles involved to avoid that bonded interactions are

assigned to multiple cells. Unlike the midpoint method, this

procedure limits the distances involved in bonded interactions

to the smallest cell dimension. For atomistic simulations this

is not an issue, since distances in bonded interactions are

usually smaller than 0.5 nm, leading to a limit of 10 to 20

atoms per cell, which is beyond the scaling of GROMACS

4. For coarse-grained simulations bonded distances can be

larger, but because of the lower interaction density this also

does not limit the scaling.

For full dynamic load balancing the boundaries between

cells need to be adjusted during the simulation. For 1D

Figure 1. A nonstaggered domain decomposition grid of 3

× 2 × 2 cells. Coordinates in zones 1 to 7 are communicated

to the corner cell that has its home particles in zone 0. rc is

the cutoff radius.

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 437

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-001.png&w=104&h=112

domain decomposition this is trivial, but for a 3D decom-

position the cell boundaries in the last two dimensions need

to be staggered along the first dimensions to allow for

complete load balancing (see the next section for details).

Figure 2 shows the communicated zones for 2D domain

decomposition in the most general case, namely a triclinic

unit cell with dynamic load balancing. Zones 1, 2, and 3

indicate the parts of neighboring cells that are within the

nonbonded cutoff radius rc of the home cell of zone 0.

Without dynamic load balancing this is all that would need

to be communicated to the processor of zone 0. With

dynamic load balancing the staggering can lead to an extra

volume 3′ that needs to be communicated, due to the

nonbonded interactions between cells 1 and 3 which should

be calculated on the processor of cell 0. For bonded

interactions, zones 1 and 2 might also require expansion.

To ensure that all bonded interaction between charge groups

can be assigned to a processor, it is sufficient to ensure that

the charge groups within a sphere with a radius rb, the cutoff

for bonded interactions, are present on at least one processor

for every possible center of the sphere. In Figure 2 this means

we also need to communicate volume 2′. When no bonded

interactions are present between charge groups, such volumes

are not communicated. For 3D domain decomposition the

picture becomes quite a bit more complicated, but the

procedure is analogous apart from more extensive book-

keeping. All three cases have been fully implemented for

general triclinic cells. GROMACS 4 does not (yet) take full

advantage of the reduction in the communication due to

rounding of the zones. Currently zones are only rounded in

the ‘forward’ directions, for example part 3′ in Figure 2 is

replaced by the smallest parallelogram enclosing it.

The communication of the coordinates and charge group

indices can be performed efficiently by ‘pulsing’ the

information in one direction simultaneously for all cells one

or more times. This needs to be repeated for each dimension.

The number of pulses np in a dimension is given by the cutoff

length in that direction divided by the minimum cell size.

In most cases np will be one or two. Consider a 3D domain

decomposition where we decompose in the order x, y, z;

meaning that the x boundaries are aligned, the y boundaries

are staggered along the x direction, and the z boundaries are

staggered along the x and y directions. Each processor first

sends the zone that its neighboring cell in -z needs to this

cell. This process is done np(z) times. Now each processor

can send the zone its neighboring cell in -y needs, plus the

part of the zone it received from +z, that is also required by

the neighbor in -y. The last step consists of np(x) pulses in

-x where (parts of) 4 zones are sent over. In this way np(x)

+ np(y) + np(z) communication steps are required to

communicate with np(x) × np(y) × np(z) - 1 processors,

while no information is sent over that is not directly required

by the neighboring processors. The communication of the

forces happens according to the same procedure but in

reversed order and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from atoms

in other charge groups. This is used in some polymer

(anisotropic united atom) force fields, but GROMACS can

also employ virtual sites to entirely remove hydrogen

vibrations and construct the hydrogens in their equilibrium

positions from neighboring heavy atoms each time step.13

Since the constructing atoms are not necessarily interacting

on the same node, we have to track the virtual site coordinate

dependencies separately to make sure they are both available

for construction and that forces are properly communicated

back. The communication for virtual sites is also performed

with pulses but now in both directions. Here only one pulse

per dimension is required, since the distances involved in

the construction of virtual sites are at most two bond lengths.

III. Dynamic Load Balancing

Calculating the forces is by far the most time-consuming

part in MD simulations. In GROMACS, the force calculation

is preceded by the coordinate communication and followed

by the force communication. We can therefore balance the

load by determining the time spent in the force routines on

each processor and then adjusting the volume of every cell

in the appropriate direction. The timings are determined using

inline assembly hardware cycle counters and supported for

virtually all modern processor architectures. For a 3D

decomposition with order x, y, z the load balancing algorithm

works as follows: First the timings are accumulated in the

z direction to the processor of cell z) 0, independently for

each x and y row. The processor of z) 0 sums these timings

and sends the sum to the processor of y) 0. This processor

sums the timings again and sends the sum to the processor

of x) 0. This processor can now shift the x boundaries and

send these to the y) 0 processors. They can then determine

the y boundaries, send the x and y boundaries to the z) 0

processors, which can then determine z boundaries, and send

all boundaries to the processors along their z row. With this

procedure only the necessary information is sent to the

processors that need it and global communication is avoided.

As mentioned in the Introduction, load imbalance can

come from several sources. One needs to move boundaries

in a conservative fashion in order to avoid oscillations and

instabilities, which could for instance occur due to statistical

fluctuations in the number of particles in small cells.

Empirically, we have found that scaling the relative lengths

of the cells in each dimension with 0.5 times the load

Figure 2. The zones to communicate to the processor of

zone 0, see the text for details. rc and rb are the nonbonded

and bonded cutoff radii, respectively, and d is an example of

a distance between following, staggered boundaries of cells.

438 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-002.png&w=174&h=135

imbalance, and a maximum scaling of 5%, produced efficient

and stable load balancing. For large numbers of cells or

inhomogeneous systems two more checks are required: A

first restriction is that boundaries should not move more than

halfway an adjacent cell (where instead of halfway one could

also choose a different value). This prevents cells from

moving so far that a charge group would move two cells in

a single step. It also prevents load balancing issues when

there are narrow zones of high density in the system. A

second problem is that due to the staggering, cell boundaries

along neighboring rows could shift to such an extent that

additional cells would enter the cutoff radius. For load

balanced simulations the user can set the minimum allowed

cell size, and by default the nonbonded cutoff radius is used.

The distance between following, staggered cell boundaries

(as indicated by d in Figure 2) should not be smaller than

this minimum allowed cell size. To ensure this, we limit the

new position of each boundary to the old limit plus half the

old margin. In this way we make sure that one boundary

can move up and independently an adjacent staggered

boundary can move down, without extra communication. The

neighboring boundaries are communicated after load balanc-

ing, since they are needed to determine the zones for

communication. When pressure scaling is applied, the limits

are increased by 2% to allow the system to adjust at the

next domain decomposition before hitting the cutoff restric-

tions imposed by the staggering.

In practical tests, load imbalances of a factor of 2 on

several hundreds of processors were reduced to 2% after a

few load balancing steps or a couple of seconds of simulation

time.

IV. Parallel Holonomic Constraints

There are two strong reasons for using constraints in

simulations: First, a physical reason that constraints can be

considered a more faithful representation of chemical bonds

in their quantum mechanical ground state than a classical

harmonic potential. Second, a practical reason because rapid

bond vibrations limit the time step. Removing these vibra-

tions by constraining the bonds thus allows us to increase

the time step and significantly improve absolute simulation

performance. A frequently used rule-of-thumb is 1 fs without

constraints, 1.4 fs with bonds to hydrogens constrained, and

2 fs when all bonds are constrained. Unfortunately, the

common SHAKE1 constraint algorithm is iterative and

therefore not very suitable for parallelizationsin fact, there

has previously not been any efficient algorithm that could

handle constraints connected over different processors due

to domain decomposition. Most biomolecular packages

therefore use constraints only for bonds involving hydrogens.

By default, GROMACS uses a noniterative constraints

algorithm called LINear Constraint SolVer (LINCS), which

proved much easier to fully parallelize as hinted already in

the original paper.20 The details of the parallel LINCS

algorithm P-LINCS are described elsewhere,21 so we will

only give a brief overview here. In the algorithm, the range

of influence of coupled constraints is set by the order of the

expansion for the matrix inversion. It is only necessary to

communicate a subset of the old and new unconstrained

coordinates between neighboring cells before applying the

constraints. The atoms connected by up to “one plus the

expansion order” bonds away need to be communicated. We

can then constrain the local bonds plus the extra bonds. The

communicated atoms will not have the final correctly

constraint positions (since they interact with additional

neighbors), but the local atoms will. The beauty of the

algorithm is that normal molecular simulation only requires

a first, linear correction and a single iterative step. In both

these steps updated positions are communicated and adjust-

ment forces calculated locally. The constraint communication

can be accomplished with a single forward and backward

pulse of the decomposition grid in each dimension, similar

to the domain decomposition communication. The results

of P-LINCS in GROMACS are binary identical to those of

the single processor version.

In principle a similar method could be used to parallelize

other constraint algorithms. However, apart from multiple

communication steps for iterative methods such as SHAKE,1

another problem is that one does not know a priori which

atoms need to be communicated, because the number of

iterations is not fixed. To our best knowledge, this is the

first efficient implementation of an holonomic constraint

algorithm for domain decomposition.21

The accuracy of the velocities of constrained particles has

further been improved both for LINCS and SHAKE using a

recently described procedure based on Lagrange multipliers.22

For SETTLE23 we have applied the slightly less accurate

method of correcting the velocities with the position cor-

rections divided by the time step. These changes significantly

improve long-term energy conservation in GROMACS, in

particular for single precision simulations.21 With domain

decomposition, SHAKE and SETTLE can only be used for

constraints between atoms that reside in the same charge

group. SETTLE is only used for water molecules though,

which are usually a single charge group anyway.

The virtual interaction sites described earlier require rigid

constraint constructs, and the implementation of parallel

holonomic constraints was therefore critical to enable virtual

sites with parallel domain decomposition. This enables the

complete removal of hydrogen angle vibrations, which is

normally the next fastest motion after bond length oscilla-

tions. Full rotational freedom of CH3/NH2/NH3 groups is still

maintained by using dummy mass sites,13 which enables time

steps as long as 5 fs. It has been shown that removing the

angle vibrations involving hydrogens has a minor effect on

the geometry of intraprotein hydrogen bonds and that

properties such as the number of hydrogen bonds, dihedral

distributions, secondary structure, and rmsd are not affected.13

Note that simply constraining all angles involving hydrogens

effectively also constrains most of the other angles in a

molecule, which would affect the dynamics of molecules

significantly.24 In contrast, replacing hydrogens by virtual

interaction sites does not affect the angular degrees of

freedom involving heavy atoms. This hydrogen-removal

procedure generates uncoupled angle constraints for hydro-

gens in alcohol groups. These angle constraints converge

twice as slow in LINCS as normal constraints. To bring the

accuracy of uncoupled angle constraints up to that of bond

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 439

constraints, the LINCS expansion order for angle constraints

has been doubled (see the P-LINCS paper21 for details). In

the benchmark section we show that a time step of 4 fs does

not deteriorate the energy conservation.

V. Optimizing Memory Access

The raw speed of processors in terms of executing instruc-

tions has increased exponentially with Moore’s law. How-

ever, the memory access latency and bandwidth has not kept

up with the instruction speed. This has been partially

compensated by added fast cache memory and smart caching

algorithms. But this only helps for repeated access of small

blocks of memory. Random access of large amounts of

memory has become relatively very expensive. In molecular

dynamics simulations of fluid systems, particles diffuse over

time. So even when starting out with an ordered system, after

some time particles that are close in space will no longer be

close in memory. This results in random memory access

through the whole coordinate array during the neighbor

search, force calculation, and the PME charge and force

assignment. Meloni et al. have shown that spatially ordering

atoms can significantly improve performance for a Lennard-

Jones system.25

We have implemented a sorting scheme that improves

upon that of Meloni et al. by ordering the charge groups

according to their neighbor search cell assignment. Ordering

using the neighbor search cell assignment provides the

optimal memory access order of atoms during the force

calculations. In this way, nearly all coordinates in memory

are used along a cell row with a fixed minor index. For major

indices there are some jumps, but the number of jumps is

now the number of different major row indices instead of

the number of charge group pairs. Effectively each part of

the coordinate array needs to be read from memory to cache

only once, instead M2 times where M is the total number of

charge groups divided by the number of charge groups that

fit in cache. This approach requires that the charge groups

are resorted at every step where neighbor searching is

performed. For optimal performance with PME, the major

and minor dimensions for the indexing of the neighbor search

cells and the PME grid should match.

A second reason for ordering is to allow for exact

rerunning of part of a simulation. Due to the domain

decomposition the order of the local charge groups on each

processor changes. This order affects the rounding of the

least significant bit in the summation of forces. To exactly

reproduce part of a simulation the local atom order should

be reproducible when restarting at any point in time. To

define a unique order, we sort the charge groups within each

neighbor search cell according to the order in the topology.

Since charge groups only move a short distance between

neighbor list updates, few particles cross cell boundaries,

and the sorting can be done efficiently with a linear

algorithm.

Optimization of memory access becomes particularly

important in combination with the assembly kernels, since

the SIMD instructions are extremely fast and therefore

memory access can be a significant bottleneck. To quantify

this we have simulated a 2 M NaCl(aq) solution26 using

SPC/E water27 with reaction-field and PME electrostatics.

The effect of the sorting is shown in Table 1. The sorting

ensures a nearly constant performance, independent of the

system size. Without sorting there is a 10% performance

degradation at 104 atoms per core and a factor of 2 at 2-3

× 105 atoms. For a Lennard-Jones system of 105 atoms the

difference is a factor of 4. Note that sorting actually decreases

the scaling efficiency with the number of processors, since

for low parallelization (more atoms per processor) the

absolute performance increases more than for high parallel-

ization, but it obviously always helps absolute performance.

VI. Multiple-Program, Multiple-Data PME
Parallelization
The typical parallelization scheme for molecular simulation

and most other codes today is Single-Program, Multiple-

Data (SPMD) where all processors execute the same code

but with different data. This is an obvious solution to

decompose a system containing hundreds of thousands of

similar particles. However, particularly for the now ubiqui-

tous PME algorithm this approach has some drawbacks:

First, the direct space interactions handled through classical

cutoffs and the reciprocal space lattice summation are really

independent and could be carried out in parallel rather than

partitioning smaller work-units over more processors. Sec-

ond, the scaling of PME is usually limited by the all-to-all

communication of data during the parallel 3D FFT.28 While

the total bandwidth is constant, the number of messages and

latencies grow as N2, where N is the number of nodes over

which the FFT grid is partitioned.

Apart from rewriting and tuning the parallel PME algo-

rithm to support domain decomposition, we have addressed

this problem by optionally supporting Multiple-Program,

Multiple-Data (MPMD) parallelization where a subset of

processors are assigned as dedicated PME processors, while

the direct space interactions and integration are domain

decomposed over the remaining processors. On most net-

works the newly added communication step between real

and reciprocal space processors is more than compensated

by better 3D FFT scaling when the number of nodes involved

in the latter is reduced a factor of 3-4. The optimal ratio

for real space to reciprocal processors is usually between

2:1 and 3:1. Good load balancing for a given ratio can be

reached by moving interactions between direct and reciprocal

space to ensure load balance, as long as the real space cutoff

and grid cell size are adjusted by the same factor the overall

accuracy remains constant.14 In future versions of GRO-

MACS this procedure may be automated.

Table 1. Number of MD Steps per Second with and

without Spatial Sorting of Charge Groupsa

number of atoms per core

sorting electrostatics 1705 8525 34100 272800

yes reaction field 241 48.5 11.9 1.39

no reaction field 238 44.0 9.6 0.60

yes PME 102 22.5 5.4 0.61

no PME 101 20.6 4.8 0.33

a As a function of the number of atoms per core for a 2 M NaCl(aq)
solution on a 2.2 GHz AMD64 CPU.

440 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

We assume that the PME processor count is never higher

than the number of real space processors. In general, each

PME processor will receive coordinates from a list of real

space peers, after which the two sets of nodes start working

on their respective (separate) domains. The PME processors

communicate particle coordinates internally if necessary,

perform charge spreading on the local grid, and then

communicate overlapping grid parts with the PME neighbors.

The actual FFT/convolution/iFFT is performed the standard

way but now involving much fewer nodes. After force

interpolation the forces corresponding to grid overlap are

communicated to PME neighbors again, after which we

synchronize and send communicate all forces back to the

corresponding real space processors (energy and virial terms

only need to be communicated to one of the processors).

With current multicore processors and multisocket moth-

erboards the MPMD approach is particularly advantageous.

The costly part is the redistribution of the 3D FFT grid, which

is done twice for the forward and twice for the backward

transform. This redistribution requires simultaneous com-

munication between all PME nodes, which occurs when the

real space nodes are not communicating, and to make use

of this GROMACS interleaves the PME processors with the

real space processors on nodes. Thus, on a machine where

two cores share a network connection, with MPMD only

one PME process uses a single network connection instead

of two PME processes, and therefore the communication

speed for the 3D FFT is doubled. For a real space to PME

processor ratio of 3:1, with four cores sharing a network

connection, MPMD quadruples the communication speed for

the 3D FFT, while simultaneously decreasing the number

of process pairs that need to exchange FFT grid information

by a factor 16.

VII. The MD Communication

Previous GROMACS versions used a ring communication

topology, where half of the coordinates/forces were sent over

half the ring. To be frank, the only thing to be said in favor

of that is that it was simple. Figure 3 shows a flowchart of

the updated communication that now relies heavily on

collective and synchronized communication calls available,

e.g., in MPI. Starting with the direct space domain (left),

each node begins by communicating coordinates necessary

to construct virtual sites and then constructs these. At the

main coordinate communication stage, data are first sent to

peer PME nodes that then begin their independent work. In

direct space, neighboring nodes exchange coordinates ac-

cording to the domain decomposition, calculate interactions,

and then communicate forces. Since the PME virial is

calculated in reciprocal space, we need to calculate the direct

space virial before retrieving the forces from the PME nodes.

Finally, the direct space nodes do integration, parallel

constraints (P-LINCS), and energy summation. The recipro-

cal domain nodes start their work when they get updated

coordinates from their peer direct space nodes and exchange

data with their neighbors to achieve a clean 1D decomposi-

tion of the charge grid. After spreading the charges the

overlapping parts are communicated and summed, and 3D

FFT, convolution, and 3D inverse FFT are performed in

parallel. Finally local forces are interpolated, communicated

back to the correct PME processor, and sent back to the direct

space processor it came from. Whenever possible we use

collective MPI operations, e.g., to enable binary-tree sum-

mation, and pulsing operations use combined send-receive

operations to fully utilize torus networks present on hardware

such as IBM BlueGene or Cray XT4.

VIII. Other New Features

Previously, GROMACS only supported neighbor list updates

at fixed intervals, but the use of potentials that are switched

exactly to zero at some finite distance is increasing, mainly

to avoid cutoff effects. To be sure that no interaction is

missed, the neighbor list can be updated heuristically in

GROMACS 4. The neighbor list is then updated when one

or more atoms have moved a distance of more than half the

buffer size from the center of geometry of the charge group

they belong to, as determined at the last neighbor search (note

that without charge groups this is just the position of the

atom at the last neighbor search). Coordinate scaling due to

pressure coupling is taken into account.

GROMACS can now also be used very efficiently for

coarse-grained simulations (see benchmarks section) or many

nonstandard simulations that require special interactions. User

defined nonbonded interactions that can be assigned inde-

pendently for each pair of charge groups were already

supported, and we have now additionally implemented user

defined bonds, angles, and dihedrals functions. Thus, a user

now has full control over functional form as well as the

parameters of all interactions. Just as for the tabulated

nonbonded interactions, cubic spline interpolation is used,

which provides continuous and consistent potentials and

forces.

In addition to systems without periodic boundaries and

with full 3D periodicity, systems with only 2D periodicity

in x and y are now also supported. The 2D periodicity can

be combined with one or two uniform walls at constant-z

planes. The neighbor searching still uses a grid for dimen-

sions x and y and with two walls, also in z, for optimal

efficiency. The walls are represented by a potential that works

only in the z-direction, which can be, e.g., 9-3, 10-4, or a

user defined tabulated potential, with coefficients set indi-

vidually for each atom type.

Restraining (using an umbrella potential) or constraining

the center(s) of mass of a group or groups of atoms can now

be done in parallel. One can restrain or constrain absolute

positions or relative distances between groups. The center

of mass of a group of atoms can be ill-defined in a periodic

system. To determine the center of mass a reference atom is

chosen for each group. The center of mass of each group

relative to its reference atom is then determined, and the

position of the reference atom is added to obtain the center

of mass position. This provides a unique center of mass, as

long as all atoms in the group are within half the smallest

box dimension of the reference atom. Since there are no a

priori limits on the distances between atoms in a group,

global communication is required. There are two global

communication steps: one to communicate the reference

atom positions and one to sum the center of mass contribu-

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 441

tions over the cells. The restraint or constraint force

calculation can then be performed locally.

IX. Benchmarks

The presented benchmarks were performed in the NVT

ensemble, using a reversible Nosé-Hoover leapfrog integra-

tor,29 single precision and dynamic load balancing, unless

stated otherwise. Single precision position, velocity and force

vectors, combined with some essential variables in double

precision is accurate enough for most purposes. In the

P-LINCS paper21 it is shown that with single precision and

the constraint velocity correction using the Lagrange mul-

tipliers, the energy drift can be reduced to a level unmea-

surable over 1 nanosecond. If required, GROMACS can also

be compiled in full double precision.

First we will examine the scaling of the basic domain

decomposition code, without communication for constraints

and virtual sites. To illustrate the basic scaling for all-atom

type force fields, we used an OPLS all-atom methanol

model,30 which leads to an interaction density close to that

inside a protein. The results for weak scaling, i.e., when the

system size grows proportionally with the number of CPUs,

Figure 3. Flowchart for a typical simulation step for both particle and PME nodes. Shaded boxes involve communication, with

gray arrows indicating whether the communication only involves similar types of nodes or synchronization between the two

domains.

442 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-003.jpg&w=321&h=521

are shown in Table 2. With reaction-field electrostatics the

computational part of the code scales completely linear.

When going from 1 to 2 or 8 cores frequently superlinear

scaling can be observed, this is primarily because the charge

group sorting is not implemented for single processor

simulations. Without PME, the scaling is close to linear,

unlike GROMACS 3.3 which already slows down by a factor

of 3 on 32 cores. The small drop in performance at 128

processors is caused by the local coordinate and force

communication, especially in double precision, and by the

global communication for the summation of energies, which

is required for temperature coupling. The time spent in the

summation increases with the number of processors, since

there are more processors to sum over. Unfortunately MPI

implementations are often not optimized for the currently

typical computing clusters: multiple cores sharing a network

connection. With MVAPICH2 on 16 nodes with 4 cores

each, the MPI_Allreduce () call takes 120 µs; when we

replaced this single call by a two-step procedure, first within

each node and then between the nodes, the time is reduced

to 90 µs. This global communication is unavoidable for any

algorithm that uses global temperature and/or pressure

coupling, but the severity depends on the MPI implementa-

tion quality. With PME electrostatics linear scaling is

impossible, since PME inherently scales as N log(N).

However, in practice the scaling of PME is limited more by

the communication involved in the 3D-FFT. However, as

evident from Table 2, scaling with PME is still very good,

particularly when the high absolute performance is taken into

account. Furthermore the difference between 2 and 4 cores

per node is quite small. This is because for the communica-

tion between the PME processes there is no difference in

network speed, as in both cases there is only one PME

process per node. With 4 cores per node the real space

process to PME process communication all happens within

nodes. When one puts the real space and PME processes on

separate nodes, the performance with 32 processes decreases

by 16%, mainly because each PME process needs to

communicate over the network with 3 real space processes

while sharing its network connection with 3 other PME

processes. Without the MPMD PME implementation the

scaling would be much worse, since the FFT grid would need

to be redistributed over 4 times as many processors. Still,

the 3D-FFT algorithm is one of the points we will focus

future performance work on. When switching from single

to double precision the performance is reduced by a factor

of 1.6. This is not due to the higher cost of the floating point

operations but more due to doubling of the required memory

bandwidth, both for the force computation and the com-

munication. The PME mesh part becomes relatively cheaper

in double precision; therefore, one could optimize the

simulation setup to obtain a slightly higher performance. This

has not been done for this benchmark.

To illustrate strong scaling we used the same methanol

system mentioned before with 1200 molecules as well as a

3000 SPC/E water27 system. For water with reaction field

the scaling is nearly linear up to 2000 MD steps per second,

where there are 200 atoms per core (Figure 4). Without PME,

the main bottleneck is the summation of energies over all

the processors. For the 3000 water system, the summation

of energies over 64 cores takes 17% of the total run time.

Water runs about twice as fast as methanol, due to the

optimized SSE water loops. With PME, methanol scales in

the same way but at about 2/3 of the absolute speed of the

reaction-field simulations. In contrast to weak scaling, the

relative cost of the latency in the coordinate and force

communication increases linearly with the number of proces-

sors. However, the summation of the energies is still the final

bottleneck, since the relatiVe cost of this operation increases

faster than linear. Thus, the current limit of about 200 atoms

per core is due to the communication latency of the

Infiniband network.

It is impossible to quantify the general GROMACS

performance for coarse-grained systems, since the different

levels and ways of coarse-graining lead to very different

types of models with different computational demands. Here,

we chose a coarse-grained model for polystyrene that uses

Table 2. Performance in MD Steps per Second for 200

Methanol Molecules (1200 Atoms) per Corea

number of cores

elec. prec. CPU GHz cpn 1 2 8 32 128

S AMD 2.2 8 167 168 166

RF S Intel 2.33 8 211 216 214

S Intel 3.0 4 274 281 277 265 237

S Intel 3.0 2 274 281 284 284 274

RF3 S Intel 3.0 4 272 274 208 87 44

RF D Intel 3.0 4 167 169 159 144 123

D Intel 3.0 2 167 169 165 161 153

S AMD 2.2 8 103 101 98

PME S Intel 2.33 8 128 127 122

S Intel 3.0 4 172 172 156 150 134

S Intel 3.0 2 172 172 162 152 145

PME D Intel 3.0 4 112 110 95 90 85

D Intel 3.0 2 112 110 100 91 90

a With a cutoff of 1 nm, with reaction field (RF), reaction field with
GROMACS 3.3 (RF3) and PME with a grid-spacing of 0.121 nm, in
single (S) and double (D) precision on AMD64 and Intel Core2
machines with 8 cores per node (cpn) or 4 and 2 cores per node
with Infiniband.

Figure 4. Scaling for a methanol system of 7200 atoms

(circles) and an SPC/E water system of 9000 atoms (tri-

angles), with a cutoff 1 nm, with reaction field (solid lines) and

PME (dashed line) with a grid-spacing of 0.121 nm (36 × 36

× 36 grid) on a 3 GHz Intel Core2 cluster with Infiniband. The

dot-dashed line indicates linear scaling.

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 443

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-004.png&w=186&h=144

nonstandard interactions for the bonded as well as the

nonbonded interactions.31 This model uses 2 beads per repeat

unit, which leads to a reduction in particles with a factor of

8 compared to an all-atom model and a factor of 4 compared

to a united-atom model. The beads are connected linearly in

chains of 96 repeat units with bond, angle, and dihedral

potentials. The benchmark system consists of a melt of 50

such chains, i.e., 9600 beads, in a cubic box of 9.4 nm. Since

the particle density is 8 times lower and the 0.85 nm neighbor

list cutoff shorter than that of an atomistic simulation, the

computational load per particle for the nonbonded interac-

tions is roughly 10 times less. For this model, the nonbonded

and bonded interactions use roughly equal amounts of

computational time. This is the only system for which we

did not use dynamic load balancing. Because there are so

few interactions to calculate, dynamic load balancing slows

down the simulations, especially at high parallelization. The

benchmark results with a Nose-Hoover and a Langevin

thermostat32 are shown in Table 3. Also shown is a

comparison with the ESPResSo package33 (Extensible Simu-

lation Package for Research on Soft matter). GROMACS is

twice as fast as ESPResSo and shows better scaling. This

system scales to more than 6000 MD steps per second. The

Langevin integrator used requires four random Gaussian

numbers per degree of freedom per integration step. With a

simpler integrator, as used by Espresso, the performance

increases by 18% one 1 core and by 10% on 96 cores. One

can see that at low parallelization Langevin dynamics is less

efficient, since generating random numbers is relatively

expensive for a coarse-grained system. But above 32 cores,

or 300 beads per core, it becomes faster than the Nose-

Hoover thermostat. This is because the summation of

energies is not required at every step for the local Langevin

thermostat. Here one can clearly see that simulations with

global thermo- and/or barostats in GROMACS 4 are limited

by the efficiency of the MPI_Allreduce() call. With the

Langevin thermostat the scaling on an Infiniband cluster is

only limited by the latency of the coordinate and force

communication.

As a representative protein system, we chose T4-lysozyme

(164 residues) and the OPLS all-atom force field. We

solvated it in a rhombic dodecahedron (triclinic) unit cell

with a minimum image distance of 7 nm, with 7156 SPC/E

water molecules and 8 Cl- ions, giving a total of 24119

atoms. The cutoff was 1 nm, and the neighbor list was

updated every 20 fs. For electrostatics we used PME with a

grid of 56 × 56 × 56 (0.125 nm spacing). Without virtual

sites we used a time step of 2 fs and for LINCS 1 iteration

and an expansion order of 4. With virtual sites we used a

time step of 4 fs, a single LINCS iteration (expansion order

6). We ran the benchmarks on a 3 GHz Intel Core2

(“Woodcrest”) system with Infiniband interconnects. The real

space to PME process ratio for this system is 2:1, except for

38 processes (14 PME) and 64 processes (28 PME). This is

the only benchmark that actually communicates with more

than one cell in each dimension (np) 2). Results with 2

and 4 cores per Infiniband connection are shown in Figure

5. When all the presented algorithms are used, the scaling is

close to linear up to 38 processors. Without dynamic load

balancing the performance is reduced by a factor of 1.5 on

38 processors. When all nodes participate in the PME mesh

part, the scaling is limited to 14 processors. With a time step

of 2 fs a maximum performance of 68 ns/day is reached,

and with a time step of 4 fs this increases to 112 ns/day. Up

to 12 processors there is no difference between 2 or 4 cores

sharing an Infiniband connection, while at 38 processors the

difference is 14%. It is worth mentioning that the reparti-

tioning of the domain decomposition, reassigning charge

groups to cells, spatial sorting, setting up the zones, assigning

the bonded interactionsm and setting up P-LINCS, always

takes a negligible amount of time. The percentage of the

total run time spent in repartitioning is 2% with a time step

of 2 fs and 4-5% with a time step of 4 fs; the difference is

mainly due to the difference in neighbor list update fre-

quency.

For a similar sized protein system we performed a

comparison to other simulation packages. We chose one of

the most commonly used systems: the joint Amber-

CHARMM benchmark DHFR (dihydrofolate reductase) of

23558 atoms in a cubic box of 6.2 nm. Choosing the setup

for a benchmark that compares different simulation packages

is a difficult issue. Different packages support different

features, and the parameter settings for optimal performance

can differ between packages. One clear example of this is

the box shape. GROMACS can use any triclinic box shape

without loss of performance, and one would therefore always

choose to solvate a spherical protein in a rhombic dodeca-

hedron unit-cell, which reduces the volume by a factor of

Table 3. Number of Steps per Second for a

Coarse-Grained Polystyrene Modela

package thermostat machine 1 2 8 32 64 96

GROMACS Nosé-
Hoover

3 GHz 126 241 964 2950 4120

GROMACS Langevin 3 GHz 106 204 829 2860 4760 6170

GROMACS Langevin 2.33 GHz 80 155 593

ESPResSo Langevin 2.33 GHz 41 85 254

a With 9600 beads as a function of the number of cores on a 3
GHz Intel Core2 cluster with 2 cores per Infiniband connection and
an 8 core 2.33 GHz Intel Core2 machine.

Figure 5. Performance for lysozyme in water (24119 atoms)

with OPLS-aa and PME on a 3 GHz dual core Intel Core2

cluster with 2 (solid lines) and 4 (dashed lines) cores per

InFIniband interconnect. The dot-dashed line indicates linear

scaling.

444 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-005.png&w=194&h=155

x2 compared to a cubic unit-cell with the same periodic

image distance. An important aspect of the setup is the

nonbonded interaction treatment. The joint Amber-Charmm

benchmark uses interactions that smoothly switch to zero at

the cutoff combined with a buffer region. Such a setup is

required for accurate energy conservation. But it is question-

able if such accurate energy conservation is required for

thermostatted simulations. GROMACS loses relatively more

performance in such a setup than other packages, since it

also calculates all interactions with the buffer region, even

though they are all zero. Furthermore, we think that the PME

settings for this benchmark (see Table 4) are somewhat

conservative; this means the PME-mesh code has a relatively

high weight in the results. But since determining the sampling

accuracy of molecular simulations goes beyond the scope

of this paper, we decided to use the same accuracy and aim

for energy conservation. Timings for the Desmond and

NAMD34 packages were taken from the Desmond paper.35

As Desmond, we used the OPLS all-atom force-field with

the TIP3P water model.3 Note that NAMD and Desmond

calculate the PME mesh contribution only every second step,

while GROMACS does it every step. We chose to increase

the cutoff from 0.9 to 0.96 nm and scale the PME grid

spacing accordingly, which provides slightly more accurate

forces and a real to reciprocal space process ratio of 3:1.

The neighbor list was updated heuristically with a buffer of

0.26 nm. The simulation settings and energy drift are shown

in Table 4; note that we took the energy drift values for

Desmond and NAMD from the ApoA1 system,35 which uses

a 1.2 nm cutoff and should therefore provide comparable or

lower drift. The energy drift for GROMACS is 0.01 kBT/ns

per degree of freedom. This is slightly better than NAMD

and Desmond without constraints. With constraints the

energy drift with Desmond is an order of magnitude smaller.

These results show that codes like GROMACS and Desmond

that mainly use single precision do not have larger integration

errors than NAMD which uses double precision vectors. It

also shows that the use of a time step of 4 fs in GROMACS

does not deteriorate the energy conservation. Unfortunately

we did not have an identical cluster at our disposal. We also

ran the GROMACS benchmarks on a dual core cluster with

Infiniband but with 3 GHz Intel Core2 nodes instead of 2.4

GHz AMD64 nodes. Timings for DHFR are shown in Figure

6. If we look at the 1 fs time step results, we can see that,

per clock cycle, GROMACS is 2 times faster than Desmond

and 3-4 times faster than NAMD, even though the bench-

mark settings are unfavorable for GROMACS. Additionally

GROMACS can be another factor 1.5 faster by increasing

the time step from 2.5 to 4 fs, which is made possible by

constraining all bonds and converting hydrogens to virtual

sites. With MPI, Desmond shows similar scaling to GRO-

MACS, whereas NAMD scales worse. With a special

Infiniband communication library, Desmond scales much

further than GROMACS in terms of number of cores but

only slightly further in terms of actual performance. GRO-

MACS would certainly also benefit from such a library.

Finally we show the scaling for a large system, which was

somewhat of a weak point in earlier GROMACS versions.

The system in question is a structure of the Kv1.2 voltage-

gated ion channel36 placed in a 3:1 POPC:POPG bilayer

mixture and solvated with water and ions. The OPLS all-

atom force field with virtual site hydrogens is used for the

ion channel (18,112 atoms), lipids are modeled with the

Berger united-atom force field (424 lipids, 22159 atoms),

Table 4. Parameters for the DHFR Benchmark and the Energy Drift per Degree of Freedom

package
cutoff
(nm) PME grid

PME
freq

time step
(fs) constraints

virtual
sites

energy drift
(kBT/ns)

GROMACS 0.96 60 × 60 × 60 1 step 1 none no 0.011

2.5 H-bonds no 0.005

4 all bonds yes 0.013

Desmond 0.90 64 × 64 × 64 2 steps 1 none no 0.017

2.5 H-bonds no 0.001

NAMD 0.90 64 × 64 × 64 2 steps 1 none no 0.023

Figure 6. Performance for DHFR in water (23558 atoms) with

a 1 fs time step (top panel) and longer time steps (bottom

panel) using GROMACS, Desmond, and NAMD. The dashed

lines for Desmond show the performance with a tuned

Infiniband library.

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 445

http://pubs.acs.org/action/showImage?doi=10.1021/ct700301q&iName=master.img-006.png&w=194&h=327

and the total system size is 13 × 13 × 8.8 nm, with 119,-

913 atoms. We used a cutoff of 1.1 nm and a PME grid of

96 × 96 × 64 (spacing 0.136 nm), giving a real space to

PME process ratio of 3:1. Removing the hydrogen vibrations

by using virtual sites allows for a time step of 5 fs. The

neighbor list was updated every 6 steps (30 fs), since the

dynamics in the important membrane region is slower than

in water. In Table 5 one can see near linear scaling up to

128 processors, where a performance of slightly more than

60 ns/day is reached. With GROMACS 3.3 the system scales

up to 32 processors, where it runs at less than half the speed

of the domain decomposition; GROMACS 4 reaches an order

of magnitude higher performance. The scaling limitation for

this type of system is currently the PME FFT implementation.

X. Conclusions

We have shown that the eighth shell domain decomposition

and the dynamic load balancing provide very good scaling

to large numbers of processors. Dynamic load balancing can

provide a 50% performance increase for typical protein

simulations. Another important new feature is the Multiple-

Program, Multiple-Data PME parallelization, which lowers

the number of processes between which the 3D FFT grid

needs to be redistributed, while simultaneously increasing

the effective communication speed on systems where mul-

tiple cores share a network connection. Since the optimal

real space to PME process ratio is often 3:1, the benefit of

MPMD is higher with 4 or 8 nodes per core than with 1 or

2. This is advantageous, since having more cores per node

decreases the cost and space requirements of computing

clusters. MPMD allows simulations with PME to scale to

double the number of processors and thereby doubles the

simulation speed. The P-LINCS and virtual site algorithms

allow a doubling of the time step.

But what makes a biomolecular MD package tick is not

just a single algorithm but a combination of many efficient

algorithms. If one aspect has not been parallelized efficiently,

this rapidly becomes a bottlenecksnot necessarily for relative

scaling but absolute performance. From the benchmarks

above, we believe we have largely managed to avoid such

bottlenecks in the implementation described here. Not only

do the presented algorithms provide very good scaling to

large numbers of processors but also we do so without

compromising the high single-node performance or any of

the algorithms to extend time steps. Together, these features

of GROMACS 4 allow for absolute simulation speed that is

an order of magnitude larger than previously.

How good the scaling is depends on three factors: the

speed of the computational part in isolation, the efficiency

of the parallel and communication algorithms, and the

efficiency of the communication itself. The first two factors

we have been optimized extensively. The single processor

performance of GROMACS is unrivaled. This makes good

relative scaling extremely difficult, since communication

takes relatively more time. Nevertheless, the benchmarks

show that the scaling is now nearly linear over a large range

of processor counts. The scaling is usually limited by the

third factor, the efficiency of the communication. This is

given by the network setup and its drivers. With PME the

scaling of GROMACS 4 is limited by communication for

the 3D FFT. Without PME the scaling is limited by one

single communication call per MD step for summing the

energies. For any MD code the latter issue cannot be avoided

when a global thermostat or barostat is used every step. As

a rough guideline one can say that with modern commodity

processors connected by an Infiniband network, GROMACS

4 scales close to linear up to 2000 steps per second for simple

liquids without PME, while for complex membrane protein

simulations (no optimized water kernels) with PME and

constraints it scales up to 500 steps per second. There are

still alternatives with even more impressive relatiVe scaling,9

and dedicated-hardware implementation might provide ex-

tremely high performance if cost is no issue. However, for

all normal cases where resources are scarce and absolute

performance is the only thing that matters, we believe the

implementation presented here will be extremely attractive

for molecular simulations.

Acknowledgment. The authors thank the RRZE in

Erlangen and especially Georg Hager for providing comput-

ing resources for benchmarks and Vagelis Harmandaris for

providing the ESPResSo benchmarks. This work was sup-

ported by grants from the Swedish Foundation for Strategic

Research and the Swedish Research Council (E.L.).

References

(1) Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput.

Phys. 1977, 23, 327.

(2) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W.
F.; Hermans, J. In Intermolecular Forces; Pullman, B., Ed.;
D. Reidel Publishing Company: Dordrecht, 1981; pp 331-
342.

(3) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey,
R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.

(4) Fincham, D. Mol. Simul. 1987, 1, 1.

(5) Raine, A. R. C.; Fincham, D.; Smith, W. Comput. Phys.

Commun. 1989, 55, 13.

(6) Clark, T.; McCammon, J. A.; Scott, L. R. In Proceedings of

the Fifth SIAM Conference on Parallel Processing for

Scientific Computing: Dongarra, J., et al., Eds.; SIAM:
Philadelphia, 1991; pp 338-344,

(7) Bekker, H.; Berendsen, H. J. C.; Dijkstra, E. J.; Achterop,
S.; van Drunen, R.; van der Spoel, D.; Sijbers, A.; Keegstra,
H.; Reitsma, B.; Renardus, M. K. R. In Physics Computing

92; de Groot, R. A., Nadrchal, J., Eds.; World Scientific:
Singapore, 1993; pp 252-256,

Table 5. Simulation Speed in ns/day with GROMACS 4

Domain Decomposition and GROMACS 3.3 Particle

Decomposition for the Membrane/Protein System (121449

Atoms)a

cores cpn 4 8 16 32 64 128

GROMACS 4 2 3.1 6.1 11.8 22.3 39.3 65.5

GROMACS 4 4 3.1 6.0 11.6 21.6 38.0 60.1

GROMACS 3.3 2 2.8 4.8 7.7 9.5

GROMACS 3.3 4 2.7 4.8 7.0 8.4

a With a time step of 5 fs on a 3 GHz Intel Core2 Infiniband cluster
with 2 and 4 cores per node/network connection (cpn).

446 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 Hess et al.

(8) Nelson, M.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé,

L.; Skeel, R.; Schulten, K. Int. J. High Perform. Comput.

Appl. 1996, 10, 251.

(9) Fitch, B.; Germain, R.; Mendell, M.; Pitera, J.; Pitman, M.;

Rayshubskiy, A.; Sham, Y.; Suits, F.; Swope, W.; Ward,

T.; Zhestkov, Y.; Zhou, R. J. Parallel Distributed Comput.

2003, 63, 759.

(10) Rhee, Y. M.; Sorin, E. J.; Jayachandran, G.; Lindahl, E.;

Pande, V. S. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6456.

(11) Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model. 2001,

7, 306.

(12) van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,

A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701.

(13) Feenstra, K. A.; Hess, B.; Berendsen, H. J. C. J. Comput.

Chem. 1999, 20, 786.

(14) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee,

H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577.

(15) Greengard, L.; Rokhlin, V. J. Comput. Phys. 1987, 73, 325.

(16) Bowers, K. J.; Dror, R. O.; Shaw, D. E. J. Comput. Phys.

2007, 221, 303.

(17) Bowers, K. J.; Dror, R. O.; Shaw, D. E. J. Phys. Conf. Ser.

2005, 16, 300.

(18) Bowers, K. J.; Dror, R. O.; Shaw, D. E. J. Chem. Phys. 2006,

124 (18), 184109.

(19) Liem, S. Y.; Brown, D.; Clarke, J. H. R. Comput. Phys.

Commun. 1991, 67 (2), 261.

(20) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E.

M. J. Comput. Chem. 1997, 18, 1463.

(21) Hess, B. J. Chem. Theory Comput. 2008, 4 (1), 116.

(22) Lippert, R. A.; Bowers, K. J.; Dror, R. O.; Eastwood, M.

P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.; Shaw,

D. E. J. Chem. Phys. 2007, 126, 046101.

(23) Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13,
952.

(24) van Gunsteren, W. F.; Karplus, M. Macromolecules 1982,
15, 1528.

(25) Meloni, S.; Rosati, M. J. Chem. Phys. 2007, 126, 121102.

(26) Weerasinghe, S.; Smith, P. E. J. Chem. Phys. 2003, 119 (21),
11342.

(27) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys.

Chem. 1987, 91, 6269.

(28) Kutzner, C.; van der Spoel, D.; Fechner, M.; Lindahl, E.;
Schmitt, U. W.; de Groot, B. L.; Grubmuller, H. J. Comput.

Chem. 2007, 28, 2075.

(29) Holian, B. L.; Voter, A. F.; Ravelo, R. Phys. ReV. E 1995,
52 (3), 2338.

(30) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am.

Chem. Soc. 1996, 118, 11225.

(31) Harmandaris, V. A.; Reith, D.; van der Vegt, N. F. A.;
Kremer, K. Macromolecules 2007, 208, 2109.

(32) van Gunsteren, W. F.; Berendsen, H. J. C. Mol. Simul. 1988,
1, 173.

(33) Limbach, H.-J.; Arnold, A.; Mann, B. A.; Holm, C. Comput.

Phys. Commun. 2006, 174 (9), 704.

(34) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhor-
shid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.;
Schulten, K. J. Comput. Chem. 2005, 26 (16), 1781.

(35) Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood,
M. P.; Gregersen, B. A.; Klepeis, J. L.; Kolossvary, I.;
Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.;
Shaw, D. E. In ACM/IEEE SC 2006 Conference (SC’06);
2006; p 43.

(36) Long, S.; Campbell, E. B.; MacKinnon, R. Science 2005,
309, 897.

CT700301Q

GROMACS 4 J. Chem. Theory Comput., Vol. 4, No. 3, 2008 447

