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Abstract

Cross-lingual or cross-domain correspon-

dences play key roles in tasks ranging from

machine translation to transfer learning. Re-

cently, purely unsupervised methods operating

on monolingual embeddings have become ef-

fective alignment tools. Current state-of-the-

art methods, however, involve multiple steps,

including heuristic post-hoc refinement strate-

gies. In this paper, we cast the correspon-

dence problem directly as an optimal trans-

port (OT) problem, building on the idea that

word embeddings arise from metric recovery

algorithms. Indeed, we exploit the Gromov-

Wasserstein distance that measures how sim-

ilarities between pairs of words relate across

languages. We show that our OT objective

can be estimated efficiently, requires little or

no tuning, and results in performance compa-

rable with the state-of-the-art in various unsu-

pervised word translation tasks.

1 Introduction

Many key linguistic tasks, within and across lan-

guages or domains, including machine translation,

rely on learning cross-lingual correspondences be-

tween words or other semantic units. While the as-

sociated alignment problem could be solved with

access to large amounts of parallel data, broader

applicability relies on the ability to do so with

largely mono-lingual data, from Part-of-Speech

(POS) tagging (Zhang et al., 2016), dependency

parsing (Guo et al., 2015), to machine translation

(Lample et al., 2018). The key subtask of bilingual

lexical induction, for example, while long stand-

ing as a problem (Fung, 1995; Rapp, 1995, 1999),

has been actively pursued recently (Artetxe et al.,

2016; Zhang et al., 2017a; Conneau et al., 2018).

Current methods for learning cross-domain cor-

respondences at the word level rely on distributed

representations of words, building on the observa-

tion that mono-lingual word embeddings exhibit

similar geometric properties across languages

Mikolov et al. (2013). While most early work

assumed some, albeit minimal, amount of paral-

lel data (Mikolov et al., 2013; Dinu et al., 2014;

Zhang et al., 2016), recently fully-unsupervised

methods have been shown to perform on par

with their supervised counterparts (Conneau et al.,

2018; Artetxe et al., 2018). While successful, the

mappings arise from multiple steps of process-

ing, requiring either careful initial guesses or post-

mapping refinements, including mitigating the ef-

fect of frequent words on neighborhoods. The as-

sociated adversarial training schemes can also be

challenging to tune properly (Artetxe et al., 2018).

In this paper, we propose a direct optimization

approach to solving correspondences based on re-

cent generalizations of optimal transport (OT). OT

is a general mathematical toolbox used to evalu-

ate correspondence-based distances and establish

mappings between probability distributions, in-

cluding discrete distributions such as point-sets.

However, the nature of mono-lingual word embed-

dings renders the classic formulation of OT inap-

plicable to our setting. Indeed, word embeddings

are estimated primarily in a relational manner to

the extent that the algorithms are naturally in-

terpreted as metric recovery methods (Hashimoto

et al., 2016). In such settings, previous work

has sought to bypass this lack of registration by

jointly optimizing over a matching and an or-

thogonal mapping (Rangarajan et al., 1997; Zhang

et al., 2017b). Due to the focus on distances rather

than points, we instead adopt a relational OT for-

mulation based on the Gromov-Wasserstein dis-

tance that measures how distances between pairs

of words are mapped across languages. We show

that the resulting mapping admits an efficient so-

lution and requires little or no tuning.

In summary, we make the following contribu-

tions:
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• We propose the use of the Gromov-

Wasserstein distance to learn correspon-

dences between word embedding spaces

in a fully-unsupervised manner, leading to

a theoretically-motivated optimization prob-

lem that can be solved efficiently, robustly, in

a single step, and requires no post-processing

or heuristic adjustments.

• To scale up to large vocabularies we realize

an extended mapping to words not part of the

original optimization problem.

• We show that the proposed approach per-

forms on par with state-of-the-art neural net-

work based methods on benchmark word

translation tasks, while requiring a frac-

tion of the computational cost and/or hyper-

parameter tuning.

2 Problem Formulation

In the unsupervised bilingual lexical induction

problem we consider two languages with vocabu-

laries Vx and Vy, represented by word embeddings

X = {x(i)}ni=1 and Y = {y(j)}mj=1, respectively,

where x(i) ∈ X ⊂ R
dx corresponds to wx

i ∈ Vx

and y(j) ∈ Y ⊂ R
dy to wy

j ∈ Vy. For simplicity,

we let m = n and dx = dy, although our meth-

ods carry over to the general case with little or no

modifications. Our goal is to learn an alignment

between these two sets of words without any par-

allel data, i.e., we learn to relate x(i) ↔ y(j) with

the implication that wx
i translates to wy

j .

As background, we begin by discussing the

problem of learning an explicit map between em-

beddings in the supervised scenario. The associ-

ated training procedure will later be used for ex-

tending unsupervised alignments (Section 3.2).

2.1 Supervised Maps: Procrustes

In the supervised setting, we learn a map T : X →
Y such that T (x(i)) ≈ y(j) whenever wy

j is a

translation of wx
i . Let X and Y be the matrices

whose columns are vectors x(i) and y(j), respec-

tively. Then we can find T by solving

min
T∈F
‖X− T (Y)‖2F (1)

where ‖ · ‖F is the Frobenius norm ‖A‖F =
√

∑

i,j |aij |
2. Naturally, both the difficulty of

finding T and the quality of the resulting align-

ment depend on the choice of space F . A classic

approach constrains T to be orthonormal matrices,

i.e., rotations and reflections, resulting in the or-

thogonal Procrustes problem

min
P∈O(n)

‖X−PY‖2F (2)

where O(n) = {P ∈ R
n×n | P⊤P = I}.

One key advantage of this formulation is that

it has a closed-form solution in terms of a sin-

gular value decomposition (SVD), whereas for

most other choices of constraint set F it does

not. Given an SVD decomposition UΣV⊤ of

XY⊤, the solution to problem (2) is P∗ = UV⊤

(Schönemann, 1966). Besides obvious compu-

tational advantage, constraining the mapping be-

tween spaces to be orthonormal is justified in the

context of word embedding alignment because

orthogonal maps preserve angles (and thus dis-

tances), which is often the only information used

by downstream tasks (e.g., for nearest neighbor

search) that rely on word embeddings. (Smith

et al., 2017) further show that orthogonality is re-

quired for self-consistency of linear transforma-

tions between vector spaces.

Clearly, the Procrustes approach only solves the

supervised version of the problem as it requires a

known correspondence between the columns of X

and Y. Steps beyond this constraint include using

small amounts of parallel data (Zhang et al., 2016)

or an unsupervised technique as the initial step

to generate pseudo-parallel data (Conneau et al.,

2018) before solving for P.

2.2 Unsupervised Maps: Optimal Transport

Optimal transport formalizes the problem of find-

ing a minimum cost mapping between two point

sets, viewed as discrete distributions. Specifically,

we assume two empirical distributions over em-

beddings, e.g.,

µ =
n
∑

i=1

piδx(i) , ν =
m
∑

j=1

qjδy(i) (3)

where p and q are vectors of probability weights

associated with each point set. In our case, we

usually consider uniform weights, e.g., pi = 1/n
and qj = 1/m, although if additional information

were provided (such as in the form of word fre-

quencies), those could be naturally incorporated

via p and q (see discussion at the end of Section

3). We find a transportation map T realizing

inf
T

{
∫

X

c(x, T (x))dµ(x) | T#µ = ν

}

, (4)
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where the cost c(x, T (x)) is typically just ‖x −
T (x)‖ and T#µ = ν implies that the source points

must exactly map to the targets. However, such a

map need not exist in general and we instead fol-

low a relaxed Kantorovich’s formulation. In this

case, the set of transportation plans is a polytope:

Π(p,q) = {Γ ∈ R
n×m
+ | Γ1n = p, Γ⊤

1n = q}.

The cost function is given as a matrix C ∈ R
n×m,

e.g., Cij = ‖x(i) − y(j)‖. The total cost incurred

by Γ is 〈Γ, C〉 :=
∑

ij ΓijCij . Thus, the discrete

optimal transport (DOT) problem consists of find-

ing a plan Γ that solves

min
Γ∈Π(p,q)

〈Γ,C〉. (5)

Problem (5) is a linear program, and thus can be

solved exactly in O(n3 log n) with interior point

methods. However, regularizing the objective

leads to more efficient optimization and often bet-

ter empirical results. The most common such reg-

ularization, popularized by Cuturi (2013), involves

adding an entropy penalization:

min
Γ∈Π(p,q)

〈Γ,C〉 − λH(Γ). (6)

The solution of this strictly convex optimization

problem has the form Γ∗ = diag (a)K diag (b),

with K = e−
C

λ (element-wise), and can be ob-

tained efficiently via the Sinkhorn-Knopp algo-

rithm, a matrix-scaling procedure which itera-

tively computes:

a← p⊘Kb and b← q⊘K⊤a, (7)

where ⊘ denotes entry-wise division. The deriva-

tion of these updates is immediate from the form

of Γ∗ above, combined with the marginal con-

straints Γ1n = p, Γ⊤
1n = q (Peyré and Cuturi,

2018).

Although simple, efficient and theoretically-

motivated, a direct application of discrete OT for

unsupervised word translation is not appropriate.

One reason is that the mono-lingual embeddings

are estimated in a relative manner, leaving, e.g.,

an overall rotation unspecified. Such degrees of

freedom can dramatically change the entries of the

cost matrix Cij = ‖x(i) − y(j)‖ and the resulting

transport map. One possible solution is to simulta-

neously learn an optimal coupling and an orthog-

onal transformation (Zhang et al., 2017b). The

transport problem is then solved iteratively, using

Cij = ‖x(i) − Py(j)‖, where P is in turn cho-

sen to minimize the transport cost (via Procrustes).

While promising, the resulting iterative approach

is sensitive to initialization, perhaps explaining

why Zhang et al. (2017b) used an adversarially

learned mapping as the initial step. The compu-

tational cost can also be prohibitive (Artetxe et al.,

2018) though could be remedied with additional

development.

We adopt a theoretically well-founded gener-

alization of optimal transport for pairs of points

(their distances), thus in line with how the embed-

dings are estimated in the first place. We explain

the approach in detail in the next Section.

3 Transporting across unaligned spaces

In this section we introduce the Gromov-

Wasserstein distance, describe an optimization al-

gorithm for it, and discuss how to extend the ap-

proach to out-of-sample vectors.

3.1 The Gromov Wasserstein Distance

The classic optimal transport requires a distance

between vectors across the two domains. Such

a metric may not be available, for example,

when the sample sets to be matched do not be-

long to the same metric space (e.g., different

dimension). The Gromov-Wasserstein distance

(Mémoli, 2011) generalizes optimal transport by

comparing the metric spaces directly instead of

samples across the spaces. In other words, this

framework operates on distances between pairs of

points calculated within each domain and mea-

sures how these distances compare to those in the

other domain. Thus, it requires a weaker but easy

to define notion of distance between distances, and

operates on pairs of points, turning the problem

from a linear to a quadratic one.

Formally, in its discrete version, this framework

considers two measure spaces expressed in terms

of within-domain similarity matrices (C,p) and

(C′,q) and a loss function defined between simi-

larity pairs: L : R × R → R, where L(Cik, C
′
jl)

measures the discrepancy between the distances

d(x(i),x(k)) and d′(y(j),y(l)). Typical choices for

L are L(a, b) = 1
2(a − b)2 or L(a, b) = KL(a|b).

In this framework, L(Cik, C
′
jl) can also be under-

stood as the cost of “matching” i to j and k to l.

All the relevant values of L(·, ·) can be put in

a 4-th order tensor L ∈ R
N1×N1×N2×N2 , where

Lijkl = L(Cik, C
′
jl). As before, we seek a cou-
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Figure 1: The Gromov-Wasserstein distance is well suited for the task of cross-lingual alignment be-

cause it relies on relational rather than positional similarities to infer correspondences across domains.

Computing it requires two intra-domain similarity (or equivalently cost) matrices (left & center), and it

produces an optimal coupling of source and target points with minimal discrepancy cost (right).

pling Γ specifying how much mass to transfer be-

tween each pair of points from the two spaces. The

Gromov-Wasserstein problem is then defined as

solving

GW(C,C′,p,q) = min
Γ∈Π(p,q)

∑

i,j,k,l

LijklΓijΓkl (8)

Compared to problem (5), this version is sub-

stantially harder since the objective is now not

only non-linear, but non-convex too.1 In addi-

tion, it requires operating on a fourth-order ten-

sor, which would be prohibitive in most settings.

Surprisingly, this problem can be optimized ef-

ficiently with first-order methods, whereby each

iteration involves solving a traditional optimal

transport problem (Peyré et al., 2016). Fur-

thermore, for suitable choices of loss function

L, Peyré et al. (2016) show that instead of the

O(N2
1N

2
2 ) complexity implied by naive fourth-

order tensor product, this computation reduces to

O(N2
1N2 + N1N2

2 ) cost. Their approach con-

sists of solving (5) by projected gradient descent,

which yields iterations that involve projecting onto

Π(p,q) a pseudo-cost matrix of the form

ĈΓ(C,C′,Γ) = Cxy − h1(C)Γh2(C
′)⊤ (9)

where

Cxy = f1(C)p1⊤
m + 1nq

⊤f2(C
′)⊤

and f1, f2, h2, h2 are functions that depend on the

loss L. We provide an explicit algorithm for the

case L = L2 at the end of this section.

1In fact, the discrete (Monge-type) formulation of the
problem is essentially an instance of the well-known (and
NP-hard) quadratic assignment problem (QAP).

Once we have solved (8), the optimal trans-

port coupling Γ∗ provides an explicit (soft) match-

ing between source and target samples, which for

the problem of interest can be interpreted as a

probabilistic translation: for every pair of words

(w
(i)
src, w

(j)
trg), Γ

∗
ij provides a likelihood that these

two words are translations of each other. This

itself is enough to translate, and we show in

the experiments section that Γ∗ by itself, with-

out any further post-processing, provides high-

quality translations. This stands in sharp con-

trast to mapping-based methods, which rely on

nearest-neighbor computation to infer transla-

tions, and thus become prone to hub-word effects

which have to be mitigated with heuristic post-

processing techniques such as Inverted Softmax

(Smith et al., 2017) and Cross-Domain Similarity

Scaling (CSLS) (Conneau et al., 2018). The trans-

portation coupling Γ, being normalized by con-

struction, requires no such artifacts.

The Gromov-Wasserstein problem (8) pos-

sesses various desirable theoretical properties, in-

cluding the fact that for a suitable choice of the

loss function it is indeed a distance:

Theorem 3.1 (Mémoli 2011). With the choice

L = L2, GW
1
2 is a distance on the space of metric

measure spaces.

Solving problem (8) therefore yields a fas-

cinating accompanying notion: the Gromov-

Wasserstein distance between languages, a mea-

sure of semantic discrepancy purely based on the

relational characterization of their word embed-

dings. Owing to Theorem 3.1, such values can be
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interpreted as distances, so that, e.g., the triangle

inequality holds among them. In Section 4.4 we

compare various languages in terms of their GW-

distance.

Finally, we note that whenever word frequency

counts are available, those would be used for p

and q. If they are not, but words are sorted ac-

cording to occurrence (as they often are in popu-

lar off-the-shelf embedding formats), one can es-

timate rank-probabilities such as Zipf power laws,

which are known to accurately model multiple lan-

guages (Piantadosi, 2014). In order to provide a

fair comparison to previous work, throughout our

experiments we use uniform distributions so as

to avoid providing our method with additional in-

formation not available to others.

3.2 Scaling Up

While the pure Gromov-Wasserstein approach

leads to high quality solutions, it is best suited

to small-to-moderate vocabulary sizes,2 since its

optimization becomes prohibitive for very large

problems. For such settings, we propose a two-

step approach in which we first match a subset

of the vocabulary via the optimal coupling, after

which we learn an orthogonal mapping through a

modified Procrustes problem. Formally, suppose

we solve problem (8) for a reduced matrices X1:k

and Yi:k consisting of the first columns k of X

and Y, respectively, and let Γ∗ be the optimal

coupling. We seek an orthogonal matrix that best

recovers the barycentric mapping implied by Γ∗.

Namely, we seek to find P which solves:

min
P∈O(n)

‖XΓ∗ −PY‖22 (10)

Just as problem (2), it is easy to show that this

Procrustes-type problem has a closed form solu-

tion in terms of a singular value decomposition.

Namely, the solution to (10) is P∗ = UV⊤, where

UΣV∗ = X1:mΓ∗Y⊤
1:m. After obtaining this pro-

jection, we can immediately map the rest of the

embeddings via ŷ(j) = P∗y(j).

We point out that this two-step procedure re-

sembles that of Conneau et al. (2018). Both ul-

timately produce an orthogonal mapping obtained

by solving a Procrustes problems, but they differ

in the way they produce pseudo-matches to allow

for such second-step: while their approach relies

2As shown in the experimental section, we are able to run
problems of size in the order of |Vs| ≈ 105 ≈ |Vt| on a single
machine without relying on GPU computation.

Algorithm 1 Gromov-Wasserstein Computation

for Word Embedding Alignment

Input: Source and target embeddings X, Y.

Regularization λ. Probability vectors p,q.

// Compute intra-language similarities

Cs ← cos(X,X), Ct ← cos(Y,Y)
Cst ← C2

sp✶
⊤
m + ✶nq(C

2
t )

⊤

while not converged do

// Compute pseudo-cost matrix (Eq. (9))

ĈΓ ← Cst − 2CsΓC
⊤
t

// Sinkhorn iterations (Eq. (7))

a← ✶, K← exp{−ĈΓ/λ}
while not converged do

a← p⊘Kb, b← q⊘K⊤a

end while

Γ← diag (a)K diag (b)
end while

// Optional step: Learn explicit projection

U,Σ,V⊤ ← SVD(XΓY⊤)
P = UV⊤

return Γ,P

on an adversarially-learned transformation, we use

an explicit optimization problem.

We end this section by discussing parameter and

configuration choices. To leverage the fast algo-

rithm of Peyré et al. (2016), we always use the L2

distance as the loss function L between cost ma-

trices. On the other hand, we observed throughout

our experiments that the choice of cosine distance

as the metric in both spaces consistently leads to

better results, which agrees with common wis-

dom on computing distances between word em-

beddings. This leaves us with a single hyper-

parameter to control: the entropy regularization

term λ. By applying any sensible normalization

on the cost matrices (e.g., dividing by the mean

or median value), we are able to almost entirely

eliminate sensitivity to that parameter. In prac-

tice, we use a simple scheme in all experiments:

we first try the same fixed value (λ = 5× 10−5),

and if the regularization proves too small (by lead-

ing to floating point errors), we instead use λ =
1× 10−4. We never had to go beyond these two

values in all our experiments. We emphasize that

at no point we use train (let alone test) supervision

available with many datasets—model selection is

done solely in terms of the unsupervised objective.

Pseudocode for the full method (with L = L2 and

cosine similarity) is shown here as Algorithm 1.



1886

0 10 20 30 40 50
Iteration

0

20

40

60

80
Ac

cu
ra

cy
 (%

)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Di
st

an
ce

 (O
pt

. O
bj

ec
tiv

e)

1e 3

(a) EN→FR, 15K words, λ = 5 · 10−4
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(b) EN→FR, 15K words, λ = 10−4
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(c) EN→RU, 15K words, λ = 10−4

Figure 2: Training dynamics for the Gromov-Wasserstein alignment problem. The algorithm prov-

ably makes progress in each iteration, and the objective (red dashed line) closely follows the metric of

interest (translation accuracy, not available during training). More related languages (e.g., EN →FR in

2b,2a) lead to faster optimization, while more distant pairs yield slower learning curves (EN→RU, 2c).

4 Experiments

Through this experimental evaluation we seek

to: (i) understand the optimization dynamics of

the proposed approach (§4.2), evaluate its perfor-

mance on benchmark cross-lingual word embed-

ding tasks (§4.3), and (iii) qualitatively investi-

gate the notion of distance-between-languages it

computes (§4.4). Rather than focusing solely on

prediction accuracy, we seek to demonstrate that

the proposed approach offers a fast, principled,

and robust alternative to state-of-the-art multi-step

methods, delivering comparable performance.

4.1 Evaluation Tasks and Methods

Datasets We evaluate our method on two stan-

dard benchmark tasks for cross-lingual embed-

dings. First, we consider the dataset of Conneau

et al. (2018), which consists of word embeddings

trained with FASTTEXT (Bojanowski et al., 2017)

on Wikipedia and parallel dictionaries for 110 lan-

guage pairs. Here, we focus on the language

pairs for which they report results: English (EN)

from/to Spanish (ES), French (FR), German (DE),

Russian (RU) and simplified Chinese (ZH). We do

not report results on Esperanto (EO) as dictionar-

ies for that language were not provided with the

original dataset release.

For our second set of experiments, we con-

sider the—substantially harder3—dataset of (Dinu

et al., 2014), which has been extensively compared

against in previous work. It consists of embed-

dings and dictionaries in four pairs of languages;

EN from/to ES, IT, DE, and FI (Finnish).

3We discuss the difference in hardness of these two bench-
mark datasets in Section 4.3.

Methods To see how our fully-unsupervised

method compares with methods that require

(some) cross-lingual supervision, we follow (Con-

neau et al., 2018) and consider a simple but strong

baseline consisting of solving a procrustes prob-

lem directly using the available cross-lingual em-

bedding pairs. We refer to this method sim-

ply as PROCRUSTES. In addition, we compare

against the fully-unsupervised methods of Zhang

et al. (2017a), Artetxe et al. (2018) and Conneau

et al. (2018).4 As proposed by the latter, we

use CSLS whenever nearest neighbor search is re-

quired, which has been shown to improve upon

naive nearest-neighbor retrieval in multiple work.

4.2 Training Dynamics of G-W

As previously mentioned, our approach involves

only two optimization choices, one of which is

required only for very large settings. When run-

ning Algorithm 1 for the full set of embeddings is

infeasible (due to memory limitations), one must

decide what fraction of the embeddings to use

during optimization. In our experiments, we use

the largest possible size allowed by memory con-

straints, which was found to be K = 20, 000 for

the personal computer we used.

The other—more interesting—optimization

choice involves the entropy regularization pa-

rameter λ used within the Sinkhorn iterations.

Large regularization values lead to denser optimal

coupling Γ∗, while less regularization leads to

sparser solutions,5 at the cost of a harder (more

4Despite its relevance, we do not include the OT-based
method of Zhang et al. (2017b) in the comparison because
their implementation required use of proprietary software.

5In the limit λ→ 0, when n = m, the solution converges
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EN-ES EN-FR EN-DE EN-IT EN-RU

Supervision Time → ← → ← → ← → ← → ←

PROCRUSTES 5K words 3 77.6 77.2 74.9 75.9 68.4 67.7 73.9 73.8 47.2 58.2
PROCRUSTES + CSLS 5K words 3 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7
(Conneau et al., 2018) None 957 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 52.4 61.4

G-W (λ = 10−4) None 70 78.3 79.5 79.3 78.3 69.6 66.9 75.3 74.1 26.1 35.4

G-W (λ = 10−5) None 37 81.7 80.4 81.3 78.9 71.9 72.8 78.9 75.2 45.1 43.7

Table 1: Performance (P@1) of unsupervised and minimally-supervised methods on the dataset of Con-

neau et al. (2018). The time columns shows the average runtime in minutes of an instance (i.e., one

language pair) of the method in this task on the same quad-core CPU machine.

non-convex) optimization problem.

In Figure 2 we show the training dynamics of

our method when learning correspondences be-

tween word embeddings from the dataset of Con-

neau et al. (2018). As expected, larger values

of λ lead to smoother improvements with faster

runtime-per-iteration, at a price of some drop in

performance. In addition, we found that comput-

ing GW distances between closer languages (such

as EN and FR) leads to faster convergence than for

more distant ones (such as EN and RU, in Fig. 2c).

Worth emphasizing are three desirable opti-

mization properties that set apart the Gromov-

Wasserstein distance from other unsupervised

alignment approaches, particularly adversarial-

training ones: (i) the objective decreases mono-

tonically (ii) its value closely follows the true

metric of interest (translation, which naturally is

not available during training) and (iii) there is no

risk of degradation due to overtraining, as is the

case for adversarial-based methods trained with

stochastic gradient descent (Conneau et al., 2018).

4.3 Benchmark Results

We report the results on the dataset of Conneau

et al. (2018) in Table 1. The strikingly high per-

formance of all methods on this task belies the

hardness of the general problem of unsupervised

cross-lingual alignment. Indeed, as pointed out

by Artetxe et al. (2018), the FASTTEXT embed-

dings provided in this task are trained on very

large and highly comparable—across languages—

corpora (Wikipedia), and focuses on closely re-

lated pairs of languages. Nevertheless, we carry

out experiments here to have a broad evaluation of

our approach in both easier and harder settings.

Next, we present results on the more challeng-

to a permutation matrix, which gives a hard-matching solu-
tion to the transportation problem (Peyré and Cuturi, 2018).
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Figure 3: Top: Word embeddings trained on non-

comparable corpora can lead to uneven distribu-

tions of pairwise distances as shown here for the

EN-FI pair of (Dinu et al., 2014). Bottom: Nor-

malizing the cost matrices leads to better optimiza-

tion and improved performance.

ing dataset of (Dinu et al., 2014) in Table 2. Here,

we rely on the results reported by (Artetxe et al.,

2018) since by the time of writing the present work

their implementation was not available yet.

Part of what makes this dataset hard is the wide

discrepancy between word distance across lan-

guages, which translates into uneven distance ma-

trices (Figure 3), and in turn leads to poor results

for G-W. To account for this, previous work has

relied on an initial whitening step on the embed-

dings. In our case, it suffices to normalize the

pairwise similarity matrices to the same range to

obtain substantially better results. While we have

observed that careful choice of the regularization

parameter λ can obviate the need for this step, we

opt for the normalization approach since it allows

us to optimize without having to tune λ.

We compare our method (with and without nor-
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EN-IT EN-DE EN-FI EN-ES

P@1 Time P@1 Time P@1 Time P@1 Time

(Zhang et al., 2017a)† 0 46.6 0 46.0 0.07 44.9 0.07 43.0

(Conneau et al., 2018)† 45.40 46.1 47.27 45.4 1.62 44.4 36.20 45.3

(Artetxe et al., 2018)† 48.53 8.9 48.47 7.3 33.50 12.9 37.60 9.1

G-W 44.4 35.2 37.83 36.7 6.8 15.6 12.5 18.4

G-W + NORMALIZE 49.21 36 46.5 33.2 18.3 42.1 37.60 38.2

Table 2: Results of unsupervised methods on the dataset of Dinu et al. (2014) with runtimes in min-

utes. Those marked with † are from (Artetxe et al., 2018). Note that their runtimes correspond to GPU

computation, while ours are CPU-minutes, so the numbers are not directly comparable.

malization) against alternative approaches in Ta-

ble 2. Note that we report the runtimes of Artetxe

et al. (2018) as-is, which are obtained by running

on a Titan XP GPU, while our runtimes are, as be-

fore, obtained purely by CPU computation.

4.4 Qualitative Results

As mentioned earlier, Theorem 3.1 implies that the

optimal value of the Gromov-Wasserstein problem

can be legitimately interpreted as a distance be-

tween languages, or more explicitly, between their

word embedding spaces. This distributional no-

tion of distance is completely determined by pair-

wise geometric relations between these vectors. In

Figure 4 we show the values GW(Cs,Ct,p,q)
computed on the FASTTEXT word embeddings of

Conneau et al. (2018) corresponding to the most

frequent 2000 words in each language.

Overall, these distances conform to our intu-

itions: the cluster of romance languages exhibits

some of the shortest distances, while classical Chi-

nese (ZH) has the overall largest discrepancy with

all other languages. But somewhat surprisingly,

Russian is relatively close to the romance lan-

guages in this metric. We conjecture that this

could be due to Russian’s rich morphology (a trait

shared by romance languages but not English).

Furthermore, both Russian and Spanish are pro-

drop languages (Haspelmath, 2001) and share syn-

tactic phenomena, such as dative subjects (Moore

and Perlmutter, 2000; Melis et al., 2013) and dif-

ferential object marking (Bossong, 1991), which

might explain why ES is closest to RU overall.

On the other hand, English appears remarkably

isolated from all languages, equally distant from

its germanic (DE) and romance (FR) cousins. In-

deed, other aspects of the data (such as corpus

size) might be underlying these observations.

DE EN ES FR IT RU ZH

D
E

E
N

E
S

F
R

IT
R
U

Z
H

0 2.3 2.9 2.3 2.2 2.2 7.3

2.3 0 2.4 2.5 2.4 2.4 8.2

2.9 2.4 0 1.7 1.6 1.5 6.2

2.3 2.5 1.7 0 1.7 1.7 6.7

2.2 2.4 1.6 1.7 0 1.8 6.5

2.2 2.4 1.5 1.7 1.8 0 7.4

7.3 8.2 6.2 6.7 6.5 7.4 0

Gromov-Wasserstein Distances

0

2

4

6

8

10

Figure 4: Pairwise language Gromov-Wasserstein

distances obtained as the minimal transportation

cost (8) between word embedding similarity ma-

trices. Values scaled by 102 for easy visualization.

5 Related Work

Study of the problem of bilingual lexical induction

goes back to Rapp (1995) and Fung (1995). While

the literature on this topic is extensive, we focus

here on recent fully-unsupervised and minimally-

supervised approaches, and refer the reader to one

of various existing surveys for a broader panorama

(Upadhyay et al., 2016; Ruder et al., 2017).

Methods with coarse or limited parallel data.

Most of these fall in one of two categories: meth-

ods that learn a mapping from one space to

the other, e.g., as a least-squares objective (e.g.,

(Mikolov et al., 2013)) or via orthogonal transfor-

mations Zhang et al. (2016); Smith et al. (2017);

Artetxe et al. (2016), and methods that find a com-
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mon space on which to project both sets of embed-

dings (Faruqui and Dyer, 2014; Lu et al., 2015).

Fully Unsupervised methods. Conneau et al.

(2018) and Zhang et al. (2017a) rely on adversarial

training to produce an initial alignment between

the spaces. The former use pseudo-matches de-

rived from this initial alignment to solve a Pro-

crustes (2) alignment problem. Our Gromov-

Wasserstein framework can be thought of as pro-

viding an alternative to these adversarial training

steps, albeit with a concise optimization formula-

tion and producing explicit matches (via the op-

timal coupling) instead of depending on nearest

neighbor search, as the adversarially-learnt map-

pings do.

Zhang et al. (2017b) also leverage optimal

transport distances for the cross-lingual embed-

ding task. However, to address the issue of non-

alignment of embedding spaces, their approach

follows the joint optimization of the transportation

and procrustes problem as outlined in Section 2.2.

This formulation makes an explicit modeling as-

sumption (invariance to unitary transformations),

and requires repeated solution of Procrustes prob-

lems during alternating minimization. Gromov-

Wasserstein, on the other hand, is more flexible

and makes no such assumption, since it directly

deals with similarities rather than vectors. In the

case where it is required, such an orthogonal map-

ping can be obtained by solving a single procrustes

problem, as discussed in Section 3.2.

6 Discussion and future work

In this work we provided a direct optimization

approach to cross-lingual word alignment. The

Gromov-Wasserstein distance is well-suited for

this task as it performs a relational comparison of

word-vectors across languages rather than word-

vectors directly. The resulting objective is concise,

and can be optimized efficiently. The experimen-

tal results show that the resulting alignment frame-

work is fast, stable and robust, yielding near state-

of-the-art performance at a computational cost or-

ders of magnitude lower than that of alternative

fully unsupervised methods.

While directly solving Gromov-Wasserstein

problems of reasonable size is feasible, scaling up

to large vocabularies made it necessary to learn an

explicit mapping via Procrustes. GPU computa-

tions or stochastic optimization could help avoid

this secondary step.
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Gabriel Peyré, Marco Cuturi, and Justin Solomon.
2016. Gromov-Wasserstein averaging of kernel and
distance matrices. In International Conference on
Machine Learning, pages 2664–2672.

Steven T Piantadosi. 2014. Zipf’s word frequency
law in natural language: A critical review and fu-
ture directions. Psychonomic Bulletin & Review,
21(5):1112–1130.

Anand Rangarajan, Haili Chui, and Fred L Book-
stein. 1997. The Softassign Procrustes Matching
Algorithm. Lecture Notes in Computer Science,
1230:29–42.

Reinhard Rapp. 1995. Identifying word translations in
non-parallel texts. In Proceedings of the 33rd an-
nual meeting on Association for Computational Lin-
guistics, pages 320–322. Association for Computa-
tional Linguistics.

Reinhard Rapp. 1999. Automatic identification of
word translations from unrelated English and Ger-
man corpora. In Proceedings of the 37th annual
meeting of the Association for Computational Lin-
guistics on Computational Linguistics, pages 519–
526. Association for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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